
ANOMALY DETECTION USING NETWORK
TRAFFIC CHARACTERIZATION

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Oğuz YARIMTEPE

July 2009
İZMİR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Oğuz YARIMTEPE

Asst. Prof. Dr. Tuğkan TUĞLULAR
Supervisor

Asst. Prof. Dr. Tuğkan TUĞLULAR
Committee Member

Asst. Prof. Dr. Tolga AYAV
Committee Member

Prof. Dr. Şaban EREN
Committee Member

6 July 2009

Prof. Dr. Sıtkı AYTAÇ Prof. Dr. Hasan BÖKE

Head of the Computer Engineering
Department

Dean of the Graduate School of
Engineering and Sciences

ABSTRACT

ANOMALY DETECTION USING NETWORK TRAFFIC

CHARACTERIZATION

Detecting suspicious traffic and anomaly sources are a general tendency about

approaching the traffic analyzing. Since the necessity of detecting anomalies, different

approaches are developed with their software candidates. Either event based or

signature based anomaly detection mechanism can be applied to analyze network traffic.

Signature based approaches require the detected signatures of the past anomalies though

event based approaches propose a more flexible approach that is defining application

level abnormal anomalies is possible. Both approach focus on the implementing and

defining abnormal traffic. The problem about anomaly is that there is not a common

definition of anomaly for all protocols or malicious attacks. In this thesis it is aimed to

define the non-malicious traffic and extract it, so that the rest is marked as suspicious

traffic for further traffic. To achieve this approach, a method and its software application

to identify IP sessions, based on statistical metrics of the packet flows are presented. An

adaptive network flow knowledge-base is derived. The knowledge-base is constructed

using calculated flows attributes. A method to define known traffic is displayed by

using the derived flow attributes. By using the attributes, analyzed flow is categorized

as a known application level protocol. It is also explained a mathematical model to

analyze the undefined traffic to display network traffic anomalies. The mathematical

model is based on principle component analysis which is applied on the origin-

destination pair flows. By using metric based traffic characterization and principle

component analysis it is observed that network traffic can be analyzed and some

anomalies can be detected.

iii

ÖZET

AĞ TRAFİĞİ KARAKTERİSTİĞİNİ KULLANARAK
ANOMALİ TESPİTİ

Trafik analizindeki en temel yaklaşımlardan birisi de şüpheli trafiğin tespit

edilmesidir. Network trafiği ile ilgili anomali tespitine olan ihtiyaçtan dolayı farklı

yaklaşımlar ve bunların yazılım çözümleri geliştirilmiştir. Network trafiğinin

incelenmesinde olay tabanlı veya imza tabanlı bir yaklaşım sergilenebilir. İmza tabanlı

yaklaşımlar önceden yaşanmış anormalliklerden çıkarılan imzalara dayanırken olay

tabanlı yaklaşımlar daha esnek bir şekilde anormalliklerin ifade edilebilmesini sağlar.

Her iki yaklaşımda da anormal trafiğin ifade edilebilmesi gerekmektedir. Anomali ile

ilgili genel sorun ise, her protokol ve durum için genel bir ifade biçimin olmayışıdır. Bu

tez çalışmasında, normal trafiğin tanımlanması amaçlanmıştır. Gözlemlenen trafikten

normal olarak tanımlanan trafik çıkarılarak kalan trafiğin şüpheli olarak incelenmesi

hedeflenmiştir. Bu hedefi gerçeklemek için IP oturumlarına ve istatistiksel metrik

değerlerine bağlı ağ paket akışları kullanılmıştır. Ağ akışları ile ilgili gerçeklenebilir ve

ağdaki akışların davranış özelliklerini ifade eden bir veri tabanı oluşturulmuştur. Akış

özelliklerinden yola çıkarak trafik karakteristiği çıkarma yöntemi açıklanmıştır. Akış

özellik değerleri kullanılarak trafik karakteristiğinin nasıl yapıldığı gösterilmiştir.

Ayrıca, ele alınan trafik ile ilgili anormallik tespitinde kullanılabilmesi için de

matematiksel bir model açıklanmıştır. Birincil Bileşen Analizi (Principle Component

Analysis) isimli bu yöntem ile kaynak-hedef çiftlerini içeren akışlar için grafiksel olarak

anomali tespit edilebildiği gösterilmiştir. Böylece, incelenen trafiğin karakteristiği

çıkarılarak şüpheli trafik üzerinde nasıl anomali tespiti yapılacağı açıklanmıştır.

iv

TABLE OF CONTENT

CHAPTER 1. INTRODUCTION..1

CHAPTER 2. BACKGROUND..4

2.1. Network Flows..4

2.1.1. Notion of Flow...4

2.1.2. Flow Directionality..5

2.1.3. Flow Identification...7

2.1.4. Flow Period ...7

2.1.5. Flow Attributes...8

2.2. Network Flow Tools ...11

2.2.1. Argus..11

2.3. Network Packets...13

2.4. Network Packet Tools...14

2.4.1. Tcpdump...14

2.4.2. Wireshark...15

2.4.3. Tcpreplay..15

2.5. Principle Component Analysis..16

2.5.1. Tools Used Through PCA Process...19

2.5.1.1. Octave...19

2.5.1.2. Snort...20

2.5.1.3. Ettercap...20

2.5.1.4. Nmap..21

CHAPTER 3. APPROACH...22

3.1. Principle of Approach...22

3.2. Processing of Captured Data ..24

3.3. Processing of Flow Data ..27

3.4. Handling Flow Attributes..28

v

3.4.1. Discrete Distribution Attributes for Payload and Inter-Packet

Delay..29

3.4.2. Conversations and Transactions...30

3.4.3. Encryption Indicators...32

3.4.4. Command Line and Keystroke Indicators.....................................33

3.4.5. File Transfer Indicators..34

3.5. Deriving Anomaly...35

CHAPTER 4. IMPLEMENTATION...37

4.1. Programming Language..37

4.2. Class Structure ...38

4.2.1. Flow Object..38

4.3. Software Structure ..42

CHAPTER 5. TEST RESULTS...45

5.1. PCA Tests..45

5.1.1. Tests with Clean Traffic...45

5.1.2. Tests with Manual Attacks...47

5.2. Threshold Tests...49

5.3. BitTorrent Traffic Analysis...53

5.3.1. BitTorrent Protocol..53

5.3.2. Testbed for BitTorrent Characterization...54

5.3.3. Criteria for BitTorrent..55

CHAPTER 6. CONCLUSION..61

REFERENCES..63

APPENDICES

APPENDIX A..67

APPENDIX B..71

vi

LIST OF FIGURES

Figure Page

Figure 2.1. Unidirectional Flow Demonstration, From Source to Destination6

Figure 2.2. Unidirectional Flow Demonstration, From Destination to Source6

Figure 2.3. Bidirectional Flow Between Two Endpoints ..6

Figure 3.1. Steps Through Anomaly Detection...23

Figure 3.2. Total Bits Per Second for Week 1 Day 1 Record..................................25

Figure 3.3. Total Number of Packets for Week 1 Day 1 Record............................. 26

Figure 4.1. AbstractFlow Diagram.. 38

Figure 4.2. FlowGenerator and WholeFlowGenerator Class Relations.................. 39

Figure 4.3. Factory Class Diagram.. 40

Figure 4.4. Indicator Class Diagram.. 40

Figure 4.5. Recognizer Class Diagram.. 41

Figure 4.6. Threshold Calculation Sequence Diagram.. 41

Figure 4.7. PCA Sequence Diagram.. 42

Figure 5.1. PCA Analysis of Week 1 Day 1 Record.. 46

Figure 5.2. PCA Analysis of Week 5 Day 2 Record.. 46

Figure 5.3. Ettercap DOS Attack PCA Analysis.. 48

Figure 5.4. Snort Result of Undefined Traffic, DOS Attack................................... 48

Figure 5.5. Nmap Syn Scan PCA Analysis... 49

Figure 5.6. FTPCommand Test Results... 49

Figure 5.7. FTPData Test Results.. 50

Figure 5.8. HTTP Test Results...50

Figure 5.9. POP Test Results..51

Figure 5.10. SMTP Test Results.. 51

Figure 5.11. SSH Test Results... 52

Figure 5.12. Telnet Test Results...52

Figure 5.13. Protocols Similarities Defined for Torrent Traffic...............................54

Figure 5.14. Payload Distribution Graph for Originator... 55

Figure 5.15. DatabyteRatioOrigToResp Distribution Graph................................... 56

Figure 5.16. DataByteCount/ByteCount Graph for Responder............................... 56

vii

Figure 5.17. DataByteCount/ByteCount Graph for Originator............................... 57
Figure 5.18. firstNonEmptyPacketSize of the Whole Flow 57

Figure 5.19. P2P Test with FTPData .. 58

Figure 5.20. FTP Data Test with P2P.. 59

Figure 5.21. Telnet Test with P2P.. 59

Figure 5.22. HTTP Test with P2P...60

viii

LIST OF TABLES

Table Page

Table2.1. Attributes measured over the whole flow...9

Table 2.2 Attributes measured for each direction of the flow.................................. 10

Table 3.1. Table structure for table FlowPkgTbl... 26

Table 3.2. Conceptual illustration of discrete payload distribution......................... 30

Table 3.3. Conceptual illustration of discrete packet delay distribution..................30

Table 4.1. Table structure for table UndefinedFlowTbl...43

ix

CHAPTER 1

INTRODUCTION

Network traffic measurement provides basic traffic characteristics, supplies

information for the control of the network, allows modeling and provides an opportunity

to develop and plan the use of network resources. It also enables developers to control

the quality of network service operations. Although network traffic measurement is a

well-known and applicable area, a general method for detecting anomalies in network

traffic is an important, unsolved problem (Denning 1986).

Anomaly detection can be described as an alarm for strange system behavior.

The concept stems from a paper fundamental to the field of security, An Intrusion

Detection Model, by Denning (Denning 1986). In it, she describes building an "activity

profile" of normal usage over an interval of time. Once in place, the profile is compared

against real time events. Anything that deviates from the baseline, or the norm, is logged

as anomalous. So, anomaly detection systems establish a baseline of normal usage

patterns, and anything that widely deviates from it gets flagged as a possible intrusion. A

good example for this approach is Bro-IDS (Bro-IDS 2009). It works as en event based

intrusion detection system, that is it does not rely on only signatures, recorded and

generated by observing previously seen anomalies, but also event definitions that

enables dynamic approach to intrusion detection systems. By using its own language, it

is possible to define anomalies on application level. Such an event based approach

enable further protection for the unseen anomalies. Another anomaly detection system

works using signatures that are previously recorded. Since its dependency to previous

anomalies and signature collection, signature based systems are not as dynamic as event

based systems.

The network traffic to be an anomaly can vary, but normally, any incident that

occurs on frequency greater than or less than two standard deviations from the statistical

1

norm can be approached as a suspicious event. Since the ambiguity on determination of

the statistical norm, a general method for detecting anomalies in network traffic doesn't

have a unique solution. Basically, it should be possible to observe most anomaly types

by inspecting traffic flows. However, to date, there is not a common approach to

anomaly detection. There are many good reasons for this: Traffic flows present many

possible types of network traffic, the set of all flows occupies a very high-dimensional

space, and collecting all traffic flows is very resource-intensive.

In this thesis, detecting anomalies are achieved neither signature nor signature

based. Both approaches require definition of an anomaly either in a signature way or an

application level protocol way. Instead of defining abnormal traffic, it is presented that,

defining normal traffic behavior is easier. By using the normal traffic characteristics, the

rest of the traffic can be extracted as suspicious traffic for anomaly detection.

Throughout this thesis, it is shown that traffic flow attributes can be used to

define known traffic, which covers application level protocols like FTP, TELNET, SSH,

HTTP, HTTPS, IMAP, POP, SMTP, MSN CHAT, RLogin, BitTorrent. Network traffic is

taken into consideration as combination of directional flows. For each flow, flow

attributes are calculated either using flow metrics or packet based inspection. Packet

based inspection includes traversing through the collected packets that belong to a flow

session. Especially, attribute values related with statistical analysis requires packet

based inspection.

By using the attribute values, it is possible to calculate a match result for each

application level protocol. By looking at the match result of the calculated values, it is

seen that it is possible to define a threshold value for each protocol and any flow that is

under the defined threshold value can be marked as undefined for further inspection.

When the undefined flows are observed as a whole and principle component analysis is

applied over byte and packet number level, it is seen that the generated graphs has peeks

that displays suspicious anomalies over time intervals. For calculating the principle

components, number of packets, number of bytes and number of IP flow values are used

for each origin-destination pairs. Origin-destination pairs are calculated for the splitted

time series of the undefined traffic.

The exact number of applications that contribute to the network traffic is not

known and even the actual impact of well-known protocols is not clear. This is due to

2

the shortcomings of the state-of-the-art in traffic monitoring, which make use of

registered and well-known port numbers to classify packets and computer statistics. The

problem is new applications often do not use a registered port, do not have a fixed port

number, or simply disguise themselves using the port numbers of another application

(for example, the web's port 80) to avoid detection (so they can pass through firewalls,

and avoid rate limits) (Hernandez-Campos, et. al. 2005).

