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Summary 

Experimental detection and validation of miRNAs is a tedious, time-consuming, and 
expensive process. Computational methods for miRNA gene detection are being 
developed so that the number of candidates that need experimental validation can be 
reduced to a manageable amount. Computational methods involve homology-based and 
ab inito algorithms. Both approaches are dependent on positive and negative training 
examples. Positive examples are usually derived from miRBase, the main resource for 
experimentally validated miRNAs. We encountered some problems with miRBase which 
we would like to report here. Some problems, among others, we encountered are that 
folds presented in miRBase are not always the fold with the minimum free energy; some 
entries do not seem to conform to expectations of miRNAs, and some external accession 
numbers are not valid. In addition, we compared the prediction accuracy for the same 
negative dataset when the positive data came from miRBase or miRTarBase and found 
that the latter led to more precise prediction models. We suggest that miRBase should 
introduce some automated facilities for ensuring data quality to overcome these problems.   

1 Introduction 

Existing efforts to differentiate miRNA genes have led to the detection of thousands of 
miRNAs in various species, but countless remain undiscovered [1]. These attempts are 
predominantly based on experimental methods such as directional cloning of endogenous 
small RNAs, which are time consuming, expensive, and work intensive [2]. Difficulties for 
such experimental approaches are that miRNAs may only be expressed in specific cell types, 
at low levels or only in response to changing environmental stimuli. In order to overcome this 
problem, several computational methods have been designed and applied to the computational 
detection of miRNA hairpins [3]. 

Computational methods for miRNA gene detection can be grouped into two main categories; 
homology-based methods and ab initio approaches and both have specific advantages and 
drawbacks [4]. Machine learning algorithms are different from rule-based miRNA detection 
algorithms since the rules to decide whether a given sequence is a miRNA, are not manually 
created, instead these rules are fit, trained, or learned from examples [5]. Usually, machine 
learning-based methods start with the learning process of sequence, structure, and/or 
thermodynamic characteristics of miRNAs based on some curated parameters. After, the 
trained classifier can decide whether an unknown sequence is a miRNA, based on the 
information gained from training with positive and negative data sets. Normally, the 
parameters are a set of numerical features defining a candidate miRNA, such as minimum free 
energy of folding or terminal loop size. If the parameters describing the hairpin are properly 
chosen, and if the training data is informative, an unknown sequence could be classified into 
either being a miRNA precursor or not at high accuracy.  

                                                 
* To whom correspondence should be addressed. Email: jens@allmer.de 
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However, there are two main obstacles for machine learning of miRNA genes. First one is the 
imbalance of positive and negative examples. Since the exact number of real miRNAs in any 
genome is unknown, it is supposed that there are few miRNA precursors within the millions 
of hairpins that can be found in a eukaryotic genome [6]. Also, the number of positive 
examples should be significantly smaller than that of negative examples. For instance, one of 
the commonly used negative dataset for miRNA detection algorithms consists of 
approximately 9000 pseudo hairpins while the number of human miRNAs that can be 
obtained from miRBase [7] (http://www.mirbase.org/) is less than 1600 [2].  The imbalance 
problem between positive and negative datasets can significantly reduce the performance of 
current machine learning approaches [6]. Although several negative datasets have been 
proposed, none of them provides a ground truth as it is currently not possible to 
experimentally confirm whether the selected negative examples are truly negative. The 
missing of ground truth data is the other obstacle. 

MiRBase [7] is the main repository for miRNA sequences and associated information. 
Although there are other competing databases, to the best of our knowledge all miRNA 
hairpin detection algorithms have derived their positive datasets from miRBase. While 
developing our positive and negative datasets for ab initio miRNA hairpin detection, we came 
across some problems with positive data located in miRBase and further noticed some 
inconsistencies that we found worth to give some additional attention. 

In this study, we report that miRBase includes entries which are not fitting the criteria for a 
sequence to be labelled as a true miRNA. Moreover, by performing classification we show 
that comparing to miRNAs proven with strong experimental evidence from miRTarBase [8] 
database the sensitivity, specificity and classification accuracy using the miRBase derived 
positive dataset is lower. In addition to that we assessed whether the structures presented on 
miRBase have actually been predicted by RNAFold [9] as published, and found that this was 
not true for the structures we analysed. Finally, a database that calls itself the official miRNA 
registry, should offer some kind of support lest errors are encountered. Unfortunately, 
reporting problems with mapping of miRBase stored Ensembl [10] accession numbers to the 
Ensembl genome browser for human [11] via email has not been replied to within one year. 
We suggest that all sequences submitted to miRBase should be folded by an automatic 
process to overcome the problem that folds which do not have minimal free energy are 
presented on miRBase, misleading users into believing that the presented fold is the best. 
Another automatic process should occasionally validate the provided accession numbers and 
finally an automatic process should check all submissions for whether they adhere to certain 
criteria describing a hairpin. If they fail these checks the data may be send back to the 
submitter for checking, manually validated by the miRBase team or put into a separate section 
of miRBase for not validated data. 

