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Head of the Mathematics Department Dean of the Graduate School of

Engineering and Sciences



ACKNOWLEDGEMENTS

I would like to thank and express my deepest gratitude to Prof. Dr. Rafail

ALIZADE, my advisor, for his help, guidance, understanding, encouragement

and patience during my studies and preparation of this thesis.

I want to add my special thanks to Dr. Engin BÜYÜKAŞIK for his interest,
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ABSTRACT

PROPER CLASS GENERATED BY SUBMODULES
THAT HAVE SUPPLEMENTS

In this thesis, we study the class S of all short exact sequences

0 //A α //B //C //0 where Imα has a supplement in B, i.e. a minimal

element in the set {V ⊆ B | V + Imα = B}. The corresponding elements of

ExtR(C,A) are called κ-elements. In general κ-elements need not form a subgroup

in ExtR(C,A), but in the category TR of torsion R-modules over a Dedekind do-

main R, S is a proper class; there are no nonzero S-projective modules and the

only S-injective modules are injective R-modules in TR. In this thesis we also

give the structure of S-coinjective R-modules in TR. Moreover, we define the

class SB of all short exact sequences 0 //A α //B //C //0 where Imα has

a supplement V in B and V ∩ Imα is bounded. The corresponding elements of

ExtR(C,A) are called β-elements. Over a noetherian integral domain of Krull di-

mension 1, β-elements form a proper class. In the category TR over a Dedekind

domain R, SB is a proper class; there are no nonzero SB-projective R-modules

and SB-injective R-modules are only the injective R-modules. In the category TR,

reduced SB-coinjective R-modules are bounded R-modules.
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ÖZET

TÜMLEYENİ OLAN ALTMODÜLLERİN ÜRETTİǦİ ÖZ SINIF

Bu tezde, Imα ’ nın B’de bir tümleyeni, yani {V ⊆ B|V+Imα = B}kümesinin

minimum elemanı bulunacak şekilde tüm 0 //A α //B //C //0 kısa tam

dizilerininS sınıfını inceliyoruz. ExtR(C,A)’ nın bu dizilere karşılık gelen eleman-

larına κ-elemanlar denir. Genelde κ-elemanlar bir öz sınıf oluşturmayabilir, fakat

R Dedekind bölgesi üzerindeki burulma modüllerinin TR kategorisinde S bir öz

sınıftır; sıfırdan farklı S-projektif modüller bulunmaz, S-injektif modüller sadece

injektif modüllerdir. Tezde TR kategorisinde S-eşinjektif modüllerin yapısını da

verdik. Ayrıca Imα’nın B’de V diye bir tümleyeninin bulunduǧu ve V ∩ Imα ’

nın sınırlı olduǧu 0 //A α //B //C //0 kısa tam dizilerinin SB sınıfını

tanımladık. ExtR(C,A)’ nın bu dizilere karşılık gelen elemanlarına β-elemanlar

denir. Krull boyutu 1 olan Noether tamlık bölgesi üzerinde SB’ nin bir öz sınıf

oluşturduǧunu gösterdik. R Dedekind bölgesi üzerinde burulma modüllerininTR

kategorisinde SB bir öz sınıftır; sıfırdan farklı SB-projektif modüller bulunmaz,

SB-injektif modüller sadece injektif modüllerdir. TR kategorisinde indirgenmiş

SB-eşinjektif modüller tam olarak sınırlı modüllerdir.
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NOTATION

R an associative ring with unit unless otherwise stated

Rp the localization of a ring R at a prime ideal p of R

Z, Z+ the ring of integers, the set of all positive integers

G[n] for a group G and integer n, G[n] = {g ∈ G | ng = 0}

G1 the first Ulm subgroup of abelian group G: G1 =

∞⋂

n=1

nG

Q the field of rational numbers

Zp∞ the Prüfer (divisible) group for the prime p (the p-primary part

of the torsion group Q/Z)

R-module left R-module

R-Mod the category of left R-modules

Ab = Z-Mod the category of abelian groups (Z-modules)

HomR(M,N) all R-module homomorphisms from M to N

M ⊗R N the tensor product of the right R-module M and the left R-

module N

Ker f the kernel of the map f

Im f the image of the map f

T(M) the torsion submodule of the module M: T(M) = {m ∈ M |
rm = 0 for some 0 , r ∈ R}

Soc M the socle of the R-module M

Rad M the radical of the R-module M

TR the category of torsion R-modules

B the class of bounded R-modules

〈E〉 the smallest proper class containing the class E of short exact

sequences

P a proper class of R-modules

P̂ the set {E | rE ∈ P for some 0 , r ∈ R} for a proper class P
π(P) all P-projective modules

π−1(M) the proper class of R-modules projectively generated by a class

M of R-modules
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ι(P) all P-injective modules

ι−1(M) the proper class of R-modules injectively generated by

a classM of R-modules

τ(P) all P-flat right R-modules

τ−1(M) the proper class of R-modules flatly generated by a

classM of right R-modules

k(M) the proper class coprojectively generated by a classM
of R-modules

k(M) the proper class coinjectively generated by a classM
of R-modules

ExtR(C,A) = Ext1
R(C,A) the set of all equivalence classes of short exact

sequences starting with the R-module A and ending

with the R-module C

TextR(C,A) the set {E ∈ Ext(C,A) | rE ≡ 0 for some 0 , r ∈ R}
of equivalence classes of short exact sequences of R-

modules

Pext(C,A) the set of all equivalence classes of pure-exact

sequences starting with the group A and ending with

the group C

Next(C,A) the set of all equivalence classes of neat-exact

sequences starting with the group A and ending with

the group C

PureZ-Mod the proper class of pure-exact sequences of abelian

groups

NeatZ-Mod the proper class of neat-exact sequences of abelian

groups

A an abelian category (like R-Mod or Z-Mod = Ab)

For a suitable abelian category A like R-Mod or Z-Mod,

the following classes are defined:
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SplitA the smallest proper class consisting of only splitting short

exact sequences in the abelian categoryA
AbsA the largest proper class consisting of all short exact se-

quences in the abelian categoryA
ComplA the proper class of complements in the abelian category

A
SupplA the proper class of supplements in the abelian category

A
NeatA the proper class of neats in the abelian categoryA
Co-NeatA the proper class of coneats in the abelian categoryA
SA the class of κ-exact sequences in the abelian categoryA
SBA the class of β-exact sequences in the abelian categoryA
� isomorphic

≤ submodule

� small (=superfluous) submodule

⊂β SB-submodule
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CHAPTER 1

INTRODUCTION

Throughout R is an associative ring with identity and all modules are uni-

tal left R-modules unless otherwise stated. We will denote the category of torsion

R-modules by TR and bounded R-modules by B. Definitions not given here can

be found in (Anderson and Fuller 1992), (Wisbauer 1991), (Hungerford 1974),

(Mac Lane 1995) and (Fuchs 1970).

