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ABSTRACT 
 

VARIETAL CLASSIFICATION AND PREDICTION OF CHEMICAL 
PARAMETERS OF TURKISH WINES BY INFRARED 

SPECTROSCOPY  
 

This study was performed with the aim of varietal classification of mono-varietal 

Turkish wines and development of models to predict basic enological parameters from 

mid-IR spectra with the use of chemometric methods. Mid-infrared (MIR) spectroscopy 

combined with multivariate data analysis was employed to make a varietal classification 

of commercial Turkish wines (Boğazkere, Cabarnet Sauvignon, Çalkarası, Kalecik 

Karası, Merlot, Öküzgözü, Papazkarası, Shiraz, Emir, Misket, Narince, Sultaniye and 

Chardonnay) from 2006 and 2007 vintages. Wine samples (n=79) including red, rose 

and white wines were scanned in the mid-IR region (4000-650 cm-1) and three spectral 

regions (965-1565 cm-1, 1700-1900 cm-1 and 2800-3040 cm-1) were used to classify 

wines on the basis of grape variety. The principal component analysis (PCA) was 

applied to the spectral data of the wine samples. Although a clear classification could 

not be achieved according to varieties, almost complete classification of red and white 

wines was observed. 

For the quantification analysis, a total of eleven enological parameters, including 

total phenol and anthocyanin content, pH, brix, titratable acidity, colour intensity (CI), 

tint, yellow%, red%, blue% and the proportion of red colour produced by anthocyanins 

(dA%) were determined with analytical reference methods. Correlation between the 

results of the reference methods and MIR spectral data was tested with partial least 

square (PLS) regression analysis and prediction models were developed with the use of 

these correlations. The calibration and validation sets were established to evaluate the 

predictive ability of the models. As a result of PLS analysis, the best models were 

developed for total phenols and CI with excellent predictions (R2=0.93 and 0.89, 

respectively and residual predictive deviation RPD=3.68 and 3.83, respectively). The 

model of pH determination and yellow% gave a good prediction (R2=0.85 and 0.85, 

respectively and RPD=2.7 and 2.04, respectively).  
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ÖZET 
 

KIZIL ÖTESİ SPEKTROSKOPİ İLE TÜRK ŞARAPLARININ 
ÇEŞİTLERE GÖRE SINIFLANDIRILMASI VE KİMYASAL 

PARAMETRELERİNİN TESPİTİ 
 

Bu çalışma tek çeşit üzümden oluşan Türk şaraplarının üzüm çeşidine göre 

sınıflandırılması ve şarabın temel parametrelerini orta bölge kızıl ötesi spektrası ve 

kemometrik yöntemler kullanarak tahmin eden modeller geliştirmek amacıyla 

yapılmıştır. Orta bölge kızıl ötesi spektroskopi çok değişkenli veri analizleri ile birlikte 

2006 ve 2007 yıllarında üretilen Türk şaraplarının (Boğazkere, Cabarnet Sauvignon, 

Çalkarası, Kalecik Karası, Merlot, Öküzgözü, Papazkarası, Shiraz, Emir, Misket, 

Narince, Sultaniye ve Chardonnay)  üzüm çeşidine göre sınıflandırılmasını 

gerçekleştirmek amacıyla kullanılmıştır. Kırmızı, roze ve beyaz şarapları içeren toplam 

yetmiş dokuz adet şarap örneği orta bölge kızıl ötesi bölgede (4000-650 cm-1) taranmış 

ve üç spektral bölge (965-1565 cm-1, 1700-1900 cm-1 ve 2800-3040 cm-1) şarapları 

üzüm çeşidine göre sınıflandırmak amacıyla kullanılmıştır. Şarap örneklerinden elde 

edilen spektral verilere asal bileşenler analizi uygulanmıştır. Üzüm çeşitlerine göre 

belirgin bir sınıflandırma elde edilemese de; kırmızı ve beyaz şaraplarda yaklaşık bir 

sınıflandırma gözlenmiştir. 

 Nicelik belirleme analizi için toplam fenol miktarı, antosiyanin miktarı, pH, 

briks, titrasyon asitliği, renk yoğunluğu (CI), renk tonu, % sarılık, % kırmızılık, % 

mavilik ve antosiyaninler tarafından oluşturulan kırmızılık (% dA) olmak üzere toplam 

on bir şarap parametresi analitik referans metotlarıyla saptanmıştır. Referans metotların 

sonuçları ve orta bölge kızıl ötesi spektrası arasındaki ilişki kısmi en küçük kareler 

(PLS) regresyon analizi ile belirlenmiştir ve saptanan bu ilişki kullanılarak tahmin 

modelleri oluşturulmuştur. Modellerin tahmin yeterliliğini değerlendirmek için ise, 

kalibrasyon ve validasyon setleri oluşturulmuştur. Regresyon analizi sonucunda nicelik 

tespitinde en iyi modellerin toplam fenol miktarı ve renk yoğunluğu (korelasyon 

katsayıları sırasıyla 0.93 ve 0.89; artık tahmin sapması sırasıyla 3.68 ve 3.83) tahmin 

modelleri olduğu gözlenmiştir. pH ve % sarılık tespit modelleri (korelasyon katsayıları 

0.85; artık tahmin sapması sırasıyla 3.68 ve 3.83) iyi tahmin sonuçları vermiştir.    
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CHAPTER 1 

 

INTRODUCTION 

 
On account of the favourable climatic conditions and various soil structures, 

Turkey is one of the most convenient countries in the world for the cultivation of wine 

grape vineyards. The vineyards are spread all over the country but Aegean, 

Mediterranean, Central Anatolian and Thrace regions are the main wine production 

areas. Turkey has a rich variety of grape types which provide high quality wines. 

Both wine producers and consumers are interested in wine quality. For instance, 

in the selection of wines consumers take into consideration of several factors such as 

pleasant colour and odour, taste and aroma, geographical origin, vintage and nowadays 

ecological production is also one of the important criteria in the preference. These 

characteristics form as a result of complex combinations of hundreds of various 

components (Saurina 2010). Several factors such as variety of the grape used in wine 

production, ripeness of the grape, geographic origin, vintage, viticultural and 

vinification techniques have a considerable influence on the compositional variations of 

the wine. Among these factors the characteristics of a wine are mainly designated by the 

grape variety. 

The grape varieties provide a basis for wine characterisation due to their 

differentiating chemical compositions and organoleptic properties. Wine 

characterisation and differentiation is traditionally performed with the data from sensory 

and wet chemical analysis. However, the complex profile of the wine makes the 

differentiation hard with limited number of chemical analysis. Furthermore, most of the 

analytical methods require time consuming, expensive and labouring experimental 

principles. Therefore, there is a need of simple, rapid and reproducible techniques 

(Almela, et al. 1996; Arozarena, et al. 2000b; Aleixandre, et al. 2002). 

 FT-IR spectroscopy in combination with chemometric methods provides rapid, 

repeatable and non-destructive analysis of wine without any sample preparation and 

chemical consumption. In addition, information about the complete composition of the 

wine can be supplied from the FT-IR spectra (Edelman, et al. 2001).                                                   
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On the other hand, knowledge of chemical composition of wine is extremely 

important from the point of wine producers. For the production of high quality wine, the 

changes in the composition are periodically controlled at every stage of the grape and 

wine since the chemical composition of grape and wine alters from the start of grape 

ripening to harvest, the maturity, the grape acceptance, in the course of wine production 

and ageing. Fast and accurate analytical techniques are also desirable for monitoring 

and screening of the product. FT-IR spectroscopy combined with chemometrics enables 

a simultaneous determination of a wide range of enological parameters. Thus, this new 

process control methodology is quite useful for quality assurance purposes as it enables 

multiparametric determination of wine composition (Patz, et al. 2004; Urbano-

Cuadrado, et al. 2005). 

Many studies were reported as to the usage of chemometrics in wine production 

and research areas. The IR spectroscopy in combination with chemometric methods has 

been applied to distinguish wines in accordance with the different varieties, 

geographical origin and wine making practices. In the differentiation applications, 

chemometric techniques provide the explanation of the complex data and point out the 

variables that best represent the differences between wines from different varieties 

(Arozarena, et al. 2000b). Additionally, IR spectroscopy combined with chemometrics 

has been employed for development of the models to predict some quantitative 

parameters of the wines. This newly developed technique has been applied in the 

research field, routine laboratory analysis and process control of wine composition. 

The objective of this study is to investigate the potential use of FT-MIR 

spectroscopy in combination with chemometric techniques to classify Turkish wines 

from two vintages according to variety. Furthermore, the prediction of the certain 

enological properties such as total phenol content, anthocyanin content, brix, pH, 

titratable acidity and colour parameters from FT-MIR spectra was studied by means of 

chemometric techniques.  
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CHAPTER 2 

 

WINE 

 
2.1. Historical Background of Wine 

 
The history of wine extends over thousands of years and there is an intimate 

relationship between the wine evolution and the history of agriculture, cuisine and 

civilisation (McGovern 2003). There is a general thought that first vines originated from 

the Caucasus area of Russia, between the Baltic and the Caspian Seas. After Stone Age, 

wild vines botanically known as Vitis vinifera sylvestris became domesticated in 

consequence of the improvement in the settled agricultural implementations in 

Mesopotamia and Egypt (Clarke, et al. 2004). 

Vines and wine making techniques were spread over Greece and Mediterranean 

from Mesopotamia and Egypt. With the invention of distillation by Arabians, fortified 

wines like Sherries were developed. The long term storage and spoilage problems were 

continued till the end of 1800s. The role of yeasts in wine fermentation and the role of 

some lactic acid bacteria in wine spoilage were revealed by Louis Pasteur in the 1860s 

and the discovery of microbiological process concerned with wine making served as the 

basis for the modern wine industry (Clarke, et al. 2004). Till the ends of 18th century 

wines were mostly known as sweet. Especially the sweetness of the Roman wines were 

resembled to syrups and it was reported that wines were stored and transported in 

amphorae, earthenware jugs closed with waxy materials. The fact that corks started to 

be utilised to seal wine bottles gave rise to maturing the wines in bottles. Romans are 

also known with their important contribution in classifying grape varieties and colours, 

observing ripening characteristics, identifying diseases and spreading viticulture 

through today’s major winemaking regions of France, Germany, Italy, Portugal and 

Spain (Robinson 2006). The domesticated version of the native vine plant was grown in 

the North and South America where a balanced climate with the right combination of 

sun and rain exist in the 19th century. In the late 19th century wine production was fully 

spread over Europe (Clarke, et al. 2004).   
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2.2. Wine Classification 

 
Wines can be classified by various methods. Classification applications vary in 

different countries and regions of origins, and many practices have undergone changes 

over time. The wine producing countries have their own regulations and legislations for 

determination of the product characteristics aiming at enabling proper production, 

preparation, process, storage, transportation and marketing of wine. The wines 

manufactured in member countries of European Union are divided into two quality 

categories, table wines and quality wines produced in specified regions. The wine 

production is regulated by the wine notification of Turkish Food Codex covering wines, 

liquor wines, natural sparkling wines, artificial sparkling wines, natural semi-sparkling 

wines, artificial semi-sparkling wines and wines registered with geographical origin in 

Turkey. As far as the notification is concerned, the basic classification of Turkish wines 

was made by considering vinification methods and geographical origin (Turkish Food 

Codex 2005).  

The classification of wines is basically made by considering the place of origin 

or appellation, vinification techniques, sugar contents, vintage, and variety of the grapes 

used to produce wine.  

 

2.2.1. Classification According to Vinification Techniques 

 
Wines may be classified by vinification methods including red, rose or white 

wine, sparkling, fortified and dessert wines.  

Red and white wines differ at the stage of processing after crushing; the skins 

and seeds are not removed and fermentation is carried out in the presence of the grape 

juice, skins and seeds together for red wine production. In addition, the red wines are 

generally fermented at higher temperatures in the range of 25-30oC, whereas 

fermentation temperature for white wines is ranging between 18-24oC (Boulton, et al. 

1996). Rose wines are produced with similar method as red wines; the only difference is 

the temperature and length of the fermentation period of grape juice with seeds and 

skins. The fortified wines are strengthened through the addition of spirit, brandy or ethyl 

alcohol (70-75%) solution to increase the alcohol level to 15-20% and Port wine, Sherry 

and Madeira are the well known examples of fortified wines (Clarke, et al. 2004). 
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Dessert wines have alcoholic content between 14-24% by volume derived from the 

added grape brandy or alcohol. On the other hand, sparkling wines are produced by 

traditional fermentation in sealed vats and fermentation in the bottle (natural sparkling 

wines) or they can be produced by carbonation (aerated sparkling wines) (Food 

Standards Agency 2010). 

 

2.2.2. Classification According to Sugar Content 

 
Wines are divided into four groups with respect to sugar content in the final 

product (Food Standards Agency 2010): 

Dry wines: This group contains maximum of 4 g/L sugar. Dry wines can also 

contain maximum 9 g/L if the total acidity content is not more than 2 g/L below the 

residual sugar content. 

Medium Dry Wines: The residual sugar content exceeds the maximum for dry 

wines but must not exceed 12 g/L, or maximum 18 g/L where the total acidity content is 

not more than 10 g/L below the residual sugar content. 