This thesis will cover mathematical models for traffic characterization, anomaly

detection and implementation of them on network traffic. Chapter 2 aims to give a

background information. Flow explanations like directionality or flow metrics and tools

that are used either on packet or flow based are explained throughout this chapter. This

chapter also covers the background information about principle component analysis that

is used for anomaly detection for the suspicious traffic. Chapter 3 explains the model of

the solution. It is aimed to answer the how part of the thesis. Before starting the

implementation phase it is aimed to give logical methodical steps that will be follow to

gather anomalies at the network traffic. Chapter 4 covers the implementation details

starting from the programming language itself to UML diagrams of the class hierarchy.

Chapter 5 includes test results of the particular application level protocols. The results

are used to detect threshold for each protocol. Chapter 5 also includes the test results

related with the BitTorrent traffic which is added to this thesis as a contribution for the

related work. The thesis ends with a conclusion and a further work part.

3

CHAPTER 2

BACKGROUND

This section aims to provide a background for the concepts used in this thesis.

To provide the reader a familiarity with the topics covered through this thesis, this

section is divided into three subsections. First section is dedicated for network flow

explanations. Flow notion, flow based metrics, directionality and flow attributes are

explained in detail. This category also includes the tools used for calculating flow

metrics. The second sub section is for packet based inspection and packet based tools

used throughout this thesis. In this thesis work, it is also mentioned an anomaly

detection method that can be applied on to the flow records, which is called principle

component analysis (PCA). Mathematical details about PCA calculation is given at the

third subsection of this section.

2.1. Network Flows

2.1.1. Notion of Flow

The notion of flow was introduced within the network research community in

order to better understand the nature of Internet traffic. Flow is the sequence of packets

or a packet that belonged to certain network session(conversation) between two hosts

but delimited by the setting of flow generation or analyzing tool (Lee 2008, June).

Network flow data represents a summary of conversation between two end points. It

provides valuable information to assist investigation and analysis of network and

4

security issues. Unlike deep packet inspection, flow data does not rely on packet

payloads. Instead the analyst relies on information gathered from packet headers and its

associated metrics. This provides the analyst a neutral view of network traffic flow by

tracking network sessions between multiple endpoints simultaneously. In addition,

having network flow data will provide a better visibility of network events without

having the need to perform payload analysis. It is convenient for protocol analysis (Lee

2008, May) or debugging.

In 1995, the IETF’s Realtime Traffic Flow Measurement (RTFM) working group

was formed to develop a frame-work for real-time traffic data reduction and

measurements (RTFM 1995). A flow in the RTFM model can be loosely defined as the

set of packets that have in common values of certain fields found in headers of packets.

The fields used to aggregate traffic typically specify addresses at various levels of the

protocol stack (e.g. IP addresses, IP protocol, TCP/UDP port numbers). Herein, it is

used the term key to refer to the set of address attributes used to aggregate packets into a

flow.

2.1.2. Flow Directionality

Flow definition is given above as summary of conversation between two end

points. The endpoints here are defined as follows:

a. Layer 2 Endpoint - Source Mac Address | Destination Mac Address
Layer 3 Endpoint - Source IP Address | Destination IP Address
Layer 4 Endpoint - Source Port | Destination Port

The conversation between these two ends has a direction so flow tool display a

direction information related with the flow also. There are two types of direction

information related with a network flow. A flow can be defined either as a unidirectional

flow or as a bidirectional flow.

At unidirectional flow model, every flow record contains the attribute of single

endpoint only. Figure 2.1 and Figure 2.2 show directionality in a more simple way (Lee

5

2008, June).

At bidirectional flow model every flow record contains the attribute of both

endpoints. Figure 2.2 illustrates it (Lee 2008, June):

To make the directionality more clear lets assume that source host sends 90

bytes to destination host and destination host replies with 120 bytes. If the flow

communication between these two hosts are unidirectional, then the flow information

will be as follows:

6

Figure 2.1. Unidirectional Flow Demonstration, From Source to Destination

Figure 2.2. Unidirectional Flow Demonstration, From Destination to Source

Figure 2.3. Bidirectional Flow Between Two Endpoints

b. Srcaddr Direction Dstaddr Total Bytes
Source Host -> Destination Host 90
Destination Host -> Source Host 120

Though, if the flow communication is bidirectional, then the result will be

different:

c. Srcaddr Direction Dstaddr Total Bytes Src Bytes Dst Bytes
Source Host <-> Destination Host 210 90 120

In unidirectional flow, it is only seen the total bytes that sent by source host but

nothing about destination in the first flow record. Then the next record shows

destination sends 120 bytes to source. The total bytes is accounted from single endpoint

only. But in bidirectional flow, it can be seen that source host sends 90 bytes and

destination replies with 120 bytes. The total bytes is the accumulation of source and

destination bytes.

2.1.3. Flow Identification

Giving a unique label to a flow information depends on the aim of the analysis

related with it. If the intent is to analyze the amount of traffic between two hosts, then

the focus can be source and destination IP addresses. However, a finer intent like

considering the flow information over a state approach to identify connections will

require additional information. To identify each flow it is used 5-tuple key

representation. The tuple includes source IP address, source port number, destination IP

address, destination port number and protocol information.

2.1.4. Flow Period

Flow period means the time periodically report on a flow's activity. The period

determines the start and end times of each flow. There are three primary expiry methods

7

that are appropriate for studying characteristics of individual flows: protocol based,

fixed timeout, and adaptive timeout (Keys, et. al. 2001). With protocol based

mechanisms, the state of a flow is determined by observing protocol specific messages

(e.g. TCP SYN, FIN or RST). With a fixed timeout method, a flow has expired when

some fixed period has elapsed since the last packet belonging to that flow was captured.

An adaptive timeout strategy is a little more sophisticated than a fixed timeout method.

The timeout is different for each flow and is computed based on the packet rate

observed so far within each flow.

In this thesis, because of its simplicity a fixed timeout approach is chosen over

an adaptive timeout mechanism to decide the expiration time of flows. The timeout

value is chosen as 60 seconds for preliminary examination, which is also commonly

used in related works (Xu, et.al. 2005) (Claffy, et.al. 1995) (Karagiannis, et.al. 2005).

2.1.5. Flow Attributes

In the literature, flow attributes are often called features, or characteristics.

According to the RFTM Architecture (RFC2722 1999) a flow has computed attributes

that are derived from end point attribute values, metric values like packet and byte

counts, time values as well as summary information like mean, median or average

values, jitters and distributional information. The goal in defining flow attributes is to

identify now only the relevant characteristics but also the proper way to measure them.

In 2005, De Montigny and Leboeuf published the definition of flow attributes

that can be used to characterize a flow at their paper (De Montigny and Leboeuf 2005).

At their work it is mentioned nearly thirty property that can be derived from a flow

information. The mentioned flow metrics are also used throughout this thesis. The

following sub sections will be covering the details of the flow attributes mentioned at

the De Montigny and Leboeuf's work (De Montigny and Leboeuf 2005).

Flow attributes are examined in two categories. One of the categories includes

the whole flow values, while the second one includes values per directional flows. The

attributes derived are summarized in Table 2.1 and Table 2.2. The following sub

sections will describe each attribute with greater detail. Table 2.1 lists the attributes that

8

are measured over the entire flow. The first three attributes (Key, BeginTime, EndTime)

are simply used to identify and sort the flows. Table 2.2 gives the attributes that are

specific to each direction, and thus are measured in each direction separately. The

details of Table 2.1 and Table 2.2 can be found at Appendix A.

Table 2.1. Attributes measured over the whole flow

Attributes Inspection Method

KEY Flow Based

BEGIN_TIME Flow Based

END_TIME Flow Based

DURATION Flow Based

FIRST_NONEMPTY_PACKET_SIZE Packet Based

FIRST_FEW_NONEMPTY_PACKET_DIRECTIONS Packet Based

DATA_BYTE_RATIO_ORIG_TO_RESP Flow Based

INTERARRIVAL_DISTRIBUTION Packet Based

Conversational Indicator

ALPHAconversation Packet Based

BETAconversation Packet Based

GAMMAconversation Packet Based

Transaction Indicator

ALPHAtransaction Packet Based

9

Table 2.2. Attributes measured for each direction of the flow

Attributes Inspection Method

INTERARRIVAL_DISTRIBUTION Packet Based

PAYLOAD_DISTRIBUTION Packet Based

BYTE_COUNT Flow Based

DATA_BYTE_COUNT Flow Based

PACKET_COUNT Flow Based

DATAPACKET_COUNT Flow Based

Encryption Indicators

ALPHAchipherblock Packet Based

BETAchipherblock Packet Based

Keystroke Interactive Indicator

ALPHAkey_interactive Packet Based

BETAkey_interactive Packet Based

GAMMAkey_interactive Packet Based

DELTAkey_interactive Packet Based

EPSILONkey_interactive Packet Based

Command-line Interactive Indicator

ALPHAcmd_interactive Packet Based

BETAcmd_interactive Packet Based

GAMMAcmd_interactive Packet Based

DELTAcmd_interactive Packet Based

EPSILONcmd_interactive Packet Based

File transfer Indicators

ALPHAconstantpacketrate Packet Based

BETAfile Packet Based

GAMMAfile Packet Based

As it can be seen from Table 2.1 and Table 2.2, attributes related with whole

flow or each direction of flow have indicators. Indicators generally depend on packet

based calculations and enables to derive application level information from flow itself.

Although it is mentioned they are calculated mainly by packet based inspection, some of

them also use flow based data to calculate some indicator values. Details about the

indicators are mentioned at the next section.

10

2.2. Network Flow Tools

Custom flow tools ease the work on flow data. They reconstructs the actual data

streams and enable it to be saved to a file in a formated way or to be displayed

graphically. What they do basically is understanding sequence numbers and state

information to decide to which session of the packages belongs to.

Cisco's NetFlow (Cisco Systems 2009) is a network protocol developed by

Cisco Systems to run on Cisco IOS-enabled equipment for collecting IP traffic

information. It's proprietary and supported by platforms other than IOS, such as Juniper

routers or FreeBSD and OpenBSD (Netflow 2009). Although it is widely used, its flows

are unidirectional and limited number of flow attributes are recorded. NetFlow traffic is

mainly analyzed by adapting other tools to the network like cflowd (CAIDA 2006) and

SiLK (SiLK, 2009). Another popular tool is Argus, which is fixed-model real time flow

monitor designed to track and report on the status and performance of all network

transactions seen in a data network traffic stream.

 2.2.1 Argus

 The Argus Open Project is focused on developing network audit strategies that

can do real work for the network architect, administrator and network user. Argus is a

fixed-model real time flow monitor designed to track and report on the status and

performance of all network transactions seen in a data network traffic stream. Argus

provides a common data format for reporting flow metrics such as connectivity,

capacity, demand, loss, delay, and jitter on a per transaction basis. The record format

that Argus uses is flexible and extensible, supporting generic flow identifiers and

metrics, as well as application/protocol specific information.

Argus can be used to analyze and report on the contents of packet capture files

or it can run as a continuous monitor, examining data from a live interface, generating

11

an audit log of all the network activity seen in the packet stream. Argus currently runs

on Linux, Solaris, FreeBSD, OpenBSD, NetBSD, MAC OS X and OpenWrt (ARGUS

2009).

Argus is used for converting previously recorded pcap files to its own flows

format and to produce meaningful human readable flow information from it. It is used

as follows:

d. argus -mAJZR -r ettercap-dos.pcap -w ettercap-dos.pcap.arg3

Here, ettercap-dos.pcap file is converted into an Argus flow format by using the

parameters defined below:

e. -m: Provide MAC addresses information in argus records.
-A: Generate application byte metrics in each audit record.
-J: Generate packet peformance data in each audit record.
-Z: Generate packet size data.
-R: Generate argus records such that response times can be derived from
transaction data.

Converted Argus flow file is a binary file which requires Argus client tools to be

used for meaningful information. Racluster is one of the Argus client tools that is used

for gathering flow information. Racluster reads Argus data from an Argus data

source, and clusters/merges the records based on the flow key criteria specified either on

the command line, or in a racluster configuration file, and outputs a valid Argus stream.

This tool is primarily used for data mining, data management and report generation.

Below is a sample usage and the produced output of it:

f. racluster -L0 -nr ettercap-dos.pcap.arg3 -s proto saddr sport dir daddr dport

Proto SrcAddr Sport Dir DstAddr Dport
tcp 192.168.1.118.32743 -> 192.168.1.188.2
tcp 192.168.1.118.32999 -> 192.168.1.188.3

By looking at the produced output, it can be said that, the first flow indicates a

connection over TCP between the IP addresses 192.168.1.118 and 192.168.1.188 that is

also a unidirectional flow. During the flow inspection process more information rather

than the ones mentioned above is gathered using racluster, like the start time of flow,

12

duration, number of packets send by source, ... etc.