In this thesis, we study the class S of κ-exact sequences where an element

E : 0 //A α //B //C //0 of ExtR(C,A) is called κ-exact if Imα has a sup-

plement in B, i.e. a minimal element in the set {V ⊆ B|V + Imα = B}. We show

that S is not a proper class in general. The classWsupp consists of the short exact

sequences 0 //A α //B //C //0 of R-modules such that Imα has a weak

supplement in B. We denote the class consisting of the short exact sequences

0 //A α //B //C //0 where Imα� B by Small. For a class E, we denote by

〈E〉 the smallest proper class containing E which is called the proper class gener-

ated by E. Over a Dedekind domain R, the smallest proper class 〈S〉 containing S
coincides with the smallest proper class 〈Small〉 containingSmall and the smallest

proper class 〈Wsupp〉 containingWsupp. The class SB of short exact sequences

is introduced as the class of short exact sequences 0 //A
f //B

g //C //0,

where Im f has a supplement V in B with V ∩ Im f is bounded. The short exact

sequences contained in SB form a proper class over a noetherian ring of Krull

dimension 1 and SB coincides with the proper class k(B) generated by the class

B of bounded R-modules in this case. In the category TR of torsion R-modules

over a Dedekind domain R, S and SB form proper classes. There are no nonzero

S-projective and nonzero SB-projective R-modules , the only S-injective and

SB-injective R-modules are injective modules in the category TR. The characteri-

zation of S-coinjective and SB-coinjective modules in the category TR are given

in Propositions 4.5 and 4.7, respectively.
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In Chapter 2, the notions related to our work will be given, which includes

the properties of the functor ExtR(C,A) in terms of short exact sequences, supple-

ments, supplemented modules and Dedekind domains.

The definition and the properties of a proper class will be given in Chapter

3. The class PureZ-Mod of pure-exact sequences of abelian groups is an important

example of a proper class in the category of abelian groups. It is shown here that,

ifM is a given class of R-Mod for an additive functor T(M, ·) : R-Mod −→ Ab, the

class of exact triples E such that T(M,E) is exact form a proper class. This result

is helpful in the definition of projectively, injectively or flatly generated proper

classes.

In Chapter 4, the proper classes related to complements and supplements

are studied. It is shown that κ-elements of ExtR(C,A) need not form a proper class

in general. Results due to Zöschinger show that when A and C are torsion abelian

groups, the κ-elements of Ext(C,A) over the ringZ of integers form a proper class,

which we denote by S. For a Dedekind domain R, over the category TR of torsion

R-modules, there are no nonzero S-projective R-modules and the S-injectives are

exactly injective modules in TR. We give the characterization of S-coinjective

R-modules in Proposition 4.5. The subgroup SB of ExtR(C,A) is introduced as the

set of elements [0 // A α // B // C // 0] such that Imα has a supplement

V in B and V ∩ Imα is bounded. For a noetherian integral domain of Krull di-

mension 1, in the category TR, we show that there are no nonzero SB-projective

modules and SB-injective modules are only the injective modules in TR.
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CHAPTER 2

PRELIMINARIES

This Chapter will consist of a short summary of Chapter IX from (Fuchs

1970) and Chapter 3 from (Mac Lane 1995), some preliminary information about

supplements in module theory and Dedekind domains. One can find further

information and missing proofs in (Fuchs 1970), (Vermani 2003) and (Mac Lane

1995) about group of extensions, in (Wisbauer 1991) about supplements, supple-

mented modules and in (Cohn 2002) about Dedekind domains.

2.1. Extensions As Short Exact Sequences

Given the R-modules A and C, the extension B of A by C can be visualized

as a short exact sequence

0 // A
µ // B ν // C // 0 ,

where µ is a monomorphism and ν is an epimorphism with kernel µ(A). Then

one can build up a category in which the objects are the short exact sequences and

a morphism between two short exact sequences E and E′ is defined as a triple

(α, β, γ) of module homomorphisms such that the diagram

E : 0 // A
µ //

α
²²

B ν //

β
²²

C //

γ

²²

0

E ′ : 0 // A′
µ ′ // B′ ν ′ // C ′ // 0

(2.1)

has commutative squares. It is straightforward to show that in this way a category

E arises.

The extensions E and E ′ with A = A ′, C = C ′ are said to be equivalent,

denoted by E ≡ E ′, if there is a morphism (1A, β, 1C) with β : B → B ′ is an

isomorphism. Indeed, the condition β being an isomorphism can be omitted,

since this follows from the Five Lemma.
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If A is a fixed R-module, for a homomorphism γ : C ′ → C , to the extension

E in 2.1, there is a pullback square

B ′ ν ′ //

β
²²

C ′

γ

²²
0 // A

µ // B ν // C // 0

for some B ′, β and ν ′. ν ′ is epic (since ν is epic), and Ker ν ′ � Ker ν � A, hence

there is a monomorphism µ ′ : A → B ′ (i.e. µ ′a = (µa, 0) ∈ B ′ if B ′ is defined to

be a submodule of B ⊕ C ′) such that the diagram

Eγ : 0 // A
µ ′ // B ′ ν ′ //

β

²²

C ′ //

γ

²²

0

E : 0 // A
µ // B ν // C // 0

with exact rows and pullback right square commutes. The top row is an extension

of A by C ′which we have denoted byEγ to indicate its origin fromE andγ. Notice

that γ∗ = (1A, β, γ) is a morphism Eγ→ E in E .