2 Materials and Methods 

2.1 Dataset 

Machine learning for miRNA hairpin detection depends at least on positive examples but in 
general additionally needs negative examples [3]. For negative examples, the widely used 
pseudo hairpin sequences by Ng and Mishra [2] were chosen since in our previous work, we 
have shown that this negative dataset provides better distinction between miRNA and non-
miRNA sequences than other datasets [4]. From the negative examples we randomly selected 
180 pseudo hairpins and used this as negative data for all analyses (Supplementary File: 
pseudoHairpins.txt; http://bioinformatics.iyte.edu.tr/index.php?n=Data.MiRBase).  
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Since miRTarBase [8] has only little data for human we used all 180 available examples for 
the positive dataset from miRTarBase. MiRTarBase claims that this data has strong 
experimental evidence showing miRNA-target interactions (Supplementary File: 
miRTarBasePosEx.txt). 

MiRBase contains about 1600 human miRNAs, but in an attempt to keep the comparison fair, 
we randomly extracted 180 sequences (Supplementary File: miRBasePosEx.txt). 

This leads to two positive datasets which both consist of 180 examples one from miRBase and 
one from miRTarBase which will be compared in (Section 3.2). Both positive datasets were 
used in conjunction with the same negative dataset in order to ensure fair comparison.  

Since the data available in miRBase stems from many organisms most of which have no 
competing databases available, we chose to focus on the available human data described 
above. Although a generalization of these results is therefore not necessarily possible, we 
offer possible solutions which would aid solving a general problem. 

2.2 Parameters 

We previously assessed 12 ab initio miRNA detection algorithms [2], [6], [12–21] and 
determined the parameters that were used to describe a miRNA hairpin. More than 200 
different parameters have been described and more than 100 have been used in machine 
learning for miRNA hairpin detection. In this study, we used the 10 most frequently used 
features in the 12 ab initio miRNA hairpin detection studies. The selected parameters are: 
hairpin loop length (hll), base pairing propensity (bpp), hairpin minimum free energy (hpmfe), 
dinucleotide shuffling, p-value of hpmfe, and the frequencies of the following triplet 
structures U(((, U(.(, C(.(, A..., G(((.  

Selected features are of major importance for the accuracy and generalization of the model 
established through machine learning. In this particular case, we perform a relative 
comparison and therefore the only requirement is to use the same features for all models. The 
reason why we used only the 10 most frequently used features is motivated by the fact that 
many algorithms are using them and not due to their discrimination ability which is unknown. 
Also, implementing all 200 features is beyond the scope of this study and therefore the 
number of features needed to be restricted. Slightly increasing or decreasing the amount of 
features does not influence the outcome of the relative comparison (data not shown) and 
therefore an arbitrary number of 10 features was selected for this study. 

2.3 Classification 

Orange Canvas [22] was used to perform SVM, Naive Bayes, and Logistic Regression 
classifications with 10 fold cross-validation. All the classifiers are used with their default 
settings. 

3 Results and Discussion 

3.1 Folds Available in MiRBase 

It has been shown that for effective miRNA processing by Drosha [23] and Dicer [24] the 
terminal loop region is very essential and the mutations in this region affect mature miRNA 
production [25]. Figure 1 shows a miRBase entry for a human miRNA which is supposed to 
have a mature miRNA located partially within the terminal loop, something not supported by 
the current understanding of miRNAs.  

Journal of Integrative Bioinformatics, 10(2):215, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-215 3

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



 

 
Figure 1: Predicted secondary structure of hsa-mir-1178 (MI0006271) as presented on miRBase, 
showing stem-loop structure. Pink bases indicate mature miRNA sequences.  

Drosha requires a partner protein for performing RNA binding [26]. DGCR8 (Pasha) is the 
cofactor that interacts with Drosha and forms a functional complex known as Microprocessor 
complex. Two double strand RNA binding domains (dsRBDs) distinguish the single stranded 
RNA (ssRNA) segments flanking a stem of proper length [27]. DGCR8 anchors at the 
ssRNA-dsRNA (double stranded RNA) junction and leads Drosha to cleave ≈11 bp away 
from the junction [27]. Thus, flanking ends of a hairpin are very important for production 
[28], but as it can be seen in Figure 1 and Figure 2, miRBase entries do not always have 
flanking ends. In our opinion, there are two problems with the hsa-mir-1178 entry on 
miRBase, one the terminal loop is rather small and thus the miRNA may not be effectively 
processed, and two the miRNA is located within the terminal loop.  