Medium Sweet Wines: The residual sugar content must exceed the maximum for 

medium dry but not exceed 45 g/L. 

Sweet Wines: The sweet wines contain at least 45 g/L sugar. 

 

2.2.3. Classification by Appellation 

 
Wines are regulated with the laws controlling the naming of wine by geographic 

origin, which is referred to as appellation controlée (original name derived from 

France). Appellation Control laws establish the regions where particular grape varieties 

are cultivated, since the soil type and climatic conditions give regional wines their 

unique characteristics (Jackson 2000). Appellation system and relevant control laws 

regulate not only where the grapes in a wine were grown but also the grape cultivars 

and vinification technique employed in wine production (Jackson 2000). The 

appellation system was firstly established in France in 1938. The French wine 

appellation system consists of four appellation categories; Vins de Table (VCC), Vins 

de Pays, Vins De´limités de Qualité Supérieure (VDQS), and Appellation d’Origine 

Contrôlée (AOC) (Zhao 2005). Among them AOC is the main and the most important 
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qualification category of the whole appellation system. The qualifications within AOC 

are classified as regional (e.g.Bordeaux, Burgundy), communal or village (i.e. Pauillac 

in Bordeaux) (Coates 2000). On the other hand, appellation system in the USA consists 

of ‘the United States’, a state (for instance California), two or no more than three States 

which are all neighbour, a county (i.e. Sonoma County), two or no more than three 

counties in the same States and an American Viticultural Area, AVA (e.g. Napa Valley) 

(Zhao 2005). According to German appellation system, the largest appellations are 

designated as bestimmte Anbaugebiete. These regions are divided into one or more areas 

stated as Bereich. The succeeding divisions are predicated either on group vineyards 

(Grosslage) or on individual vineyards (Einzellage). The further divisions are related 

with the name of the nearest village or suburb (Ortsteil) (Jackson 2000). 

 

2.2.4. Classification by Grape Variety  

 
The wine variety defines the names of the dominant grapes used in the wine 

production. The wine may not be entirely composed of one grape variety; two or more 

varieties are blended for the purpose of obtaining a balanced taste and texture. The 

varietal labelling laws differ in different countries. In the EU countries the wines are 

labelled as single variety if at least 85% of the products is made from that variety (EC 

607 2009). However, the US varietal designations require at least 75% of the grapes 

used to make the wine of a single variety (Alcohol and Tobacco Tax and Trade Bureau 

2010). On the other hand, in accordance with the International Wine and Viniculture 

Organization (OIV) labelling standard the wines are labelled as mono-varietal if they 

are produced from at least 75% of the grapes of defined variety which determines the 

specific character of the wine (OIV 2006). 

 

2.2.5. Classification by Vintage 

 
The vintage of the wine is defined as the wine produced from grapes which are 

all or majorly harvested in a particular year. Quality variations can be seen from year to 

year resulting from differences in chemical and textural profile of the wines. Most of the 

wine producing regions have their own vintage labelling laws. The wines must be made 

with grapes coming 100% from the year indicated, if they are from a recognised 
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geographic indication or appellation of origin (OIV 2006). According to EU and the US 

wine labelling regulations, the wines are labelled with vintage provided that at least 

85% of the grapes used to produce the wines have been harvested in the year at issue 

(EC 607 2009, European Union Wine Regulations 2010).    

 

2.3. World Wine Production   
 

With the fluctuations in wine production three countries from EU; Italy, France 

and Spain are the world’s leader of wine production (Table 2.1). France is the leader 

wine producer till 2007, but Italy has taken its row owing to a decrease in the wine 

production in France in 2008.  The US follows these three countries in wine production. 

With its 530,000 hectares vineyard, Turkey is the fourth largest grape grower country in 

the world. Nearly 40% of the grapes is consumed as raisin, 35% is consumed freshly, 

2% is used in the wine production and the rest is used for production of traditional foods 

like grape molasses, dried fruit pulp, etc (Gümüş and Gümüş 2008). Almost 1200 grape 

varieties are grown in Turkey but only 34 types are used for wine production. The wine 

production in Turkey is mainly concentrated in provinces Tekirdağ, Edirne, Kırklareli, 

Çanakkale, Bilecik, Yozgat, Çorum, Amasya, Tokat, Nevşehir, Mersin, İzmir, Manisa, 

Denizli, Burdur, Isparta, Elazığ, Malatya, Gaziantep and Diyarbakır (Appendix A). 

Even though Turkey, with its large vineyards and numerous of grape cultivars, is 

located in the most suitable climatic zone for vine growing, it is situated in the last ranks 

in the world wine production (Table 2.1). Special Consumption Tax and the 

government’s behaviour towards the wine sector are reported as the most important 

problems in Turkey (Gümüş and Gümüş 2009). 
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Table 2.1. World wine production by country between 2004-2008 in 1000 Hectolitres 
and % change 2008/2004 (the red coloured terms express decrease in 
production) (Source: Wine Institute 2010) 

 

  %CHANGE
COUNTRY 2004 2005 2006 2007 2008 2008/2004
WORLD TOTAL 291,987 301,363 285,035 284,700 283,898 2.80% 
ITALY 44,086 53,135 50,566 49,631 51,500 16.80% 
FRANCE 57,386 52,105 53,400 52,127 45,692 20.40% 
SPAIN 41,843 43,168 36,158 38,29 36,781 12.10% 
UNITED STATES 24,11 27,859 24,298 25,125 24,274 0.70% 
ARGENTINA 15,464 15,222 15,396 15,046 15,013 2.90% 
AUSTRALIA 15,048 14,669 14,628 9,620 14,750 2.00% 
CHINA 11,700 12,000 13,000 14,000 14,500 23.90% 
GERMANY 10,107 9,150 9,256 9,000 10,363 2.50% 
SOUTH AFRICA 9,279 9,052 10,130 10,200 10,300 11% 
CHILE 6,550 8,046 8,450 8,280 8,690 32.70% 
PORTUGAL 7,340 7,481 7,267 7,542 6,049 17.60% 
ROMANIA 5,555 6,166 2,602 5,015 5,288 4.80% 
RUSSIA 5,120 5,035 5,000 5,000 5,000 2.30% 
MOLDOVA 3,488 3,509 3,597 3,600 3,650 4.60% 
GREECE 3,815 4,295 3,997 3,874 3,337 12.50% 
HUNGARY 3,88 5,271 3,103 3,144 3,222 17.00% 
BRAZIL 3925 3,199 2,372 3,000 3,000 23.60% 
UKRAINE 2,400 2,400 2,460 2,400 2,400 0.00% 
AUSTRIA 2,735 2,264 2,256 2,300 2,300 15.90% 
BULGARIA 2,327 1,961 1,708 1,757 1,800 22.60% 
CROATIA 1,800 1,571 1,592 1,600 1,600 11.10% 
NEW ZEALAND 1,192 1,020 1,195 1,250 1,300 9.10% 
GEORGIA 950 950 1,100 1,100 1,100 15.80% 
SWITZERLAND 1,159 1,001 1,108 1,100 1,100 5.10% 
MEXICO 1,100 1,028 1,028 1,050 1,060 3.60% 
JAPAN 862 900 960 960 960 11.40% 
MACEDONIA 900 940 760 900 900 0.00% 
URUGUAY 1,126 892 900 900 900 20.10% 
SLOVENIA 731 944 846 738 857 17.20% 
ALGERIA 770 770 770 770 770 0.00% 
CANADA 522 417 504 520 540 3.40% 
PERU 130 435 400 453 480 269.20%
UZBEKISTAN 450 450 450 450 450 0.00% 
CZECH 560 580 438 434 434 22.50% 
CYPRUS 404 197 340 400 400 1.00% 
MOROCCO 350 375 345 350 350 0.00% 
SLOVAKIA 515 409 302 328 328 36.30% 
TUNISIA 375 331 300 300 300 20.00% 
KAZAKHSTAN 250 210 270 270 270 8.00% 
TURKEY 250 287 250 255 260 4.00% 
TURKMENISTAN 240 240 240 240 240 0.00% 

 
2.4. Important Wine Quality Parameters 

 
The persistence and diversity of flavours of a wine, its ability to age, its 

appearance in the glass, and the taste of it are the most significant attributes appreciated 

by both wine makers and consumers. All of these characteristics are highly related to 
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each other and basically depend on the chemical profile of the wine which arises from 

complicated reactions beginning with grape maturation and continuing until the 

consumption.  

Wine is a complex mixture of chemical compounds existing at different 

concentrations. The basic chemical compounds of the wines are listed in Table 2.2. 

 

Table 2.2. Typical range of basic chemical compounds in the wine 
                                                   (Source: Clarke, et al. 2004) 
 

Component   Typical range found (g/L)

Sugars Glucose 0.2-0.8 (dry)*, up to 30 (sweet) 

 Fructose 1-2 (dry), up to 60 (sweet) 

 Arabinose 0.30-1.0 

Alcohols (volatile) Ethyl alcohol 72-120  (9.1-1.5 % v/v) 

 Glycerol 5.0-15.0 

(nonvolatile) Butan,2,3,-diol 0.3-1.5 

 Inositol 0.2-0.7 

 Sorbitol 0.1 

Acids Total 3.5-15.0 (some present as salts with metallic cations) 

(nonvolatile)   

(volatile) Acetic acid 0.5-1.0 (can be higher in spoiled wines) 

   

Metal cations Potassium  0.5-1.5 

 Sodium 0.03-0.05 

 

Metal cations Magnesium 0.05-0.15 

 Calcium 0.05-0.15 

Tannins Total Content in mg/L 

(Folin Ciocalteau test)  Wine type Range Average

  White 40-1300 360 

  Red 190-3800 2000 

  White-dessert 100-1100 350 

  Red-dessert 400-3300 900 

Other volatile substances Total 0.8-1.2   

    (esters, terpens, phenols, hydrocarbones and other volatiles) 

* EU definition of ‘dry’, < 9g/L sugar 
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Water and ethanol are the major compounds of the wine. The minor components 

such as sugars, organic acids, phenolic compounds, salts, glycerol, aliphatic and 

aromatic alcohols act on the basic flavour and colour formation. Their concentration in 

the wine is of great importance in terms of both quality assurance of wine making 

industries and the consumer preferences (Tarantilis, et al. 2008).  

The chemical compounds affect sensory perception by interacting in 

complicated ways. The taste and mouth-feel sensations of a wine are primarily  related 

to the certain compounds including water, alcohols (basically ethanol), fixed acids 

(mainly tartaric, malic and lactic acids), phenolic compounds, sugars (glucose and 

fructose) and glycerol (Jackson 2008). Sweetness of the wine, important in 

classification according to taste, is majorly correlated with residual amount of sugars 

(saccharides), glucose and fructose. The ethyl alcohol and glycerol have also small 

contribution to sweet taste of the final wine. Acidity of the wine is important owing to 

its role in control of fermentation and stability of the wine. The acid taste is majorly due 

to tartaric, malic and citric acids. Lactic acid is especially important in malolactic 

fermentation, in addition acetic acid is highly significant as a potential spoilage agent. 

Astringency, described as dry and puckery sensation, is primarily due to high molecular 

weight phenolic compounds and also small wine flavanoids, (+)-catechin and (-)-

epicatechin (Clarke, et al. 2004).  Furthermore, tannins have significant role in the final 

quality of red wines, especially their astringency. In addition, they provide important 

health benefits due to their antioxidant activity (Fernández and Agosin 2007). Mouth-

feel, a term often corresponds with the term ‘body’, is correlated with viscosity and 

hydrophilic proline-rich protein-phenol complex plays a significant role on mouth-feel 

perception (Clarke, et al. 2004). 

Colour, another quality parameter, is a part of the overall perceived organoleptic 

property. The colour of the red wines derives from the condensation reactions between 

anthocyanins, natural phenolic glycosides, and other phenolic compounds naturally 

occurring in wines and tannins also play important role in the long-term colour stability. 

Anthocyanins are found in the skin of the black and red grapes and are extracted to the 

wine during vinification and particularly maceration step and the colour of anthocyanins 

is affected by the pH differences until the consumption (Janik, et al. 2007). On the other 

hand, colour of white wines is related to the non-flavanoid chemicals such as caffeoyl 

tartaric and its derivatives (Clarke, et al. 2004, Fernández and Agosin 2007). It is also 

believed that the yellow colour of young white wine is resulted from the limited 
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extraction and oxidation of flavonols such as quercetin and kaempferol and yellow gold 

colour of older white wines is derived from the oxidation of phenols or galacturonic 

acid (Jackson 2008). 

Odour and flavour of the wine is one of the important parameters influencing the 

consumer preference. Certain primary aromas characterize a wine like grapey aroma 

which is mainly related to the terpenes. There are numerous volatile components acting 

on the flavour of the wine and basically esters, terpens, alcohols, volatile acids, 

aldehydes and ketons are known to act on the flavour of the wine to a large extent 

(Clarke, et. al. 2004).   

 

2.5. Factors Affecting Wine Composition 
 

The composition of wines is influenced by many factors like the variety of the 

grapes used in winemaking, terroir, ripening conditions of the grapes, viticultural 

techniques (fertilisation, irrigation techniques), the characteristics of the soil, 

geographical condition, the climatic conditions, the vintage and different wine making 

methods (temperature and duration of maceration, catalysts and enzymes). Variability 

among different wines is arising from the interaction of all of these factors with each 

other (Arozarena, et al. 2000; Tarantilis, et al. 2008).  