If the diagram

E ◦ : 0 // A
µ◦ // B ◦ ν ◦ //

β ◦

²²

C ′ //

γ

²²

0

E : 0 // A
µ // B ν // C // 0

has exact rows and commutes, then there is uniqueφ : B ◦ → B ′ such that ν ′φ = ν ◦

and βφ = β ◦. Since the maps φµ ◦, µ ′ : A→ B ′ are such that β(φµ ◦) = β ◦µ ◦ = µ =

βµ ′ and ν ′(φµ ◦) = ν ◦µ ◦ = 0 = ν ′µ ′, with the uniqueness assertion in (Vermani

2003, 1.7.3), we have φµ ◦ = µ ′. This shows that Eγ is unique up to equivalence

and this yields the equivalences

E1C ≡ E and E(γγ ′) ≡ (Eγ)γ ′

for C ′′
γ ′ // C ′

γ // C . Now the contravariance of Ext(C,A) on C is evident.

Next let C be fixed and for a given α : A → A ′, let B ′ be defined by the

pushout square

0 // A
µ //

α
²²

B ν //

β
²²

C // 0

A ′
µ ′ // B ′

.

Hereµ ′ is a monomorphism, and if B ′ is defined as the quotient module (A ′⊕B)/H

where H is the submodule of A⊕B consisting of elements of the form (µ(a),−α(a))
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for a ∈ A, then ν′ : B ′ −→ C defined by ν′((a ′, b) + H) = ν(b) for (a ′, b) ∈ A ′ ⊕ B,

makes the diagram

E : 0 // A
µ //

α
²²

B ν //

β
²²

C // 0

αE : 0 // A′
µ ′ // B′ ν ′ // C // 0

with exact rows commutative. The bottom row of this diagram is an extension of

A ′ by C which we denote by αE. Here α∗ = (α, β, 1C) is a morphismE→ αE in E .

If we have the commutative diagram

E : 0 // A
µ //

α
²²

B ν //

β◦
²²

C // 0

E◦ : 0 // A′
µ◦ // B◦

ν◦ // C // 0

with exact rows, then in view of (Vermani 2003, 1.7.6) there exists a unique

φ : B ′ → B◦ such that φβ = β◦ and φµ ′ = µ◦. From (ν◦φ)β = ν◦β◦ = ν = ν ′β,

(ν◦φ)µ ′ = 0 = ν ′µ ′ we infer that ν◦φ = ν ′, thus (1A ′ , φ, 1C) is a morphism

αE → E◦. Consequently, αE ≡ E◦, i.e. αE is unique up to equivalence. So, we

obtain

1AE ≡ E and (αα ′)E ≡ α(α ′E)

for A α // A ′ α ′ // A ′′ , which establishes the covariant dependence of Ext(C,A)

on A.

With α : A→ A ′ and γ : C ′ → C, we have the important associative law

α(Eγ) ≡ (αE)γ.

By making use of the pullback property of (αE)γ, it is easy to prove the existence

of a morphism (α, β ′, 1) : Eγ → (αE)γ and to show the commutativity of the

square

Eγ
(1, β1, γ) //

(α, β ′, 1)
²²

E

(α, β2, 1)
²²

(αE)γ
(1, β, γ) // αE.

The equivalence classes of extensions of A by C form a group.

In order to describe the group operation in the language of short exact

sequences, we make use of diagonal map ∆G : g 7→ (g, g) and the codiagonal map
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∇G : (g1, g2) 7→ g1 + g2 of a module G. If we understand by the direct sum of two

extensions

Ei : 0 // Ai
µi // Bi

νi // Ci
// 0 (i = 1, 2)

the extension

E1 ⊕ E2 : 0 // A1 ⊕ A2
µ1⊕µ2 // B1 ⊕ B2

ν1⊕ν2 // C1 ⊕ C2
// 0 ,

then we have :

Proposition 2.1 ((Mac Lane 1995), Theorem 2.1) For given R-modules A and C, the

set ExtR(C,A) of all congruence classes of extensions of A by C is an abelian group under

the binary operation which assigns to the congruence classes of extensions E1 and E2, the

congruence class of the extension

E1 + E2 = ∇A(E1 ⊕ E2)∆C.

The class of the split extension 0 //A //A ⊕ C //C //0 is the zero element of

this group, while the inverse of any E is the extension (−1A)E. For homomorphisms

α : A −→ A′ and γ : C′ −→ C one has

α(E1 + E2) ≡ αE1 + αE2, (E1 + E2)γ ≡ E1γ + E2γ, (2.2)

(α1 + α2)E ≡ α1E + α2E, E(γ1 + γ2) ≡ Eγ1 + Eγ2. (2.3)

The equivalences in 2.2 and 2.3 express the fact that α∗ : E 7→ αE and

γ∗ : E 7→ Eγ are group homomorphisms

α∗ : ExtR(C,A)→ ExtR(C,A ′), γ∗ : ExtR(C,A)→ ExtR(C ′,A),

and that (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗ for α1, α2 : A −→ A′,

γ1, γ2 : C′ −→ C.

Theorem 2.1 ((Mac Lane 1995), Lemma 1.6) ExtR is an additive bifunctor on

R-Mod × R-Mod to Ab which is contravariant in the first and covariant in the sec-

ond variable. �

In order to be consistent with the functorial notation for homomorphisms,

we shall use the notation

6



ExtR(γ, α) : ExtR(C,A)→ ExtR(C ′,A ′)

instead of γ∗α∗ = α∗γ∗; that is, ExtR(γ, α) acts as shown by

ExtR(γ, α) : E 7→ αEγ.

Given an extension

E : 0 // A α // B
β // C // 0 (2.4)

representing an element of ExtR(C,A), and homomorphisms η : A → G and

ξ : G → C, we know that ηE is an extension of G by C and Eξ is an extension of

A by G, i.e., ηE represents an element of ExtR(C,G) and Eξ represents an element

of ExtR(G,A). In this way we obtain the maps

E∗ : Hom(A,G)→ ExtR(C,G)

E∗ : Hom(G,C)→ ExtR(G,A)

defined as

E∗ : η 7→ ηE and E∗ : ξ 7→ Eξ.