    
Figure 2: miRBase entry hsa-mir-1224 (MI0003764) showing stem-loop structure (a). Pink bases 
indicate mature miRNA sequences. Manually created dot-bracket structure and structure graph 
by RNAShapes (b). RNAFold prediction (c). Minimum free energy is given within brackets. 

Therefore, this entry seems unlikely since Dicer cuts dsRNA and does not processes single 
stranded RNA and since terminal overhangs are usually around two nucleotides of length. In 
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addition, Drosha usually cuts an RNA double strand 11 base-pairs away from a ssRNA-
dsRNA junction. For this, flanking ends of the hairpin are needed which are not given in this 
entry. Furthermore, the location of the mature miRNA is not conforming to the Drosha 
cleavage pattern. Thus we cannot explain the model in Figure 1 in light of the canonical 
miRNA pathway.  

The entry in Figure 2-a contains the mature sequences at 3’ and 5’ ends of the hairpin which 
indicates missing flanking ends. Furthermore, the terminal overhang produced by Drosha is 
not respected (although blunt cutting has been observed). Another problem about this entry is 
that, when we draw the structure graph for this hairpin sequence by using RNAfold [9], we 
obtained the structure in Figure 2-c with a minimum free energy (mfe) value of -45.00, but the 
structure shown in miRBase is very different (Figure 2-a). To compare mfe values, we created 
a dot bracket (the format used to represent, transfer, and share RNA secondary structures) 
representation from the miRBase structure manually and drew it by using RNAShapes [29] 
(Figure 2-b). RNAeval from Vienna package [30] was then used to calculate mfe values for 
both structures.  

We believe that the fold presented in Figure 2-a should not be in miRBase as it would mislead 
users to believe that it is the best fold while it is significantly worse than the fold in Figure 2-
c. It seems unlikely that a mature miRNA can be created from the structure in Figure 2-a 
following the canonical pathway. It may be a different small regulatory RNA and should be 
marked as such. We cannot assess whether the Drosha cleavage was conformant since the 
flanking ends are missing but the Dicer cleavage may have been produced according to the 
canonical pathway.  

Figure 3-a shows an example which has neither terminal loop nor flanking ends and therefore 
is unlikely to be a true miRNA. Figure 3-b further confirms this assumption as the structure 
that is predicted by RNAFold is significantly different and displays something that does not 
seem to be processable by the canonical miRNA pathway. 

 
Figure 3: MiRBase entry for hsa-mir-1225 (MI0006311) showing the stem-loop structure as 
presented by miRBase (a). Pink bases indicate mature sequences. The hairpin structure has 
neither terminal loop nor flanking ends. Using RNAFold, a completely different structure is 
determined (b).  
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The three examples we give above a few of many we were able to pick out. Unfortunately, 
providing statistics is not possible since the folds stored in miRBase are not accessible in dot 
bracket notation making an automated comparison impossible. If we are right in assuming 
that the above examples and further examples that are not shown are not true microRNAs, 
then this should impact the classification accuracy for any miRNA hairpin detection method. 
We analyze this in the following section. 

3.2 Classification Accuracy Comparison 

In order to analyze whether entries in miRBase that are falsely annotated as miRNAs have an 
impact on classification accuracy, we randomly selected 180 entries as a positive dataset. A 
competing, equally sized, positive dataset was gleaned from miRTarBase. Both datasets were 
paired with a negative dataset consisting of 180 pseudo miRNAs from the Ng and Mishra 
dataset. Orange Canvas, a data mining software with graphical user interface, was used for 
training of three classifiers and for performance evaluation via 10 fold cross validation. The 
results of classifications for all three employed classifiers show that using the miRNAs having 
strong experimental evidence to interact with an mRNA as positive dataset (miRTarBase) 
provides a higher sensitivity, specificity, and classification accuracy (CA). Using positive 
examples derived from miRBase on the other hand leads to lower statistics (Table 1).   

