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Abstract

In this study, the influences of the changes in fin geometry on heat transfer and pressure drop of a plate

fin and tube heat exchanger are investigated, numerically. A computational fluid dynamics (CFD) program

called Fluent is used in the analysis. The segment of one tenth of fin is used in the modeling, due to sym-

metrical condition. The results of heat transfer, static, and total pressure drop values of ten different fins are

tabulated and the normalized values of them are, also, given for the comparison of the models. The distance
between fins is found to have a considerable effect on pressure drop. It is observed that placing the fin tube

at downstream region affects heat transfer positively. Another important result of the study is that increas-

ing ellipticity of the fin tube increases the heat transfer while it, also, results in an important reduction in

pressure drop.
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Nomenclature

a Bigger radius of elliptical tube (mm)
b Smaller radius of elliptical tube (mm)
f Fanning friction factor
L Fin height (mm)
L1 Fin tube center location (mm)
Nu Average Nusselt number
Pr Prandtl number
Q Heat transfer rate (W)
Re Reynolds number
t Fin tube thickness (mm)
t1 Fin thickness (mm)
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1. Introduction

Fin and tube type heat exchangers have many application areas in the field of thermal engineer-
ing. There are various fin patterns such as plate, louver, convex-louver, and wavy. Among these
patterns, plate fin configuration is the most popular fin pattern in heat exchanger applications,
owing to its simplicity, rigidity, and economical impact. Typical tube geometries used in heat
exchangers are circular and elliptical.

Plate fin and tube heat exchangers have been investigated by many researchers due to their
widespread usage. First, Shepherd [1] analyzed plate fin and circular tube heat exchangers. Then,
Schulemberg [2] conducted similar study for plate fin and elliptic tubes. Saboya and Sparrow [3–5]
used the naphthalene sublimation technique in order to obtain local and overall heat and mass
transfer coefficients for different configurations, experimentally. Webb [6] reported that elliptical
tubes have better performance than circular tubes. Determination of local and overall heat trans-
fer coefficients is conducted by Rosman et al. [7]. Rocha et al. [8] analyzed plate fin heat exchang-
ers with circular and elliptical tubes and determined heat transfer coefficients, experimentally.
Kundu and Das [9] determined optimum dimensions of a plate fin and tube heat exchanger for
both rectangular and equilateral triangular array of tubes. Abu Madi et al. [10] examined the ef-
fect of geometrical variations of flat and corrugated fins and the results are correlated in terms of
Colburn and friction factors. Romero-Méndez et al. [11] investigated the effect of the distance be-
tween two fins on the total heat transfer rate and pressure drop for a single row fin and tube heat
exchanger by using flow visualization and numerical computation techniques. Wang and Chi [12]
determined the effect of tube rows, fin pitch, and tube diameter on heat transfer and pressure drop
of a plate fin and tube heat exchanger, experimentally. Wang et al. [13] developed correlations of
the Colburn and friction factors which are valid for plate fin and tube heat exchangers. Saboya
and Saboya [14] determined the average heat transfer coefficient for plate fin and elliptic tube heat
exchangers by using naphthalene sublimation technique. The same sublimation technique is used
for plate fin heat exchangers with circular tubes by Kim and Song [15]. Torikoshi et al. [16] inves-
tigated a plain fin and tube heat exchanger, numerically.



Fig. 1. View of an analyzed plate fin and tube heat exchanger.
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The investigations mentioned above have determined effective factors on heat transfer and pres-
sure drop across a heat exchanger. However, the effect of geometrical parameters, except fin spac-
ing and fin pitch, had not been analyzed numerically, so far. In the present study, a plate fin type
heat exchanger with one row tube configuration is analyzed for different geometrical parameters
by using a numerical computation technique. Namely, the effects of the distance between two fins,
tube center location, fin height, tube thickness, and tube ellipticity on heat transfer and pressure
drop across the heat exchanger are investigated, numerically. Fig. 1 shows a typical plate fin and
tube heat exchanger of a heater used in the analyses.
2. Definition and modeling of the problem

2.1. Model description

A CFD software, Fluent, is used for the numerical analysis. The studied model, which is shown
in Fig. 2, consists of two fins with half fin thickness, fin tube, tubecover, and flue gas between the
fins. Due to the symmetry, only one tenth segment of the fin is modeled. The model is created and
meshed by using Gambit software.

The volume representing the flue gas which is passing through the gap between two fins is ex-
tended in y directions at both inlet and exit sides, since this configuration enables more accurate
boundary condition application. Four hexahedral finite volume elements along the thickness of
the half fin and twenty of the same elements along the distance between two fins are used. As a
result, approximately 4,00,000 hexahedral meshes are generated for each model. Then, the created



Fig. 2. Original fin and the segment used in the modeling.
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model in Gambit software is exported to the Fluent software in which boundary conditions and
material properties are defined.
2.2. Boundary conditions

Mass flow inlet boundary condition is defined for bottom surface, since flue gas enters from
that cross section. The mass flow rate used in all of the models is 1.904 · 10�5 kg/s. Temperature
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value of the flue gas at the inlet is, also, defined for this surface as 1500 K. These values are taken
from the application results. Symmetrical boundary conditions have been applied to the side,
front and back surfaces of the model due to the symmetry. The flue gas is exhausted from the
top side of the heat exchanger. So, the outflow boundary condition is given to this surface. For
the other surfaces, wall boundary conditions have been applied. The convection coefficients be-
tween the water flowing inside the tubes and the inner wall are calculated by using the Gnielinski
correlation shown in Eq. (1) for fully developed turbulent forced convection through a duct [17].
Table

Dimen

Mode

a

b

c

d

e

f

g

h

i

j

Fig. 3. Schematic view of fin dimensions.

