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SUMMARY

In this work, we propose the development and the corresponding stability analysis of a novel,
observer-based output feedback (OFB), tracking controller for rigid-link robot manipulators.
Specifically, a model-independent variable-structure-like observer in conjunction with a desired
dynamic compensation technique have been utilized to remove the link velocity dependency of the
controller formulation. Asymptotic stability of the observer—controller couple is then guaranteed
via Lyapunov-based arguments. An adaptive controller extension is also presented to illustrate the
expansiveness of the proposed scheme. Experimental studies performed on a two-link planar robot
with dynamical uncertainties are included in order to demonstrate the performance and feasibility of
the proposed method.

KEYWORDS: Output feedback Control; Observer Based Design; Adaptive Systems.

1. Introduction

Controlling robotic manipulators using only position measurements has been a relatively attractive
research field. Aside from the challenging nature of the problem, the main reason for this interest is
due to the reduction of velocity sensors. Most robots available for industrial use, do not have velocity
sensors. And sensors like tachometers, mostly, are contaminated with noise. Therefore, removing
the need to use them in the controller design, is attractive from an implementation point of view.
Extracting the velocity information via numerical differentiation plus low pass filtering is a common
approach used in full state feedback controller formulations, however this approach introduces extra
dynamical terms in the closed loop system, which have to be accounted for in the stability analysis.
Therefore, construction of velocity surrogate signals that can be used for the closed-loop operation
is a well-motivated research field. To our best knowledge; existing solutions to the OFB tracking
problem can be categorized as observer-based'-? and filtered-based>’ methods. In observer-based
methods, mostly a model-dependent observer?? is used to estimate the velocity signal. On the other
hand, in filtered-based approaches, surrogate signals obtained via some means of filtering approaches
are used to overcome the need of velocity measurements. This work concentrates on the design of a
new model-free observer-based OFB controller formulation.

Some of the past research that applied a similar approach are as follows: In ref. [9], a variable-
structure OFB controller was designed to compensate for the lack of link velocity measurement.
Similarly in ref. [10], a discontinuous controller with a high gain observer was proposed for the
stabilization of a class of non-linear systems. Recently, a Luenberger like observer with an extra
switching term was proposed in ref. [11] for the OFB control of robot manipulators.
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730 A model independent observer

In this paper, inspired by the observer structure given in ref. [12], we propose a new model
free observer in conjunction with a desired robot model-based controller formulation for the output
feed tracking control of robot manipulators. The observer/controller structure proposed achieves
semi-global asymptotic tracking despite the lack of velocity measurements.

The novelty of the proposed observer—controller lies in the simplicity of the overall design and
also the fact that using some mathematical manipulations, the proposed OFB controller formulation
can be written in a full state feedback controller form (details are given in Section 4). This enables the
overall design to be modular. That is; most of the full state controller proposed for robot manipulators
can be extended to OFB form using the proposed observer—controller formulation with a considerable
small effort. In order to illustrate the modularity of the proposed controller, an adaptive version where
the dynamical parameters of the robot manipulator are assumed to be uncertain is presented here. The
adaptive extension of the proposed method achieves semi-global asymptotic tracking. It is our belief
that robust and learning type OFB versions of the proposed method are also possible.

The rest of the work! is organized in the following manner: In Section 2, the dynamical model of
the robot manipulator with its properties used in the analysis and design of the proposed observer—
controller couple are presented while Section 3 contains the error system development and problem
formulation. In Section 4, the design and stability analysis of the controller and observer are proposed.
The adaptive controller extension is presented in Section 5. In Section 6, we demonstrate the
effectiveness of the proposed method through simulation results obtained from a two link, direct
drive planar robot manipulator. Concluding remarks are presented in Section 7.