From 2.3 we can show that E∗ and E∗ are homomorphisms. If φ : G→ H is

any homomorphism, as we have (φη)E ≡ φ(ηE) andE(ξφ) ≡ (Eξ)φ, the diagrams

Hom(A,G) //

²²

ExtR(C,G)

²²

Hom(H,C) //

²²

ExtR(H,A)

²²
Hom(A,H) // ExtR(C,H) Hom(G,C) // ExtR(G,A)

with the obvious maps commute. E∗ and E∗ are called connecting homomorphisms

for the short exact sequence 2.4. This terminology is justified in the light of

Theorem 2.2.

Lemma 2.1 ((Mac Lane 1995), Proposition 1.7) Given a diagram

E : 0 // A α //

η

²²

B
β //

ξÄÄ¡
¡

¡
¡

C // 0

G

with exact row, there exists a ξ : B → G making the triangle commute if and only if ηE

splits.

7



Lemma 2.2 ((Mac Lane 1995), Proposition 1.7) If the diagram

G
η

²²

ξ

ÄÄ¡
¡

¡
¡

E : 0 // A α // B
β // C // 0

has exact row, then there is a ξ : G→ B such that βξ = η if and only if Eη splits.

With the aid of these lemmas, we have the following theorem which estab-

lishes a close connection between Hom and ExtR.

Theorem 2.2 ((Mac Lane 1995), Theorem 3.4) If 2.4 is an exact sequence, then the

sequences

0 // Hom(C,G) // Hom(B,G) // Hom(A,G) //

E∗ // ExtR(C,G)
β∗ // ExtR(B,G) α∗ // ExtR(A,G) // · · · ,

and

0 // Hom(G,A) // Hom(G,B) // Hom(G,C) //

E∗ // ExtR(G,A)
β∗ // ExtR(G,B) α∗ // ExtR(G,C) // · · ·

are exact for every module G.

If E : 0 // A
µ // B ν // C // 0 is an extension of A by C, and if α :

A → A, γ : C → C are endomorphisms of A and C, respectively, then αE and Eγ

will be extensions of A by C. The correspondences

α∗ : E 7→ αE and γ∗ : E 7→ Eγ

are endomorphisms of ExtR(C,A), which are called induced endomorphisms of ExtR.

The formulas (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗ show that

the endomorphism ring of A acts on ExtR(C,A) and similarly the dual of the

endomorphism ring C operates on ExtR(C,A). These commute as is shown by

α∗γ∗ = γ∗α∗; hence ExtR(C,A) is a (unital) bimodule over endomorphism rings of

A and C, acting from the left and right, respectively.
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2.2. Supplements and Supplemented Modules

This section includes definitions and some results about supplements and

supplemented modules. See (Wisbauer 1991) for more information about sup-

plements and supplemented modules.

Let U be a submodule of an R-module M. If there exists a submodule V of

M minimal with respect to the property M = U + V then V is called a supplement

of U in M.

A submodule K of an R-module M is called superfluous or small in M, written

K � M, if, for every submodule L ⊆ M, the equality K + L = M implies L = M.

The following lemma is used frequently while studying supplements.

Lemma 2.3 V is a supplement of U in M if and only if U + V = M and U ∩ V � V.

The properties of supplements are given in the next proposition.

Proposition 2.2 ((Wisbauer 1991), 41.1) Let U, V ⊆ M and V be a supplement of U

in M.

1. If W + V = M for some W ⊆ U, then V is a supplement of W.

2. If M is finitely generated, then V is also finitely generated.

3. If U is a maximal submodule of M, then V is cyclic and U ∩ V = Rad V is a (the

unique) maximal submodule of V.

4. If K �M, then V is a supplement of U + K.

5. If K �M, then V ∩ K � V and Rad V = V ∩ Rad M.

6. If Rad M�M, then U is contained in a maximal submodule of M.

7. If L ⊆ U, V + L/L is a supplement of U/L in M/L.

8. If Rad M�M or Rad M ⊆ U and p : M −→M/Rad M is the canonical epimorphism,

then M/Rad M = p(U) ⊕ p(V).

Let M be a module. If every submodule of M has a supplement in M, then

M is called a supplemented module. Artinian modules and semisimple modules are

examples of supplemented modules. As an example to show that every module

need not be supplemented, we can consider the ring Z of integers as a module

over itself.

For the properties of supplemented modules, we have the following

proposition.
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Proposition 2.3 ((Wisbauer 1991), 41.2) Let M be an R-module.

1. Let U and V be submodules of M such that U is supplemented and U + V have a

supplement in M, then V has a supplement in M.

2. If M = M1 + M2 with M1 and M2 supplemented, then M is also supplemented.

3. If M is supplemented, then M/Rad M is semisimple.

2.3. Dedekind Domains

Let R be an integral domain, i.e. a commutative ring without zero divisors,

and M be an R-module. The torsion submodule of M is defined as the set T(M) =

{m ∈ M | rm = 0 for some 0 , r ∈ R}. If T(M) = M, then M is called torsion, and

if T(M) = 0, then M is called torsion-free. For a prime ideal p of R, the submodule

{m ∈M | pnm = 0 for some n ≥ 1} is called the p-primary part of M. This submodule

is indicated by Tp(M). An R-module M is said to be bounded if there exists 0 , r ∈ R

such that rM = 0.

A commutative ring R which is not a field is a valuation ring, if its ideals are

totally ordered by inclusion. Additionally, if R is an integral domain, it is called

a valuation domain. A Noetherian valuation domain with unique maximal ideal

is said to be a discrete valuation ring (DVR for short). If R is a DVR then all its

non-zero ideals are: R > Rp > · · · > Rpn > · · · for some n ∈ N where Rp is the

unique maximal ideal of R.

Let R be an integral domain and K be its field of fractions. An element

of K is said to be integral over R if it is a root of a monic polynomial in R[X]. A

commutative domain R is integrally closed if the elements of K which are integral

over R are exactly the elements of R.

An integral domain R is a Dedekind domain if the following conditions hold:

1. R is a Noetherian ring,

2. R is integrally closed in its field of fractions K, and

3. all non-zero prime ideals of R are maximal.

The following lemma is well-known, we include it for completeness.

Lemma 2.4 Let R be a commutative ring and Ω be the set of all maximal ideals of R.

Then for an R-module M, Rad M =
⋂
p∈Ω

pM.
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Proof For a maximal ideal p, we can consider M/pM as a module over R/p, so

M/pM is semisimple and therefore Rad M ⊆ pM. Then we obtain Rad M ⊆ ⋂
p∈Ω

pM.