1

sions of the models

l type L (mm) L1 (mm) t (mm) t1 (mm) Ellipticity b/a

35 15.5 0.8 0.4 0.7345

35 15.5 0.8 0.3 0.7345

35 18.5 0.8 0.4 0.7345

35 12.5 0.8 0.4 0.7345

38 18.5 0.8 0.4 0.7345

38 15.5 0.8 0.4 0.7345

35 15.5 0.6 0.4 0.7345

35 15.5 1.2 0.4 0.7345

35 18.5 0.8 0.4 0.4064

35 15.1 0.8 0.4 1
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Nu ¼ f =2ð ÞðRe� 1000ÞPr
1þ 12:7 f =2ð Þ

1
2 Pr

2
3 � 1

� � ð1Þ
where, f = (1.58 lnRe � 3.28)�2.
Fig. 4. Temperature distributions on the surface of the fins (each letter corresponds to its model type).



Fig. 4 (continued)
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Free stream temperature is defined as boundary condition for the inner wall of fin tube. The
middle section of fin is taken into consideration and free stream temperature is assumed as
343 K. The material of fin and tube is assumed to be copper. The physical properties of copper
are taken as constant, whereas the flue gas properties are taken as a function of temperature.
The flow is assumed to be steady, incompressible and laminar because of the low Reynolds num-
ber of the flow.
3. Numerical results

The software is run for each model in order to obtain numerical results. Fig. 3 shows the dimen-
sions taken into consideration as geometrical parameters.

Dimensions of the models, which are taken from commercially available products, are given in
Table 1. Distance between the fins is 2.6 mm, except for the Model (b) which has a 2.7 mm gap.

The temperature distributions on the surface of ten different fins are shown in Fig. 4. Flow
velocity distributions at middle plane inside the gap domain are shown in Fig. 5, as well.
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The heat transferred from the flue gas passing through the gap between fins to the water flowing
through the fin tube, the static and total pressure drop values of flue gas across the heat exchanger
are also, obtained from the solution of the models and tabulated in Table 2. Since the transferred
Fig. 5. Flow velocity distributions at middle plane inside the gap domain (each letter corresponds to its model type).



Fig. 5 (continued)

Table 2

Comparison of the models

Model

type

Q (per segment)

(W)

Q (per fin)

(W)

Normalized

Q (%)

Static

pressure

drop (Pa)

Normalized

static

pressure

drop (%)

Total

pressure

drop (Pa)

Normalized

total pressure

drop (%)

a 24.38377 243.8377 100 3.47341 100 3.43578 100

b 23.83018 238.3018 97.729 3.16112 91.009 3.10451 90.358

c 24.51154 245.1154 100.524 3.50543 100.922 3.44119 100.157

d 24.20525 242.0525 99.268 3.46761 99.833 3.44989 100.411

e 24.73531 247.3531 101.442 3.60119 103.679 3.55572 103.491

f 24.58990 245.8990 100.845 3.56374 102.601 3.54253 103.107

g 24.41507 244.1507 100.128 3.47137 99.941 3.43359 99.936

h 24.35337 243.5337 99.875 3.47537 100.056 3.43877 100.087

i 24.65000 246.5000 101.092 3.03291 87.318 2.99262 87.102

j 24.32834 243.2834 99.773 4.00500 115.305 3.93852 114.632
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heat is corresponding to one tenth segment of the fin, actual heat transfer from one fin, also, is
indicated as heat transfer per fin. Normalized heat transfer, static, and total pressure drop values,
given in Table 2, are calculated by taking the values of the Model (a) as 100%. These normalized
values make the comparison of the models easier.
4. Discussion and conclusion

The effects of fin tube center location, fin height, tube thickness, tube ellipticity, and distance
between fins on heat transfer between flue gas and water, and pressure drop of flue gas passing
through the fins are investigated, numerically. On the basis of previous results, the following
discussions and conclusions are made:

• The distance between fins has an important effect on pressure drop. For the models with ellip-
ticity value of 0.7345, Model (b) has the smallest static and total pressure drops. Since flue gas
velocity is decreased, the lower pressure drop value is obtained.

• Placement of the tube in downstream region, as in Model (c), increases the heat transfer
between flue gas and water. The reason of this augmentation can be revealed as horseshoe vor-
tex effect. If the fin tube is placed in the upstream region, heat transfer augmentation caused by
horseshoe vortex could not be noticed at sufficient level. But, if it is placed in the downstream
region which has lower Nusselt number, horseshoe vortex can be noticed strongly. In addition
to this, recirculating vortices formed behind the tube attenuate negative effect on heat transfer
when the fin tube is placed at the downstream region. This effect can be seen for the results of
Models (e) and (f), as well.

• Greater heat transfer and pressure drop values are obtained as the fin height is increased, due to
the increased heat transfer surface area.

• As the tube thickness is decreased, heat transfer is increased whereas pressure drop is decreased.
Because heat resistance between water and flue gas is lower for this case.

• As ellipticity increases in a tube, the heat transferred across a heat exchanger increases. The
ellipticity, also, affects pressure drop positively. This result can be revealed that as ellipticity
increases, the cross section of flue gas flow, also, increases. Elliptical tube results in a lesser drag
than the circular tube, due to its better aerodynamic shape. This shape causes better heat trans-
fer characteristics, as well.

Although the present study has been completed for one row heat exchangers, the results can be
applied to heat exchangers with more rows. The results concluded above are in good agreement
with previous experimental and numerical studies. Finally, this entire study should have a great
value for direct application to heat exchanger design aspect.
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