Another Argus client was rasplit which was used for splitting flow sources into

sub flows depending on either time or size values. Rasplit reads Argus data from an

Argus data source, and splits the resulting output into consecutive sections of records

based on size, count time, or flow event, writing the output into a set of output files.

This tool is mainly used at the principle component analysis phase for creating sub

flows.

2.3. Network Packets

In information technology, a packet is a formatted unit of data carried by a

packet mode computer network. Computer communications links that do not support

packets, such as traditional point-to-point telecommunications links, simply transmit

data as a series of bytes, characters, or bits alone. When data is formatted into packets,

the bitrate of the communication medium can better be shared among users than if the

network were circuit switched (Packet 2009).

The format of the network packets are defined as protocols. Throughout this

thesis, User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)

packets are taken into consideration because of their common usage at application level.

So is this thesis, packet is used as either a TCP or an UDP packet.

Each protocol has its own header definitions. Headers carry details about

network packets. For both UDP and TCP, it is gathered common header information for

each packet. One of the gathered header information is the IP addresses, that are defined

in 32 bit fields in dot separated format for IPv4. It should be mentioned that, current

work in this thesis is done on IPv4 networks. An IP packet contains two IP address

information that is the sender/source IP address and the other one is the

receiver/destination IP address. Packets are left the machines or received by using port

numbers which are defined as 8 bit information at the packet headers. An IP packets

also carry protocol information, which is defined in 8 bit fields. This number is 17 for

TCP protocol packets and 6 for UDP packets when converted into decimal value.

Each packet has a length information that is defined in a 24 bit header length.

13

This gives the total length of the packet. The most important header part for this thesis

is the payload. Payloads are the data carriage of the packets. Protocol related

commands, text information or binary data is carried on payload parts. Depending on

how the network traffic is sniffed and the length of the captured packets defined, the

size of payload can vary. But in general, the size and ingredients of it gives much

information related with which application the packet belongs to.

2.4. Network Packet Tools

This section is covering the tools that gathers packet level data from network

traffic. These tools generally use libpcap (Libpcap 2009) library for low-level network

jobs.

2.4.1. Tcpdump

Tcpdump is a common packet sniffer that runs under the command line. It

allows the user to intercept and display TCP/IP and other packets being transmitted or

received over a network to which the computer is attached (Tcpdump 2009). It prints

out a description of the contents of packets on a network interface that match the

boolean expression. It can also be run with the -w flag, which causes it to save the

packet data to a file for later analysis, and/or with the -r flag, which causes it to read

from a saved packet file rather than to read packets from a network interface. In all

cases, only packets that match expression will be processed by tcpdump.

Tcpdump is used in this thesis to save the manually produced attacks as pcap

format for further investigation. The saved files are processed via the developed

software and a general anomaly graph is produced for an attack sample.

14

2.4.2. Wireshark

Wireshark is a free packet sniffer computer application. It is used for network

troubleshooting, analysis, software and communications protocol development, and

education.

Wireshark is very similar to tcpdump, but it has a graphical front-end, and many

more information sorting and filtering options. It allows the user to see all traffic being

passed over the network (usually an Ethernet network but support is being added for

others) by putting the network interface into promiscuous mode (Wireshark 2009).

It is used as a controller through the development of flow attributes. By

inspecting each packets per flow, it is decided to understand the which header fields

should be taken into consideration for each protocol.

2.4.3. Tcpreplay

Tcpreplay is a tool for replaying network traffic from files saved with tcpdump

or other tools which write pcap files. It allows one to classify traffic as client or server,

rewrite Layer 2, 3 and 4 headers and finally replay the traffic back onto the network and

through other devices such as switches, routers, firewalls, NIDS and IPS's. Tcpreplay

supports both single and dual NIC modes for testing both sniffing and inline devices

(TcpReplay 2009).

Throughout this thesis, it is used to reproduce the captured manual attack over

an Ethernet interface to be sniffed and analyzed by Snort. It is aimed to check the

produced anomaly results with the Snort results, so the undefined flows are sent to Snort

after being analyzed.

15

2.5. Principle Component Analysis

Principal component analysis (PCA) involves a mathematical procedure that

transforms a number of possibly correlated variables into a smaller number of

uncorrelated variables called principal components (PCA 2009). With minimal effort

PCA provides a road map for how to reduce a complex data set to a lower dimension to

reveal the sometimes hidden, simplified structures that often underlie it.

Principal component analysis is based on the statistical representation of a

random variable. Suppose we have a random vector population x, where

x=x1 , x 2 , ... , xn
T (2.1)

 and the mean of that population is denoted by

µx=E {x } (2.2)

and the covariance matrix of the same data set is

C x=E {x−µx x−µ x
T} (2.3)

The components of Cx, denoted by cij, represent the covariances between the

random variable components xi, and xj. The component cii is the variance of the

component xi. The variance of a component indicates the spread of the component

values around its mean value. If two components xi and xj of the data are uncorrelated,

their covariance is zero (cij = cji = 0). The covariance matrix is, by definition, always is

always zero.

From a sample of vectors x1,...,xM it can be calculated the sample mean and the

sample covariance matrix as the estimates of the mean and the covariance matrix. From

a symmetric matrix such as the covariance matrix, it can be calculated an orthogonal

basis by finding its eigenvalues and eigenvectors. The eigenvectors ei The eigenvectors

16

λi are the solutions of the equation.

Cxei = λiei, i=1,...,n (2.4)

For simplicity it is assumed that the λi are distinct. These values can be found,

for example, by finding the solutions of the characteristic equation

∣C x−λI∣=0 (2.5)

where the I is the identity matrix having the same order than Cx and the |.|

denotes the determinant of the matrix. If the data vector has n components, the

characteristic equation becomes of order n. This is easy to solve only if n is small.

Solving eigenvalues and corresponding eigenvectors is a non-trivial task, and many

methods exist.

By ordering the eigenvectors in the order of descending eigenvalues (largest

first), one can create an ordered orthogonal basis with the first eigenvector having the

direction of largest variance of the data. In this way, it can be found directions in which

the data set has the most significant amounts of energy.

Suppose one has a data set of which the sample mean and the covariance matrix

have been calculated. Let A be a matrix consisting of eigenvectors of the covariance

matrix as the row vectors. By transforming a data vector x, it is got

y = A(x-µx) (2.7)

which is a point in the orthogonal coordinate system defined by the

eigenvectors. Components of y can be seen as the coordinates in the orthogonal base. It

can be reconstructed the original data vector x from y by

x=AT yµx (2.8)

using the property of an orthogonal matrix A−1
=AT . The AT is the transpose

of a matrix of A. The original vector x was projected on the coordinate axes defined by

17

the orthogonal basis. The original vector was then reconstructed by a linear combination

of the orthogonal basis vectors.

Instead of using all the eigenvectors of the covariance matrix, the data is

represented in terms of only a few basis vectors of the orthogonal basis. If the matrixis

denoted having the K first eigenvectors as rows by AK a similar transformation can be

created as seen above

y = AK (x – µx) (2.9)

and

x = AK
Ty+µx (2.10)

This means that it is projected the original data vector on the coordinate axes

having the dimension K and transforming the vector back by a linear combination of the

basis vectors. This minimizes the mean-square error between the data and this

representation with given number of eigenvectors.

If the data is concentrated in a linear subspace, this provides a way to compress

data without losing much information and simplifying the representation. By picking the

eigenvectors having the largest eigenvalues it is lost as little information as possible in

the mean-square sense. One can e.g. choose a fixed number of eigenvectors and their

respective eigenvalues and get a consistent representation, or abstraction of the data.

This preserves a varying amount of energy of the original data. Alternatively, it can be

chosen approximately the same amount of energy and a varying amount of eigenvectors

and their respective eigenvalues. This would in turn give approximately consistent

amount of information in the expense of varying representations with regard to the

dimension of the subspace (Hollmen 1996).

18

2.5.1. Tools Used Through PCA Process

PCA process is a manual process. This section describes the details about the

tools used throughout the PCA steps.

2.5.1.1. Octave

GNU Octave is a high-level language, primarily intended for numerical

computations. It provides a convenient command line interface for solving linear and

nonlinear problems numerically, and for performing other numerical experiments using

a language that is mostly compatible with Matlab. It may also be used as a batch-

oriented language[13].

It is used for principle component calculation and generating graphs of the

calculation to see the peeks at the graphs.

GNU Octave's statistical package has princomp function which enables

computing the PCA of a X matrix. It works as follows:

g. [pc,z,w,Tsq] = princomp(X)

 pc: the principal components
 z : the transformed data
 w: the eigenvalues of the covariance matrix
 Tsq: Hotelling's T^2 statistic for the transformed data

Throughout PCA process, anomaly detection is done over undefined flow

records. While Octave is used for PCA computation and generating anomaly graphs,

some other tools are used for creating manual attacks and retesting them.

19

2.5.1.2. Snort

SNORT is an open source network intrusion prevention and detection system

utilizing a rule-driven language, which combines the benefits of signature, protocol and

anomaly based inspection methods. Snort is the most widely deployed intrusion

detection and prevention technology worldwide and has become the de facto standard

for the industry (Snort 2009).

Snort is used in intrusion detection mode to detect the anomalies for the

undefined traffic. Snort BASE (BASE 2009) web interface is used for observing the

produced results.

2.5.1.3. Ettercap

Ettercap is a suite for man in the middle attacks on LAN. It features sniffing of

live connections, content filtering on the fly and many other interesting tricks. It

supports active and passive dissection of many protocols (even ciphered ones) and

includes many feature for network and host analysis (Ettercap 2009).

Ettercap is able to perform attacks against the ARP protocol by positioning itself

as "man in the middle" and, once positioned as this, it is able to:

- infect, replace, delete data in a connection

- discover passwords for protocols such as FTP, HTTP, POP, SSH1, etc ...

- provide fake SSL certificates in HTTPS sections to the victims.

 It is used for producing DOS attacks, manually. The produced dos attacks are

saved by using tcpdump, and analyzed both with Snort and developed software.

20

2.5.1.4. Nmap

Nmap ("Network Mapper") is a free and open source (license) utility for

network exploration or security auditing. Many systems and network administrators also

find it useful for tasks such as network inventory, managing service upgrade schedules,

and monitoring host or service uptime. Nmap uses raw IP packets in novel ways to

determine what hosts are available on the network, what services (application name and

version) those hosts are offering, what operating systems (and OS versions) they are

running, what type of packet filters/firewalls are in use, and dozens of other

characteristics. It was designed to rapidly scan large networks, but works fine against

single hosts. Nmap runs on all major computer operating systems, and both console and

graphical versions are available (Nmap 2009). It is used as a port scanner to generate

port scan traffic over a target machine.

21

CHAPTER 3

APPROACH

This chapter explains the methodical work that is followed to characterize

network traffic and to get anomaly information related with the traffic examined. The

method involves the steps followed to produce anomaly result. The steps start with

examining of the off line prerecorded data and ends with an graph representing the

abnormal traffic in a time interval. Each step is achieved by considering some key

points which are also mentioned at the following sub sections. The key points constitute

a unique view which differs this thesis work from the similar works.

3.1. Principle of Approach

The method that is followed at this work can be viewed at four steps. To get a

general view the steps are explained in a simple way. The details are explained at the

following subsections.

• Packets are grouped into flows : Off line data is used at this thesis. The

details about the captured data is given at the subsection 3.2. The data is a

prerecorded data that includes captured traffic by tcpdump. The recorded data is

first converted into a flow record by keeping mac address information, packet

performance data, application byte metrics in each audit record.

• Characteristics (attributes) are measured on each flow : Attributes mentioned

at the Annie De Montigny and Leboeufare (De Montigny and Leboeuf 2005) work

are calculated and recorded.

• Flows are recognized and described : The flow is described with its two main

22

properties. One category includes the metric values of the flow, the other one is the

statistical information that is gathered through a packet inspection. With these

knowledges it is aimed to define the application level definition for a flow.

• Anomaly Detection : Anomaly analysis is covered on the undefined flow

data. Undefined traffic is saved for a further statistical analysis to detect

uncorrelated data from the correlated data.

The process is outlined also at Figure 3.1 in a more visual way.

Figure 3.1. Steps Through Anomaly Detection

There are some points that should be highlighted about the approach in this

thesis:

• Anomaly detection method at this thesis is based on traffic characterization

which requires to derive flow characteristics. At the current work it is possible to get

and analyze nearly twenty three flow metrics.

• It is completely avoided relying on port numbers or payload analysis. This

provides an alternative method to more conventional traffic categorization

techniques provided by current networking tools.

23

Packets Flows Flow Attributes

* Interactive Indicators
* File Transfer Indicators
* Conversation
Indicators
* Transcation Indicators
* Encryption Indicators
..

Flow
Recognizers

* HTTP
* FTP
* SSH

*TELNET
....

Principle Component Analysis
Anomaly Graph

Step 1
Step 2

Step 3

Step 4

• It is only examined communication patterns found at the network and

transport layers, requiring minimal information per packet to be retained.