Climate, one of the most important factors, is related to the vine and grape 

composition which influence the wine chemistry and microbiology, and sensory 

properties. Among the most important climate-related effects are the late harvest and 

high temperatures during the grape ripening period. These conditions cause high grape 

sugar that induces high alcohol levels, lower acidities and differences in the varietal 

aroma compounds. In addition, anthocyanin synthesis and accumulation are affected by 

the length of sun exposure because of excessive or low temperatures (Mira de Orduña 

2010). Sun exposure also influences the formation of monoterpenes which are 

responsible for fruity, floral and spicy aromas and it was reported that white wine 

aromas comprise more conveniently in cool climates (Duchene and Schneider 2005). 

The variations between different vintage wines basically stem from the climatic 

differences between the years of harvest.  

The grape variety is another differentiating factor on the chemical composition 

of the wine. Every grape plant has individual phenolic composition (anthocyanins, 

flavonoids, procyanidins, hydroxycinnamic acids, and their derivatives) which is 
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characteristic for each grape variety (Tarantilis , et al. 2008). In another words, phenolic 

compounds acts as a fingerprint in differentiation of the wines from different varieties 

and this distinguishing property of the wine was previously studied for the purpose of 

differentiation of the wines on the basis of grape variety for many times (Arozarena, et 

al. 2000; Tzouros and Arvanitoyannis 2001; Aleixandre, et al. 2002; Bevin, et al. 2008).  

Wine composition is also diverging with the influence of differences in the wine 

making step. Differentiations in the maceration and fermentation stages, usage of 

different fining agents, and addition of yeasts and enzymes are some of the examples 

from the different enological treatments which have been studied (Castillo-Sánchez, et 

al. 2006; Castillo-Sánchez, et al. 2008). In a previous study, the effect of skin contact 

treatment on the content of aroma compounds of Narince wines was investigated by 

comparing the untreated wines of two vintages. The study revealed that skin contact 

treatment increased the total concentration of wine volatiles (Selli, et al. 2006). In 

another study, the effects of different wine making processes (conventional maceration 

and fermentation after initial carbonic maceration) with and without the use of four 

different fining agents on anthocyanin content and the colour stability were evaluated. 

On the basis of the results, carbonic maceration led lower anthocyanin content but 

higher stability during the storage and usage of fining agents resulted in variation on 

colour intensity and stability (Castillo-Sánchez, et al. 2006). The influence of 

maceration temperature, clarification method, storage temperature and length of storage 

time on the phenolic compounds and colour of young red wines was investigated by 

Gomez-Plaza, et al. (2000). Multivariate analysis indicated significant differences 

among all of the variables according to vinification techniques and length of storage 

time (Gomez-Plaza, et al. 2000). 

Soil properties also cause differences in the composition of the wines. Among 

the soil properties water retention and drainage capacity are important as far as the  

physical and chemical characteristics are concerned. Since the vine plant doesn’t like 

water logging, extremely clayed soils are undesirable. On the other hand, clay has the 

advantage of attracting and bearing humus, containing nitrogen and other nutrients. 

Depending on the composition and amounts of chemicals naturally found in the soil, the 

chemical composition of the wines shows variations (Clarke et al. 2004). Soil 

characteristics and climate together cause variations in the wine composition and these 

properties are used in the geographical classification (or appellation of origin in some 

countries) (Liu, et al. 2006). 
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2.6. Wine Characterisation 

 
Characteristics of a wine show differences with the effect of a wide range of 

factors like the type of the grape (variety), soil characteristics, cultural and enological 

conditions (differentiation in the production steps), climatic and geographical 

conditions. Grape variety, geographic origin and vinification techniques are also 

important from the point of consumer expectations.  

Varietal classification of the wines is based on the chemical differentiation 

between mono-varietal wines. Even though the mono-varietal wine can be composed of 

two or more varieties, it is defined with the dominant grape variety accounting for 75-

85% of the wine and the dominant variety is decisive on varietal differentiation. The 

chemical and corresponding sensory profile of a mono-varietal wine are distinguishing, 

on account of the fact that each grape variety has individual chemical composition. 

Table 2.3. shows the variations in the chemical composition of four mono-varietal 

wines from Valencian community, a region determined with ‘Appellation d’Origine’ in 

Spain. All the grapes used in the study given in Table 2.3. were collected at the 

optimum stage of grape harvest for manufacturing young wines with equal maceration 

times. 
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Table 2.3. Chemical composition of the Cabarnet Sauvignon, Tempranillo, Monastrell 
and Bobal wines of Valencia region from 1994 and 1995 vintages 
(Source: Aleixandre, et al. 2002)  

 

  Variety 

  

Cabarnet 
Sauvignon 

Tempranillo Monastrell Bobal 

volatile aciditya 0.67 0.64 0.61 0.58 

total acidityb 6.32 4.82 5.07 6.14 

pH 3.46 3.82 3.76 3.51 

Density 0.993 0.993 0.994 0.995 

ethanol c 12.71 12.57 12.77 11.3 

Sugar d 1.99 1.9 2.02 2.67 

SO2 total e 58.2 60.24 65.63 36.13 

SO2 free e 18.36 26.98 21.41 20.11 

acetaldehyde e 36.04 26.5 31.55 19.57 

methanol e 161.98 142.39 213.92 147.05 

1-propanol e 21.09 27.25 22.5 24.09 

isobutyric alcohol e 50.49 44.58 53.49 57.11 

isoamylic alcohol e 337.4 225.62 305.84 246.16 

glycerol e 12012.25 10145.69 10200.32 8932.38 

2.3-butanediol e 591.15 684.46 569.75 525.74 

1-butanol e 3.32 2.28 3.93 1.49 

1-pentanol e 0.06 0.05 0.09 0.05 

cis-3-hexenol e 0.08 0.24 0.04 0.09 

2-phenylethanol e 65.88 44.93 76.55 34.78 

methyl acetate e 11.99 11.27 13 11.71 

ethyl acetate e 55.15 57.39 54.64 50.95 

ethyl propionate e 0.15 0.18 0.18 0.16 

ethyl butyrate e 0.83 0.98 1.34 0.81 

isoamyl acetate e 0.67 1.19 0.79 0.48 

isobutyl acetate e 0.05 0.06 0.05 0.04 

hexyl acetate e 0.04 0.05 0.03 0.05 

ethyl lactate e 78.94 69.72 70.37 71.13 

ethyl octanoate e 0.56 0.59 0.5 0.58 

ethyl decanoate e 0.43 0.65 0.3 0.34 

γ-butyrolactone e 9.24 6.41 10.7 6.53 

diethyl succinate e 5.2 6.53 5.99 6.17 

diethyl glutarate e ͤ 0.16 0.07 0.11 0.07 

ethyl laurate e 0.03 0.04 0.03 0.03 
a Grams per liter of acetic acid. b Grams per liter of tartaric acid. c Percent v/v. 

                        d Grams per liter. e Milligrams per liter. 
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Wine characterisation is generally performed with sensory and chemical analysis 

in traditional way. However, with the improvement of the up-to-date methods especially 

spectroscopic techniques in combination with multivariate data analysis have been 

started to be used for the classification. Such being the case, a large number of chemical 

compounds can be simultaneously handled to differentiate wines from different 

varieties. Characterizing or classifying the wines according to variety, geographical 

origin and different wine making techniques has been studied for many times 

previously. Wine characterisation was also performed to detect the adulteration and 

authenticity. Almela et al. (1996) investigated the discrimination of young red wines 

from six different varieties produced in Spain by using colour parameters. PCA and 

discriminant analysis (DA) were employed to determine the differences among the wine 

samples and a level of classification of 80.7% was achieved by using three colour 

variables (L, a and C values).  When the number of variables were increased to 10 

including colour intensity, pH, ionised anthocyanins, total phenols, percentage of 

yellow pigments, total anthocyanins, hue and L value 95% correct discrimination was 

succeeded by discriminant analysis (Almela , et al. 1996). In another study wines made 

from Cabarnet Sauvignon, Tempranillo, Monastrell and Bobal varieties from 1994 and 

1995 vintages were differentiated according to variety by using conventional chemical 

parameters such as, alcohols, polyols and esters. Discriminant analysis composed of 11 

variables was able to differentiate 100% of the 1994 vintage and 97% of the 1995 

vintage (Aleixandre, et al. 2002). Tarantilis, et al. (2008) achieved to differentiate Greek 

red wines from Agiorgitiko, Xinomavro and Merlot varieties by mid-infrared 

spectroscopy in combination with chemometrics. The phenolic extracts obtained with 

solid phase extraction using C-18 column were examined by (FTIR) spectroscopy. By 

comparison of the unknown wine extract with the libraries of spectra constituted from 

each wine samples, the match values were measured and a successful varietal 

differentiation was achieved with this method (Tarantilis, et al. 2008). A similar study 

was performed by using phenolic wine extracts for discrimination of seven different red 

wine cultivars (Edelman, et al. 2001). Multivariate data analysis was applied by using 

mid-infrared spectroscopy and UV-vis spectroscopy to differentiate Austrian red wines 

from Cabarnet Sauvignon, Merlot, Pinot Noir, Blaufränkisch (Lemberger), St. Laurent 

and Zweigelt. Phenolic extracts taken by solid phase extraction with C-18 column were 

analysed by both mid-infrared spectroscopy and UV-vis spectroscopy and the results 

were tested with hierarchial cluster analysis. The use of mid-infrared spectra was given 
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more satisfactory results for cultivar discrimination, since the cultivar differentiation 

was observed to be limited to the authentication of Pinot Noir wines (Edelmann, et al. 

2001). 

Data from sensory analysis were also used to classify the wines. Kallithraka, et 

al. (2001) made a classification by using both instrumental and sensory analysis in 

combination with statistical analysis. Thirty three red wines from different geographical 

origins of Greece were analysed in terms of phenolic contents, non-coloured phenolics, 

anthocyanins, minerals and sensory profile including astringency, sweetness, acidity, 

body, flavour, after taste and overall acceptability. PCA method was employed to 

differentiate wines and PCA analysis of anthocyanin and sensory properties ended up 

with satisfactory classification for differentiating wines into two groups as south and 

north regions. Differentiation with anthocyanins resulted in identification of three 

groups, two belonging to North Greece and one to South Greece (Kallithraka, et al. 

2001).   

 

2.7. Application of Fourier Transform Infrared Spectroscopy in Wine      
Analysis 

 
Knowledge of the change in the chemical composition is crucial from the 

beginning of grape ripening, for deciding on the optimum the maturity level, for 

controlling fermentation, for storage and aging stages and for monitoring and screening 

the vine and wine at all the stages to obtain a high quality wine. It is well known that 

wine is composed of numerous chemical compounds (Patz, et al. 2004). Wet chemical 

methods for determination of high number of chemicals, whether qualitative or 

quantitative, require time consuming, environment polluting, laborious and expensive 

procedures (Bevin, et al. 2006). That’s why there is a need of simple and rapid methods 

that can be easily applied in routine laboratory analysis. With the advantages of its time 

saving and high resolution, Fourier transform infrared (FTIR) spectroscopy has been 

applied for both quantification and classification of wines (Moreira and Santos 2004).  

The working principle of IR spectrometers is related to the various chemical 

bonds and functional groups that exist in the molecules (Table 2.4). A beam of infrared 

light (wavelength ～0.7-500 μm) is focused on the sample thanks to reflective devices. 

With the absorption of electromagnetic radiation by the molecules constituting the 

sample, gradation between the rotational and vibrational energy levels of the lowest 
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electronic energy state is stimulated and the excitement of vibrational (stretching and 

bending) positions of the molecules in the sample indicated in Table 2.4. create the 

peaks in the spectrum within IR region (Ismail, et al. 1997). 

 

Table 2.4. Functional group absorption in mid-IR region 
         (Source: Ismail, et al. 1997) 

 

 
 

The IR spectroscopy is based on the study of the bands in the near infrared 

region (12800-4000 cm-1) of the spectrum and in the mid- infrared region (5000-400 

cm-1) of the spectrum (Wilson 1994).   