Conversely, let x ∈M be such that x < Rad M. Then there is a maximal submodule

K in M such that x < K. M/K is a simple module, so qM ⊆ K for some q ∈ Ω. then

we obtain x < qM, hence x <
⋂
p∈Ω

pM. Contradiction. �

Theorem 2.3 ((Cohn 2002), Propositions 10.5.1, 4, 6) For a commutative domain R,

the following are equivalent.

(i) R is a Dedekind domain.

(ii) Every ideal of R is projective.

(iii) R is Noetherian and the localization Rp of R at p is a DVR for all maximal ideals p

of R.

(iv) Every ideal of R can be expressed uniquely as a finite product of prime ideals.

Proposition 2.4 ((Sharpe and Vamos 1972), Proposition 2.10) Every divisible

module over a Dedekind domain is injective.

Over a Dedekind domain R, by the use of Proposition 2.4 together with

Lemma 2.4 we have that the conditions for an R-module M being divisible, injec-

tive and radical, i.e. Rad M = M, are equivalent. For torsion R-modules, we have

the following important result.

Proposition 2.5 ((Cohn 2002), Proposition 10.6.9) Any torsion module M over a

Dedekind domain is a direct sum of its primary parts, in a unique way:

M = ⊕Tp(M)

and when M is finitely generated, only finitely many terms on the right are different from

zero.

For more information about Dedekind domains and modules over a

Dedekind domain see (Hazewinkel, Gubareni and Kirichenko 2004) and (Sharpe

and Vamos 1972).
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CHAPTER 3

PROPER CLASSES

Let P be a class of short exact sequences of R-modules and R-module

homomorphisms. If a short exact sequence

0 //A
f //B

g //C //0 (3.1)

belongs to P, then f is said to be a P-monomorphism and g is said to be a

P-epimorphism (both are said to be P-proper and the short exact sequence is said

to be a P-proper short exact sequence.). The class P is said to be proper (in the

sense of Buchsbaum) if it satisfies the following conditions ((Buchsbaum 1959),

(Mac Lane 1995), (Sklyarenko 1978)):

P-1) If a short exact sequenceE is inP, thenP contains every short exact sequence

isomorphic to E .

P-2) P contains all splitting short exact sequences.

P-3) The composite of two P-monomorphisms is a P-monomorphism if this

composite is defined.

P-3’) The composite of twoP-epimorphisms is aP-epimorphism if this composite

is defined.

P-4) If g and f are monomorphisms, and g ◦ f is a P-monomorphism, then f is

a P-monomorphism.

P-4’) If g and f are epimorphisms, and g ◦ f is a P-epimorphism, then g is a

P-epimorphism.

An important example for proper classes in abelian groups is PureZ-Mod:

The proper class of all short exact sequences (3.1) of abelian groups and abelian

group homomorphisms such that Im( f ) is a pure subgroup of B, where a subgroup

A of a group B is pure in B if A ∩ nB = nA for all integers n (see (Fuchs 1970)

for the important notion of purity in abelian groups). The short exact sequences
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in PureZ-Mod are called pure-exact sequences of abelian groups. The corresponding

subgroup of Ext(C,A) is denoted by Pext(C,A). The following Theorem gives the

structure of Pext(C,A) in terms of subgroups of Ext(C,A).

Theorem 3.1 ((Fuchs 1970), Theorem 53.3) For every abelian groups A, C,

Pext(C,A) coincides with the first Ulm subgroup of Ext(C,A), i.e.

Pext(C,A) = Ext(C,A)1 =
⋂

n∈Z+

n Ext(C,A).

The smallest proper class of R-modules consists of only splitting short exact se-

quences of R-modules which we denote by SplitR-Mod. The largest proper class of

R-modules consists of all short exact sequences of R-modules which we denote

byAbsR-Mod (absolute purity ).

Another example is constructed by using the change of rings: Let f : R −→
S be a homomorphism of rings. Then every S-module M can be made an R-module

by rm = f (r)m, ∀m ∈ M, r ∈ R. Let F = { E : 0 // A // B // C // 0 | E is

splitting as a sequence of R-modules }. Then F is a proper class.

A subfunctor F of Ext1
R such that F (C,A) is a subgroup of Ext1

R(C,A) is

called an e-functor (see (Butler and Horrocks 1961)). By (Nunke 1963, Theorem

1.1), an e-functor F of Ext1
R gives a proper class if it satisfies one of the properties

P-3) and P-3’). This result enables us to define a proper class in terms of subfunc-

tors of Ext1
R.

For a proper class P of R-modules, call a submodule A of a module B a

P-submodule of B, if the inclusion monomorphism iA : A→ B, iA(a) = a, a ∈ A, is

a P-monomorphism.

Let T(M, ·) : R-Mod −→ Ab be an additive functor (covariant or contravari-

ant), left or right exact and depending on an R-module M from R-Mod. IfM is a

given class of modules of this category, we denote by t−1(M) the class P of short

exact sequences E such that T(M, E) is exact for all M ∈ M.

Lemma 3.1 P = t−1(M) is a proper class.

Proof For example, suppose that T is covariant and right exact. Let

E : 0 //A
f //B

g //C //0 and E′ : 0 //A
f ′ //B ′

g ′ //C //0 be

isomorphic triples, i.e. there is an isomorphism α : B −→ B ′. Since T is right
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exact and T(M, E) is exact we have the following diagram:

0 // T(M,A)
T(M, f ) // T(M,B)

T(M,g) //

T(M,α)
²²

T(M,C) // 0

T(M,A)
T(M, f ′)// T(M,B ′)

T(M,g ′)// T(M,C) // 0

T(M, f ′) = T(M, α ◦ f ) = T(M, α) ◦ T(M, f ) and T(M, α) is an isomorphism, as α is

an isomorphism. Then T(M, f ′) is a monomorphism, i.e. the second row is exact.

Hence E′ ∈ P.

If E : 0 //A
µ //B ν //C //0 is a splitting short exact sequence, then

there exist µ′ : B −→ A and ν′ : B −→ C such that µ′ ◦ µ = 1A, ν ◦ ν′ = 1C.