• Patterns are identified at the 5-tuple flow granularity of TCP/UDP

communications. Therefore even sporadic malicious activities may be identified

without the requirement of waiting until multiple connections can be examined.

• The flow attributes can serve as a starting point for different traffic

characterization studies. By using the same attributes but different statistical

analysis more powerful techniques can be defined. The methodology also open to

adding to new flow attribute additions. So defining new attributes may ease the

anomaly detection process.

3.2. Processing of Captured Data

The traffic analysis process starts with a tcpdump data file which is used for

extracting flow data and for gathering per packet information. There are two types of

tcpdump records that was used through this thesis work. One of them is the 1999

DARPA Intrusion Detection Evaluation Data Set which was used throughout the

development phase. DARPA Intrusion Detection Evaluation Data Set (DARPA 2009)

includes weekly prerecorded tcpdump files for further evaluation. The data set was

used for intrusion detection so it has separated clean traffic. Attack free (clean) traffic

was important during the development period to detect the metric values for each flow

attributes. So the first week of the dataset is used for development purposes. Second

record type is the one including manually produced anomalies. These records include

both abnormal traffic and a scheduled attack produced manually. These type of records

are used for checking the accuracy of the work.

Below is the graphical and statistical representation of the week one day one

record of the DARPA Intrusion Detection Evaluation Data Set:

24

h. File name: inside.tcpdump_w1_d1 File type:
Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 1492331
File size: 341027537 bytes
Data size: 317150217 bytes
Capture duration: 79210.265570 seconds
Start time: Mon Mar 1 15:00:05 1999
End time: Tue Mar 2 13:00:16 1999
Data rate: 4003.90 bytes/s
Data rate: 32031.22 bits/s
Average packet size: 212.52 bytes

h. represents the all available statistical information gathered from the captured

file, inside.tcpdump_w1_d1 which is the name of the file created by using Tcpdump.

Following two figures give the graphical representation of the flow information

for the captured file.

25

Figure 3.2. Total Bits Per Second for Week 1 Day 1 Record

During the preprocessing period, the prerecorded dump file is first converted

into Argus flow file. After this process flow records are written to a text file in a human

readable form. The records include 5-tuple key information, direction of transaction,

record start time, record last time, record total duration, transaction bytes from source to

destination, transaction bytes from destination to source, application bytes from source

to destination, application bytes from destination to source, packet count from source to

destination, packet count from destination to source, source packets retransmitted or

dropped and destination packets retransmitted or dropped for each flow.

Preprocessing period also requires packet based traversing on the recorded

traffic. While traversing on the recorded data, information per packets are saved. To

save the packet based information database table created on MySQL database server is

used. MySQL is a relational database management system (RDBMS). Because it is a

fast, stable and true multi-user, multi-threaded SQL database server it is used to save

packet level information. Below is the structure of the table that is used to keep whole

flow packet information.

26

Figure 3.3. Total Number of Packets for Week 1 Day 1 Record

Table 3.1. Table structure for table FlowPkgTbl

Field Type Null Default

orderno bigint(20) Yes NULL

srcip varchar(20) Yes NULL

dstip varchar(20) Yes NULL

dstport int(11) Yes NULL

sport int(11) Yes NULL

arrivaltime datetime Yes NULL

epochtime decimal(40,10) Yes NULL

proto varchar(10) Yes NULL

payloadsize int(11) Yes NULL

payloadinfo text Yes NULL

packetsize bigint(20) Yes NULL

For each of the flow record, attribute values that are mentioned at the Chapter 2

are calculated. As it is mentioned some attribute metrics require packet based inspection

that means packets that belong to the analyzed flow should be taken into consideration.

To identify in request packets, 5-tuple key value is used from the flow information.

Packets including the 5-tuple key information are queried from the FlowPkgTbl. By

traversing on the result set and following the calculations mentioned at the Chapter 2,

flow attributes are calculated. Packet based attribute calculation requires additional

database tables usage.

3.3. Processing of Flow Data

Attribute values are used to define the flow characteristics. For each of the

protocol, observed values of the flow attributes are given at the De Montigny and

Leboeuf's work (De Montigny and Leboeuf 2005). The values are added to the

Appendix B. Throughout the development phase, to check the correctness of the values

defined at the paper, protocol based traffic should be used, so for every application level

protocol that is under consideration, specific traffic is extracted from the recorded traffic

record. This is done using the racluster, Argus client. Racluster enables filtering traffic.

A sample racluster command for filtering HTTP traffic and creating flow data is as

27

follows:

i. racluster -L0 -nr tcpdump-07-05-2009_23:25:24.dump.arg3 -s proto
saddr sport dir daddr dport stime ltime dur sbytes sappbytes dappbytes
dbytes spkts dpkts sloss dloss - ip and port 80 >
tcpdump-07-05-2009_23:25:24.dump.txt

This command takes tcpdump-07-05-2009_23:25:24.dump.arg3 Argus flow data

as input and produces clustered readable flow information by filtering IP based traffic

and port 80, that is flows with UDP, TCP or ICMP protocols with destination or source

port number 80 is taken into consideration.

Another reason to use the filtered flows is the necessity of calculating threshold

value for each protocol. By looking at the flow attribute values and the value ranges

defined at the De Montigny and Lebouf's paper, it is only possible to produce the

percentage of the relevance for each protocol. By observing the test results, a threshold

value is produced for every protocol. Any match result below that percentage is marked

as undefined flow for PCA.

Thresholds are calculated for each application level protocol. By using the clean

data set and the filtered application level flows, match results for each protocol is

calculated. By looking at the average of the collected results a general tendency at the

threshold value for each protocol is calculated. Chapter 4 gives the details about the test

results.

3.4. Handling Flow Attributes

Flow attributes are mainly calculated on non-empty packages. A non-empty

packet is the one carrying a payload. The reason about dealing with non-empty packets

is that packets carry either binary data or protocol specific commands through payload.

It is clear that the size of the payload may vary depending on the capture snaplen, but

the default value of using the first 60 Bytes are enough to decide about the protocol.

Generally the size of the payload is used instead of the text based inspection. Depending

on the protocol itself, it is seen that size of the payload can bu used for detecting some

28

information about flow. In addition, calculating the size is easier than inspecting the

ingredients of the payload.

3.4.1. Discrete Distribution Attributes for Payload and Inter-Packet
Delay

Discrete distributions are used for inter-packet delay and packet payload length.

Distribution values are especially important for packet payload length. Application

protocol overhead may imply that non-empty packets are always greater or equal in

length to a given minimum (due to header length). Application negotiation mechanisms

may also exhibit a high frequency of packets of special sizes. Moreover, certain

applications may have a preferential packet size, and completely avoid sending packets

of lengths within a given range. For instance, as noted in (Hernandez-Campos, et. al.

2005), the HTTP-protocol is characterized by many short and long packets. Such

characteristics are not effectively reflected by means and variances which may be

sensitive to outliers. Discrete distribution attributes are therefore preferred in this work

(De Montigny and Leboeuf 2005).

The payload and inter-packet delay delimiters are used as defined at the De

Montigny and Leboeuf's work (De Montigny and Leboeuf 2005).

It is currently used the following bin delimiters for payload length (in bytes):

j. [0-1[, [1-2[, [2-3[, [3-5[, [5-10[, [10-20[, [20-40[, [40-50[, [50-100[,
[100-180[, [180-236[, [236-269[, [269-350[, [350-450[, [450-516[,
[516-549[, [549-650[, [650-1000[, [1000-1380[, [1380-1381[,
[1381-1432[, [1432-1473[, [1473-inf[.

The inter-packet delays are distributed according to bins ranging from 0 to 64 second-

delays. It is currently used the following bin delimiters for inter-packet delay (in

seconds):

k. [0-0.000001[, [0.000001-0.0001[, [0.0001-0.001[, [0.001-0.01[,
[0.01-0.1[, [0.1-1.0[, [1.0-10.0[, [10.0-64.0[, [64.0-inf[.

29

Below tables display a conceptual illustration.

Table 3.2. Conceptual illustration of discrete payload distribution

Payload 45% 30% 10% 15%

(bytes) [0 [1 ... [1000 [1380 [1381 ... [1473 [1500, +]

Table 3.3. Conceptual illustration of discrete packet delay distribution

Inter-

packet

delay

45% 30% 10% 15%

(seconds) [0 [10-6 [0.0001 [0.001 [0.01 [1 [10 [64, +]

According to the Table 2.3, 45% of the packets carried no data, and another

45% of the packets were relatively big, not full size packets but big packets.

3.4.2. Conversations and Transactions

Conversation and transactions are heuristic approaches to the directionality of

the whole connection. Packets are treated as a sequence of positive and negative values

(the sign of each value indicates the direction of the packet) and the idea is to

characterize the changes in sign. Whether they are interactive or machine-driven,

applications often exhibit differences with respect to the transaction and conversation

indicators.

A conversation episode in this work contains consecutive (back to back) packets

in one direction followed by consecutive packets in the other direction. There is also a

sustained conversation definition that is the episode containing consecutive packets in

one direction, followed by consecutive packets in the opposite, and followed again by

consecutive packets in the first direction (e.g. A->B, B->A, A->B).

30

According to the De Montigny and Leboeuf's work ALPHA, BETA and GAMMA

values of a conversation is calculated as follows (De Montigny and Leboeuf 2005). Let

M be the total number of non-empty packets in a flow, let C be the number of non-

empty packets associated with a conversation, and ζ be number of non-empty packets

associated with a sustained conversation. It is defined ALPHAconversation as the number of

non-empty packets that belong to a conversation over the total number of non-empty

packets:

ALPHAconversation =
C
M

(3.1)

It is defined BETAconversation as the number of non-empty packets that belong to a

sustained conversation over the total of non-empty packets that belong to a

conversation:

BETAconversation =
ζ
C

(3.2)

Let O be the number of non-empty packets associated with a conversation and

transmitted by the Originator, it is defined an indicator of symmetry in a conversational

flow, GAMMAconversation as the proportion of conversation packets that are transmitted by

the originator:

GAMMAconversation =
O
C

(3.3)

A similar approach is applied for the transactions. Transactions include “ping-

pong” exchanges, where one packet is followed by a packet coming in the opposite

direction. It is quantified this phenomenon by comparing the number of changes in sign

effectively seen, with the maximum number of times a change of sign can occur, given

the number of positive and negative values in that sequence.

More precisely, let ρ and η be respectively the number of positive and negative

values, the maximum number of time a change in sign can occur, denoted by τ, is

31

τ =
2p−1 if p=n

2min p , n otherwise
(3.4)

and let δ be the number of sign changes observed, then

ALPHAtransaction =
δ
τ

(3.5)

is an indicator of how often “ping pong” exchanges are seen in a flow. τ is equal

to 0 when the flow is unidirectional and thus ALPHAtransaction may not be defined for all

flows. ALPHAtransaction is initialized to zero by default. When ALPHAtransaction is non-zero,

a value close to 1 is a strong indicator of multiple transaction exchanges.

3.4.3. Encryption Indicators

Encryption indicators are calculated by comparing the greatest common divisor

(GCD) values of payloads.

The algorithm follows an iterative process. At each step, the array of input is

broken into two parts for pair wise GCD calculation, and the array to be examined in the

following step will contain the GCD values that are greater than 1.

The process is interrupted if, at a given step, the count of GCDs that are greater

than 1 is smaller than the count of GCDs equalled to 1. The calculation is done for each

direction separately, the output gives two values:

ALPHAcipherblock gives the estimated popular GCD among payload lengths of

packets. BETAcipherblock gives the ratio of non-empty packet-payloads that are divisible by

ALPHAcipherblock.

If the GCD calculation process got interrupted due to too many pair-wise GCD

equal to one, then the value for ALPHAcipherblock is equal to 1 and the value for

BETAcipherblock is set to 0.

The reason of evaluating the GCD values for encryption related packets is that

32

the lengths of encrypted packets typically have a greatest common divisor different than

one (Zhang and Paxson 2000).

3.4.4. Command Line and Keystroke Indicators

Command-line transmissions are larger in size and are separated by longer

delays than keystrokes. The distinction between command-line and keystroke

interactivity helps refine the classification process a step further. FTP command for

instance can be distinguished from interactive SSH and TELNET sessions; and it is

foreseen that chat sessions will be classed differently depending on the “flavour” (De

Montigny and Leboeuf 2005).

For keystroke interactive indicators, a small packet is defined as a non-empty

packet when carrying 60 bytes or less. The inter-arrival delays between keystrokes are

taken as between 25ms (dmin) and 3000ms (dmax).

On the other hand, for command line indicators, a small packet is defined as a

non-empty packet when carrying 200 bytes or less. The inter-arrival delays between

keystrokes are taken as between 250ms and 30000ms.