2. System Model and Dynamical Properties
The mathematical model for an n DOF, revolute joint, direct drive robot manipulator is assumed to
have the following form:'3

M(q)g + Viu(q,q)q + G(q) + Fug = T, (D

where (1), ¢(t), G(t) € R" denote the link position, velocity, and acceleration, respectively, M(q) €
R™" represents the positive-definite, symmetric inertia matrix, V, (g, ¢) € R"*" represents the
centripetal-Coriolis matrix, G(g) € R” is the gravitational vector, F; € R"*" denotes the constant,
diagonal, positive-definite viscous friction matrix, and 7(t) € R”" represents the torque input control
vector. In the subsequent development, we will assume that the left-hand side of Eq. (1) is first-order
differentiable.

The dynamic model given by Eq. (1) exhibits the following properties that will be utilized in the
subsequent control development and the associated stability analysis.

Property 1. The inertia matrix can be bounded from above and below by the following
inequalities: '3

mlIn SM(CI)szln, (2)
where m and m, are positive constants, and I, is the standard n x n identity matrix. Likewise, the

inverse of the inertia matrix can be bounded as follows: 3

1 1
—I, <M (@) < —In (3)
my mi
Property 2. The inertia and the centripetal-Coriolis matrices satisfy the following relationship:'*
T 1 . n
§ (M@ —Vulg.q))§ =0 VEER “4)

where M (g) represents the time derivative of the inertia matrix.

! Preliminary version of this work appeared in refs. [15] and [16].
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Property 3. The centripetal-Coriolis matrix satisfies the following relationship:®

Vm(qa U)‘S;: = Vm(Q7 %-)U V%-’ S R". (5)

Property 4. The norm of the centripetal-Coriolis and friction matrices can be upper bounded as
follows: '3

1V, O < Zer N, IFall =&y VE €RY, (6)

where ¢.1 and ¢ are positive constants.

Property 5. The robot dynamics given in Eq. (1) can be linearly parameterized as follows:'3

Y(q.4.9)0 = M(q)4 + Vi(q,q)q + G(q) + Fuq, )

where § € R” contains the constant system parameters, and Y (¢, ¢, g) € R"*? denotes the regression
matrix that is a function of only ¢(#), g(¢), and g(¢). The formulation of Eq. (7) can also be written in
terms of the desired trajectory in the following manner:

Yi(qa, qa, Ga)0 = M(qa)ga + Vu(qa, ga)qa + G(qa) + Faga, (®)

where the desired regression matrix Y;(q4, 4q, §a) € R"*? is a function of the desired link position,
velocity, and acceleration vectors, denoted by g, (1), g4 (¢), ga(t) € R”", respectively.

Property 6. The inertia, centripetal-Coriolis, and gravity terms in Eq. (1) can be upper bounded
as follows: !’

IM(E) = M) liop < Gt 16 = )]
| M=) = MW, < & lIE = V)]
V6. 1) = Vi Do < a2 [l 16 — W)
IGE) — GOl < ¢, 16 — vl

V&, v, neR", where {1, {ma, {2, and ¢, € R are positive bounding constants, and ||-||;,, denotes
the induced infinity norm of a matrix.

€))

3. Problem Formulation
The control objective is to design a link position tracking controller for the robot manipulator model
given by Eq. (1) under the constraints that only the link position variable g(¢) is available for
measurement. We will also assume that the parameter vector 6 defined in Eq. (6) is a constant vector,
that is the parameters of the overall system are not changing in time.

We will quantify the control objective by defining the link position tracking error e(t) € R" as
follows:

e2qi—q, (10)

where we assume that g,(7), defined in Property 5, and its first three time derivatives are bounded
functions of time. To account for the unmeasurable link velocity constraint, we define § € R” as the
observed velocity signal. The corresponding velocity and position observation error signals §, § € R”
are defined as

=949 (11)

To ease the presentation of the analysis, we will use two auxiliary variables, filtered tracking error
r (1) € R", and filtered observation error like term s (¢) € R" as

r&é4ae, and s =G+ ag, (12)
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732 A model independent observer

where the controller gain matrix o € R is a positive control gain. Notice that regulating r (¢) and
s (t) ensures the regulation of e (t) and § (¢) respectively.