Internal reflectance, also referred to as attenuated total reflectance (ATR), is the 

most adaptable type of the sample representation which consists of a prism of infrared 

transmitting material of high refractive index (Figure 2.1). Infrared radiation enters the 

sample making good optical contact with the crystal after it is focused on the surface of 

the crystal and reducing of the reflected light eventuates when the sample medium 

absorbs infrared beam (Wilson 1994).  
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Figure 2.1. The typical scheme representing Attenuated Total Reflectance (ATR) 
system (Source: Perkin-Elmer 2010) 

 

FT-IR spectroscopy can be used in the differentiation analysis since the IR 

spectrum of a compound is characteristic property which can be accepted as 

‘fingerprint’ (Ismail, et al. 1997).  Therefore, FT-IR spectroscopy is widely applied in 

the grape and wine for classification. For instance, FT-IR spectroscopy technique was 

utilised in differentiation of the ‘Fino’ sherry wines according to six different aging 

levels by Palma and Barroso (2002). PCA analysis was performed to analyse the 

spectral data for differentiation among the wines of six different ageing scales. FT-IR 

spectra have provided a successful differentiation according to ageing levels (Palma and 

Barroso 2002). Quantitative analysis can be also applied with the use of FT-IR 

spectroscopy technique on account of the fact that the amount of the IR energy absorbed 

by the individual component is directly proportional to the amount of each compound 

present (Beer’s Law) (Ismail, et al. 1997). Nieuwoudt, et al. (2006) performed a FT-IR 

spectroscopy application for the quantification of volatile acidity, glycerol, ethanol, 

reducing sugar and glucose concentrations in fermented Chenin Blanc and synthetic 

musts. FT-IR spectra were collected for screening of the fermentation profile of wine 

yeast and calibration set was established to control accuracy of the prediction model. At 

the stage of evaluating the models, standard error of laboratory (SEL) and standard error 

of prediction (SEP) values were considered. Excellent predictive accuracy was achieved 

for the regression model for prediction of volatile acidity and regression of ethanol, 

reducing sugar and glucose ended up with satisfactory prediction models (Nieuwoudt, et 

al. 2006). In another study, FT-MIR spectroscopy combined with chemometric 

techniques was applied for quantitative analysis of red wine tannins (Fernández and 

Agosin 2007). With the use PLS regression and spectral interval selection procedures 

(iPLS and CSMWPLS), prediction models for tannin and mean degree of 
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polymerization of the tannins (mDP) were developed. The investigation resulted in 

accurate predictions for tannin concentrations and mDP of the tannins in accordance 

with the logical root mean square of prediction RMSEP, root mean square of calibration 

RMSEC and regression coefficient R2 values calculated for calibration and prediction 

sets established. 

 

2.8. Implementation of Multivariate Statistical Techniques in Wine 
Analysis   

  
With the development of modern analytical instrumentation, nowadays food 

analysis depends more on full-spectrum measurements of both chemical and physical 

characteristics of a sample including multivariate responses (Bauer , et al. 2008). The 

results obtained from spectroscopic and chromatographic methods can include complex 

data with a large number of variables. Therefore, multivariate data analysis, also 

referred to as chemometrics, is required to evaluate the data by extracting the relevant 

information from these complex data. Chemometric methods perform the data analysis 

with comprehensive interpretation of the overall data matrix by taking into account the 

interactions among the numerous constituents present in the sample (Downey 1998; 

Cozzolino, et al. 2005; Bauer, et al.2008).  

Chemometric methods are mainly employed for basically three purposes. 

Chemometric techniques are most commonly used for characterizing the data visually 

by appropriate graphic plots including useful summaries of simple means, standard 

deviations and correlations. Discrimination or classification is another field of usage to 

separate the large data into small groups. The wines show variability according to grape 

varieties, different wine-making practises, vintage and geographical origins.   

Chemometric methods for classifying wines in combination with spectral or  

chromatographic data have been widely applied for many years (Moret, et al. 1994). 

Regression and prediction of the chemical or sensory properties from the spectral or 

chromatographic data are among one of the most used application fields of multivariate 

data analysis. Regression analysis relates two sets of variables (X and Y) to each other. 

X data matrix, generally spectral or chromatographic data, and one or more Y variables 

obtained from analytical methods are correlated to each other to attain a prediction of y 

variables calculated from the regression model created. The purpose of regression 

analysis is to develop a model also known as calibration model to predict a property of 
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interest, for example, the concentration of a particular chemical in the sample  

(Esbensen 2002; Cozzolino, et al. 2009). Regression analysis combined with modern 

analytical methods provides simultaneous determination of large numbers of enological 

parameters, therefore, regression analysis have been applied in wine industry from the 

start of grape ripening until bottling of the finished wine for many years (Bauer, et al. 

2008).     

The most commonly used chemometric techniques applied to grape and wine 

analysis are principal component analysis (PCA) and partial least squares (PLS) 

regression. 

 

2.8.1. Principal Component Analysis (PCA) 
 

Principal component analysis is a multivariate projection method designed for 

screening, extracting and compressing multivariate data matrix X with N rows and K 

columns representing observations and variables, respectively (Eriksson, et al. 2001; 

Cozzolino 2009).  

PCA is developed to reduce the number of variables to a smaller number of 

indices, referred to as principal component, by projecting the original multivariate data 

to a low-dimensional space (Figure 2.2). Linear combinations of variables, represented 

by lines, planes and hyperplanes, are produced by PCA on the basis of least square 

sense, which minimizes the residual variance and maximizes the variance of the scores 

(Eriksson, et al. 2001; Cozzolino 2009). 

 

 
 

Figure 2.2. Projection of the multivariate data matrix to low dimensional space     
as a ‘swarm of points’ (Source: Eriksson, et al. 2001) 
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Prior to PCA, the data are firstly pre-processed by subtracting the mean from 

each of the data dimensions (mean centering) and by dividing each column of X by its 

standard deviation (UV scaling). There are several scaling techniques and the most 

commonly used one is unit variance (UV) scaling (Brereton 2003).  

PCA method utilises a mathematical transformation procedure of the original data 

matrix X, which can be stated as: 

 

                                                         X= T*P+E                                                         (2.1) 

 

where the scores having as many rows as the original data matrix are symbolised by T; 

the loadings having as may columns as the original data are symbolised by P matrix and 

E is the error matrix (Brereton 2003). Scores matrix constituted from column vectors, 

and loadings matrix composed of row vectors together model the structure of principal 

components as the matrix product T*P (Figure 2.3). Several vectors construct the scores 

matrices T and loading matrices P and the first scores and loading vector are named as 

eigenvectors of the first PC. Each loading constitute a bridge between variable space 

and PC space while scores are described as the distance of the projected observation to 

PC-axis which are represented as ti for the observation i (Figure 2.2.) (Brereton 2003; 

Esbensen 2002). 

 

 

 

  

     

     

 

 

 

Figure 2.3. A matrix representation of how a data matrix is modelled by PCA 
(Source: Brereton 2003) 

 

PCA method is basically a transformation of the data by using the PC lines that 

mostly describe the relationships between the data. Therefore, a classification of the 
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data point with the contributions from each of the PC lines is achieved which can be 

used for discrimination and classification purposes (Esbensen 2002).  

Principal component analysis is used in the classification method referred to as 

Soft Independent Modelling of Class Analogies (SIMCA). SIMCA method is based on 

development of models to be used for prediction of class memberships by PCA for each 

class independently. In SIMCA method class boundaries are defined by two parameters 

as Euclidean distance and leverage. Euclidean distance (sample to model distance) 

defines the distance from class centre to the sample which forms a basis for Coomans’ 

plot in PCA technique. Leverage is described as the measure of similarity of a sample to 

the whole samples of the class at issue (Legin, et al. 2003; Brereton 2003).  

 

2.8.2. Partial Least Square (PLS) 
 

Partial least square (PLS), a regression extension of PCA, is a method for 

construction of predictive models by relating two data matrices, X matrix of 

factors/predictors (particularly, spectral or chromatographic data) and Y matrix of 

responses (data taken from analytical methods) by linear multivariate model (Eriksson 

et al. 2001).  

Like PCA method pre-processing of the data is required prior to performing PLS 

regression analysis. Same pre-processing techniques (mean centering and UVscaling) 

are employed before PLS analysis. 

PLS regression analysis is summarised with the following set of models: 

 

                                                           X =T*P+ E                                                        (2.2) 

                                                           

                                                           c =T*q+ f                                                          (2.3) 

 

where q, which is normalised, has similarity to a loading vector, the product of T and P 

approaches to spectral data (predicted) concentration and the product of T and q 

approaches to actual concentrations, E is the error matrix of X matrix and f is the error 

matrix of c matrix (Brereton 2003). Principle of PLS is illustrated in Figure 2.4. 
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Figure 2.4. Matrix relationships in PLS regression analysis 
(Source: Brereton 2003) 

 

PLS components are the results of the projection of the information taken from 

the original x variables onto a small number of latent factors or variables. These latent 

variables are considered while the variable correlations are modelled. PLS regression 

analysis does not assume that the errors appear only for y. Thus, regression model 

requires to be validated before it is used. With the help of newly constructed 

independent and representative validation set, the predictive ability of the model can be 

evaluated (Wold, et al. 2001). 

One or more responses can be modelled and analysed by PLS regression. When 

the Y-variables are strongly correlated to each other, they can be analysed together. 

However, the variables should be analysed separately to avoid high number of PLS 

components which creates difficulty in interpretation if the Y variables have no 

correlation (Eriksson, et al. 2001).  
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CHAPTER 3 

 

 MATERIALS AND METHODS 

 
3.1. Materials 

 

3.1.1. Wine Samples 

 
A total of 79 samples from mono-varietal Turkish wines were used in this study. 

To cover a wide range of variety, dry and semi-sweet wines produced from the grapes 

of all winery regions in Turkey were selected. 41 samples from 2006 and 38 samples 

from 2007 vintage, were bought from the local markets in Turkey (Table 3.1 and 3.2). 

The wines were stored in the Schott bottles of 100 mL at 4° C till usage. To avoid any 

chemical changes all the bottles were covered with aluminium foil and the headspace of 

the samples was flushed with nitrogen gas.  

 

Table 3.1. The wine samples from 2006 vintage 

 

Sample 
Number 

Producer Label Grape Type Code 

1 Yazgan Boğazkere Boğazkere 1BK6 
2 Kavaklıdere Lal Çalkarası 2ÇK6 
3 Doluca DLC Kalecik karası 3KK6 
4 Doluca DLC Öküzgözü 4OG6 
5 Doluca Nevşah Emir 5E6 
6 Doluca Safir Misket 6M6 
7 Pamukkale Anfora Narince 7N6 
8 Kavaklıdere Angora Sultaniye 8S6 
9 Pamukkale Anfora Chardonnay 9CH6 

10 Kocabağ Boğazkere Boğazkere 10BK6 
11 Sevilen Cabarnet Savignon Cabarnet Savignon 11CS6 
12 Kayra Cumartesi Çalkarası 12CK6 
13 Kayra Terra Kalecik karası 13KK6 
14 Pamukkale Anfora Merlot 14ME6 
15 Melen Papazkarası Papazkarası 15PK6 
17 Melen Muscat Reine DeVin Misket 17M6 
18 Turasan Narince Narince 18N6 
19 Yazgan Kulüp Sultaniye 19S6 
20 Umurbey Chardonnay Chardonnay 20CH6 
21 Büyülübağ Cabarnet Savignon Cabarnet Savignon 21CS6 

                  (Cont. on the next page) 
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Table 3.1. (Cont.) 

 

Sample 
Number Producer Label Grape Type Code 

22 Pamukkale Anfora Kalecik karası 22KK6 
23 Umurbey Merlot Merlot 23ME6 
24 Yazgan Dolce Vita Öküzgözü 24OG6 
25 Yazgan Papazkarası Papazkarası 25PK6 
26 Doluca DLC Shiraz 26SH6 
27 Kocabağ Öküzgözü Öküzgözü 27OG6 
28 Kayra Tılsım Misket 28M6 
30 Sevilen Chardonnay Chardonnay 30CH6 
31 Çankara Cabarnet Savignon Cabarnet Savignon 31CS6 
32 Yazgan Kalecik Karası Kalecik karası 32KK6 
33 Çankara Alev Merlot 33ME6 
34 Yazgan Emir Emir 34E6 

35 Cankara Misket Misket-muscat-bornova 
misketi 35M6 

36 Büyülübağ Sultaniye Sultaniye 36S6 
37 Melen Melencik Kalecik karası 37KK6 
38 Sevilen Merlot Merlot 38ME60 
40 Pamukkale Senfoni Sultaniye 40S6 
41 Sevilen Kalecik Karası Kalecik karası 41KK6 
42 Sevilen Kara Salkım Papazkarası 42PK6 
43 Kayra Terra Shiraz 43SH6 
44 Pamukkale Anfora Shiraz 44SH6 

 
Table 3.2. The wine samples from 2007 vintage 

 

Sample 
Number Producer Label Grape Type Code 

1 Doluca DLC Boğazkere 1BK7 

2 Sevilen 
Cabarnet 
Savignon Cabarnet Savignon 2CS7 

3 Kavaklıdere Rosato Çalkarası 3CK7 
4 Sevilen Syrah Shiraz 4SH7 
5 Sevilen Kalecik Karası Kalecik karası 5KK7 
6 Doluca Safir Misket 6M7 
7 Kipa Vaha Merlot 7ME7 
8 Doluca Nevşah Emir 8E7 
9 Kavaklıdere Ancyra Narince 9N7 

10 Pamukkale Beyaz Harman Sultaniye 10S7 
11 Kipa Vaha Chardonnay 11CH7 
12 Doluca DLC Öküzgözü 12OG7 
13 Diren Boğazkere 85%Boğazkere+7.5%Kalecik Karası 

+7.5%CabarnetSavignon 13CS7 

14 Diren Cabarnet 
Savignon 

85%CabarnetSavignon+7.5%Syrah 
+7.5%Boğazkere 14CS7 

15 Doluca DLC Kalecik karası 15KK7 
16 Kavaklıdere Angora Sultaniye 16S7 
17 Kipa Vaha Kalecik karası 17KK7 

               (Cont. on the next page) 
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Table 3.2. (Cont.) 