For each direction of the flow, let Ω be the set of delays between consecutive

small packets and Δ = { ω Ω, such that dmin≤ω≤dmax }, the indicator of interactive∈

inter-packet departure is defined as:

ALPHAinteractive =
number of elements∈Δ
number of elements∈Ω

(3.6)

Let S be the number of small packets, let N be the number of non-empty

packets, let G be the number of gaps between small packets, the indicator of

interactivity based on the proportion of small packets is:

BETAinteractive =
S
N

(3.7)

33

Here, a gap occurs whenever two small non-empty packets are separated by at

least one packet (big or empty). The indicator of consecutive small packets is

GAMMAinteractive =
S−G−1

N
(3.8)

The fourth indicator gives the proportion of small non-empty packets with

respect to the total number of small packets (including empty packets). The goal with

this heuristic is to penalize machine-driven applications that transmit a lot of small

packets, which may however be dominated by empty control segments (i.e. TCP ACK

packets without piggyback data). Thus let E be the number of empty packets, it is

defined:

DELTAinteractive =
S

SE
(3.9)

Lastly, it is defined a fifth indicator measuring irregularity in the transmission

rate of consecutive small packets. Let µ and σ be respectively the mean and standard

deviation of the delays between consecutive small packets; let Λ= { ω Ω, such that ω∈

 [µ-σ,µ+σ] }, then the indicator of irregularity between inter-arrival times of∈

consecutive small packets is:

EPSILONinteractive = 1−
number of elements∈Λ
number of elements∈Ω

(3.10)

3.4.5. File Transfer Indicators

From the interactive indicators, it is derived file transfer indicators. In general, a

file transfer flow contains episodes of consecutive big packets transmitted within a short

delay. A big packet is defined as carrying 225 or more bytes. A short inter-packet delay

is 50ms or less.

For each direction of the flow, let B be the number of big packets, let N be the

34

number of non-empty packets, let G' be the number of gaps between big packets.

Furthermore, let Ω' be the set of delays between consecutive big packets and Δ' = { ω ∈

Ω', such that ω [0, dmax] }, then the indicator of inter-packet departure during a file∈

transfer is:

ALPHAfile =
number of elements∈Δ'
number of elements∈Ω '

(3.11)

 The indicator of file transfer based on the proportion of big packets is defined

as:

BETAfile =
B
N

(3.12)

and lastly, the indicator of consecutive big packets is

GAMMAfile =
B−G '−1

N
(3.13)

3.5. Deriving Anomaly

According to the Lakhina, Crovella and Diot's work (Lakhina, Crovella and,

Crovella 2004), number of bytes, number of packets and number of IP flow values for a

flow traffic can be used to identify anomalies on the network traffic. It is required the

evaluation of multivariate time series of origin-destination flow traffic defined as # of

bytes, # of packets and # of IP flows. By using the subspace method (Lakhina, Crovella,

and Dio 2004) it is showed that each of these traffic types reveals a different (sometimes

overlapping) class of anomalies and so all three types together are important for

anomaly detection.

The subspace method works by examining the time series of traffic in all OD

flows simultaneously. It then separates this multivariate timer series into normal and

anomalous attributes. Normal traffic behavior is determined directly from the data, as

35

the temporal patterns that are most common to the ensemble of OD flows. This

extraction of common trends is achieved by Principal Component Analysis (Lakhina,

Crovella and, Crovella 2004).

To produce the multivariate time series of a flow traffic, splitting the record is

required. Rasplit, Argus client, is used for splitting the record into sub flows depending

on a time interval. The time interval is chosen depending on the flow duration. Either 1

minute or 5 minute time interval values are used.

By traversing on the sub flow files, # of bytes, # of packets or # of IP flow

values are calculated depending on the origin-destination pairs. A file with comma

separated values (CSV) is created. The CSV file is used for creating matrix for PCA

evaluation. After the PCA value is calculated, transformed data of the PCA result is

graphed. It is observed that peeks at the graphs represents the anomalies at the network

traffic.

36

CHAPTER 4

IMPLEMENTATION

This section includes the implementation details of the approach preferred in this

thesis. Starting from the programming language preferred from development, class

structure details and the implementation steps are explained. Python is chosen as the

development programming language. A class hierarchy is constructed and implemented

by using Python. The details of the class hierarchy is given as UML diagrams. By

following the class structure and using the Python language, steps that should be

followed for running the software is defined.

4.1. Programming Language

This thesis can be divided into two level of survey. The first level is the traffic

characterization, which requires pcap file traversing to get the packet level information,

operation on MySQL database tables and mathematical calculations. Second level is the

PCA part which is done mainly by Octave. It is used a CSV file for Octave's princomp

function as an input. The CSV file creation requires flow splitting and traversing on the

readable flow files to calculate # of values and save them to database.

It is chosen Python as the programming language for development. Python is an

interpreted, object-oriented, high-level programming language with dynamic semantics.

Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for rapid application development, as well as for use as

a scripting or glue language to connect existing components together. Python's simple,

easy to learn syntax emphasizes readability and therefore reduces the cost of program

37

maintenance. Python supports modules and packages, which encourages program

modularity and code reuse. The Python interpreter and the extensive standard library are

available in source or binary form without charge for all major platforms, and can be

freely distributed (Python 2009). Python is also actively used by penetration testers,

vulnerability researchers and information security practitioners.

Python's Scapy (Scapy 2009) module is used to decode packets from pcap files

and analyze them according to their header information. Scapy is a powerful interactive

packet manipulation program. It is able to forge or decode packets of a wide number of

protocols, send them on the wire, capture them, match requests and replies, and much

more. Scapy is mainly used for traversing through the prerecorded network traffic via

tcpdump and get IP level information from packets for saving them to the database.

By using Scapy it is possible to get the source IP address, source port number,

destination IP address, destination port number, packet size, payload ingredients and

payload size, capture time and protocol information from each packet. Capture time is

valuable for calculating jitter. Payload size is important for detecting the non-empty

packets. The rest of the information that is 5-tuple key also, is used to understand what

flows they belong to.

4.2. Class Structure

4.2.1. Flow Object

38

Figure 4.1. AbstractFlow Diagram

Every flow is defined as an object. As it can be seen from Figure 4.1 (Gerçek

2009), it is defined two types of flows. One type is the directional flow. It is defined an

UnidirectionalFlow class to create directional flows. A directional flow may be either

from source IP number (Originator) to destination IP number (Responder) or vice versa.

WholeFlow class is inherited from an AbstractFlow class. AbstractFlow is a general

class that has abstract definitions to create flow indicator objects.

Flows are created by using a generator class.

It is required to calculate attributes related with a whole flow. Attribute related

details are given at Figure 4.2 (Gerçek 2009). By using ArgusFileReader class, every

line of the produced flow text record is traversed and whole flow attributes are

calculated.

Except from the attributes mentioned inside the WholeFlowGenerator, additional

directional and whole flow indicators are required to be calculated. To achieve indicator

calculation, generators are used. Figure 4.3 presents the relation between indicators.

39

Figure 4.2. FlowGenerator and WholeFlowGenerator Class Relations

At Figure 4.3 (Gerçek 2009), IndicatorFactory includes the method calls for

each flow object handled.

The mathematical calculations are done inside the each of the indicators

40

Figure 4.4. Indicator Class Diagram (Gerçek 2009)

Figure 4.3. Factory Class Diagram

mentioned. Each of them are presented at Figure 4.4 (Gerçek 2009), above. The aim of

calculating attribute values is to decide about the protocol. By looking at the results, the

flow examined is tried to be categorized as an application level protocol. ProtocolTester

includes the match cases that should be taken into consideration for each flow.

As a result of attribute calculation, a match result is calculated for each flow

examined. The result includes the best 3 match. The relation between match result

calculation and recognizer is mentioned at Figure 4.5 (Gerçek 2009), as above.

For a general view, lets check the Figure 4.6. For each of the flow generated a

41

Figure 4.5. Recognizer Class Diagram

Figure 4.6. Threshold Calculation Sequence Diagram

testFlow class is used to trigger the match results. By looking at the best match results a

threshold for each of the protocol is decided.

Any flow that does not have a best result above the threshold is save as an

undefined flow for further evaluation. The PCA process is explained as follows:

Packages related with the undefined flows are saved and splitted for PCA

analysis. The splitted pcap files are traversed and saved to a database table. After this

process the table is used to produce a CSV file for PCA graph operation.

4.3. Software Structure

The developed software takes a pcap record as input. After the following steps,

the result is a graph which may include peeks. The whole is not fully automatized.

1. pcap file is traversed and saved to the database : This process is the

requirement part of all the processes. Depending on the captured packet size

time varies.

2. Human readable flow information is saved into the text file : This process

42

Figure 4.7. PCA Sequence Diagram

is done via using Argus and racluster commands.

3. UndefinedTest.py is run : The name of the produced flow text file is

changed before running, so the file is used for per flow attribute calculation.

Each line of the text file includes one flow record. For each flow record,

attribute values are calculated and a match result is returned. A typical match

result include the best three matches:

l. [(0.65, 'FTPCommand'),(0.80, 'Telnet'),(1.0, 'SSH')]

By looking at the threshold values and the highest match percentage, the flow is

categorized. If it is not possible to categorize the flow it is save as undefined for PCA

process. What is saved is mainly the key values of the flow. Below table gives the

details:

Table 4.1. Table structure for table UndefinedFlowTbl

Field Type Null Default

orderno bigint(20) Yes NULL

srcip varchar(20) Yes NULL

dstip varchar(20) Yes NULL

dstport int(11) Yes NULL

sport int(11) Yes NULL

proto varchar(10) Yes NULL

begintime varchar(60) Yes NULL

4. A new pcap file is created : After the undefined flow detection is finished,

packages that belong to the undefined flows should be separated and saved as a

new undefined pcap file. For this process a Perl script called pcap-util

(Boddington 2009) is used. Pcap-util enables libpcap (Libpcap 2009) filter

language usage, that is prerecorded data can be filtered according host, port,

time information or some other parameters. It is used the IP address filtering as

follows:

m. ./pcap-util filter infile.dump outfile.dump "host 192.168.1.118 or host
192.168.1.188”

43

host parameter is used to define source and destination IP addresses, so above

command finds and extracts the packets related with the above IP addresses and saves

them as a outfile.dump pcap file.

5. outfile.dump file is splitted into time series : The pcap file is first

converted to a flow data and then rasplit is called to split the file into sub flows:

n. rasplit -r outfile.dump.pcap.arg3 -M time 1m -w argus-%d.%m.%Y-%H:
%M:%S – ip

Above command splits the flow file into 1 minute sub flows. Each sub flow is

converted to a readable text file for being processed.

6. traverseAndSave.py module is used : This module is walk through the

directory that contains sub flow text files and saves the origin-destination related

of bytes and # of packet values to the database table. PCAProcess.py is then

used to create a CSV file for PCA process.

7. Octave is run : By using the CSV file, a matrix is created first.

o. x=dlmread ("graph.csv",",");

The created X matrix is used for PCA calculation:

p. [a,b,c,d]=princomp(x);

b value calculated at the (36) above includes the transformed data. It is used for

plotting. By using the plot function, anomaly graph is produced.

44

CHAPTER 5

TEST RESULTS

This chapter is dedicated for the test results that are processed to calculate

threshold values for each application level protocol. Calculating threshold results are an

important step for anomaly detection. By looking at the threshold values, undefined

traffic is decided. This chapter also includes PCA results. PCA is first tested on

prerecorded data, then applied on manually produced attacks.

5.1. PCA Tests

5.1.1. Tests with Clean Traffic

PCA process is first tested on the clean traffic. 1999 DARPA Intrusion Detection

Evaluation Data Set's week1 day1 and week 5 day 2 recorded traffic is used. It is

known that week 1 has a clean traffic though week 5 has labeled attacks. So the

produced graphs can be used for comparison and understanding the peek concept.

Week 1 day 1 record is splitted into 5 minutes sub flows and throughout these

sub flows, origin-destination pair of # of packages values are calculated and graphed by

using Octave's princomp function. The resulted graph is as follows:

45

As it can be seen from Figure 5.1, there is no sudden increase at the graph levels.

The same process is done for the week 5 day 2 record and the below graph is produced.

When Figure 5.1 and Figure 5.2 is compared, it can be seen that the later one has

46

Figure 5.1. PCA Analysis of Week 1 Day 1 Record

Figure 5.2. PCA Analysis of Week 5 Day 2 Record

sudden increases at the y levels. It is mentioned that these peeks correspond to

anomalies at the network traffic.

5.1.2. Tests with Manual Attacks

By using ettercap DOS attack plugin, manually produced DOS attack is

produced. At the target machine, a regular Internet traffic is produced, like web surfing,

MSN Chat and file downloading. During these traffics and attack, the traffic is saved

and analyzed. Below is the information related with collected traffic:

q. File name: ettercap-dos.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 5495141
File size: 415279995 bytes
Data size: 332851811 bytes
Capture duration: 307.992800 seconds
Start time: Mon May 4 15:19:30 2009
End time: Mon May 4 15:24:38 2009
Data rate: 1080712.96 bytes/s
Data rate: 8645703.69 bits/s
Average packet size: 60.57 bytes

After the traffic characterization, undefined flows are detected and by using the

pcap-util, a new pcap file is created. When the PCA is processed over the new pcap file

the following graph is produced.