Then we have T(M, µ′) ◦ T(M, µ) = T(M, µ′ ◦ µ) = T(M, 1A) = 1T(M,A) and

T(M, ν) ◦ T(M, ν′) = T(M, ν ◦ ν′) = T(M, 1C) = 1T(M,C), i.e. T(M,E) is exact.

Let α : A −→ B and β : B −→ C be P-monomorphisms. Then T(M, α) and T(M, β)

are monomorphisms and T(M, β ◦ α) = T(M, β) ◦ T(M, α) is a monomorphism. So

β ◦ α is a P-monomorphism.

Let α : A −→ B and β : B −→ C be monomorphisms and β ◦ α be a P-

monomorphism. Then we have the diagram

T(M,A)
T(M,α) // T(M,B)

T(M,β)
²²

0 // T(M,A)
T(M,β◦α)// T(M,C)

If x ∈ Ker T(M, α), then T(M, β◦α)(x) = T(M, β)◦T(M, α)(x) = 0, so x ∈ Ker T(M, β◦
α) = 0, i.e. α is a P-monomorphism.

If h : B −→ C and g : C −→ D are epimorphisms and A′ = Ker g ◦ h, then the

mapping of derived functors T1(M,B) −→ T1(M,C) −→ T1(M,D) is epimorphic,

therefore, T(M,A′) −→ T(M,B) is a monomorphism and g ◦ h ∈ P.

Let µ : B −→ C and ν : C −→ D be epimorphisms and ν ◦ µ be a P-epimorphism.

Then we have the diagram
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0

²²

0

²²
0 // A h // X u //

g
²²

N //

f
²²

0

0 // A w // B
µ //

ν◦µ
²²

C //

ν
²²

0

D

²²

D

²²
0 0

where h, u, f and w are R-module homomorphisms. Applying the functor T(M, .)

to this diagram, we see that the second column of the diagram

0

²²
T(M,A)

T(M,h) // T(M,X)
T(M,u)//

T(M,g)
²²

T(M,N) //

T(M, f )
²²

0

T(M,A)
T(M,w) // T(M,B)

T(M,µ) //

T(M,ν◦µ)
²²

T(M,C) //

T(M,ν)
²²

0

T(M,D)

²²

T(M,D)

²²
0 0

is exact, since ν◦µ is aP-epimorphism. In order to show that ν is aP-epimorphism,

we have to show that T(M, f ) is a monomorphism. Let n ∈ Ker T(M, f ). n =

T(M,u)(x) for some x ∈ T(M,X) since T(M,u) is an epimorphism. (T(M, µ) ◦
T(M, g))(x) = (T(M, f )◦T(M,u)(x) = 0. Then T(M, g)(x) ∈ Ker T(M, µ) = Im T(M,w),

i.e. T(M, g)(x) = T(M,w)(a) for some a ∈ T(M,A). T(M, g)(x) = T(M,w)(a) =

(T(M, g) ◦ T(M, h))(a) ⇒ x − T(M, h)(a) ∈ Ker T(M, g) = 0. Then n = T(M,u)(x) =

T(M,u)(T(M, h)(a)) = (T(M,u) ◦ T(M, h))(a) = 0. So Ker T(M, f ) = 0 and ν is a

P-epimorphism. �

Let t(P) be the class of all modules M for which the triples T(M,E), E ∈ P,

are exact. As we can take the functors Hom or ⊗ for T, t(P) and t−1(P) leads us to

projectively, injectively or flatly generated proper classes.

For a proper class P over an integral domain R, we denote by P̂ the class

of the short exact sequences E : 0 //A //B //C //0 of R-modules
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such that rE ∈ P for some 0 , r ∈ R where r also denotes the multiplication

homomorphism by r ∈ R. Thus

P̂ = {E | rE ∈ P for some 0 , r ∈ R}.

In case of abelian groups the class P̂ is studied in (Walker 1964), (Alizade

1986) and (Alizade, Pancar and Sezen 2004) for P = Split where it was denoted

by Text since Ext1
ˆSplit

(C,A) = T(Ext(C,A)) the torsion part of Ext(C,A).

Let E be a class of short exact sequences. The smallest proper class con-

taining E is said to be generated by E and denoted by < E > (see (Pancar 1997)).

Since the intersection of any family of proper classes is proper, for a class

E of short exact sequences

< E >=
⋂{P : E ⊆ P ;P is a proper class }.

For more information about proper classes generated by a class of short

exact sequences see (Pancar 1997). We will give two results from this paper in

the next section.

3.1. Projectives, Injectives, Coprojectives and Coinjectives with

respect to a Proper Class

Take a short exact sequence

E : 0 //A
f //B

g //C //0

of R-modules and R-module homomorphisms.

An R-module M is said to be projective with respect to the short exact sequence

E, or with respect to the epimorphism g if any of the following equivalent conditions

holds:

1. every diagram

E : 0 // A
f // B

g // C // 0

M
γ̃

__@
@

@
@

γ

OO

where the first row is E and γ : M −→ C is an R-module homomorphism

can be embedded in a commutative diagram by choosing an R-module
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homomorphism γ̃ : M −→ B; that is, for every homomorphism γ : M −→ C,

there exits a homomorphism γ̃ : M −→ B such that g ◦ γ̃ = γ.

2. The sequence

Hom(M,E) : 0 // Hom(M,A)
f ∗ // Hom(M,B)

g ∗ // Hom(M,C) //0

is exact.

Dually, an R-module M is said to be injective with respect to the short exact

sequence E, or with respect to the monomorphism f if any of the following equivalent

conditions holds:

1. every diagram

E : 0 // A
f //

α
²²

B
g //

α̃ÄÄ~
~

~
~

C // 0

M

where the first row is E and α : A −→ M is an R-module homomorphism

can be embedded in a commutative diagram by choosing an R-module

homomorphism α̃ : B −→M; that is, for every homomorphism α : A −→M,

there exists a homomorphism α̃ : B −→M such that α̃ ◦ f = α.

2. The sequence

Hom(E,M) : 0 // Hom(C,M)
g ∗ // Hom(B,M)

f ∗ // Hom(A,M) //0

is exact.

An R-module M is said to be P-projective [P-injective] if it is projective

[injective] with respect to all short exact sequences inP. The relative projectiveness

[injectiveness] of M is equivalent to the requirement that Ext1
P(M, B) = 0, for any

B [Ext1
P(A, M) = 0, for any A]. Denote all P-projective [P-injective] modules by

π(P) [ι(P)].