4. Observer—Controller Design
Based on the subsequent error system development and the stability analysis, we propose the following
velocity observer:

p = KiSgn () + K»g — aKe,

where p (¢) is an auxiliary variable, Sgn (-) is defined as
T n
Sgn(§) = [sgn (&) sgn(&) ...sgn@)] Y eR (14)
with sgn (-) being the sign function, Ky, K., K, K, € R"*" are diagonal, positive define gain matrices
and @ € R was defined in Eq. (12).It is straightforward to show that the time derivative of Eq. (13)

yields

G = K\Sgn(§) + K2G + Kog — K.r, (15)

where the definition of r (f) given in Eq. (12) has been utilized. Similarly, assuming that exact
knowledge of all the system parameters are available, the control torque input signal t (¢) is designed
to have the following form:

T = Y0+ Kpe+ Kt (qa — @) + K (4 — §) (16)

where the first term,Y;6, defined in Eq. (8) is the desired robot dynamics, K, € R"*" is diagonal
positive define control gain matrix and K., « were previously defined. Note that using the fact that

ga—qg=e+q 7)
the control torque input given in Eq. (16) can be re-written in the following advantageous form:

T =Y,0 + Kpe+ Kr + Kes. (18)

4.1. Observer analysis
Utilizing Eq. (1) for the link acceleration signal and Eq. (15) for the time derivative of the observed
velocity signal, the observation error dynamics can be obtained as

~

i =i—4q

— No— K1Sgn (@) — Kag — Kodj + Ker. 19
where the auxiliary term N is defined as
No=M"" (@t = Vu(q.9) ¢ — G(q) — Fag}. (20)
Inserting Eqs.(18) and (8) in Eq. (20), we can explicitly obtain the following expression:
No = Ng+ Ny, 2D
where the auxiliary variables N; and N, are specifically defined as
Na (1) = Ga (22)
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and

Ny ()= (M~ () — M~ (g2)) M (qa) a
—|—M71(4){Vm ((/Idv (*?d)q.d - Vm (q,Q)C] (23)
+G (qa) — G(q) + Fa(qa — q)
+Kpe+ K (r+9)}.

Exploiting the boundedness properties of the desired trajectory, we can show that both N, (¢) and
its time derivative, Ny (¢) , are bounded. Furthermore, as illustrated in Appendix I, using the properties
(5), (6), (9), and mean value theorem N,, of Eq. (23) can be upper bounded as follows:

[Ny DIl < por llell + poa 171l + £o3 17117 + pos lis]] (24)

where p,;, i = 1, ..., 4 are some positive known bounding functions that depend on the mechanical
parameters and the desired trajectory and ||-|| denotes the Euclidean norm.

Taking the time derivative s (¢) of Eq. (12) and inserting for Eq. (19), the dynamics for the filtered
observation error s (¢), can be obtained as follows:

§ = Na+ Ny — K1Sgn(§) — Ko — (Ko — ) g + Ko, (25)
and when the observer gains are selected to satisfy
o (Ko —a) = Ko, (26)

Eq. (25) can be rearranged to have the following form:
) - K>
s=Ng+ N, — K Sgn(g) — —s+ K.r 27)
o

which enables us to state the following preliminary Lyapunov-like analysis for the observer.
Specifically, we define the following non-negative scalar function V,, (¢), as follows:

1
Vo = EsTs + P, (28)

where the scaler auxiliary function P (¢) is defined as

t

PoZ(o-/wo(U)dU (29)

fo

with the scalar function wy and the non-negative constant ¢, defined as

wo £ 5T [Ny — K1 Sgn (§)]