47

It can be observed from Figure 5.3 that between the time intervals 15:24 and

15:28, there is an anomaly at the network traffic. When the flows are checked and the

packets belong to these flows are saved as another pcap file, the new pcap file is used

for tcpreplay program. By using the tcpreplay and Snort, the suspicious traffic is

rechecked. Tcpreplay enables reproducing the pcap data through an Ethernet interface.

Below is the Snort result that is taken from the Snort BASE interface.

The same test is done for a scan attack. Nmap is used for scanning the target as

follows:

r. nmap -P0 -sS -p0-65535 -e eth0 192.168.1.188

When the sniffed traffic is analyzed as above, the resulted graph is below:

48

Figure 5.3. Ettercap DOS Attack PCA Analysis

Figure 5.4. Snort Result of Undefined Traffic, DOS Attack

It can be seen from Figure 5.5 that, it is used # of IP flows for the origin-

destination pairs to gather scan results.

5.2. Threshold Tests

It is mentioned that threshold values are necessary to decide undefined flows.

Below are the tested values and the duration of the calculation. The tests are run over

100 flow records. Every test is done for a dedicated traffic, that is FTPCommand is

tested with the traffic that includes only flows with port number 21.

49

Figure 5.5. Nmap Syn Scan PCA Analysis

Figure 5.6. FTPCommand Test Results

FTPCommand NONE

0

20

40

60

80

100

120

FTPCommand

Protocol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

0.71 UNDEFINED 0.86

0

20

40

60

80

100

120

FTPCommand Percentage

Percentage

N
u

m
.

o
f

F
T

P
C

o
m

m
a

n
d

 F
lo

w
s

For 100 FTPCommand related flows, every of them is defined as FTPCommand.

2 of the defined FTPCommand flows are matched with 71%, and the rest 98 flows are

matched with 98%. Total duration time of the calculation is 79 minutes.

For 100 FTPData related flows, every of them is defined as FTPCommand. 43

of the defined FTPData flows are matched with 100%, and the rest 57 flows are

matched with 80%. Total duration time of the calculation is 72 minutes.

50

Figure 5.7. FTPData Test Results

FTPData NONE

0

20

40

60

80

100

120

FTPData

Protocol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

1 UNDEFINED 0.8

0

10

20

30

40

50

60

FTPData Percentage

Percentage
N

u
m

.
o

f
F

T
P

D
a

ta
 F

lo
w

s

Figure 5.8. HTTP Test Results

HTTP HTTPS

0

10

20

30

40

50

60

70

HTTP

Protocol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

0.88 0.75 UNDEFINED 0.63

0

5

10

15

20

25

30

35

40

HTTP Percentage

Percentage

N
u

m
.

o
f

H
T

T
P

 F
lo

w
s

For 100 HTTP related flows, 65 of them is defined as HTTP. 35 of them is

defined as HTTPS, 35 of the defined HTTP flows are matched with 88%, another 35 of

them are matched with 75%, one of them is not matched and the rest 29 flows are

matched with 63%. Total duration time of the calculation is 47 minutes.

For 28 POP related flows, except from one of them every of them is defined as

POP. All the defined POP traffic is matched with 86%. Total duration time of the

calculation is 22 minutes.

51

Figure 5.9. POP Test Results

POP NONE

0

5

10

15

20

25

30
POP

Protocol Name

N
u

m
.

of
 P

ro
to

co
ls

 D
e

fi
ne

d

UNDEFINED 0.86

0

5

10

15

20

25

30

POP Percentage

Percentage

N
um

.
of

 P
O

P
 F

lo
w

s

Figure 5.10. SMTP Test Results

SMTP IMAP

0

10

20

30

40

50

60

70

80

90

100

SMTP

Protocol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

1 0.78 UNDEFINED 0.89

0

5

10

15

20

25

30

35

40

45

SMTP Precentage

Percentage

N
um

. o
f

Pa
ck

e
ts

For 100 SMTP related flows, 90 of them is defined as SMTP. 10 of them is

defined as IMAP, 38 of the defined POP flows are matched with 100%, another 22 of

them are matched with 78%, and the rest 40 flows are matched with 89%. Total

duration time of the calculation is 90 minutes.

For 19 SSH related flows, 13 of them is defined as SSH. 6 of them is defined as

Telnet, 13 of the defined SSH flows are matched with 100%, another 1 of them are

matched with 60%, and the rest 5 flows are matched with 80%. Total duration time of

the calculation is 25 minutes.

52

Figure 5.11. SSH Test Results

SSH Telnet

0

2

4

6

8

10

12

14

SSH

Protocol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

1 0.6 UNDEFINED 0.8

0

2

4

6

8

10

12

14
SSH Percentage

Percentage

N
u

m
.

o
f

P
a

c
ke

ts

Figure 5.12. Telnet Test Results

POP Telnet

0
10
20
30
40
50
60
70
80
90

100

Telnet

Protoc ol Name

N
u

m
.

o
f

P
ro

to
c

o
ls

 D
e

fi
n

e
d

0.5 1 0.83 UNDEFINED 0.67

0
5

10
15
20
25
30
35
40
45
50

Telnet Percentage

Percentage

N
u

m
.

o
f

P
a

c
ke

ts

For 100 Telnet related flows, 8 of them is defined as POP. 92 of them is defined

as Telnet, 4 of the defined Telnet flows are matched with 50%, another 25 of them are

matched with 25%, 45 of them are defined with 83% and the rest 26 flows are matched

with 67%. Total duration time of the calculation is 92 minutes.

5.3. BitTorrent Traffic Analysis

Flow attributes for each flow are calculated depending the predefined criteria.

The criteria defined at the De Montigny and Leboeuf (De Montigny and Leboeuf 2005)

don't include BitTorrent traffic restrictions. In this thesis it is aimed to calculate the

required criteria to characterize BitTorrent traffic.

5.3.1. BitTorrent Protocol

The BitTorrent Protocol (BTP) is a protocol for collaborative file distribution

across the Internet and has been in place on the Internet since 2002. It is best classified

as a peer-to-peer (P2P) protocol, although it also contains highly centralized elements.

BTP has already been implemented many times for different platforms, and could well

be said to be a mature protocol (Fonseca and Reza 2005).

The protocol works when a file provider initially makes his/her file (or group of

files) available to the network. This is called a seed and allows others, named peers, to

connect and download the file. Each peer that downloads a part of the data makes it

available to other peers to download. After the file is successfully downloaded by a

peer, many continue to make the data available, becoming additional seeds. This

distributed nature of BitTorrent leads to a viral spreading of a file throughout peers. As

more peers join the swarm, the likelihood of a successful download increases. Relative

to standard Internet hosting, this provides a significant reduction in the original

53

distributor's hardware and bandwidth resource costs. It also provides redundancy against

system problems and reduces dependence on the original distributor (BitTorrent 2009).

5.3.2. Testbed for BitTorrent Characterization

To characterize torrent traffic, a clean traffic is required to be analyzed. To get a

clean BitTorrent traffic, torrent traffic is manually collected. To achieve this goal, all the

network services at a host on a network is closed and by using a torrent client tool

(Ktorrent (Ktorrent 2009) is used on Kubuntu Linux system), all the traffic is saved in

100MB parts by using Tcpdump on the same network interface.

The first 100MB part is used to decide the traffic protocol limits. First the pcap

file is traversed and saved on MySQL database. After converted to Argus flow record ,

protocol tester modules are run and for a torrent traffic, the below similarities are

gathered:

From the Figure 5.6 it can be seen that BitTorrent traffic is more like a FTPData,

Telnet and FTPCommand. Indeed BTP consists of two logically distinct protocols,

namely the Tracker HTTP Protocol (THP), and the Peer Wire Protocol (PWP). THP

defines a method for contacting a tracker for the purposes of joining a swarm, reporting

progress etc. PWP defines a mechanism for communication between peers, and is thus

54

Figure 5.13. Protocol Similarities Defined for Torrent Traffic

ChatMSN
FTPCommand

FTPData
HTTPS

IMAP
POP

Rlogin
SMTP

SSH
Telnet

0

50

100

150

200

250

300

350

400

Protocol Name

F
lo

w
 C

ou
nt

responsible for carrying out the actual download and upload of the torrent (Fonseca and

Reza 2005).

By observing the HTTP, FTPData, FTPCommand and Telnet protocol's

recognizer criteria, characteristics are tried to be defined for BitTorrent traffic. 1000

BitTorrent flows are used and their attribute values are saved to database.

5.3.3. Criteria for BitTorrent

The first handled attribute is payload distribution. By using the packet based

queries on the MySQL table, it is seen that Originator payload distribution has a

meaningful characteristics.

According to Figure 5.7, there is no flow that has a payload distribution over 50

bytes. So for torrent traffic, source flows will have payload distribution values less than

50 bytes.

Second handled criteria is DatabyteRatioOrigToResp value of the whole flow

attribute.

55

Figure 5.14. Payload Distribution Graph for Originator

[0-1)
[2-3)

[5-10)
[20-40)

[50-100)
[180-236)

[269-350)
[450-516)

[549-650)
[1000-1380)

[1381-1432)
[1473-inf)

0

20

40

60

80

100

120

Byte Interval

N
u

m
. o

f F
lo

w
s

It can be seen from the Figure 5.8 that ratio of the total number of data bytes sent

by originator over total number of data bytes sent by responder is always less than 4.

Because torrent traffic is a data transaction also, handling DataByteCount and

ByteCount values will be meaningfully. Figure 5.9 and Figure 5.10 shows the

DataByteCount value over ByteCaount value for each directional flow.

56

Figure 5.15. DatabyteRatioOrigToResp Distribution Graph

-1 0 1 2 3 4 5 6 7 8 10 13 14 18 23 27 28 29 32 35 36 42 51 57 62 66 68 69 81285

0
50

100
150
200
250
300
350
400
450
500

Databy teRatioOrigtoResp Interv als

N
u

m
.

of
 F

lo
w

s

Figure 5.16. DataByteCount/ByteCount Graph for Responder

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09

0.1
0.11

0.12
0.13

0.14
0.15

0.16
0.17

0.18
0.2

0.21
0.23

0.24
0.25

0.27
0.32

0.37
0.4

0

50

100

150

200

250

300

350

Responder.DataByteCount / Responder.ByteCount

N
um

. o
f

Fl
ow

s

From Figure 5.9 it can be seen that (Responder.DataByteCount /

Responder.ByteCount) value is less than 0.40 though (Originator.DataByteCount /

Originator.ByteCount) value at the Figure 5.10 is less than 0.27.

Another attribute value that is taken into consideration is

firstNonEmptyPacketSize. According to the Figure 5.11 the value should be between 23

and 42 bytes.

In addition to the above attribute values some other values are also taken into

consideration. FirstFewNonEmptyPacketDirections value is observed and seen that it

57

Figure 5.17. DataByteCount/ByteCount Graph for Originator

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.26

0

50

100

150

200

250

300

Figure 5.18. firstNonEmptyPacketSize of the Whole Flow

23 30 42 54

0

100

200

300

400

500

600

700

800

900

firstNonEmptyPacketSize

N
um

. o
f F

lo
w

s

has two characteristics. First there direction of the flows packet is either (1,0,0) that is

all three packets are from originator to destination, though the second characteristic is

(1,-1,1) that is the first and the third packet is from originator to responder and the

second one from responder to originator. The reason of the two different characteristics

is that BTP has two different protocol work inside. One is the THP, that will allow the

client to contact other peers must be periodically requested from the tracker. The other

one is the PWP that is responsible from download.

Transaction value is also observed and it is seen that ALPHAtransaction is either 0 or

1. File transfer indicator values are also observed and seen that ALPHA, BETA,

GAMMA values for both Originator and Responder are equal to zero. By using the

above defined criteria, torrent traffic is retested for characterization. The result gathered

is as follows:

According to the above figures, 93 flows are detected as BitTorrent protocol,

though the rest 7 flows are detected as FTPData. For the recognized peer-to-peer traffic,

21 of them are recognized with 89% percentage, 5 of them are recognized with 78% and

1 of them recognized with 74%.

To be sure from the defined criteria, FTPData, Telnet and HTTP traffic is

retested.

58

Figure 5.19. P2P Test with FTPData

P2P FTPData

0

10

20

30

40

50

60

70

80

90

100

Protocol Name

N
u

m
.

o
f

F
lo

w
s

0.89 0.78 UNDEFINED 1

0

10

20

30

40

50

60

70

80

Percentage

N
u

m
.

o
f

F
lo

w
s

According to the above graphs, 100 flows related with FTPData is examined. 99

of them are still recognized as FTPData though only 1 of them is determined to be false.

For the recognized FTPData, 57 of them are recognized with 80% though the rest 43 of

them are recognized with 100%.

