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CONEAT SUBMODULES AND CONEAT-FLAT MODULES

Engin Büyükaşik and Yılmaz Durğun

Abstract. A submodule N of a right R-module M is called coneat if
for every simple right R-module S, any homomorphism N → S can be
extended to a homomorphism M → S. M is called coneat-flat if the
kernel of any epimorphism Y → M → 0 is coneat in Y . It is proven that
(1) coneat submodules of any right R-module are coclosed if and only if
R is right K-ring; (2) every right R-module is coneat-flat if and only if
R is right V -ring; (3) coneat submodules of right injective modules are
exactly the modules which have no maximal submodules if and only if
R is right small ring. If R is commutative, then a module M is coneat-
flat if and only if M+ is m-injective. Every maximal left ideal of R is
finitely generated if and only if every absolutely pure left R-module is m-
injective. A commutative ring R is perfect if and only if every coneat-flat
module is projective. We also study the rings over which coneat-flat and
flat modules coincide.

1. Introduction

A subgroup A of an abelian group B is said to be neat in B if pA = A∩ pB
for every prime integer p. The notion of neat subgroup was generalized to
modules by Renault (see, [12]). Namely, a submodule N of a right R-module
M is called neat in M , if for every simple right R-module S, Hom(S,M) →
Hom(S,M/N) → 0 is epic. Dually, in [8], a submodule N of a right R-module
M is called coneat in M if Hom(M,S) → Hom(N,S) → 0 is epic for every
simple right R-module S. The notions of neat and coneat are coincide over
the ring of integers. By [8, Theorem], the commutative domains over which
neat and coneat submodules coincide are exactly the domains with finitely gen-
erated maximal ideals (i.e., N-domains). This result was extended to certain
commutative rings in [5]. Recently, modules related to neat and coneat sub-
modules are considered by several authors. In [5], a right R-module M is called
absolutely neat (resp. coneat) if M is a neat (resp. coneat) submodule of any
module containing it. According to [16], a right R-module M is m-injective
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if for any maximal right ideal I of R, any homomorphism I → M can be ex-
tended to a homomorphism R → M . By Theorem 3.4, a right R-module M is
absolutely neat if and only if M is m-injective.

A ring R is called right C-ring if Soc(R/I) 6= 0 for each proper essential
right ideal I of R. Left perfect rings, right semiartinian rings and almost
perfect domains are right C-rings.

A dual notion of m-injective modules has been studied in [1] and [2]. A
module M is called neat-flat if the kernel of any epimorphism F → M → 0 is a
neat submodule of F . Closed submodules of any right R-module are neat, and
neat submodules of any right R-module are closed if and only if R is a right
C-ring (see, [9, Theorem 5]). In [21], a module M is called weak-flat if the
kernel of any epimorphism F → M → 0 is a closed submodule of F . Hence,
summing up we get, R is a right C-ring if and only if every neat-flat right
R-module is weak-flat.

We call M coneat-flat if the kernel of any epimorphism Y → M → 0 is
coneat in Y . In this paper, several characterizations of coneat submodules
and coneat-flat modules are given. Some known results are generalized, and
relations between coneat-flat modules and flat, m-injective, absolutely pure and
projective modules are studied.

In Section 2, it is shown that a submodule N of a right R-module M is
coneat if and only if for every maximal submodule K of N , N/K is a direct
summand of M/K. A ring R is a right V -ring if and only if submodules of
right R-modules are coneat. R is right small if and only if its absolutely coneat
right modules are precisely those modules M such that M = Rad(M).

In Section 3, we prove that, a module M is coneat-flat if and only if M ∼=
P/N where P is a projective R-module and N is a coneat submodule of P . An
R-module M is coneat-flat if and only if and only if M+ is m-injective, over
commutative rings. R is a right V -ring if and only if every right R-module is
coneat-flat.

In Section 4, we prove that, if R is a left C-ring, then a right R-module M
is flat if and only if TorR1 (M,S) = 0 for each simple left R-module S. If R
is a commutative C-ring, then coneat-flat modules are only the flat modules,
and the converse holds when R is noetherian. R is a left N -ring (i.e., maximal
left ideals are finitely generated) if and only if every absolutely pure module is
m-injective. A ring R is left artinian if and only if m-injective left R-modules
are precisely those modules M with M+ is projective.