 
Table 1: Classification of miRNA hairpins and pseudo hairpins using Orange Canvas. SVM, 
Naïve Bayes, and Logistic Regression were used to compare performance of miRBase as positive 
data and miRTarBase as positive data. 

miRBase Entries miRTarBase Entries 

Classifier Sensitivity Specificity CA Sensitivity Specificity CA 

SVM 0.85 0.86 0.85 0.94 0.92 0.93 
Naïve Bayes 0.90 0.82 0.86 0.93 0.90 0.91 
Logistic Regression 0.91 0.92 0.92 0.93 0.94 0.94 

 

The classifiers trained on the miRTarBase examples consistently outperform the classifiers 
based on miRBase examples. This is very obvious for support vector machine (SVM) and 
naïve Bayes but less so for logistic regression which seems to be able to somewhat 
compensate for false positive examples. The biggest gain is in the area of specificity which is 
in accordance with our assumption that some of the miRBase entries are falsely classified as 
miRNAs. 

3.3 Other Observations 

When we prepared a full miRNA dataset for human from all information downloadable from 
miRBase, we realized that 390 sequences were not properly mapped to the Ensembl human 
genome browser. Also, about 460 entries had only one entry for mature sequence which can 
be attributed to the assumption that only one mature sequence will be produced. This is 
however being disputed currently. About 40 entries seem to have more than one stem loop 
structure when predicted by RNAFold. Folds with more than 1 stem loop structure are 
probably rare in nature and thus should be signified as a possibly false positive miRNAs.  

Another observation we made is that although some mature miRNAs are completely identical, 
they stem from different hairpins (Figure 4).  
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Figure 4: Multiple sequence alignment, performed by ClustalW [31] and visualized by JalView 
[32], of six miRBase entries which lead to the same mature miRNA. The structural alignment 
below shows that although the sequence alignment is highly conserved, the structures are still 
quite different with hsa-mir-518 being the most divergent. 

A comparison of the multiple sequence alignment of the sequences leads us to believe, 
however, that these may not really be different hairpins but that these may be due to 
sequencing errors or incomplete sequence submissions. It would be beneficial to add 
information about the genomic mapping of the miRNAs so that it can immediately be 
understood whether they are mapped to the same locus or not. This would remove any 
ambiguity. Although the sequence alignment is quite conserved, one of the structures is 
strikingly different which we cannot easily explain. It is interesting, that all models map to 
different Ensembl accessions which are actually retrievable. Here a mapping score or 
alignment of the hairpin to its location within the genome would be beneficial.  

4 Conclusion 

MiRBase claims experimental evidence for most entries and we do not want to dispute the 
fact that there may be experimental evidence. However, our concern is that entries annotated 
as miRNAs are not true miRNAs but likely represent other small regulatory RNA sequences 
which may lead to the same effect.  

These falsely as miRNA annotated entries may impact prediction accuracy by as much as 8% 
as we were able to show above. In respect to the human genome and hundreds of millions 
putative hairpins, 8% is an error which is intolerable so we have to negate our initial question 
and we have to conclude that currently miRBase should not be used unfiltered for training of 
miRNA hairpin detection algorithms.   

Other small errors in the database, like missing or wrong mapping to Ensemble, makes it 
difficult to extract surrounding sequences to retrieve the flanking ends and to calculate 
stability information about the miRNA hairpin within a larger sequence context.  

Furthermore, in respect to currently available systems in biology, it is not easily 
understandable why not all data can be accessed somehow like for example the hairpin 
structures shown in miRBase as images. Here it would be essential to be able to retrieve the 
folds with their minimum free energies in some standard representation like the dot bracket 
representation. Moreover, it would be beneficial to enable grouping of sequences based on the 
experimental procedure they were confirmed by such as deep sequencing, cloning, or 
computational predictions in order to increase transparency. 

MiRBase is the most comprehensive collection of miRNAs and it is essential in the field of 
miRNA research. The problems that we have shown can easily be remedied by implementing 
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a few automated processes which check all submissions. First of all, structures shouldn’t be 
accepted as user submission, but be calculated automatically by miRBase which would ensure 
that the structure with the lowest minimum free energy will be displayed. MiRBase should 
determine a number of criteria which a miRNA hairpin must satisfy for example flanking 
ends, a minimum and maximum loop size, etc. Then an automated process could check 
whether a submission adheres to the assumptions and if not either bounce it back to the 
submitter or store it in a special area of miRBase for unsure submissions. Links and accession 
numbers to other database should periodically be checked for their validity and be updated if 
they are not valid any more. Since our previous emails have remained unanswered, we would 
recommend adding of a bug tracking system which would allow users to submit errors or 
issues to the miRBase developers. This would add a layer of transparency to the end-user who 
would be able to see how their requests are handled.   
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