A n ~ ~ 30
G2 Y Kiildi (0] — g7 (0) Na (0), 30)

where the subscripti = 1,2, ..., n denotes the i"" element of the vector or diagonal matrix. Following
a similar analysis to that of refs. [12, 18], also presented in Appendix II, it can be proven that when
K satisfies the following sufficient condition:

1 .
Kii > [INai (1) lloo + —[1Nai (1) llcc €1y

where the subscripti = 1, 2, ..., n denotes the i’" element of the diagonal matrix and |||, denotes
the L, norm, then Py (¢) of Eq. (29) is always non-zero, that is Py (f) > 0 and V) is a positive definite
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734 A model independent observer

Lyapunov function with respect to s and+/ Py. Taking the time derivative of Eq. (28) and substituting
for Eq. (27), time derivative of Eqs.(29) and (30), we obtain

LT _&
Vo=s s+ Kcr+Np|. (32)
o

The first term in the brackets of Eq. (32) will be used for both damping the unwanted effects of the
term N, in the composite stability analysis and to ensure the convergence of the observation error.
The second term is designed to cancel out the interconnection term between the observer/controller
subsystem. At this point, we are ready to proceed to the error system development.

4.2. Error system development
To obtain the dynamics of r (), we take its time derivative and premultiply the resulting equation by
M (g), utilizing Eqgs.(1) and (10) and perform some algebraic manipulation, to produce

M(q)r=—=Vu(g,q)r + Y0 — 1, (33)
where the auxiliary term Y0 € R” is defined as
Y0 = M(q)(Ga +aé)+ Viu(q,9)(qa +ae)+ G (q)+ Faq. (34)

After substituting the control law Eq. (18) into Eq. (33), we obtain the following closed-loop dynamics
for r (t)
M(C])};':—Vm(q,C?)l"—{—X—KCV—KCS—er, (35)

where the disturbance term x (r, e, t) € R” is defined as follows:
x =Y0 = Y0 (36)

with Y;6 term defined in Eq. (8).

As illustrated in ref. [13], and also shown in Appendix I, we can exploit the boundedness properties
of the desired trajectory and the Eqs.(5), (6),and (9) properties of the robot dynamics to show that the
norm of the variable y (-) defined in Eq. (36) can be upper bounded as

IxIl = p1(e)llell + p2(e) [I7 ]l (37)

where p; (¢) and p; (e) are positive known bounding functions. The above bound will be exploited to
obtain the stability result presented in the next section.

4.3. Stability analysis
The combination of error systems for Eqs.(27) and (35) yields the following stability result for the
observation error and the position tracking error.

Theorem 1. The velocity observer of Eq. (13) and the control law of Eq. (16) ensure that the
closed-loop observer/controller is semi-globally asymptotically stable in the sense that

lim e (1), g@) =0, (38)

provided that the controller and observer gains are selected to satisfy Eqs.(26), (31) with controller
gain K. observer gain K, are defined as follows:

K. = (1 + 0+ knplz) I,

3
K, =« (1 + po4 + kn (/031 + /032 + /033)) 1, ( 9)
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A model independent observer 735

where py (e), p2 (e) were defined in Eq. (37), poi,i = 1,2, 3,4 were defined in Eq. (24) and k,, being
a non-linear damping gain selected to satisfy the following condition:

A2 )
ky > (1 + n Iz O )/2 (40)
and z (t) defined as follows:
O E[sT VB T ] (41)

and the positive bounding constants .y and A, are defined as

A = g min {1, my, Amin {Kp}}

ho = Vmax 1, ma. domax K] 42)
Proof. We start our proof by introducing the following non-negative function in the form
V=VWV+ %rTM(q)r + %eTer. 43)
From Eq. (43), V (¢) can be upper and lower bounded as
MllxI? <A llzl? <V < a2l (44)
where x () € R¥ is defined as
x (1) £ [sT r’ eT]T, (45)

7 (t) were defined in Eq. (41) and the positive constants A 1,1, were defined in Eq. (42). Differentiating
Eq. (43) with respect to time, substituting for the error systems introduce in Egs.(32), (35) and
cancelling common terms produces