In Section 5, we consider the projectivity of coneat-flat modules. We show
that, if R is right perfect, then every coneat-flat R-module is projective, the
converse hold if R is commutative. Finitely presented coneat-flat modules are
projective, over semiperfect rings and over commutative rings.

Throughout, R is a ring with an identity element and all modules are unital
right R-modules, unless otherwise stated. For an R-module M , the charac-
ter module HomZ(M,Q/Z) is denoted by M+. We use the notation E(M),
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Soc(M), Rad(M), for the injective hull, socle, radical of M respectively. By
N ≤ M , we mean that N is a submodule of M .

2. Characterization and closure properties of coneat submodules

In this section, several characterizations and some properties of coneat sub-
modules are given. Recall that a submodule K of M is called small in M
(denoted by K ≪ M) if M 6= K + T for every proper submodule T of M . A
submodule L ≤ M is called coclosed in M if L/N ≪ M/N implies L = N for
every N ≤ L.

Proposition 2.1. For a submodule N ≤ M the following are equivalent.

(1) N is coneat in M .

(2) If K ≤ N with N/K finitely generated and N/K ≪ M/K, then K =
N.

(3) For any maximal submodule K of N , N/K is a direct summand of

M/K.
(4) If K is a maximal submodule of N , then there exists a maximal sub-

module L of M such that K = N ∩ L.

Proof. (1) ⇒ (4) Let K be a maximal submodule of N and π : N → N/K be
the canonical epimorphism. By the hypothesis, there exists a homomorphism
f : M → N/K such that f |N = π. Then Ker f is a maximal submodule of M
and N + Ker f = M . So that N ∩Ker f is a maximal submodule of N . Then
π(N ∩Ker f) = f(N ∩Ker f) = 0. Therefore K = N ∩Ker f .

(3) ⇒ (1) Let S be a simple right R-module and f : N → S a nonzero
homomorphism. Since f is an epimorphism, without loss of generality we may
assume that S = N/K for some maximal submodule K of N . So that Ker f is
a maximal submodule of N . Then, by (3), M/Ker f = (N/Ker f)⊕ (L/Ker f)

for some L ≤ M . Let f̃ : N/Ker f → N/K be the isomorphism induced by f .
Consider the canonical epimorphisms π : M → M/Ker f and π′ : M/Ker f →

N/Ker f . Then the homomorphism g = f̃π′π is the extension of f .
(2) ⇒ (3) is clear.
(3) ⇒ (2) Suppose N/K is finitely generated and N/K ≪ M/K for some

proper submodule K ≤ N . Then there is a maximal submodule T of N such
that K ≤ T and N/T ≪ M/T , because N/T is the image of N/K under the
canonical epimorphism f : M/K → M/T , a contradiction.

(3) ⇔ (4) is straight forward. �

Properties of coclosed modules in [4, 3.7] are adapted to coneat submodules
as follows. The proof is omitted.

Proposition 2.2. Let K ≤ L ≤ M be submodules. Then the following hold.

(1) If L is coneat in M , then L/K is coneat in M/K.

(2) If K ≤ Rad(L) and L/K is coneat in M/K, then L is coneat in M.
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(3) If L ≤ M is coneat, then K ≤ Rad(M) implies K ≤ Rad(L); hence
Rad(L) = L ∩ Rad(M).

(4) If f : M → N is a small epimorphism and L is coneat in M, then f(L)
is coneat in N.

(6) If K is coneat in M , then K is coneat in L and the converse is true if

L is coneat in M.

The proof of [20, Lemma A.4] can be adapted to prove the following.

Proposition 2.3. Let K ≤ L ≤ M be submodules of M . If K is coneat in M
and L/K is coneat in M/K, then L is coneat in M.

Proof. Suppose X is a submodule of L such that L/X finitely generated and
L/X is small inM/X . Firstly we will prove that K/K∩X is small in M/K∩X.

Assume the contrary. Then there is an R-module W such that

(∗) K ∩X ≤ W and W +K = M.