 

Sample 
Number Producer Label Grape Type Code 

18 Yazgan Dolce Vita Öküzgözü 18OG7 
19 Kocabağ Velvet Emir 19E7 
20 Doluca Moscado Misket 20M7 
21 Diren Dimes Narince 21N7 
22 Pamukkale Anfora Shiraz 22SH7 
23 Doluca DLC Shiraz 23SH7 
24 Melen Merlot Merlot 24ME7 
25 Kocabağ Cabarnet Savignon Cabarnet Savignon 25CS7 
26 Pamukkale Anfora Kalecik karası 26KK7 
27 Kayra Terra Kalecik karası 27KK7 
28 Kocabağ Kalecik Karası Kalecik karası 28KK7 
29 Kavaklıdere Ancyra Merlot 29ME7 
30 Kavaklıdere Ancyra Öküzgözü 30OG7 
31 Diren Öküzgözü Öküzgözü 31OG7 
32 Pamukkale Anfora Shiraz 32SH7 
33 Kipa Vaha Shiraz 33SH7 
34 Turasan Emir Emir 34E7 
35 Turasan Narince Narince 35N7 
36 Yazgan Kulüp Sultaniye 36S7 
37 Sevilen Merlot Merlot 37ME7 
38 Kavaklıdere Sade Emir 38E7 

 
3.1.2. Chemical Reagents 

 
The chemicals used in the experiments are all analytical grade and indicated in 

Table 3.3.  

 

Table 3.3. Chemical reagents used in the analysis 

 

Chemical Name Manufacturer Code 
Ethanol absolut puriss Sigma-Aldrich 32221 
Folin Ciocalteu's Phenol Reagent Sigma F9252 
Gallic Acid Sigma SIG7384-100G 
HCl (37%) Sigma Aldrich 7102 
Methyl Red Indicator Sigma Aldrich 250198 
NaCO3 Merck 1.06392 
NaOH Merck 1.06462.1000 
pH 4 Buffer Sigma Aldrich 82598 
pH 7 Buffer Merck 1.09477.0500 
pH 10 Buffer Merck 1.09438.1000 
Potassium Chloride Riedel-de Haen 12636 
Sodium Acetate Merck 1.06268.1000 
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3.2. Methods 
 

3.2.1. Total Phenol Determination 
 

Total phenol of the wine samples were determined with the use of Folin-

Ciocalteau micro method, a method derived from total phenol analysis (Slinkard and 

Singleton 1977). Due to the fact that minimum volume of sample and reagent is needed 

for micro method, reduced waste and disposal volume makes this modified method 

preferable.  

The procedure is based on the fact that phenols ionize completely under alkaline 

conditions, and can be readily oxidized by the Folin-Ciocalteau reagent. As initial step 

gallic acid stock solution and sodium carbonate solution were prepared. 

 

Preparation of Gallic Acid Stock Solution: 0.500 g of dry gallic acid was 

weighed and dissolved in 10 mL of ethanol. The volume was then completed 

to 100 mL with distilled water. The solution was kept in the closed flask 

covered with aluminium foil and saved in the refrigerator for two weeks.  

Preparation of Sodium Carbonate Solution: 200 g of anhydrous sodium 

carbonate (NaCO3) was weighed and dissolved in 800 mL of distilled water. 

The solution was boiled and cooled. After cooling a small amount of sodium 

carbonate was added. It was waited for 24 hours than filtered and the volume 

was completed to 1 L. 

Preparation of Calibration Curve: 0, 1, 2, 3, 5, 10, 13, 15 and 17 mL of gallic 

acid stock solution was taken into 100 mL volumetric flasks, and diluted to 

volume with distilled water. 40 µL from each calibration solution was added 

into different tubes, and 3.16 mL of distilled water was added to each. 200 µL 

of Folin- Ciocalteau reagent was added and immediately mixed via vibratory 

mixer (Yellow Line TTS 2, Ireland). After waiting for 4 minutes 600 µL of 

sodium carbonate solution was added and mixed. The solutions were kept for 

2 hours in a dark place at room temperature, then the absorbance of each 

solution was read against the blank at 765 nm with a spectrophotometer 
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(Schimadzu UV-2450, Japan). The absorbance results were plotted against 

concentrations. 

 Phenol Determination: From each white wine 40 µL was added into different 

tubes, and 3.16 mL of distilled water was added. 200 µL of Folin- Ciocalteau 

reagent was added and immediately mixed. After waiting for 4 minutes, 600 

µL of sodium carbonate solution was added and mixed. The solutions were 

kept for 2 hours in a dark place at room temperature then the absorbance of 

each solution was read against the blank at 765 nm. The red and rose wines 

were firstly diluted by 10 to see the colour change clearly, and then the same 

procedure was applied. Through the use of calibration curve total phenol 

concentration of wines were calculated as mg gallic acid per L (Figure 3.1). 

 

Figure 3.1. Calibration curve of gallic acid for total phenol calculation 

(Source: Slinkard and Singleton 1977) 

 

3.2.2. Anthocyanin Determination 

 
The total anthocyanin content of wines was detected using pH differential 

method (AOAC Official Method 2005). The principle of this method is measuring the 

colour change resulted in the anthocyanin pigment (the coloured oxonium at pH 1.0, 

and the colourless hemiketal form at pH 4.5) at different wavelengths. 
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 Preparation of pH 1.0 Buffer: 0.93 g of potassium chloride (KCl) into a flask 

and dissolved in 490 mL of distilled water. The pH of the solution was adjusted 

to pH 1.0 (±0.05) via HCl (37%). The solution was transferred to a 500 mL 

volumetric flask and the volume was completed with distilled water. 

  Preparation of pH 4.5 Buffer: 27.22 g of sodium acetate was weighed into a 

flask and dissolved in 480 mL of distilled water. The pH of the solution was 

adjusted to pH 4.5 (±0.05) with HCl (37%). The solution was interchanged to a 

500 mL volume flask and the volume was completed with distilled water.  

 Adjustment of the Dilution Factor: The proper dilution factor was determined 

by diluting the sample with pH 1.0 buffer till observing the absorbance at 520 

nm within the range of 0.2 and 1.4. 

 Determination of Anthocyanins: The anthocyanin content of the wines was 

determined by measuring the absorbances of the samples diluted with both pH 

1.0 and pH 4.5 solutions at 520 and 700 nm with the help of UV visible 

spectrophotometer (Schimadzu UV-2450, Japan). The anthocyanin 

concentration, expressed as cyanidin-3-glucoside equivalent, was calculated 

with the following formula: 

              
3* * *10( 3 . ., / )

*1
A MW DFAnthocyaninpigment cyd glu eq mg L

ε
− − =            (3.1) 

 

                           A= (A520nm-A700nm)pH 1.0 – (A520nm-A700nm)pH 4.5      (3.2) 

 

MW (molecular weight) = 449.2 g/mol for cyaniding-3-glucoside 

DF= proper dilution factor  

1= pathlength of spectro cuvet in cm 

ε= 26900 molar extinction coefficient in moL*mol-1*cm-1 for cyd-3-glu 

103= factor for conversion from g to mg.  
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3.2.3. Titratable Acidity Measurement 
 

The titratable acidity of the wine samples was measured with the modified 

AOAC method. This procedure depends on titrating the sample with standard sodium 

hydroxide solution to pH 8.2. The stages of the experiment can be listed as follows: 

• Preparation of the 0.1 N Standard Sodium Hydroxide Solution: For a 0.1 N 

solution 4.00 g of sodium hydroxide (NaOH) was weight and dissolved in one 

liter of water. Since NaOH is considerably hygroscopic, the solution was firstly 

standardized before usage. The standardization was performed by titrating the 

NaOH solution with 0.1 N HCl solution. 0.1 N HCl solution was prepared by 

dilution of the 1 mL of HCl of 37% to 100 mL. For standardization 10 mL of 

HCl was taken into a flask. 50 mL of distilled water and three drops of methyl 

red indicator was added to HCl solution. A 25 mL buret was filled with 0.1 N 

NaOH solution and hydrochloric acid solution was titrated to a stable lemon 

yellow colour appearance. 

 

                Volume of HCl*Normality of HClNormality of NaOH=
Volume of NaOH consumed

              (3.3) 

 

• Titration of wine samples: The pH meter (WTW PH 720, Inolab, Germany) was 

fist calibrated before usage consistent with the operator’s manual. 100 mL of 

deionized water was taken to a beaker and 5 mL of wine sample was added. A 

magnetic stirrer was used to provide a homogeneous mixing. The pH electrode 

was immersed into the dilution away from the stir bar and the diluted sample 

was quickly titrated with standard NaOH solution to pH 8.2. The consumption 

of NaOH was recorded and the trials were repeated twice. 

• Calculation: Titratable acidity of wines is expressed in equivalent of tartaric acid 

content (g/ L). 

 

            
( *( )*(75)*(1000)Titratable acidity(g tartaric acid/L) NaOH NaOH

sample

mL N
L

=        (3.4) 
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3.2.4. pH Measurement 
 

pH of the wine samples were measured with the use of pH meter (WTW Series, 

Inolab, Germany) with AOAC Official Methods( 960.19, 17th Ed 2010). Before the 

measurements pH meter was calibrated according to the user’s manual of the pH meter 

with buffer solutions (pH 4, pH 7, and pH 10). The electrode of the pH meter was 

cleaned with distilled water after every measurement. 

 

3.2.5. Brix Measurement 
 

The refractive index, in other words total soluble solids, of the wine samples was 

directly measured with a refractometer (Re50, Mettler Toledo, USA) in accordance with 

the analytical methods. The refractometer was firstly calibrated with air and distilled 

water according to the user’s manual and cleaned with distilled water after each 

measurement. 

 

3.2.6. Colour Measurement 
 

A spectrophotometric method (Kelebek, et al. 2007) was utilised to measure the 

colour of the wine samples. As a pre-treatment all the wine samples were centrifugated 

at 2500 RCF and 4°C for 4 minutes (2-16, Sigma, UK) for the separation of wine 

sediment. After centrifugation the absorbance of the wines were directly read at 420, 

520, and 620 nm using a spectrophotometer. Calculations were made with the help of 

the following formulas: 

 

 Colour Intensity(CI): Abs 420 + Abs 520+ Abs 620                                     (3.5) 

 

          Tint: Abs 420 / Abs 520                    (3.6) 

 

 Proportion of yellow colour - Ye(%)= Abs 420 / CI                            (3.7) 

 

               Proportion of red colour - Red(%)= Abs 520 / CI        (3.8) 
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    Proportion of blue colour - Bl(%)= Abs 620  / CI                             (3.9) 

 

Proportion of red colour produced by the flavylium cations of free and 

bound anthocyanins - dA(%)= (1-(Abs420+Abs620)/2*Abs520)*100               (3.10) 

 

3.2.7. FTIR- Spectroscopy Analysis 
 

All wine samples were scanned through an IR spectrometer (Perkin Elmer 

Spectrum 100 FT-IR spectrometer, Wellesley, MA) within the range of 4000-650 cm-1 

wave number. This equipment has a horizontal attenuated total reflectance (HATR) 

accessory with ZnSe crystal (45 deg. Trough Plate) and deuterated tri-glycine sulphate 

(DTGS) detector. 

The scanning was carried out at 4 cm-1 resolution, and 0,50 cm/s scan speed. The 

number of scans for each spectrum was adjusted to 64. The sampling crystal was 

cleaned with, ethanol, toothpaste and distilled water after each measurement and dried 

under nitrogen flow. The measurements were repeated at least three times. 

 

3.3. Statistical Analysis 
 

The data from the FT-MIR spectrometer was analysed by using multivariate 

statistical techniques with SIMCA software (SIMCA P-10.5 Umetrics Inc. Sweden). 

Certain ranges of spectra were used to avoid interferences resulted from the large bands. 

Three spectral regions (965-1565 cm-1, 1700-1900 cm-1, and 2800-3040 cm-1) were 

selected to be used in the statistical analysis (Versari, et al. 2010). 

 

3.3.1. Pre-treatment of the Data 

 
Pre-treatment procedure is necessary prior to multivariate data analysis to 

standardize the data complex by subtracting their averages and dividing by their 

standard deviations (Kettaneh, et al. 2005). To that aim, the data was firstly transformed 

into a more suitable form by the well known pre-treatment techniques such as scaling 

and mean centering. 
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Measured frequencies can often be pre-processed thanks to a group of 

mathematical procedures including various forms of derivatives, and signal corrections 

to yield better results. Certain spectral filtering techniques including first and second 

order derivation, wavelet compression of spectra (WCS) were utilised in data analysis 

for better classification before PCA. The working principle of WCS technique depends 

on retaining significant coefficients from the representation of the data in the new 

ordinate system in order to compress and de-noise the complicated signals. The 

technique includes several functions like Beylkin, Coiflet, Daubechies and SymmLet 

(Eriksson, et al. 2000). Daubechies-4 function was chosen and WCS method was 

applied in 99.95% confidence interval. Spectral filtering techniques like wavelet 

compression of spectra (WCS), wavelet in combination with orthogonal signal 

correction (WOSC) and orthogonal signal correction in combination with wavelet 

(OSCW) were all employed before the PLS regression analysis to MIR spectra. The 

best results were obtained from the OSCW for the quantification of chemical 

parameters and OSCW technique was applied prior to all PLS regression analysis. 