The Functor Ext1
P : In a proper class P in R-Mod, there need not be a

P-epimorphism from some P-projective module to a given R-module A. So in

general, it is not possible to define the functor Ext1
P by using the derived functor

17



of the functor Hom. However, the alternative definition of Ext1
P may be used in

this case.

For a proper class P and R-modules A, C, denote by Ext1
P(C,A) or shortly

by ExtP(C, A), the equivalence classes of all short exact sequences in P which

start with A and end with C. This turns out to be a subgroup of ExtR(C, A) and a

bifunctor Ext1
P : R-Mod×R-Mod −→ Ab is obtained which is a subfunctor of Ext1

R.

A classP of R-modules is said to have enough projectives if for every module

A we can find a P-epimorhism from some P-projective module P to A. A class

P of R-modules is said to have enough injectives if for every module B we can

find a P-monomorphism from B to some P-injective module J. A proper class

P of R-modules with enough projectives [enough injectives] is also said to be a

projective proper class [resp. injective proper class].

The following propositions give the relation between projective (resp. in-

jective) modules with respect to a classE of short exact sequences and with respect

to the proper class < E > generated by E.

Proposition 3.1 ((Pancar 1997), Propositions 2.3 and 2.4)

(a) π(E) = π(< E >).

(b) ι(E) = ι(< E >).

An R -module C is said to be P-coprojective if every short exact sequence of R-

modules and R-module homomorphisms of the form

E : 0 //A
f //B

g //C //0

ending with C is in the proper class P. An R-module A is said to be P-coinjective

if every short exact sequence of R-modules and R-module homomorphisms of the

form

E : 0 //A
f //B

g //C //0

starting with A is in the proper class P.

Using the functor ExtP, the P-projectives, P-injectives, P-coprojectives, P-

coinjectives are simply described in terms of the subgroup ExtP(C, A) ≤ ExtR(C, A)

being 0 or the whole of ExtR(C, A):
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1. An R-module C is P-projective if and only if

ExtP(C, A) = 0 for all R-modules A.

2. An R-module C is P-coprojective if and only if

ExtP(C, A) = ExtR(C, A) for all R-modules A.

3. An R-module A is P-injective if and only if

ExtP(C, A) = 0 for all R-modules C.

4. An R-module A is P-coinjective if and only if

ExtP(C, A) = ExtR(C, A) for all R-modules C.

Proposition 3.2 ((Misina and Skornjakov 1960), Propositions 1.9 and 1.14)

If in the short exact sequence 0 //M //N //K //0 , modules M and K are

P-coprojective (P-coinjective), then N is P-coprojective (P-coinjective).

Proof Let A be an R-module. Suppose that M and K are P-coprojective. Then

0 //M //N //K //0 ∈ P. We have the following exact sequences

0 // Hom(K,A) // Hom(N,A) // Hom(M,A) //

// Ext1
P(K,A) // Ext1

P(N,A) // Ext1
P(M,A) // · · ·

0 // Hom(K,A) // Hom(N,A) // Hom(M,A) //

// Ext1
R(K,A) // Ext1

R(N,A) // Ext1
R(M,A) // · · ·

Since M and K areP-coprojective, we have the equalities in the following diagram.

Ext1
P(K,A) // Ext1

P(N,A) //

²²

Ext1
P(M,A)

Ext1
R(K,A) // Ext1

R(N,A) // Ext1
R(M,A)

Then Ext1
P(N,A) = Ext1

R(N,A) for every R-module A, which shows that N is P-

coprojective.

For the case ofP-coinjectives, the proof can be done by using the functor Hom(B, ·)
for an R-module B. �
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Proposition 3.3 ((Misina and Skornjakov 1960), Proposition 1.12) An

R-module M is P-coprojective if and only if there is a P-epimorphism from a projec-

tive R-module P to M.

Proof (⇒) Take any epimorphism γ : P −→M from a projective R-module P to

M. Since M is P-coprojective, γ is a P-epimorphism.

(⇐) Let γ : P −→ M be a P-epimorphism and K = Kerγ. Then the short exact

sequence 0 //K //P
γ //M //0 is in P. For every R-module A, we have the

following exact sequences:

· · · // Hom(K,A) // Ext1
P(M,A) //

²²

Ext1
P(P,A) // · · ·

· · · // Hom(K,A) // Ext1
R(M,A) // Ext1

R(P,A) // · · ·

where the equality Ext1
P(P,A) = Ext1

R(P,A)=0 holds, since P is projective. Then

Ext1
P(M,A) = Ext1

R(M,A), hence M is P-coprojective. �

Corollary 3.1 ((Misina and Skornjakov 1960), Proposition 1.13)

If 0 //A //B //C //0 is a short exact sequence in a proper class P and

B is P-coprojective, then C is also P-coprojective.

Dually, for P-coinjective modules we have the following proposition:

Proposition 3.4 ((Misina and Skornjakov 1960), Proposition 1.7)

An R-module N is P-coinjective if and only if there is P-monomorphism from N

to an injective module I.

Proof (⇒) Take any monomorphismα : N −→ I from N to an injective R-module

I. Since N is P-coinjective, α is a P-monomorphism.

(⇐) Let α : N −→ I be a P-monomorphism and L = I/ Imα. Then the short exact

sequence 0 //N α //I //L //0 is in P. For every R-module B, we have the

following exact sequences:

· · · // Hom(B,L) // Ext1
P(B,N) //

²²

Ext1
P(B, I) // · · ·

· · · // Hom(B,L) // Ext1
R(B,N) // Ext1

R(B, I) // · · ·

where the equality Ext1
P(B, I) = Ext1

R(B, I)=0 holds, since I is injective. Then

Ext1
P(B,N) = Ext1

R(B,N), i.e. N is P-coinjective. �
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Corollary 3.2 ((Misina and Skornjakov 1960), Proposition 1.8) If

0 //A //B //C //0 is a short exact sequence in a proper class P and B is

P-coinjective, then A is also P-coinjective.

3.2. Projectively Generated Proper Classes

For a given classM of modules, denote byπ−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(M,E)

is exact for all M ∈ M, that is,

π−1(M) = {E ∈ AbsR-Mod|Hom(M,E) is exact for all M ∈ M}.