Suppose L/[K + (W ∩ X)] is not small in M/[K + (W ∩ X)]. Then there
is an R-module Z such that K + (W ∩ X) ≤ Z and Z + L = M . Since
K ≤ Z, Z = Z ∩ W + K by (∗), and so M = Z ∩ W + L. By smallness
of L/X is small in M/X , Z ∩ W + X = M . Now W = Z ∩ W + X ∩ W ,
W ≤ Z. Finally, since Z + W = M , Z = M . Recall that L/K is coneat
in M/K and L/[K + (W ∩ X)] is epimorphic image of the finitely generated
module L/X . Hence, L = K +W ∩X by Proposition 2.1(2). By modular law,
X = K ∩X +W ∩X , and X ≤ W . Then K +X = L. Since L/X is small in
M/X , W = M by (∗). By our assumption K is coneat in M , hence K = K∩X
and K ≤ X. Since L/X is an epimorphic image of L/K and L/K is coneat in
M/K, L = X by Proposition 2.1(2), again. �

Proposition 2.4 ([15, Lemma 6.1]). Let A be a submodule of an R-module B
and iA : A →֒ B be the inclusion map. For a right ideal I of R, A ∩ IB = IA

if and only if R/I ⊗A
1R/I⊗iA

→ R/I ⊗B is injective.

An exact sequence 0 → A
f
→ B → C is said to be coneat exact if f(A) is a

coneat submodule of B. A monomorphism f : A → B is said to be a coneat

monomorphism, if the short exact sequence 0 → A
f
→ B → B/f(A) → 0 is

coneat exact. Neat-exact sequences are defined in the same manner.

Theorem 2.5. Let R be a commutative ring and f : N → M be a monomor-

phism. The following are equivalent.

(1) f(N) is a coneat submodule of M .

(2) S ⊗R N
1S⊗f
→ S ⊗R M is a monomorphism for each simple R-module

S.
(3) mf(N) = f(N) ∩mM for each maximal ideal m of R.

Proof. (1) ⇔ (2) By [8, Proposition 3.1].
(2) ⇔ (3) Follows by Proposition 2.4. �
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Remark 2.6. If N is a pure submodule of M , then NI = N ∩ MI for every
left ideal of R (see, [10, Corollary 4.92]). Therefore, over commutative rings,
every pure submodule is coneat by Theorem 2.5(3). This fact will be used in
the sequel.

Corollary 2.7. Let R be a commutative ring. The following are equivalent.

(1) 0 → A → B → C → 0 is coneat exact.

(2) 0 → C+ → B+ → A+ → 0 is neat exact.

Proof. By Theorem 2.5(2) and the adjoint isomorphism

(M ⊗N)+ ∼= Hom(M,N+). �

LetM be an R-module with RadM = M. It is easy to see that Hom(M,S) =
0 for each simple module. Hence,

Corollary 2.8. Let M be a right R-module with Rad(M) = M. Then M is

absolutely coneat.

A ring R is said to be right small if RR ≪ E(RR). A ring R is small if and
only if E = Rad(E) for every injective R-module E (see, [11, Proposition 3.3]).

Proposition 2.9. The following statements are equivalent for a ring R.

(1) R is a right small ring.

(2) Absolutely coneat right R-modules are precisely those modules N such

that Rad(N) = N.

Proof. (1) ⇒ (2) Let E be the injective hull of N . Then Rad(E) = E as R is
a small ring. Suppose N is coneat in E. So that Rad(N) = N ∩ Rad(E) = N
by Proposition 2.2(3). The rest of (2) by Corollary 2.8.

(2) ⇒ (1) Every injective right R-module E is absolutely coneat. Then (2)
implies Rad(E) = E, and so R is a small ring by [11, Proposition 3.3]. �

Let R be a ring and M be a nonzero R-module. M is called coatomic if
every proper submodule N of M is contained in a maximal submodule of M ,
i.e., Rad(M/N) 6= 0.

Proposition 2.10. Let M be a module and N be a coatomic submodule of M .

Then N is coneat in M if and only if it is coclosed in M .

Proof. Suppose N is coneat and N/X ≪ M/X for some proper submodule
X ≤ N . Since N is coatomic, X is contained in a maximal submodule, say K,
of N . Then N/K ≪ M/K, and this contradicts with the fact that N is coneat.
Hence N is coclosed. The converse implication is obvious. �

In [19], a ring R is called right K-ring if every non-zero small right R-module
is coatomic. Dedekind domains and right max rings (i.e., every nonzero right
R-module has a maximal submodule) are right K-rings.



1310 ENGİN BÜYÜKAŞIK AND YILMAZ DURĞUN

Theorem 2.11. R is a right K-ring if and only if coneat submodules of any

right R-module are coclosed.