For the Telnet traffic, the results are as follows:

59

Figure 5.20. FTPData Test with P2P

FTPData P2P

0

20

40

60

80

100

120

Protocol Name

N
u

m
.

o
f

F
lo

w
s

1 UNDEFINED 0.8

0

10

20

30

40

50

60

Percentage

N
u

m
.

o
f

F
lo

w
s

Figure 5.21. Telnet Test with P2P

POP Telnet P2P

0

10

20

30

40

50

60

70

80

Protocol Name

N
u

m
.

o
f

F
lo

w
s

0.5 1 0.83 UNDEFINED 0.67

0

0.2

0.4

0.6

0.8

1

1.2

Percentage

N
u

m
.

o
f

F
lo

w
s

According to the Telnet test results, 100 flows related with Telnet is examined.

73 of them are still recognized as Telnet, thogh 27 of them is determined as false. For

the recognized Telnet flows, 4 of them are recognized with 50%, 43 of them are

recognized with 83%, 26 of them are recognized with 67% and the rest 25 of them are

recognized with 100%.

The HTTP results are more meaningful that the defined criteria has no effect on

HTTP results. The results are as follows.

60

Figure 5.22. HTTP Test with P2P

HTTP HTTPS

0

10

20

30

40

50

60

70

80

90

Protocol Name

N
u

m
.

o
f

F
lo

w
s

0.63 1 UNDEFINED 0.88 0.75

0

5

10

15

20

25

30

35

40

Percentage

N
u

m
.

o
f

F
lo

w

CHAPTER 6

CONCLUSION

 In this thesis it is represented that network traffic can be characterized by using

flow characteristics. Flow characteristics are evaluated with a combined method that

some metrics are calculated using packet inspection and some requires flow based

approach. It is seen that by using the attribute values it is possible to detect many

application level protocols. Although calculating the attribute values for each flow takes

long time in some cases, they give trustful information that is independent from port

numbers. The attributes are easy to calculate that there is no need to follow state

information for flow packets, instead easy packet and flow metrics are used to calculate

attribute values.

Attribute detection of this thesis is working an autonomous way so it can be used

to characterize any application level protocol which is not mentioned at the test results.

So as a contribution to the related work (De Montigny and Leboeuf 2005), BitTorrent

traffic characteristics are defined. The derived characteristics depend on determination

of attributes by observing similarities and patterns. Though, the anomaly detection part

is not being handled by a single program, because of the usage of different tools. By

using the principle component analysis, it is represented that splitting the undefined

traffic eases the anomaly detection. After calculating the number of bytes, packets of IP

flow values, applying the PCA causes a graph that has peeks inside which represents the

anomalies at the traffic.

Although it is possible to detect byte or packet based anomalies, it is hard to

decide what type of anomaly the peek belongs to. This requires an additional inspection

of the packets that belong to the suspicious traffic either manually or by using an IDS

like snort.

Current solutions to the network anomaly detection depends on either event

61

based or signature based approaches. Both of them require to define the abnormal

behavior or traffic either as a signature or as an event expression. This thesis

concentrates on the defining the normal traffic instead of suspicious traffic. Suspicious

traffic is separated from the whole observed traffic during the characterization period.

The rest undefined traffic is marked as for further evaluation. After applying PCA on the

undefined traffic, anomalies occurred in a time intervals are detected.

This thesis applies both characterization and anomaly detection mechanism to

the network traffic, so it presents a different and applicable approach to the current

anomaly detection problem.

This thesis combines packet based and flow based evaluation and represents the

method for anomaly detection. Calculating flow attributes is applied for some

application level protocols but some are still missing. As a further work additional

application level protocols should be taken into consideration, like peer to peer traffic

except from BitTorrent and audio/video streams.

Another main further aim can be optimizing the software as if it will be able to

analyze real time traffic. Current work is only done by using off line records. This will

require to find the bottlenecks of the software where the attribute calculation is taking

much time.

The last contribution to this work will be adding recognizers for the detected

anomalies. This will enable the analyzer see the type of the anomaly detected. So

enhancing this work as a tool that can be used from its graphical user interface which

enable real time traffic anomaly detection will be a remarkable contribution to network

anomaly detection.

62

REFERENCES

Basic Analysis and Security Engine (BASE). http://base.secureideas.net/ (accessed

May 25, 2009).

BitTorrent (protocol) http://en.wikipedia.org/wiki/BitTorrent_(protocol) (accessed May

25, 2009).

Boddington M. 2009. Utility for processing pcap files

http://www.badpenguin.co.uk/main/content/view/46/1/ (accessed May 25, 2009).

CarnegieMellon Software Engineering Institute 2009. SiLK - Documentation.

http://tools.netsa.cert.org/silk/silk_docs.html (accessed May 20, 2009).

Cisco Systems 2009. CISCO IOS Netflow. http://www.cisco.com/web/go/netflow

(accessed May 20, 2009).

Claffy K., Braun H-W., Polyzos G. October 1995. A Parameterizable Methodology for

Internet Traffic Flow Profiling. IEEE JSAC 1481-1494.

Cooperative Association for Internet Data Analysis (CAIDA) 2006. cflowd: Traffic

Flow Analysis Tool. http://www.caida.org/tools/measurement/cflowd/

(accessed May 20, 2009).

De Montigny A. and Leboeuf. December 2005. Flow Attributes For Use In Traffic

Characterization.

Denning D. 1986. An Intrusion-Detection Model. IEEE Symposium on Security and

Privacy.

63

Ettercap. http://ettercap.sourceforge.net/ (accessed May 25, 2009).

Fonseca J., Reza B. 2005 BitTorrent Protocol - BTP/1.0

http://jonas.nitro.dk/bittorrent/bittorrent-rfc.html (accessed May 25, 2009).

Gerçek G. A Flow Based Tool for Network Traffic Characterization. Izmir Institute of

Technology, License Thesis.

Hernandez-Campos, F., Nobel, A.B., Smith, F.D., and Jeffay, K. 2005. Understanding

Patterns of TCP Connection Usage with Statistical Clustering. 13th IEEE

International Symposium. 27(29) 35-44.

Hollmen J. March 1996. Principle component analysis.

http://www.cis.hut.fi/~jhollmen/dippa/node30.html (accessed May 20, 2009).

Karagiannis T., Papagiannaki K. and Faloutsos M. August 2005. BLINC: Multilevel

Traffic Classification in the Dark. ACM SIGCOMM.

Keys K., Moore D., Koga R., Lagache E., Tesch M., and Claffy K. April 2001. The

Architecture of CoralReef: an Internet Traffic Monitoring Software Suite.

PAM2001, A workshop on Passive and Active Measurements.

Ktorrent http://ktorrent.org/ (accessed May 25, 2009).

Lakhina A., Crovella M., and Dio C. 2004. Diagnosing Network-Wide Traffic

Anomalies.

Lakhina A., Crovella M., Crovella M. May 2004. Characterization of Network-Wide

Anomalies in Traffic Flows.

Lawrence Berkeley National Laboratory 2009. Bro Intrusion Detection System – Bro

Overview. http://www.bro-ids.org/ (accessed May 15, 2009).

64

Lee C.S. Jume 2008. Network Flow: Uni-Directional VS Bi-Directional.

http://geek00l.blogspot.com/2008/01/network-flow-uni-directional-vs-bi.html

(accessed May 15, 2009).

Lee C.S. May 2008. Training: Practical Network Flow Analysis

http://geek00l.blogspot.com/2008/05/training-practical-network-flow.html

(accessed May 15, 2009).

Lincoln Labarotary Massachusetts Institute of Technology 2009. 1999 DARPA

Intrusion Detection Evaluation Data Set Overview.

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html

(accessed May 25, 2009).

Luis MG. 2009. TCPDUMP/LIBPCAP public repository. http://www.tcpdump.org/

(accessed May 20, 2009).

Netflow. http://en.wikipedia.org/wiki/Netflow (accessed May 20, 2009).

Nmap - Free Security Scanner for Networ Exploration & Security Audits.

http://nmap.org/ (accessed May 25, 2009).

Network Working Group 1999. Traffic Flow Measurement Architecture. CRC

Technical Note No. CRC-TN-2005-003 http://www.faqs.org/rfcs/rfc2722.html

(accessed May 20, 2009).

Packet (information technology). http://en.wikipedia.org/wiki/Network_packet

(accessed May 20, 2009).

Principle component analysis.

http://en.wikipedia.org/wiki/Principal_component_analysis (accessed May 20,

2009).

65

http://www.faqs.org/rfcs/rfc2722.html

Python Software Foundation 2009. Python Programming Language - Official Web Site.

http://www.python.org/ (accessed May 25, 2009).

QoSient, LLC. 2009. ARGUS - Auditing Network Activity. http://qosient.com/argus/

(accessed May 20, 2009).

Realtime Traffic Flow Measurement Working Group (RTFM) December 1995. http://

www.ietf.org/proceedings/95dec/ops/rtfm.html (accessed May 20, 2009).

Scapy. http://www.secdev.org/projects/scapy/ (accessed May 25, 2009).

Sourcefire May 2009. What is Snort?. http://www.snort.org/ (accessed May 25, 2009).

Turner A. 2009. Tcpreplay. http://tcpreplay.synfin.net/trac/ (accessed May 20, 2009).

Wireshark. http://en.wikipedia.org/wiki/Wireshark (accessed May 20, 2009).

Xu K., Zhang Z., and Bhattacharya S. 2005. Profiling Internet Backbone Traffic:

Behavior Models and Applications. SIGCOMM.

Zhang Y. and Paxson V. August 2000. Detecting Backdoors. USENIX Security

Symposium.

66

APPENDIX A

Table A.1. Attributes measured over the whole flow

Attributes Description Inspection

Method

KEY A 5-tuple indicating the Originator IP address,

the Responder IP address, the IP

Protocol (i.e. TCP or UDP), the source port of

the Originator, and the source port of

the Responder.

Flow Based

BEGIN_TIME Arrival time of the 1st packet as provided by

libpcap.

Flow Based

END_TIME Arrival time of the last packet as provided by

libpcap.

Flow Based

DURATION Completion time of the flow in microseconds. Flow Based

FIRST_NONEMPTY_PACKET_SIZE Payload length of the first non-empty packet. Packet Based

FIRST_FEW_NONEMPTY_PACKET

_DIRECTIONS

An array of 10 discrete values for the

directions (-1 or 1) of the first 10 non-empty

packets.

 1: Originator to Responder,

-1: Responder to Originator

Array is initialized with values equal to 0 in

case fewer than 10 packets contain data.

Packet Based

DATA_BYTE_RATIO_ORIG_TO_RE

SP

Total amount of payload data transmitted by

the Originator over the Total amount of

payload data transmitted by the Responder

(initialized to -1 for flows with no data

transmitted by the Responder).

Flow Based

(cont. on next page)

67

Table A.1. (cont.) Attributes measured over the whole flow

Attributes Description Inspection

Method

INTERARRIVAL_DISTRIBUTION A discrete distribution of inter-packet delays

represented by an array of 9 continuous

binned values. The value in each bin is

between 0 and 1 and represents the relative

proportion of packets that fell into that bin.

Packet Based

Conversational Indicator

ALPHAconversation The number of non-empty packets that belong

to a conversation over the total of nonempty

packets.

Packet Based

BETAconversation The number of non-empty packets that belong

to a sustained conversation over the

total of non-empty packets that belong to a

conversation.

Packet Based

GAMMAconversation The proportion of conversation packets that

are transmitted by the originator.

Packet Based

Transaction Indicator

ALPHAtransaction Indicator of how often “ping pong” exchanges

are seen in a flow.

Packet Based

68

Table A.2. Attributes measured for each direction of the flow

Attributes Description Inspection

Method

INTERARRIVAL_DISTRIBUTION A discrete distribution represented by an array of 9

continuous values. The array contains

the binned values for inter-packet delays in the

considered direction. The value in each bin

is between 0 and 1 and represents the relative

proportion of packets that fell into that bin.

Packet Based

PAYLOAD_DISTRIBUTION A discrete distribution of packet payload length

represented by an array of 23 continuous

values. The array contains the binned values for

payload lengths per packet.

Packet Based

BYTE_COUNT Total amount of byte transferred (including bytes

found in the network and transport headers).

Flow Based

DATA_BYTE_COUNT Total amount of byte transferred as payload. Flow Based

PACKET_COUNT Total number of packets. Flow Based

DATAPACKET_COUNT Total number of non-empty packets. Flow Based

Encryption Indicators

ALPHAchipherblock Estimated popular GCD among the packet payload

lengths

Packet Based

BETAchipherblock Ratio of non-empty packet-payload lengths that are

divisible by ALPHAcipherblock

Packet Based

Keystroke Interactive Indicator

ALPHAkey_interactive Indicator of interactive inter-packet departure (for

keystroke packets)

Packet Based

BETAkey_interactive Indicator of interactivity based on the proportion of

small packets

Packet Based

GAMMAkey_interactive Indicator of consecutive small packet Packet Based

DELTAkey_interactive Indicator of consecutive small packet Packet Based

EPSILONkey_interactive Indicator of irregularity between inter-arrival of

consecutive small packets

Packet Based

Command-line Interactive Indicator

ALPHAcmd_interactive Indicator of interactive inter-packet departure (for

command-line packets

Packet Based

BETAcmd_interactive Indicator of interactivity based on the proportion of

small packets

Packet Based

GAMMAcmd_interactive Indicator of consecutive small packets Packet Based

DELTAcmd_interactive Indicator of piggyback packing Packet Based

EPSILONcmd_interactive Indicator of irregularity between inter-arrival of

consecutive small packets

Packet Based

(cont. on next page)

69

Table A.2. (cont.) Attributes measured for each direction of the flow

Attributes Description Inspection

Method

File transfer Indicators

ALPHAfile Indicator of inter-packet departure during a file transfer

BETAfile Indicator of file transfer based on the proportion of

big packets

Packet Based

GAMMAfile Indicator of consecutive big packet

ALPHAconstantpacketrate Indicator of how close to the mean the 5-second

packet rate measurements are

Packet Based

70

APPENDIX B

The appendix contains the rule sets currently used in the profiles of the protocols

mentioned at the De Montigny and Leboeuf's9 work. To satisfy a profile, all of the

specified tests must succeed.