. K
Vv =sT [—fs + Nb] +r1 [x — Ker]l — oK, |le]?, (46)

where property (4) has been utilized. After applying Eqs.(24) and (36) to Eq. (46), we can form an
upper bound on V (¢) as follows:

V< —lel®—=IlIrl* = lIsl?
+ [ o1 el lisll — ko2, lls|I?]
+ ooz Il s — k2 IISIIZJ (47)
+ 003 1717 sl — &2 o2 lls 1]

+oillel 7l = kaof 17117] -

Completing the squares of the terms in the brackets, we obtain

: 1 1 1
V<—|1- 21— 2 2 |s|I?, 48
< [ 2@} llell [ YT 7l ]Ilrll Il (43)

which using the definition of x (¢) of Eq. (45) can be further upper bounded 1% (1)

V<-— [1 o (1+ ||x||2)} lx1?. (49)

Downloaded from https:/www.cambridge.org/core. Tubitak BILGEM, on 29 Jun 2017 at 12:19:46, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/5026357471500079X


https://doi.org/10.1017/S026357471500079X
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

736 A model independent observer

The sign of the upper bound of V (¢) is determined by the term in the brackets of Eq. (49). This term
has to be positive to ensure the negative semi-definiteness of V (¢), that is to ensure the negative semi
definiteness of V (¢), we must have

1

-5 (1+1xlI) >0 (50)

for V (t) to be negative semi-definite. From Eq. (44), a sufficient condition on Eq. (50) can be

obtained as
1 V(@)
1— 1 0
2kn( Y )>

and hence at this point, the analysis can be reformulated as

. Vit
V < —B|lx||* provided that 2k, > (1 + %) (51)
1

where § is some positive constant (0 < 8 < 1). Due to the negative semi-defineteness of 1% (1),
the maximum value that V (¢) can have is its initial value, V (0), therefore, from Eq. (44), a more
conservative condition on k, can be obtained to have the following form:

. 3
V < —B |Ix|* provided that 2k, > 1 + f 1z (0], (52)
1

that is when &, is selected to satisfy Eq. (40), we can ensure that V (¢) Eq. (43) is bounded therefore
7(t) € Loo (e e(t),r(t),s(t)and Py € L). Following standard signal chasing arguments, we can
show that all signal in the closed-loop system are bounded and e (¢) and c} () are uniformly continuous
(from the boundedness of their derivatives over time), furthermore from the integration of both sides
of Eq. (52), it is not difficult to see that z (f), € £, and therefore e (r), § (t) € L». Finally, utilizing
direct application of Barbalat’s Lemma,'® we can obtain the result given in Eq. (38) provided that the
gain condition of Eq. (40) is provided. O

5. Adaptive Controller Extension

The controller formulation presented in the previous section assumed that the dynamical parameters
of the robot manipulator are exactly known. In this section, in order to illustrate the flexibility of our
core controller, we extend our result to an adaptive controller where the dynamical parameters of
the robotic manipulator are assumed to be uncertain. We start our error system development for the
adaptive controller by defining the parameter estimation error term as follows:

0260, (53)

where 4(¢) € R? represents the parameter estimation error vector, and O(t) € R? represents a dynamic
estimate of 6.

Following a similar approach to our core controller the control input torque signal, 7 (¢), for the
adaptive version is formed as

T=Y0+ Kpe+ Keat (qa — §) + Ke (Ga — G) . (54)
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A model independent observer 737

where K, € R"*" is a diagonal positive define control gain matrix and the parameter estimate vector
A(r) is generated according to the following update rule:

. , " d
9=Pr0]{F <Yje—/0 d—U{YJ(o)}e(a)da

+ a/ Y] (o)e(a)do)} (55)
0

with ' € RP*? being a constant, diagonal, positive-definite, adaptation gain matrix, and Proj{-} is a
projection operator introduced to ensure the boundedness of é(r) and its time derivative. Note that
similar to the re-arrangement presented in Eqs.(18), the Eq. (54) can be written in the following
advantageous form:

T =Y0+Kpe+ Kcr + Kes. (56)

Similarly, after taking the time derivative of Eq. (55), the parameter update law can be re-written in
the following form:

0 = Proj {TY]r} . (57)

The observer formulation given in Eq. (13) is valid the adaptive controller formulation with a slight
change in the the auxiliary bounding terms. That is; Eq. (21) becomes

No = Nyq + Npa, (58)

where the auxiliary variables for the adaptive version of the controller Ny, (t) € R" and N, () € R"
are defined as

Naa () £ Ga + M~ (qa) Y40 (59)

and

Noa ) = (M7 (9) — M7 (q2)) M (qa) dia
+ (M~ (q) — M~ (q2)) Y40
+M (@) (Vi (9as Ga) Ga — Vi (4.9 § (60)
+G (q4) — G(q) + Fa(qa — q)
+Kpe+ Kc(r+9)} .

We would like to highlight that the projection algorithm used in Eq. (55) is used to ensure that the
bounding arguments given in Remark I are also valid for Ny, and N,,. Substituting the adaptive
controller Eq. (54) into Eq. (33), we obtain the closed-loop dynamics for 7 (¢) as follows:

M(q)i=—Vu(q,¢)r+x — Ker — Kes — Kpe + Y40, (61)

where 6 term was defined in Eq. (83).
Having obtained the closed-loop dynamics for the observation error and the tracking error systems,
we are now ready to propose the following theorem.

Theorem 2. The adaptive version of the controller proposed in Theorem 1, that is the controller of
Eq. (54) with the update law Eq. (55) ensure that the closed-loop observer/controller is semi-globally
asymptotically stable in the sense that

tlirgo e(t),§ () =0, (62)

provided that the controller and observer gains are selected to satisfy the gain conditions given in

Eqgs.(39) and (40).
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738 A model independent observer

Proof. We start our proof by introducing the following non-negative function in the form

|
Va:V—|—§9 r-lo, (63)

where V() was defined previously in Eq. (43). Similar to the proof given in Theorem 1, V, (¢) of Eq.
(63) can be upper and lower bounded in the following form:

M lxI? < A3 lyl? < Ve < allyll?, (64)
where the auxiliary variable y (¢) is defined as

yOR[sT VB T e 67), (65)
the positive constants A3, A4 were defined in the following form:

: 1
A3 = min {A, li)\min {r}} (66)
A4 = max {)"27 Ekmax {F}} .

with the positive constants A;,A, were defined in Eq. (42). Differentiating Eq. (63) with respect to
time, canceling common terms and following a similar procedure to that of Theorem 1 we can obtain

. Va (2
V, < —B|lx||* provided that 2k, > <1 + ¢ )) ) (67)
3

where the positive bounding constant 8 was previously defined. From this point on following the
exact analysis presented in Theorem I, the boundedness of all closed-loop signals and asymptotic
stability of the error signals can be proven provided the gain conditions are satisfied. d

6. Experimental Verifications

In order to illustrate the feasibility and effectiveness of the proposed observer-based OFB adaptive
tracking controller extensive experiments have been conducted on a two link revolute, direct-drive,
planar robot manipulator build in our laboratory at Gebze Institute of Technology. The links of the
manipulator are constructed from aluminium with the link lengths, 16 cm for the first link and 6.5 cm
for the second link. Both joints are actuated via DC motors, a SanyoDemci motor equipped with a
4096 counts per revolution encoder for the first joint and an Escap motor equipped with a 1024 counts
per revolution encoder for the second. Each joint motor is actuated by Copley Controls Corp Model
4122 DC motor amplifiers operated in torque control mode. The block diagram representation of the
experimental setup is given in Fig. 1 and top and side views of the experimental setup is presented in
Fig. 2.