Proof. For the necessity, let M be a non-zero small module and suppose M/K
has no maximal submodules, i.e., Rad(M/K) = M/K for some proper sub-
module K of M . Then M/K is small and coneat submodule in E(M/K).
Hence M/K is coclosed in E(M/K) by (1). This gives a contradiction, since
coclosed submodules are not small. Consequently, K is contained in a maximal
submodule of M , and so M is coatomic.

For the sufficiency, suppose the contrary that, there is a module M and a
submodule N of M which is coneat but not coclosed. Then there is a proper
submodule K of N such that N/K ≪ M/K. By Proposition 2.2(1), N/K is a
coneat submodule of M/K. Then N/K is coatomic by the hypothesis, and so
N/K is coclosed by Proposition 2.10, a contradiction. �

3. Coneat-flat modules

It is well known that, a right R-module M is flat if and only if any short

exact sequence of the form 0 → K
f
→ N → M → 0 is pure exact, i.e., f(K)

is a pure submodule of N . It is natural to ask for which right R-modules P
any short exact sequence ending with P is coneat exact? In this section several
characterizations of such modules are given.

A right R-module M is called coneat-flat if the kernel of any epimorphism
Y → M → 0 is a coneat submodule of Y . Clearly, projective modules are
coneat-flat but the converse need not be true in general (see, Theorem 5.1).

Theorem 3.1. The following are equivalent for an R-module M :

(1) M is coneat-flat.

(2) Ext1R(M,S) = 0 for each simple R-module S.
(3) There is a coneat exact sequence 0 → K → L → M → 0 with L

projective.

(4) There is a coneat exact sequence 0 → K → L → M → 0 with L
coneat-flat.

Proof. (1) ⇒ (2) Let E : 0 → S
α
→ L → M → 0 be a short exact sequence with

S simple right R-module. Since M is coneat-flat, S is coneat in L, and there is
a homomorphism β : L → S such that the following diagram is commutative.

(3.1) E : 0 // S

1S

��

α
// L //

β
��⑧
⑧

⑧

⑧

P // 0

S

Then 1S = βα, and so the sequence E splits. Hence Ext1R(M, S) = 0.
(2) ⇒ (3) Assuming (2). There is a short exact sequence E : 0 → C → F →

M → 0 with F free R-module. Applying HomR(−, S), we obtain the exact
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sequence 0 → HomR(M,S) → HomR(F, S) → HomR(C, S) → Ext1R(M,S) =
0.
That is, HomR(E, S) is exact for every simple R-module S, and so E is coneat
exact.

(3) ⇒ (4) is obvious.
(4) ⇒ (1) Let s : B → M be any epimorphism. Consider the following

commutative diagram.

0

��

0

��

K

��

K

��

0 // Ker s // X

t

��

α
// L //

β

��

0

0 // Ker s // B
s

//

��

M

��

// 0

0 0

βα = st is coneat epimorphism, i.e., Ker(st) is a coneat submodule of X ,
by Proposition 2.3. Then s is coneat epimorphism by Proposition 2.2(1). This
completes the proof. �

By Theorem 3.1, we get the following.

Corollary 3.2. The class of coneat-flat modules is closed under extensions,

direct sums, direct summands and coneat quotients. In particular, coneat-flat

modules are closed under pure quotients over commutative rings.

Proof. Coneat-flat modules are closed under extensions, direct sums, direct
summands and coneat quotients by Theorem 3.1, and under pure quotients by
Remark 2.6 and Theorem 3.1. �

Proposition 3.3. Let R be a commutative ring and M be an R-module. Then

M is coneat-flat if and only if TorR(M,S) = 0 for each simple R-module S.

Proof. Let 0 → K
i
→ F → M → 0 be a short exact sequence with F projective.

Applying −⊗ S, we get

0 = Tor(F, S) → Tor(M,S) → K ⊗ S
i⊗1S→ F ⊗ S → M ⊗ S → 0.

Then i ⊗ 1S is a monomorphism if and only if Tor(M,S) = 0. Now the proof
is clear by Theorem 2.5 and Theorem 3.1. �

Proposition 3.4. The following are equivalent for a right R-module M .
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(1) M is m-injective.

(2) M is a neat submodule of an m-injective module.

(3) M is a neat submodule of every module containing it.

(4) Ext1R(S,M) = 0 for every simple right R-module S .