 

3.3.2. Classification 

 
Classification was performed using FT-MIR spectra for separation of the groups 

of spectral data. Principal component analysis (PCA) is a commonly employed method 

to reduce a spectral data set into a small number of new orthogonal variables (Karouri, 

et al. 2010). The data matrix composed of wine samples (observations) and spectral data 

(variables) were used to classify the wine samples into disjoint data classes based on the 

similarities among members of the same data class (Bauer, et al. 2008). PCA reduces 

the number of variables to a small number of principal components (PC) which are 

linear combinations of original variables. The number of components to be used in the 

PCA models is of great importance in the beginning of the classification analysis. 

Determination of the sufficient number of PCs depends on the goodness of fit, which is 

represented by the parameter R2, and predictive ability of the model (Eriksson, et al. 

2000).  

The results of classification were visualized by scores and Coomans’ plots. The 

score plots show the locations of the samples along each model component and are used 

to detect sample groupings, similarities or differences between the samples. The score 
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plots are simply plotted for the first two principle components on a two dimensional 

windows. The Coomans’ plot were also used to demonstrate the grouping more clearly 

by using two models created for the basic sample groups as white and red wine. The 

Coomans’ plot compares the distance to the model results against the distance from the 

model centre for unknown samples of selected models (Esbensen, et al. 2002). The 

resulting plot constitutes from four regions, two regions indicate discrimination of two 

classes (red and white) described by the models with which plot is constructed, one 

region indicates overlap of the two classes, and remaining region indicates the 

observations far from two classes. The Coomans’ plot demonstrates differentiation of 

the selected groups and separation of dissimilar observations like semi-sweet wines 

clearly. FT-MIR spectral data was used to classify the wine samples according to 

variety.  
 

3.3.3. Quantification 

 
Multivariate regression analysis is used to develop models to predict a property 

of interest. There are many examples of the use of modelling and prediction with 

regression analysis such as PLS method. PLS regression analysis can be used for 

relating two data matrices, X (FT-MIR spectral data) and Y (analytical results of 

chemical parameters) by linear multivariate model (Eriksson, et al. 2000). The main 

purpose of PLS regression in this study was to construct linear calibration models that 

enable prediction of chemical parameters like total phenol content, anthocyanin content, 

brix, titratable acidity, pH and certain colour parameters like colour intensity, tint, 

yellow%, red%, blue% , anthocyanin proportionality to red colour dA% of wine 

samples using FT-MIR spectral data. 

The observation set was divided into calibration (2/3 of samples) and validation 

(1/3 of samples) sets. The calibration and validation sets were created with randomly 

selected observations and the results of the regression analysis were also visualized with 

prediction plots showing the regression correlation coefficient (R2) of the created 

models. The regression coefficient expresses the connection between predictions and 

the actual results of the chemical parameters and gives an idea about the predictive 

efficiency of the model (Bauer, et al. 2008). The evaluation of the calibration models 

was performed by computing the standard error of prediction (SEP) from validation set, 
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root mean square error of calibration and prediction (RMSEC, RMSEP), residual 

predictive deviation (RPD). The SEP value indicates the average prediction error and 

RMSEP is a measurement of the average difference between the predicted and reference 

actual values at the validation step. Similarly RMSEC describes predictive ability of 

calibration model with reference to the actual data. The RPD value is a significant 

criterion to be utilised for evaluation of the predictive ability of regression models 

(Esbensen, et al. 2002). The calculations were performed by using the following 

formulas: 
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where iy  is the actual value obtained from analytical methods for the i-th sample; iy  is 

the predicted value by mid-IR spectra for the same sample; y  is the mean of each set; n 

is the number samples used in each set; SD is standard deviation in each set (Saeys, et 

al. 2005; Zornoza, et al. 2008). 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 
4.1. Varietal Classification of Wines 
 

4.1.1. Results of Chemical Analysis 
 

The wine samples experimented in this study were selected from the wines of 

the well known grape varieties of Turkey and also foreign varieties grown in Turkey. In 

consequence of varietal, regional and vintage distinctions among the grapes, the wines 

have different chemical properties. The results of chemical analysis of wines from 2006 

and 2007 vintages are listed with their minimum and maximum values in Tables 4.1-

4.4. 

As far as the chemical results are concerned, significant variability in the phenol 

and anthocyanin contents among the same variety wines were observed. For example, 

Boğazkere, Cabarnet Sauvignon and Merlot from 2006 vintage have wide ranges in 

terms of their phenol content. These significant differences may be resulted from the 

variation in regional origins of the grapes of the same variety. Boğazkere wines come 

from Diyarbakır, Cappadocia and Tokat region and Merlot wines come from Aegean 

region and also Thrace region. When the chemical parameters of the same variety wines 

produced in different years were compared, variation between different vintage wines 

could be observed. The mean anthocyanin content was measured as 43 mg/L for 

Boğazkere wines from 2006 vintage, while the same wine has the mean anthocyanin 

content of 103 mg/L in 2007 vintage (Tables 4.1 and 4.3).  The climatic changes 

between the vintage years account for the source the variation.    

The results of titratable acidity, pH and brix were found within the critical 

limits of Turkish Food Codex (2008).
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      Table 4.1. The chemical parameters of the wine samples from 2006 vintage (ranges are shown in parentheses) 

 
Wine Variety Number of samples Total Phenol* Anthocyanin** TA*** Brix p H

Boğazkere 2 2659.46±1146.65    
(1848.66 - 3470.27) 

42.62±34.34   
(18.34 - 66.91) 

4.59±0.004             
(4.58 - 4.59) 

7.39±1.01         
(6.68 - 8.10) 

3.43±0.03          
(3.41 - 3.44) 

Cabarnet Sauvignon 
3 2847.21±808.15   

(2273.95 - 3771.52) 
37.28±17.05   
(23.55 - 56.36) 

4.14±0.16                
(4.03 - 4.31) 

8.08±0.54        
(7.68 - 8.69) 

3.70±0.06      
(3.64 - 3.76) 

Çalkarası 
3 1163.87±174.04        

(1054-1364) 
3.63±2.21       
(2.83-6.12) 

4.42±0.40     
(3.97-4.72) 

7.48±0.75       
(7.02-8.35) 

3.29±0.091 
(3.21-3.39) 

Kalecik Karası 
6 1485.18±295.81    

(1153.846 - 1703.07 
36.89±20.68    
(10.66 - 70.97) 

4.48±0.99            
(3.79 - 6.36) 

7.29±0.38             
(6.79 - 7.70) 

3.57±0.13    
(3.37 - 3.74) 

Merlot 
4 2577.41±1305.75   

(1439.39 - 4080.59) 
33.29±13.40   
(18.45 - 48.01) 

4.13±0.47          
(3.70 - 4.56) 

8.03±0.59         
(7.18 - 8.56) 

3.53±0.18        
(3.31 - 3.71) 

Öküzgözü 
3 1328.28±245.48   

(1045.45 - 1486.01) 
36.18±35.01   
(0.42 - 70.39) 

4.24±0.41           
(3.85 - 4.67) 

6.97±0.66         
(6.22 - 7.48) 

3.37±0.04     
(3.34 - 3.41) 

Papazkarası 3 1788.30±264.50   
(1483.68 - 1959.77) 

35.39±15.16   
(18.70 - 48.32) 

5.35±0.57           
(5.02 - 6.01) 

7.30±0.33             
(7.05 - 7.67) 

3.45±0.06     
(3.39 - 3.51) 

Shiraz 
3 1969.99±184.12   

(1791.19 - 2159) 
73.48±13.79   
(60.03 - 87.59) 

4.36±0.76           
(3.76 - 5.21) 

7.90±0.44         
(7.63 - 8.41) 

3.47±0.06   
(3.44 - 3.54) 

Emir 
2 242.91±7.86   

(237.36 - 248.47) 
 4.43±0.22            

(4.28 - 4.59) 
6.18±0.62             
(5.74 - 6.62) 

3.19±0.21    
(3.04 - 3.33)  

Misket 
4 411.82±151.12   

(242.34 - 583.33) 
 4.44±0.72           

(3.38 - 4.90) 
7.70±1.26          
(6.60 - 9.18) 

3.19±0.22      
(3.03 - 3.50)  

Narince 
2 312.39±113.16   

(232.38 - 392.41) 
 3.95±0.40          

(3.67 - 4.23) 
6.54±0.24      
(6.38 - 6.71) 

3.47±0.01           
(3.46 - 3.48)  

Sultaniye 
4 230.15±55.76   

(175.67 - 296.17) 
 3.86±0.35          

(3.77 - 4.40) 
6.53±0.21          
(6.34 - 6.83) 

3.29±0.15       
(3.16 - 3.44)  

Chardonnay 
3 246.66±51.32   

(187.93 - 282.86) 
 3.94±1.04          

(3.03 - 5.07) 
6.77±0.31          
(6.54 - 7.12) 

3.49±0.28      
(3.26 - 3.79)   

(*Total Phenol expressed in mg gallic acid/ L. **Anthocyanin in cyd-3-glu eq.mg/L and ***Titratable Acidity in g tartaric acid/L) 
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        Table 4.2. The colour parameters of the wine samples from 2006 vintage (ranges are shown in parentheses) 

 

Wine Variety Number of samples CI Tint Yellow% Red% Blue% dA% * 

Boğazkere 
2 7.38±2.10   

(5.90 - 8.86) 
0.99±0.35       
(0.75 - 1.24) 

0.44±0.09     
(0.38 - 0.51) 

0.46±0.07             
(0.41 - 0.51)  

0.096±0.02     
(0.085 - 0.108) 

-600.32±396.60          
(-880.76 - -319.88) 

Cabarnet Sauvignon 
3 9.37±1.45     

(7.91 - 10.89) 
0.93±0.06     
(0.87 - 0.98) 

0.42±0.01      
(0.42 - 0.43) 

0.45±0.01           
(0.44 - 0.46) 

0.13±0.003     
(0.12 - 0.13) 

-1004.00±340.81        
(-1350.25 -  -668.91)

Çalkarası 
3 0.88±0.20        

(0.67-1.08) 
1.84±0.08    
(1.75-1.89) 

0.61±0.007       
(0.60-0.61) 

0.33±0.01     
(0.32-0.34) 

0.058±0.005   
(0.053-0.063) 

91.06±3.97         
(87-94) 

Kalecik Karası 
6 5.58±0.85            

(4.45 - 6.61) 
0.93±0.10       
(0.81 - 1.08) 

0.42±0.01        
(0.40 - 0.44) 

0.45±0.03              
(0.41 - 0.50) 

0.13±0.02    
(0.099 - 0.15) 

-291.37±117.14          
(-439.16 -  -139.01)  

Merlot 
4 7.48±1.77      

(5.66 - 9.64) 
0.93±0.12    
(0.85 - 1.11) 

0.42±0.03     
(0.40 - 0.46) 

0.46±0.03             
(0.41 - 0.49) 

0.12±0.01    
(0.097 - 0.13) 

-620.21±336.20          
(-1056 -  -299.53) 

Öküzgözü 
3 4.56±3.71      

(0.40 - 7.54) 
1.00±0.29   
(0.73 - 1.31) 

0.45±0.08   
(0.37 - 0.52) 

0.46±0.05             
(0.40 - 0.51) 

0.098±0.02     
(0.078 -0.13) 

-273.97±355.37          
(-609.86 - 98.11) 

Papazkarası 
3 6.65±0.82      

(6.08 - 7.58) 
0.91±0.02     
(0.89 - 0.93) 

0.42±0.0004    
(0.41 - 0.42) 

0.46±0.01            
(0.45 - 0.47) 

0.13±0.01      
(0.12 - 0.14) 

-453.64±140.56          
(-615.19 - -359.39) 

Shiraz 
3 9.73±0.74     

(8.88 - 10.19) 
0.77±0.03      
(0.73 - 0.79) 

0.38±0.01       
(0.37 - 0.39) 

0.50±0.01             
(0.49 - 0.51) 

0.12±0.001     
(0.119 - 1.121) 

-1088.28±175.37        
(-1196.75 -  -885.96)

Emir 
2 0.21±0.083     

(0.15 - 0.27) 
5.85±2.54       
(4.05 - 7.65) 

0.80±0.082     
(0.75 - 0.86) 

0.15±0.05                
(0.11 - 0.18) 

0.048±0.032          
(0.026 - 0.070)  

Misket 
4 0.19±0.11         

(0.085 - 0.31) 
5.57±1.67        
(4.02 - 7.42) 

0.81±0.06      
(0.76 - 0.87) 

0.15±0.04               
(0.12 - 0.19) 

0.032±0.02            
(0.01 - 0.05)  

Narince 
2 0.17±0.01      

(0.17 - 0.18) 
5.29±1.98       
(3.89 - 6.69) 

0.79±0.08       
(0.74 - 0.85) 

0.16±0.04           
(0.13 - 0.19) 

0.05±0.04         
(0.022 - 0.072)  

Sultaniye 
4 0.19±0.03          

(0.15 - 0.22) 
4.49±1.30            
(3.28 - 5.65) 

0.77±0.06         
(0.71 - 0.82) 

0.18±0.04           
(0.14 - 0.22) 