Though some of the dynamical parameters of the manipulator used in our experiments could have
been estimated, due to the existence of high frictional terms on the in-house build experimental set up,
the adaptive version of the controller formulation is used in the experimental studies. The dynamics
of the experimental setup is taken from a similar two link planer manipulator?! and is assumed to
have the following form:

T _ | pt2pica prtp3er 6]1 n —p3s2g2 —p3s2(q +42) Qi
L) D2+ p3ca D2 7p) DP35241 0 7P

Jar 0 |4
* [ 0 falld]
where p; (kgm?), po(kgm?), p3(kgm?), are parameters related to the masses of the links and link
lengths of the manipulator while f;; and f;, (Nm s) are the viscous friction parameters, ¢, and s, are

(68)
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Fig. 2. The experimental setup.

used to denote cos(g,) and sin (g;) respectively. From Eqs.(7), (8), and the structure of Eq. (68), the
uncertain parameter vector 6 is obtained to have the following form:

o=[p p ps fo fo] . (69)

During the experimental studies, the following desired link position trajectory were used

_ [0.7sin(2.5¢) (1 — exp (—0.3¢3
9alt) = [1.2 sin(2.51) 51 — exp E—o.3t3m [rad]. (70)

where the exponential term was included to ensure that ¢;(0) = g4(0) = 4 4(0) = 0. An illustration
of the observer—controller controller with the parameter estimator used in the experimental studies is
presented in Fig. 3. As illustrated, the controller implementation only requires the implementation of
Eqgs. (13), (54), and (55).

The initial link positions, velocities, and parameter estimate O(t) were initialized to zero. The
observer—controller gains were tuned by trial-and-error until the a desirable link position tracking
performance was achieved and are selected as

a=diag{18 10}
Kozdiag[[ZS 300}, Ky =diag {300 300}

. (71)
K.=diag {75 80} , K, =diag { 1500 1800}
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Fig. 3. Block diagram representation of experimental implementation.

with the adaptation gains set to

I' =diagf{0.5, 0.1, 0.1, 12, 0.5}.

The selection of controller and estimator gains were performed via trial and error. We start with the
gains initially used in the simulation studies then change them by trial and error until a satisfactory
tracking error performance is obtained.

Data acquisition and controller implementation were performed at a sampling frequency of 4 kHz
using a Quanser Q8 data acquisition board via a personal computer equipped with an Intel-based
quad core central processor running Zenom,?? an in house real-time control environment that enables
online gain tuning and graphical user interface. The link position tracking error is depicted in Fig.
4, while the corresponding voltage values of the control torque inputs are shown in Fig. 5. Also the
parameter updates are presented in the Fig. 6. We also would like to note that the position tracking
error values presented in Fig. 4 might seem high (around £0.2 degrees). This is mainly due to the low
resolution of the encoders used as link position sensors. To give an example, the encoder resolution
of the second link used in the experimental studies is 1024 pulses for a revolution, which means for
even with quadrature encoding each per pulse of the encoder only 0.09 degrees can be measured for
the link. Due to this practical limitation, the errors in the experimental studies are high.

From Figs. 4 and 5, we can conclude that, around 20 s. the tracking error performance within
desirable limits with considerable acceptable control inputs and from Fig. 6, the parameter adaptations
are completed around 50 s.

7. Conclusion

In this work, a new model-free observer-based OFB tracking controller for robot manipulators have
been presented. Specifically, a novel observer—controller couple was introduced that ensures semi-
globally asymptotic the tracking despite the lack of link velocity measurements and uncertainty in
the robot dynamics. Experimental studies are presented to illustrate the tracking performance of the
observer—controller couple. The modular structure of proposed methodology seem to enable further
extensions like robust and learning OFB controllers.
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Fig. 4. Link tracking errors.
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Fig. 5. Control torque inputs.
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