Proof. (1) ⇔ (4) Let I be a right ideal of R. Then applying Hom(−,M) to the

short exact sequence 0 → I
i
→ R → R/I → 0, we get 0 → Hom(R/I,M) →

Hom(R,M)
i∗

→ Hom(I,M) → Ext1(R/I,M) → Ext1R(R,M) = 0. Then i∗ is
epic if and only if Ext1R(R/I,M) = 0.

(2) ⇔ (3) By [5, Theorem 3.3].
(3) ⇔ (4) By [5, Theorem 3.4. (i)⇔(ii)]. �

Proposition 3.5. Let R be a commutative ring. An R-module M is coneat-flat

if and only if M+ is m-injective.

Proof. Let S be a simple R-module. We have the standard isomorphism

Ext1R(S,M
+) ∼= TorR1 (M,S)+.

Now, the proof is immediate by Proposition 3.3 and Proposition 3.4. �

Corollary 3.6. Let R be a commutative ring. The class of coneat-flat modules

is closed under pure submodules.

Proof. Let 0 → A → B → C → 0 be a pure exact sequence of R-modules with
B coneat-flat. Then the short exact sequence 0 → C+ → B+ → A+ → 0 splits.
By Proposition 3.5 the module B+ is m-injective, and so A+ is m-injective.
Then A is coneat-flat by Proposition 3.5, again. �

Proposition 3.7. The following statements are equivalent for a ring R.

(1) R is a right V -ring.

(2) for every right R-module M every submodule of M is coneat in M .

(3) every right R-module is coneat-flat.

Proof. (1) ⇒ (2) is clear, since every simple right R-module is injective by (1).
(2) ⇒ (3) Let M be a right R-module. Consider an epimorphism f : F → M

with F free right R-module. Then Ker f is a coneat submodule of F by (2).
Therefore M is coneat-flat by Theorem 3.1.

(3) ⇒ (1) Let S be a simple R-module and E be an injective module
containing S. By the hypothesis E/S is coneat-flat. Hence the sequence
0 → S → E → E/S → 0 splits by Theorem 3.1, and so S is injective. �

4. When coneat-flat modules are flat

In this section, we study the flatness of coneat-flat modules, and the char-
acter of coneat-flat modules. We begin with the following. A module right
R-module M is called cotorsion if Ext1R(F,M) = 0 for any flat R-module F .



CONEAT SUBMODULES AND CONEAT-FLAT MODULES 1313

Example 4.1. (1) Let R be a valuation domain with a non finitely generated
maximal ideal P . Then Rad(P ) = P 2 = P , and so P is a coneat submodule of
R by Corollary 2.8. Hence R/P is coneat-flat by Theorem 3.1. On the other
hand, R/P is a not a flat R-module, since R/P is a torsion R-module.

(2) Let R be a regular ring that is not a right V -ring. Then there exists a
flat module which is not coneat-flat by Proposition 3.7.

In light of Example 4.1, it is natural to consider the rings over which coneat-
flat and flat modules coincide. We begin with the following lemma.

Lemma 4.2. Let R be a ring and S be a simple R-module. If R is commutative

or semilocal, then S is cotorsion.

Proof. First suppose R is commutative and let I = AnnR(S). Then clearly S
is an R/I-module. Since R/I is simple, S is cotorsion as an R/I-module. So
that S is a cotorsion R-module by [18, Proposition 3.3.3]. If R is semilocal,
then J(R).S = 0 and so S is an R/J(R)-module. As R is semilocal, R/J(R)
is semisimple and so S is a cotorsion R/J(R)-module. Now, S is a cotorsion
R-module by [18, Proposition 3.3.3], again. �

Corollary 4.3. Suppose R is commutative or a semilocal ring. Then every

flat module is coneat-flat.

Proof. Let S be a simple R-module. Then S is a cotorsion module by Lemma
4.2. Therefore Ext1R(M, S) = 0, and so M is coneat-flat by Theorem 3.1. �

Remark 4.4. A commutative domain R is called almost perfect if R/I is a
perfect ring for each nonzero ideal I of R. It is clear that almost perfect
domains are C-rings. In [14], the authors prove that, if R is an almost perfect
domain, then an R-module M is injective if and only if Ext1R(S,M) = 0 (i.e., M
is m-injective) for each simple module S. Actually, one of the characterization
of right C-rings is the following: R is a right C-ring if and only if every m-
injective right R-module is injective (see, [16, Lemma 4]).