1) HTTP web browsing

Test_duration:

Duration > 50000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5 &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[) + Originator.PayloadDistribution([180-650[)>0.8 &&
Originator.PayloadDistribution([1-100[)+Originator.PayloadDistribution([1380-inf[)==0

Test_databyteratio:

0.005<DatabyteRatioOrigToResp<4
Test_requestdatabyte:

Originator.DatabyteCount < 21000
Test_firstnonemptypacketsize:

120 < FirstNonEmptyPacketSize < 1000
i.e. The first non-empty packet of the session, which is a HTTP GET, contains at

least 120 bytes of data (small URL and only essential HTTP fields) and at most 1000

bytes of data (long URL and many HTTP fields).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is

sent by the Responder (server).

Test_noconsecutivesmallpackets:

Originator.γ key_interactive ≤ 0 && Originator.γ cmd_interactive ≤ 0 &&
Responder.γ key_interactive ≤ 0 && Responder.γ cmd_interactive ≤ 0

71

2) IMAP

Test_duration:

 Duration > 100000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5 &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
 i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-180[)>0.8
&&

Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([20-100[)>0.2
Test_databyteratio:

DatabyteRatioOrigToResp<1
i.e. The server sends more data than the client.

Test_firstnonemptypacketsize:

10 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet, which is sent by the mail server, is typically

small (“OK” + optional info such as server version, name, capabilities, etc.).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
 i.e.

1) Responder describes server,

2) (optional) If client remains quiet, server sends an empty response. From this

point, IMAP behaves like a Request/Response protocol driven by the client Requests.

For instance, the following sequence may follow:

3) Originator asks for capability

4) Responder responds with capability

5) Originator sends login & password

6) Responder accepts/rejects login

Test_nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount > 0.5 &&
Responder.datapacketcount/Responder.packetcount > 0.6
i.e At least 50% of the packets sent by the client carry data, and at least 60% of

the packets sent by the mail server carry data.

72

3) POP

Test_duration:

100000 < Duration < 10000000 µsec
i.e. In contrast with IMAP, POP terminates the session once mail messages have

been downloaded, this typically takes less than 5 seconds (say a maximum of 10

seconds to set a loose threshold).

Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5 &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-20[)>0.9 &&
Originator.PayloadDistribution([1-5[)==0 &&
(Responder.PayloadDistribution([0-50[)+Responder.PayloadDistribution([236-269[)+
Responder.PayloadDistribution([516-549[)+Responder.PayloadDistribution([1432-1473[))>0.6

Test_databyteratio:

DatabyteRatioOrigToResp<0.65
i.e. The server sends more data than the client.

Test_firstnonemptypacketsize:

10 < FirstNonEmptyPacketSize < 100
i.e. The first non-empty packet, which is sent by the mail server, is typically

small (“OK” + optional info such as server version, and name). POP server responses

tend perhaps to be smaller than IMAP server responses.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] ||
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
i.e. Similar to IMAP with regards to the initial directional dynamics.

Test_nonemptypacketratio:

Originator.datapacketcount/Originator.packetcount < 0.7 &&
Responder.datapacketcount/Responder.packetcount > 0.5
i.e At most 70% of the packets sent by the client carry data, and at least 50% of

the packets sent by the mail server carry data.

73

4) SMTP

Test_duration:

100000 < Duration < 10000000 µsec
i.e. SMTP terminates the session once mail messages have been transferred, this

typically takes less than 5 seconds (say a maximum of 10 seconds to set a loose

threshold).

Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5 &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
 i.e. The transmission rate is more irregular than regular.

Test_payload:

(Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-100[)+
Originator.PayloadDistribution([236-269[)+ Originator.PayloadDistribution([516-549[)+
Originator.PayloadDistribution([1432-1473[))>0.6 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([5-100[)>0.8 &&
Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-inf[)==0

Test_databyteratio:

DatabyteRatioOrigToResp > 1
i.e. The databyte ratio Originator To Responder is greater than one, typically

MUCH greater than 1.

Test_firstnonemptypacketsize:

20 < FirstNonEmptyPacketSize < 300
i.e. SMTP server responses are typically around a hundred bytes. We chose loose

boundaries (20 and 300 bytes).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1]
i.e.

1) Responder describes server. From this point, SMTP behaves like a

Request/Response protocol driven by the client Requests. For instance, the following

sequence may follow:

2) Originator sends Client Helo

3) Responder sends Server Helo

4) Originator sends AUTH command

5) Responder accepts/rejects

Test_nonemptypacketratio:

74

Originator.datapacketcount/Originator.packetcount > 0.5
i.e At least 50% of the packets sent by the client carry data.

Test_datapacketcount:

4 < Responder.datapacketcount < 15
SMTP servers respond with a somewhat fixed number of non-empty packets.

Test_databytecount:

300 < Responder.databytecount < 900
SMTP servers respond with a somewhat fixed number of data bytes.

5) SSH

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([10-180[) > 0.8 &&
Originator.PayloadDistribution([1-10[)==0% && Responder.PayloadDistribution([1-10[)==0

&&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([10-180[) > 0.5

Test_databyteratio:

DatabyteRatioOrigToResp<1
 i.e. The server sends more data than the client.

Test_cipherblock:

mod(Originator.αcipherblock , 4)==0 && mod(Responder.αcipherblock , 4)==0 &&
Originator. βcipherblock > 0.8 && Responder. βcipherblock > 0.8
 i.e. At least 80% of the non-empty packets must be divisible by 4.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
 i.e. The first non-empty packet is sent by the Responder (server).

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.5

 i.e At least 50% of the packets sent by the server carry data.

75

6) TELNET

Test_payload:

Originator.PayloadDistribution([0-10[) > 0.8 && Originator.PayloadDistribution([350-
inf[)==0
Test_databyteratio:

DatabyteRatioOrigToResp<0.2 && Originator.datapacketcount < Responder.datapacketcount
i.e. The server sends much more data than the client. The server also sends more

non-empty packets.

Test_firstnonemptypacketsize:

FirstNonEmptyPacketSize < 30
 i.e. empirical estimate based on a max of 10 options negotiated.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)= [-1, 1]
i.e. The first non-empty packet is sent by the Responder (server) and the second

is sent by the Originator.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
i.e At least 40% of the packets sent by the server carry data.

Test_transaction:

αtransaction > 0.7

i.e Telnet is mostly transactional.

7) FTPCommand

Test_duration:

Duration > 500000 µsec

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-100[)>0.8 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([350-inf[)==0 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([10-180[)>0.8 &&
(Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-650[)+
Responder.PayloadDistribution([1000-inf[))==0
Note that while the responder also avoids sending big packets, it was not unusual

to see packets containing between 650 and 1000 bytes of payload, in particular when

76

transmitting “code 220” for greetings and warnings.

Test_databyteratio:

0.1 < DatabyteRatioOrigToResp < 0.5 && Originator.datapacketcount <
Responder.datapacketcount

i.e. The server sends more data and non-empty packets than the client.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= -1
i.e. The first non-empty packet is sent by the Responder.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.6
i.e. At least 60% of the ftpcmd packets sent by the server carry data.

Test_transaction:

αtransaction > 0.95
i.e. FTPcommand is mostly (if not completely) transactional.

Test_noconsecutivebigpackets:

Responder.γfile ≤ 0
i.e While IMAP and FTPcommand are similar with respect to the other criteria,

ftp server tend not to transmit consecutive big packets in the FTPcommand connection.

8) FTPDATA

Test_payload:

(Originator.PayloadDistribution([1-5[)==0 && Responder.PayloadDistribution([0-1[)==1)
||
(Responder.PayloadDistribution([1-5[)==0 && Originator.PayloadDistribution([0-1[)==1)

Test_databyteratio:

DatabyteRatioOrigToResp == 0 || DatabyteRatioOrigToResp == -1
i.e. The data is flowing in one direction only. The value is -1 if the transmitting

end is the Originator, and the value is 0 if the Responder is the transmitting end. A value

of -1 can be associated to two cases: the transfer is an ACTIVE get or a PASSIVE put,

depending on whether the Originator is the FTP server or the FTP client respectively.

Similarly, a value of 0 indicates an ACTIVE put or a PASSIVE get, depending on

whether the Originator is the FTP server or the client respectively. The role of the

Originator can be determined by examining related flows marked as FTPcommand.

Test_databytecount:

77

Originator.DatabyteCount + Responder.DatabyteCount > 0
i.e. As a rule of thumb, a FTPdata session involves transferring data... therefore

there should be packets carrying data in at least one of the direction.

Test_packetcount:

0.3 < (Originator.PacketCount/(Originator.PacketCount+Responder.PacketCount))
< 0.7

i.e. The amount of packets transmitted in each direction is similar.

Test_nonemptypacketratio:

(Originator.datapacketcount==0 && Responder.datapacketcount/Responder.packetcount > 0.3) ||
(Responder.datapacketcount==0 && Originator.datapacketcount/Originator.packetcount > 0.3)
This rule typically holds provided there are more than 5 packets in each

direction.

9) HTTPS

Test_duration:

Duration > 50000 µsec
Test_transmissionrate:

Originator.αconstantbitrate <0.5 && Originator.αconstantpacketrate <0.5 &&
Responder.αconstantbitrate <0.5 && Responder.αconstantpacketrate <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:

Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([50-180[) > 0.6 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([1000-inf[)==0 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([20-100[)+
Responder.PayloadDistribution([549-inf[) > 0.6

Test_datapacketcount:

Originator.datapacketcount<10
Test_firstnonemptypacketsize:

 90 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet of direct SSL connections (a SSL Client Helo

packet) is typically small (contains very few cipher specifications).

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is

sent by the Responder (server).

Test_conversation:

78

(Originator.αconversation > 0.25 && Originator.datapacketcount ≥ 5) ||
Originator.datapacketcount < 5

10) RLOGIN

Test_payload:

Originator.PayloadDistribution([0-5[) > 0.8 &&
Originator.PayloadDistribution([350-inf[)==0

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
i.e. The first non-empty packet is sent by the Originator.

Test_nonemptypacketratio:

Responder.datapacketcount/Responder.packetcount > 0.4
i.e. At least 40% of the packets sent by the server carry data.

Test_conversation:

αconversation > 0.01 && βconversation > 0.4 && γconversation > 0.6
i.e. RLOGIN appears a little like a conversation (compared to SSH,TELNET,

and FTPcommand). When conversing, the Originator sends more packets than the

Responder.

11) MSNChat

Test_payload:

Originator.PayloadDistribution([0-1[) + Originator.PayloadDistribution([100-450[) > 0.8
&&

Originator.PayloadDistribution([1-5[)==0 && Responder.PayloadDistribution([1-5[)==0 &&
Responder.PayloadDistribution([0-1[) + Responder.PayloadDistribution([100-450[) > 0.8

Test_databyteratio:

0.1 < DatabyteRatioOrigToResp < 10
i.e. This assumes that one of the user may be at most 10 times chattier than the

other.

Test_firstnonemptypacketdirections:

FirstFewNonEmptyPacketDirections(1)= 1
i.e. The first non-empty packet is sent by the Originator.

Test_interactive:

Originator.αcmd_interactive > 0.3 && Originator. βcmd_interactive > 0.6 &&
Originator.γcmd_interactive > 0.6 &&

79

Originator.δcmd_interactive > 0.3 && Originator.εcmd_interactive > 0.3 &&
Responder.αcmd_interactive > 0.3 && Responder. βcmd_interactive > 0.6 &&
Responder.γcmd_interactive > 0.6 &&
Responder.δcmd_interactive > 0.3 && Responder.εcmd_interactive > 0.3
i.e. Each direction is command-line interactive.

Test_conversation:

αconversation > 0.4 && βconversation > 0.4 && (0.35 < γconversation < 0.65)
i.e the flow must have conversational episodes (αconversation), it must have

sustained conversation episodes (βconversation) and the amount of packets belonging to

a conversation must be similar in each direction (γconversation).

80

	titlepage.pdf
	approvalpage.pdf
	abstract.pdf
	ozet.pdf
	toc1.pdf
	toc2.pdf
	listoffigures1.pdf
	listoffigures2.pdf
	listoftables.pdf
	thesis.pdf