0.053±0.02            
(0.032 - 0.083)  

Chardonnay 
3 0.20±0.03            

(0.18 - 0.23) 
4.42±0.98        
(3.32 - 5.20) 

0.77±0.07       
(0.69 - 0.82) 

0.18±0.03               
(0.16 - 0.21)  

0.056±0.04     
(0.022 - 0.10)  

                        (ͣ dA%: The proportion of red colour produced by flavylium cations of free and bound anthocyanins) 
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Table 4.3. The chemical parameters of the wine samples from 2007 vintage (ranges are shown in parentheses) 
 

Wine Variety Number of Wines Total Phenol* Anthocyanin** T A*** Brix pH 

Boğazkere 
2 3467.41± 148.77       

(3362.21 - 3572.61)
107.79± 29.80      
(86.72 - 128.86) 

4.37± 0.97     
(3.68 - 5.05) 

7.70± 0.21     
(7.55 - 7.84) 

3.38± 0.16      
(3.27 - 3.49) 

Cabarnet Sauvignon 
3 3336.08± 1232.54     

(2368 - 4723.60) 
71.38± 28.82     
(45.98 - 102.70) 

4.47± 0.31      
(4.20 - 4.83) 

8.62± 0.55        
(8.10 - 9.19) 

3.82± 0.18        
(3.68 - 4.03) 

Kalecik Karası 
6 2061.61± 362.71      

(1585.81 - 2698.02)
46.51± 21.09   
(31.78 - 85.83) 

4.20± 0.32         
(3.91 - 4.73) 

7.75± 0.28        
(7.28 - 7.99) 

3.71± 0.18        
(3.45 - 3.91) 

Merlot 
4 2808.58± 604.65       

(2318.48 - 3634.49) 66.10± 24.12 
4.47± 0.24        
(4.14 - 4.73) 

7.64± 1.16   
(5.94 - 8.56) 

3.56± 0.13       
(3.41 - 3.71) 

Öküzgözü 
4 1876.42± 776.64     

(735.04 - 2437.29) 
58.74± 42.02      
(1.73 - 102.98) 

4.74± 0.24           
(4.53 - 5.02) 

6.75± 0.88         
(5.84 - 7.51) 

3.51± 0.20        
(3.34 - 3.80) 

Shiraz 
5 2929.37± 514.00      

(2476.80 - 3593.23)
87.00± 41.85         
(65.90 - 161.81) 

4.72± 0.50       
(4.21 - 5.54) 

7.37± 1.44         
(5.85 - 8.99) 

3.58± 0.13        
(3.39 - 3.74) 

Emir 
4 325.92± 32.93         

(294.60 - 368.40) 
 4.13± 0.70    

(3.44 - 5.05) 
5.70± 0.73      
(4.67 - 6.35) 

3.27± 0.33      
(2.97 - 3.74)  

Misket 
2 321.16± 48.72       

(286.72 - 355.61) 
 5.33± 0.30        

(5.12 - 5.54) 
8.07± 1.33    
(7.13 - 9.01) 

3.02± 0.08      
(2.96 - 3.07)  

Narince 
3 369.50± 63.44         

(329.62 - 442.66) 
 4.39± 0.75        

(3.88 - 5.25) 
5.81± 0.89        
(4.78 - 6.35) 

3.31± 0.18        
(3.11 - 3.46)  

Sultaniye 
3 246.53±19.59         

(232.84 - 268.98) 
 4.38±1.61       

(2.67 - 5.87) 
5.93±0.87          
(4.94 - 6.54) 

3.62±0.44   
(3.16 - 4.03)  

Chardonnay 1 333.75  3.72 6.55 3.56 
                                          (*Total Phenol expressed in mg gallic acid/ L. **Anthocyanin in cyd-3-glu eq.mg/L and ***Titratable Acidity in g tartaric acid/L) 
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Table 4.4. The colour parameters of the wine samples from 2007 vintage (ranges are shown in parenthesis) 

 

Wine Variety Number of Wines CI Tint Yellow% Red% Blue% dA% * 

Boğazkere 
2 8.89± 0.36       

(8.64 - 9.15) 
0.69± 0   
(0.69) 

0.36± 0.01      
(0.35 - 0.36) 

0.51± 0.01        
(0.51 - 0.52) 

0.13± 0.02         
(0.12 - 0.15) 

-888.75±78.67            
(-944.38 -  -833.13) 

Cabarnet Sauvignon 3 9.83± 1.57            
(8.50 - 11.56) 

0.96± 0.16    
(0.79 - 1.10) 

0.42± 0.04      
(0.38 - 0.45) 

0.44± 0.04       
(0.40 - 0.48) 

0.14± 0.01         
(0.13 - 0.15) 

-1106.58± 393.92          
(-1539.13 -  -768.44) 

Kalecik Karası 6 7.11± 1.50      
(5.49 - 7.88) 

0.89± 0.15   
(0.69 - 0.97) 

0.41± 0.04     
(0.36 - 0.44) 

0.47± 0.04   
(0.45 -0.52) 

0.12± 0.01     
(0.10 - 0.14) 

-547.36± 268.40         
(-673.14 -  -272.12) 

Merlot 
4 10.20± 1.20      

(8.49 - 11.08) 
0.93± 0.06      
(0.88 - 1.02) 

0.41± 0.03    
(0.38 - 0.45) 

0.44± 0.01    
(0.44 - 0.45) 

0.15± 0.03        
(0.12 - 0.18) 

-1197.16± 289.40       
(-1419.75 - -786.32) 

Öküzgözü 
4 6.21± 3.94     

(0.52 - 9.44) 
0.82± 0.22      
(0.69 - 1.16) 

0.40± 0.06   
(0.36 - 0.49) 

0.49± 0.05  
(0.42 - 0.53) 

0.11± 0.02        
(0.09 - 0.13) 

-527.10± 466.77         
(-500.56 - 96.76) 

Shiraz 
5 11.54± 0.37     

(11.06 - 12.03) 
1.01± 0.02      
(0.99 - 1.05) 

0.43± 0.01      
(0.41 - 0.44) 

0.42± 0.01         
(0.42 - 0.43) 

0.15± 0.02        
(0.14 - 0.18) 

-1528.58± 99.72            
(-1657.14 -  -1399.72) 

Emir 
4 0.17± 0.05       

(0.13 - 0.25) 
3.78± 1.04      
(2.31 - 4.58) 

0.73± 0.04      
(0.67 - 0.77) 

0.20± 0.06        
(0.17 - 0.29) 

0.07± 0.02     
(0.04 - 0.09)  

Misket 
2 0.15± 0.02          

(0.14 - 0.17) 
2.52± 0.79      
(1.96 - 3.08) 

0.67± 0.04      
(0.65 - 0.70) 

0.28± 0.07    
(0.23 - 0.33) 

0.05± 0.04       
(0.024 - 0.076)  

Narince 
3 0.17± 0.05       

(0.13 - 0.23) 
4.96± 1.86      
(3.13 - 6.84) 

0.77± 0.07      
(0.70 - 0.85) 

0.17± 0.05      
(0.12 - 0.22) 

0.06± 0.02       
(0.031 - 0.075)  

Sultaniye 
3 0.29±0.14       

(0.14 - 0.40) 
3.50±1.32     
(2.43 - 4.98) 

0.69±0.09     
(0.59 - 0.77) 

0.21±0.05          
(0.15 - 0.24) 

0.10±0.06      
(0.051 - 0.17)  

Chardonnay 1 0.19 4.51 0.79 0.17 0.04  
            (*dA%: The proportion of red colour produced by flavylium cations of free and bound anthocyanins) 
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4.1.2. FT-MIR Spectral Data 

 
Although the whole spectral range (4000 – 650 cm-1 ) was collected and stored for 

each sample, only useful intervals were taken into consideration to avoid interference: 965-

1565 cm-1  , 1700-1900 cm-1 , and 2800-3040 cm-1. The intermediate zones were not 

employed in this study on account of the unrepeatability due to high absorbance values 

(Urbano-Cuadrado, et al. 2005). Figure 4.1 represents typical spectra of the wine samples 

obtained in this study with the used regions.  

 

 
 

Figure 4.1. Typical FT-MIR spectra of a wine sample 

 

4.1.3. Classification Using FT-IR Data 

 
First part of this study investigates the varietal classification of red, rose and white 

wines produced in Turkey. The mono-varietal wines were selected to avoid any confusion that 

can result from the chemical differences between different varieties in each wine samples. 

Although the study grounds on the classification of each wine in accordance with variety, 

mono-varietal term comprises the wines blended in different wine proportions. The ratio of 

wine varieties differs from country to country and the limits are established by the 

legislations. In most of the countries, the blending proportionality determined as minimum 
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85% to 75% of wine from basic grape variety with other wines derived from other wines from 

different varieties (Food Standards Agency 2010). 

  The selected regions of FTIR spectra were transferred into SIMCA software (version 

P-10.5. Umetrics Inc., Sweden) for chemometric analysis. PCA method was employed for 

classification. The PCA plot obtained from the raw data allows an approximate separation of 

the white and red wines (Figure 4.2). Although the white and red wines were separated on top 

and bottom halves of score plot, respectively, a clear subdivision of the wine samples in 

accordance with variety could not be obtained. 

 

 
 

Figure 4.2. Score plot based on FT-IR spectra of wine samples grouped according to           
variety (Different colours belong to different varieties) 

 

The result obtained from the PCA analysis of the raw data exhibited separation of a 

group of semi-sweet wines from Misket (20M7) and Çalkarası (3ÇK7) grapes. The rose wines 

were spread over both sides of the plot (Figure 4.2). Some of the wines from the same variety 

were also spread over a large area on PCA plots. The wines from Kalecik Karası, Cabarnet 

Sauvignon and Boğazkere grapes can be seen on every region of plot. One of the reasons for 

the large clusters of the same variety can be their differentiating vineyard area. It is reported 

that differences among the same variety grapes from different region is originating from the 

heat fluctuation during their growing stage. The length of exposure to sunlight, the 

temperature difference between the day and night, and temperature of the soil result in the 
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difference among the grapes (Duchêne and Schneider 2005). The soil type is another factor to 

create this difference. In addition, the wines were bought from different wineries, and that 

may result in variation in the same variety due to differences in the processing techniques. 

Different maceration temperatures, clarification treatments and length of storage time were 

reported to be the basic factors influencing the chemical composition (Gomez-Plaza, et al. 

2000). Although rather in small amounts, the mono-varietal wines may include wines from 

different varieties, which can cause problems in varietal classification. 

In a previous study, red, rose and white wines from different origin and grape varieties 

were investigated in combination of the chemical parameters with FT-MIR and NIR 

spectroscopy techniques (Urbano-Cuadrado, et al. 2005). Grouping of only white, rose and 

red wines was achieved clearly on different quarters of PCA score plot of NIR spectra.  

In order to visualise the differentiation of the wine samples according to varieties 

evidently, Coomans’plot was also constructed (Figure 4.3). The discrimination of the red and 

white wines can be also seen on this plot. The semi- sweet wines from Çalkarası and Misket 

varieties were located apart from the other wines. Rose wines from Çalkarası and Öküzgözü 

varieties are among both red and white wine regions. The other wine samples were 

completely spread over the plot and did not show any grouping. 

 

 
 

Figure 4.3. Coomans’plot for the classification of the wine samples according to varieties 
using spectral FT-MIR data (red, rose and white wines are represented with 
purple, pink and yellow colour, respectively) 
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Although the data was pre-processed with the spectral filtering techniques (first and 

second derivation, WCS) as a pre-processing step to remove the spectral noise and improve 

the varietal classification, no improvement in classification was observed (Figure 4.4). 

 

 
 

Figure 4.4. The score plot based on WCS scaled FT-MIR spectra of wine samples grouped 
according to variety (Different colours belong to different varieties) 

 

As a further attempt to achieve a better classification, the data of red and white wines 

were handled separately. The PCA result of the red wines from the raw FT-MIR data was 

shown in Figure 4.5.  
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              Figure 4.5. The score plot based on FT-MIR spectra of red wine samples grouped   
according to variety (Different colours belong to different varieties) 

 

The semi- sweet rose wine from Çalkarası variety (3ÇK7) was separated from the 

other wines on the outer region of the plot. The remainder wines were spread on the inner 

region and the clusters of all the varieties overlapped with each other. In another study, four 

mono-varietal red wines from Montilla-Moriles reagion were searched to analyse the 

enological variables and differentiate wines via PCA analysis (Viviani, et al. 2007). Volatile 

chemicals were used as variables and a clear varietal differentiation was obtained with PCA 

analysis. Wine samples of that study were produced with the grapes from a narrow vineyard 

region and with the use of similar winemaking techniques, which are advantageous for a good 

variety differentiation. A similar study was performed with 54 Greek red wine samples of 3 

different varieties from vintages of 1998 to 2005 (Tarantilis, et al. 2008). Extracts of phenolic 

components were obtained with C-18 columns and investigated by FT-MIR spectroscopy. 

The MIR spectra were recorded and compared with the library created by software (OMNIC). 

According to calculated match values, the differentiation of 3 varieties was performed and the 

varietal discrimination was achieved using mid-infrared spectra (Tarantilis, et al. 2008). 