Proposition 4.5. Let R be a left C-ring. A right R-module M is flat if and

only if TorR1 (M,S) = 0 for each simple left R-modules S.

Proof. Necessity is clear. For the sufficiency assume that TorR1 (M,S) = 0 for

each simple left R-modules S. Then 0 = TorR1 (M,S)+ ∼= Ext1R(S,M
+) implies

M+ is m-injective by Theorem 3.4. Therefore M+ is injective, because R is a
left C-ring. Hence M is flat by [7, Theorem 3.2.10]. �

Proposition 4.6. Let R be a commutative ring. Consider the following state-

ments.

(1) R is a C-ring.

(2) Coneat-flat R-modules are flat.

Then (1) ⇒ (2). If R is a noetherian, then (2) ⇒ (1).
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Proof. (1) ⇒ (2) By Corollary 3.3 and Proposition 4.5.
(2) ⇒ (1) Let M be an m-injective R-module. Then M+ is flat by the hy-

pothesis and Theorem 4.10. As R is noetherian, M is injective by [3, Theorem
2]. Hence R is a C-ring. �

Theorem 4.7. The following are equivalent for a commutative ring R.

(1) Every coneat-flat module is flat.

(2) Flat modules are precisely those modules M satisfying

Ext1(M,
∏

i∈I

Si) = 0,

where the Si’s are all the non-isomorphic simple modules.

Proof. (1) ⇒ (2) By Lemma 4.2, simple modules are cotorsion. Then
∏

i∈I Si

is cotorsion, since cotorsion modules are closed under direct products. Hence, if
M is flat, then Ext1R(M,

∏
i∈I Si) = 0. Conversely, suppose Ext1R(M,

∏
i∈I Si)

= 0. Then Ext1R(M,Si) = 0 for each i ∈ I. So thatM is coneat-flat by Theorem
3.1. Hence M is flat by (1).

(2) ⇒ (1) Suppose M is coneat-flat. Then Ext1R(M,S) = 0 for each simple
R-module S. So that Ext1R(M,

∏
i∈I Si) = 0 for any index set I and simple

R-modules Si. Hence M is flat by (2). �

Proposition 4.8. Let R be a commutative N -ring and M be an arbitrary

R-module. Then the following hold.

(1) M is m-injective if and only if M+ is coneat-flat.

(2) M is m-injective if and only if M++ is m-injective.

(3) M is coneat-flat if and only if M++ is coneat-flat.

(4) Any direct product of coneat-flat modules is coneat-flat.

(5) Any direct product of copies of R is coneat-flat.

(6) The class of m-injective modules is closed under pure quotients.

Proof. (1) An R-module M is m-injective module if and only if M+ is coneat-
flat by [13, Theorem 9.51], since R is an N -ring

(2) M is m-injective if and only if M+ is coneat-flat by (1), and M+ is
coneat-flat if and only if M++ is m-injective by Proposition 3.5.

(3) If M is coneat-flat, then M+ is m-injective by Proposition 3.5. So
M+++ is m-injective by (2), and hence M++ is coneat-flat. Conversely, if
M++ is coneat-flat, then M is coneat-flat by Corollary 3.6, since M is a pure
submodule of M++.

(4) Let (Mi)i∈J be a family of coneat-flat R-modules. Since the class of
coneat-flat modules is closed under direct sums,

⊕
i∈J Mi is coneat-flat. So

(
⊕

Mi)
++ ∼= (

∏
M+

i )+ is coneat-flat by (3). Since ⊕i∈JM
+
i is a pure sub-

module of
∏

i∈J M+
i , (⊕i∈JM

+
i )+ is a direct summand of (

∏
i∈J M+

i )+, and so

(⊕i∈JM
+
i )+ ∼=

∏
i∈J M++

i is coneat-flat. Since coneat-flat modules are closed
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under pure submodules and
∏

i∈J Mi is a pure submodule of
∏

i∈J M++
i , the

module
∏

i∈J Mi is coneat-flat.
(5) By (4).
(6) Take any pure exact sequence 0 → A → B → C → 0 with B m-injective.

Then we have a split exact sequence 0 → C+ → B+ → A+ → 0. By (1), B+ is
coneat-flat, and so C+ is coneat-flat. Then C is m-injective by (1), again. �

An R-module M is called absolutely pure if it is pure in every module con-
taining it as a submodule. It is well known that, a ring R is left noetherian if
and only if every absolutely pure left R-module is injective.

Proposition 4.9. R is a left N -ring if and only if every absolutely pure left

R-module is m-injective.

Proof. (⇒) LetM be an absolutely pure left R-module. Since R is a leftN -ring,
Ext1R(S,M) = 0 for each simple left R-module S. That is, M is m-injective.

(⇐) Let S be a simple left R-module. Then Ext1R(S,M) = 0 for each abso-
lutely pure left R-module M by the assumption. Then S is finitely presented
by [6, Proposition]. �

Theorem 4.10. Let R be a ring. The following statements are equivalent.

(1) (a) M is a flat right R-module if and only if TorR1 (M,S) = 0 for each

simple left R-module S,
(b) R is a left N -ring.

(2) M is an m-injective left R-module if and only if M+ is flat.

(3) M is an m-injective left R-module if and only if M is an absolutely

pure left R-module.

Proof. (1) ⇒ (2) Let M be a left R-module and S be a simple left R-module.

Suppose M is m-injective. Then 0 = Ext1R(S,M)+ ∼= TorR1 (M
+, S) by [13,

Theorem 9.51], and so M+ is flat by (1). Conversely suppose M+ is flat. Then
M++ is injective by [13, Theorem 3.52], and so M is absolutely pure, since M
is pure in M++. Therefore M is m-injective by Proposition 4.9.

(2) ⇒ (3) Firstly, we shall prove that a right R-module M is flat if and only
if M++ is flat. Then R is left coherent by [3, Theorem 1]. Suppose M is a flat
right R-module. Then M+ is (m-)injective, and so M++ is flat by (2). Now,
conversely suppose M++ is a flat right R-module. Then M is flat, since M is
pure submodule of M++ and flat modules closed under pure submodules.

Let M be a left R-module. Then M+ is flat if and only if M is absolutely
pure by [3, Theorem 1], since R is left coherent. Hence the rest of (3) follows
by (2).

(3) ⇒ (1) Suppose TorR1 (M,S) = 0 for each simple left R-module S. Then
Ext1R(S,M

+) = 0, and so M+ is m-injective. Then M+ is absolutely pure by
(3). Therefore M+ is injective, since it is pure-injective. Thus M is flat. This
proves (a), and (b) follows by Proposition 4.9. �



1316 ENGİN BÜYÜKAŞIK AND YILMAZ DURĞUN

Proposition 4.11. Let R be a commutative ring. Consider the following state-

ments.

(1) R is a C-ring.

(2) Coneat-flat R-modules are flat.

Then (1) ⇒ (2). If R is a noetherian, then (2) ⇒ (1).

Proof. (1) ⇒ (2) By Proposition 3.3 and Proposition 4.5.
(2) ⇒ (1) Let M be an m-injective R-module. Then M+ is flat by the hy-

pothesis and Theorem 4.10. As R is noetherian, M is injective by [3, Theorem
2]. Hence R is a C-ring. �

It is easy to see that, a left N -ring and left semiartinian ring is left noether-
ian. The following is a slight generalization of this fact.

Corollary 4.12. If R is a left N -ring and a left C-ring, then R is left noe-

therian.

Proof. By Proposition 4.5 and Theorem 4.10, a left R-module M is m-injective
if and only if it is absolutely pure. So that every absolutely pure left module
is injective. Hence R is left noetherian. �

Note that, Corollary 4.12, generalizes [5, Theorem 4.1 (ii)⇒(i)].
In [3, Theorem 4], the authors proves that, R is left artinian if and only if a

left module M is injective exactly when M+ is projective. We show that, this
result still holds if we replace m-injective by injective.

Theorem 4.13. Let R be a ring. The following are equivalent.

(1) R is left artinian.

(2) A left R-module M is m-injective if and only if M+ is projective.

Proof. (1) ⇒ (2) R is a left C-ring by (1), and so m-injective modules are
injective. Now, (2) follows by [3, Theorem 4].

(2) ⇒ (1) Firstly, we show that a left R-module M is m-injective if and only
if M is absolutely pure.

Let M be an absolutely pure left R-module. Consider the pure exact se-
quence 0 → M → E(M) → E(M)/M → 0. Then the short exact sequence
0 → (E(M)/M)+ → E(M)+ → M+ → 0 splits. Then E(M)+ is projective,
and hence M+ is projective. By (2), M is m-injective. Conversely, let M be
an m-injective left R-module. Since M is pure in M++ and M++ is injective,
M is absolutely pure.