Similar result was obtained in PCA plot of white wines and the only differentiated 

wines were semi sweet wines from Misket variety which are located in the upper left quarter 

of the plot (Figure 4.6).  
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  Figure 4.6. The score plot based on FT-MIR spectra of white wine grouped according to 
variety (Different colours belong to different varieties) 

 

The results show that application of PCA to FT-MIR spectral data can not provide a 

distinguishing varietal classification of Turkish wines and this could be related to the 

variability of processing techniques, grape origins and compositional blending of the wines in 

the course of production stage.  

 

4.1.4. Quantitative Analysis Using FT-MIR Data and Chemical Results 

 
It is well known that wines have complex chemical composition. Determination of 

chemical parameters of wine in the course of production stage ensures both total control of 

production process and optimal product characteristics (Soriano, et al. 2007). There is an 

increasing interest in fast and accurate techniques to determine the quality parameters in 

product screening and process control. Instead of time consuming analytical methods mid-IR 

spectroscopy measuring a significant number of important wine parameters within a short 

time have been investigated in this study. FTIR was designated as an alternative analytical 

method providing precise and accurate results with high resolution (Moreira, et al. 2002). 

PLS, one of the most commonly used regression technique in chemometrics, was employed to 

show the relation between FT-MIR data and the results of chemical analysis and to develop 

equations for predicting some enological parameters of wine samples.  FT-MIR spectral data 
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and the results of chemical analysis obtained from analytical techniques were implicated with 

the PLS analysis.  

The chemical results including total phenol content, anthocyanin content, brix value, 

titratable acidity and various colour values were analysed separately in combination with FT-

MIR spectral data. The results of only red and rose wines were handled in anthocyanin 

regression analysis, since anthocyanin pigment only exists in red grapes. As the acidity terms 

are highly related to each other, the titratable acidity and pH results were analysed together. 

Similarly colour results were included to the regression analysis as one group. Wine samples 

in each group were divided into a calibration set (2/3 of the samples) and a validation set (1/3 

of the samples). As a pre-treatment step various spectral filtering techniques such as first 

derivation, second derivation and wavelet compression were applied to the raw data and the 

best results were obtained with orthogonal signal correction in combination with wavelet 

(OSCW) method.  

Root mean square error of calibration and prediction (RMSEC, RMSEP), standard 

error of prediction (SEP), residual predictive deviation (RPD) and regression correlation 

coefficient (R2) for all the PLS analysis were calculated and summarised in Table 4.5. 

 

Table 4.5. Summary of statistical results for PLS analysis of wine samples 

 

Parameter Number of PCs R²(cal) RMSEC RMSEP SEP RPD 
Total phenol (mg/L) 2 0.93 315.16 310.15 294.46 3.61 
Anthocyanin (mg/L) 2 0.89 11.53 14.13 14.13 1.84 
Brix (%) 3 0.81 0.43 0.41 0.39 2.16 
Titratable acidity (g/L) 5 0.75 0.26 0.36 0.36 2.06 
pH (pH unit) 5 0.85 0.083 0.10 0.092 2.65 
Colour intensity (CI) 6 0.89 1.35 1.22 1.15 3.75 
Tint 6 0.72 1.06 1.17 1.11 1.21 
Yellow% 6 0.85 0.067 0.079 0.077 2.00 
Red% 6 0.78 0.43 0.067 0.067 1.86 
Blue% 6 0.73 0.02 0.024 0.023 1.68 
dA% 6 0.53 235.77 307.42 281.50 1.38 

 
Accuracy of the prediction models were evaluated by using the R², RPD and slope of 

the equations determined for the calibration sets (Table 4.6). 

 

                
 
 
 



 48

Table 4.6. The criteria used for evaluation of the prediction models 
                                   (Source: Zornoza, et al. 2008; Saeys, et al. 2005) 
 

 R² between 0.66-0.80 approximate predidictions  
  between 0.81-0.90 good predictions  
   >0.90 excellent predictions  
 RPD <2.0 insufficient  
  between 2.0-2.5 approximate predictions  
  between 2.5-3.0 good predictions  
   >3.0 excellent prediction  
 Slope <0.8 or >1.2   less reliable  
  around 0.8-1.2 reliable  
    between 0.9-1.1 very reliable   

 
PLS analysis for prediction of total phenol concentration was performed by relating 

FT-MIR spectral data as X variables and total phenol content as Y variables obtained with 

analytical methods. 52 and 26 observations were randomly selected for calibration and 

validation sets, respectively. The model contains 2 significant components (PCs) explaining 

93.1% of the total variation of total phenol content (Y). The regression coefficient of the 

model determined with calibration set was found as 0.93 (Figure 4.7). 

 

 
 

     Figure 4.7. PLS regression of actual vs. predicted phenol content of calibration and  
validation sets 
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RMSEP value was also calculated with validation set and found as 315.16. By 

comparing with the criteria set in Table 4.6 the determination of total phenol content by FT-

MIR yielded excellent prediction with slope of 0.97, which accounts for high  reliability, 

regression coefficient (0.93) greater than 0.9 and RPD value (3.61) greater than 3.0 (Table 

4.5). In another study, 495 red wines were analysed to determine the concentration of 

phenolic compounds during wine fermentation from the NIR spectral data in combination 

with PLS regression analysis (Cozzolino, et al. 2004). Cabarnet Sauvignon and Shiraz wines 

from 2001 and 2002 vintages were analysed via HPLC as a reference method. PLS regression 

analysis with internal cross validation (one group reserved for validation, three groups used 

for calibration). R², standard error of calibration and cross validations (SEC and SECV) and 

residual predictive deviation (RPD) were calculated. The models provided good predictions of 

phenol concentrations using NIR spectroscopy. 

Prediction of anthocyanin content from FT-MIR spectral data with the help of PLS 

analysis was carried out with calibration and validation sets consist of 32 and 16 observations, 

respectively. The regression analysis resulted in high correlation of R2 0.89 for calibration set 

(Figure 4.8). The model includes 2 PCs explaining 89.4% of total variation (Y) with a 

predictive ability of 81.7%. Notwithstanding the fact that the slope and R² value of the 

anthocyanin prediction model were 0.96 and 0.89, respectively which can be regarded as good 

prediction, the RPD value was calculated as 1.84, resulting in insufficient prediction (Table 

4.5 and 4.6).    
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 Figure 4.8. PLS regression of actual vs. predicted anthocyanin content of calibration and 
validation sets 

 

Similar results were obtained in a previous study which was performed with 390 

young red wines (vintage of 2004) from Spain (Soriano, et al. 2007). As the reference method 

HPLC was utilised to determine anthocyanins in different forms. Calibration and validation 

set were analysed independently and cross validation was performed for detection of the 

accuracy of the calibration. R² values and relative standard deviation (RSD) were calculated 

for evaluation of the models and it was recorded that RSD values below 6.6% indicated good 

repeatability. Except cyanidin-3-glucoside, prediction of anthocyanins from FTIR spectra and 

PLS analysis was successful (Soriano, et al. 2007). 

The model created for brix prediction was composed of 3 PCs explaining 84.25% of 

total variation (Y). The predictive ability of the model constructed for brix values with FT-

MIR spectral data was not as good as phenol model (R2=0.81) (Figure 4.9). Even though the 

slope of the calibration model was 0.997 which is within the range of 0.9-1.1, the model for 

prediction of brix gave approximate prediction with regression coefficient 0.81 (around 0.85) 

and RPD value of 2.16 (between 2.0-2.5) (Table 4.5 and 4.6). 
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             Figure 4.9. PLS regression of actual vs. predicted brix value of calibration and 
                                validation sets 
 

Titratable acidity and pH analytical results were also tried to be predicted from mid-IR 

spectra. As a result of PLS analysis, slope of titratable acidity model was 0.997 (Figure 4.10). 

Considering the correlation coefficient of 0.75 and RPD value of 2.06, determination of 

titratable acidity by the model end up with approximate prediction (Table 4.5 and 4.6). 

However, the analysis resulted in a good correlation for pH prediction with the slope of 0.99 

and R2 value of 0.85 (Figure 4.11). The model contains 5 PCs and showed good predictive 

ability with high RPD value (2.65) for pH values (Table 4.5). 
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   Figure 4.10. PLS regression of actual vs. predicted titratable acidity of calibration and    
validation sets 

 

 
 

     Figure 4.11. PLS regression of actual vs. predicted pH of calibration and  
       validation sets 

 

The colour parameters were also analysed with PLS regression analysis and the best 

results were obtained with colour intensity and yellow% prediction which were shown in 

Figure 4.12 and 4.13. The model of colour intensity was tested with calibration and validation 
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sets, slope of 0.95 and R2 value of 0.89, indicating good prediction were obtained for 

calibration set. Furthermore the RPD value of 3.75 has verified the excellent predictability of 

the model (Table 4.5 and 4.6). The model created for colour parameters prediction contains 6 

PCs explaining 82.6% of total variation (Y) and the correlation coefficients for other colour 

parameters varied between 0.53- 0.85 range (Table 4.5).  

 

 
 

    Figure 4.12.PLS regression of actual vs. predicted colour intensity of calibration and  
validation sets 

 

The model created for determination of yellow% provided approximate prediction 

with regression coefficient of 0.85 (Figure 4.13-a) and RPD value of 2.0 (Table 4.5 and 4.6). 

The predictive ability of the models for prediction of tint, red%, blue % and dA% were 

insufficient with RPD values below 2.0 and R² values lower than 0.8 (Table 4.6). 
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    Figure 4.13. PLS regression of actual vs. predicted yellow% of calibration and 
          validation sets 

 

In a previous study, which was performed as an application of FT-MIR spectrometry 

in wine analysis, 327 German wines from vintages of 1989 to 2001 were analysed with 

reference methods and also scanned with FT-MIR to obtain spectral data (Patz, et al. 2004). 

The wine samples were separated into two independent groups as calibration and validation 

and two groups were analysed separately. The prediction models resulted in high regression 

correlations and appropriate RMSEP values. A large group of wine parameters like total 

phenol, relative density, glycerol, total acidity, pH, alcohol%, conductivity, sugars (fructose, 

glucose) and antioxidant activity were successfully predicted from FT-MIR spectral data in 

combination with multivariate data analysis (Patz, et al. 2004). In another study, NIR 

spectroscopy and multivariate analysis was studied for determination of 15 enological 

parameters (Urbano-Cuadrado, et al. 2004). A total of 180 red, rose and white wines were 

analysed with analytical methods as reference methods and NIR spectrometry was used to 

create models for determination of the parameters in combination with PLS regression 

analysis. Cross validation procedure was also employed for calibration equations and R² and 

standard error of cross validation (SECV) values were used for evaluation of their models. 

Accurate predictions were observed for determination of ethanol, volumic mass, total acidity, 

pH, glycerol, colour, tonality (tint) and total polyphenol index by the created equations with 

high R² values and SECV values close to the reference methods (Urbano-Cuadrado, et al. 

2004). 
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As a result of the FT-MIR application combined with multivariate data analysis for 

prediction of the basic enological parameters, a high performance was achieved for some of 

the selected chemical parameters of Turkish wines. With this rapid method, a group of wine 

quality parameters were determined within a short time simultaneously. Thus, this method can 

be an alternative to determine important enological parameters. 
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CHAPTER 5 
 

 CONCLUSION 
 

In the current study, performance of varietal classification of Turkish wine samples 

with the use of FT-MIR spectral data combined with multivariate data analysis has been 

investigated. A total of 79 wine samples including 47 red, 5 rose, 28 white wines from 2006 

and 2007 vintages were analysed. Principal component analysis (PCA) was applied to classify 

wines according to variety. Classification of red and white wines was almost achieved but a 

distinct grouping of the wine samples with respect to variety could not been attained. The 

regional differences among the same variety might be a factor giving rise to deficiency on 

varietal classification due to the effects of climatic and soil diversity. Furthermore, the fact 

that mono-varietal wines may be composed of wines mainly from one variety but other 

varieties may be also added in small percentages has significant influence on varietal 

classification. 

Applicability of determining certain wine characteristics (total phenol and anthocyanin 

content, titratable acidity, pH, brix and colour parameters) from mid-infrared spectra in 

combination with chemometric methods was also discussed. The experimental results were 

correlated with MIR spectra by using partial least square (PLS) analysis method. The 

prediction of total phenols and colour intensity was achieved with high correlation coefficient 

(R2 of 0.93 and 0.89, respectively) and high residual predictive deviation (RPD of 3.61 and 

3.75, respectively) indicating excellent predictions. With RPD value of 2.65 and R2 of 0.85 

the model of pH determination has good predictive ability. Similarly the correlation of the 

yellow% resulted in approximate prediction with R2 of 0.85 and RPD value of 2.0. Although 

some of the colour parameters resulted in inadequate prediction, a considerable part of the 

chemical parameters of Turkish wines could be predicted from FT-MIR spectral data.  

The study carried out indicates that FT-MIR spectrum has information on chemical 

structures of the wine sample and this information could be used to predict the basic 

enological parameters via mid-infrared spectra without the use of large amounts of samples 

and chemicals or time consuming sample preparation. The combination of FT-MIR 

spectroscopy with chemometric analysis provided valuable information related to quality of 

the wines and can be an alternative method in the industrial and research applications in the 

near future. 
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Figure A. Turkey Wine Production Map 
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