Then a left R-module M is m-injective if and only if M is absolutely pure
if and only if M+ is projective. By [3, Theorem 3], R is right perfect, and so
it is a left C-ring, i.e., m-injective left R-modules are injective. Hence R is left
artinian by [3, Theorem 4] and (2). �
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5. When coneat-flat modules are projective

In this section, we shall consider when coneat-flat modules are projective.
We begin with the following result.

Theorem 5.1. Consider the following statements.

(1) R is a right perfect ring.

(2) Every coneat-flat right R-module is projective.

Then (1) ⇒ (2). If R is either commutative or semilocal, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Let P be a coneat-flat module. Consider a short exact se-
quence 0 → K → F → P → 0 with F free module. Since R is perfect, F is
supplemented by [17, 43.9]. So K has a supplement in F , that is, K +N = F
and A∩N ≪ N for some submodule N of F . On the other hand, K is coatomic,
as R is a perfect ring. Then K is a coclosed submodule of F by Proposition
2.10. So that K ∩N ≪ K. Hence K and N are mutual supplements, and so
K ⊕N = F by [17, 41.15]. Therefore N ∼= F/K ∼= P is projective.

(2) ⇒ (1) Let M be a flat module. By Corollary 4.3, M is coneat-flat, and
so M is projective by (2). Hence R is a perfect ring. �

The following is an immediate consequence of Theorem 5.1.

Corollary 5.2. Let R be a perfect ring. Then an R-module P is projective if

and only if Ext1R(P, S) = 0 for every simple R-module S.

An epimorphism f : N → M is said to be a small cover of M if Ker f ≪ N .
Moreover, if N is projective, then f is called a projective cover.

Proposition 5.3. Let R be a ring and M be a right R-module with a projective

cover f : P → M . Set K = Ker f. Then M is a coneat-flat module if and only

if Rad(K) = K.

Proof. (⇒) Assume Rad(K) 6= K. Then K has a maximal submodule, say
A. By Proposition 2.1, there exists a maximal submodule L of P such that
A = K ∩ L. Then K ≤ RadP implies K = K ∩ Rad(P ) ≤ K ∩ L = A.
Contradiction. Hence (2) holds.

(⇐) By Corollary 2.8 and Theorem 3.1. �

Corollary 5.4. Let R be a semiperfect ring. Then finitely presented coneat-flat

modules are projective.

Lemma 5.5. Let R be a commutative ring and M be a coneat-flat R-module.

Then, for all maximal ideals m of R, Mm is a coneat-flat Rm-module.

Proof. Since M is a coneat-flat R-module, there is a short exact sequence 0 →
K → F → M → 0 where K is coneat submodule of F with F is a projective
R-module by Theorem 3.1. By exactness of localization, for all maximal ideals
m of R, the sequence 0 → Km → Fm → Mm → 0 is exact. Since mK = K∩mF
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for all maximal ideals m of R, we have mmKm = Km ∩mmFm. Therefore Mm

is a coneat-flat Rm-module by Theorem 2.5.
�

Corollary 5.6. Let R be a commutative ring. Then a finitely presented R-

module M is coneat-flat if and only if it is projective.

Proof. Sufficiency is clear. For the necessity, suppose M is coneat-flat. Let m
be a maximal ideal of R. Then Mm is a coneat-flat Rm-module by Lemma 5.5.
So that Mm is projective (and so flat) over Rm by Corollary 5.4. Then M is
flat by [10, page 160, Exercise 14]. Therefore M is projective by [10, Theorem
4.30]. �
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module, C. R. Acad. Sci. Paris 258 (1964), 4888–4890.
[13] J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York,

1979.
[14] L. Salce, Almost perfect domains and their modules, Commutative algebra-Noetherian

and non-Noetherian perspectives, 363–386, Springer, New York, 2011.
[15] E. G. Skljarenko, Relative homological algebra in the category of modules, Uspehi Mat.

Nauk 33 (1978), no. 3(201), 85–120.
[16] P. F. Smith, Injective modules and prime ideals, Comm. Algebra 9 (1981), no. 9, 989–

999.
[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading,

1991.
[18] J. Xu, Flat Covers of Modules, Springer-Verlag, Berlin, 1996.
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