π−1(M) is the largest proper class P for which each M ∈ M is P-projective and it

is called the proper class projectively generated byM.

Proof This is a consequence of Lemma 3.1. Take T(M, ·) = Hom(M, ·). �

Proposition 3.5 Let P be a proper class andM be a class of modules. Then we have

1. P ⊆ π−1(π(P)),

2. M ⊆ π(π−1(M)),

3. π(P) = π(π−1(π(P))),

4. π−1(M) = π−1(π(π−1(M))).

For a proper class P, π−1(π(P)) is called the projective closure of P and it

always contains P.

3.3. Injectively Generated Proper Classes

For a given classM of modules, denote by ι−1(M) the class of all short exact

sequences E of R-modules and R-module homomorphisms such that Hom(E,M)

is exact for all M ∈ M, that is,

ι−1(M) = {E ∈ AbsR-Mod|Hom(E,M) is exact for all M ∈ M}.
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ι−1(M) is the largest proper class P for which each M ∈ M is P-injective which is

called the proper class injectively generated byM.

Proof This is a consequence of Lemma 3.1. Take T(M, ·) = Hom(·, M). �

3.4. Flatly Generated Proper Classes

When the ring R is not commutative, we must be careful with the sides for

the tensor product analogues of projectives and injectives with respect to a proper

class. Recall that by an R-module, we mean a left R-module.

Take a short exact sequence

E : 0 //A
f //B

g //C //0

of R-modules and R-module homomorphisms. We say that a right R-module M is

flat with respect to the short exact sequence E, or with respect to the monomorphism g if

M ⊗ E : 0 //M ⊗ A
1M⊗ f //M ⊗ B

1M⊗g //M ⊗ C //0

is exact.

A right R-module M is said to be P-flat if M is flat with respect to every

short exact sequence E ∈ P, that is, M ⊗ E is exact for every E in P.

For a given classM of right R-modules, denote by τ−1(M) the class of all

short exact sequences E of R-modules and R-module homomorphisms such that

M ⊗ E is exact for all M ∈ M:

τ−1(M) = {E ∈ AbsR-Mod|M ⊗ E is exact for all M ∈ M}.

τ−1(M) is the largest proper class P of (left) R-modules for which each M ∈ M is

P-flat. It is called the proper class flatly generated by the classM of right R-modules.

3.5. Coprojectively and Coinjectively Generated Proper Classes

LetM andJ be classes of modules over some ring R. The smallest proper

class k(M) (resp. k(J)) for which all modules in M (resp. J) are coprojective

(resp. coinjective) is said to be coprojectively (resp. coinjectively) generated by

M (resp. J).
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Theorem 3.2 ((Alizade 1985), Theorem 2) Let L be a class of modules closed under

extensions. Consider the class L of exact triples, defined as:

ExtL(C,A) =
⋃

I, α

Im{Ext(C, I) α∗−→ Ext(C,A)}

over all I ∈ L and all homomorphisms α : I −→ A. Then exact triples

0 //A //X //C //0 belonging to ExtL(C,A), form a proper class and L co-

incides with k(L).

For more information about coprojectively and coinjectively generated proper

classes see (Alizade 1985) and (Alizade 1986).
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CHAPTER 4

THE PROPER CLASSES RELATED TO

COMPLEMENTS AND SUPPLEMENTS

The proper classes ComplR-Mod, SupplR-Mod, NeatR-Mod and Co-NeatR-Mod are

defined in (Mermut 2004). One can find the properties of these classes and

their relationship in the same work and (Clark, et al. 2006). Here we will give

definitions and some results that will be useful for our work.

4.1. ComplR-Mod, SupplR-Mod,NeatR-Mod and Co-NeatR-Mod

The class ComplR-Mod consists of all short exact sequences

0 //A
f //B

g //C //0 (4.1)

in R-Mod such that Im f is a complement of some submodule K of B, that is

Im f ∩ K = 0 and K is maximal with respect to this property.

The classNeatR-Mod consists of all short exact sequences 4.1 such that every

simple R-module is relative projective for it, denoted by

NeatR-Mod = π−1
R-Mod{S ∈ R-Mod | S is simple}.

The corresponding subset of Ext(C,A) is denoted by Next(C,A). Over

the ring Z of integers, we have the following result that gives the structure of

NeatZ-Mod in terms of the subgroups of Ext(C,A).

Corollary 4.1 ((Alizade, Pancar and Sezen 2004), Corollary 4.3)

For every abelian groups A, C, we have Next(C,A) =
⋂
p

p Ext(C,A) = F(Ext(C,A))

where p ranges over the prime numbers and F(Ext(C,A)) is the Frattini subgroup of

Ext(C,A).

The class SupplR-Mod, consisting of all short exact sequences 4.1 such that

Im f is a supplement of some submodule K of B, is a proper class (see (Erdoğan

2004) or (Clark, et al. 2006) for a proof). The properties of SupplR-Mod-coinjective
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and SupplR-Mod-coprojective modules are investigated in (Erdoğan 2004).

Dual to the notion ofNeatR-Mod, Co-NeatR-Mod is defined as

Co-NeatR-Mod = ι−1
R-Mod{M ∈ R-Mod | Rad M = 0}.

We have the relations, ComplR-Mod ⊆ NeatR-Mod and SupplR-Mod ⊆
Co-NeatR-Mod for arbitrary ring R.

4.2. The κ-Elements of Ext(C,A)

For the rest of this chapter, we will write Ext instead of ExtR. A short exact

sequence

E : 0 //A
f //B

g //C //0 (4.2)

is called κ-exact if Im f has a supplement in B, i.e. a minimal element in the set

{V ⊂ B | V + Im f = B}. In this case we say that E ∈ Ext(C,A) is a κ-element and

the set of all κ-elements of Ext(C,A) will be denoted by S.

We denote byWsupp the class of short exact sequences 4.2., where Im f has

(is) a weak supplement in B, i.e. there is a submodule K of B such that Im f +K = B

and Im f ∩ K � B. We denote by Small the class of short exact sequences 4.2.

where Im f � B.

The κ-elements need not form a proper class in general. For in-

stance, let R = Z and consider the composition β ◦ α of the monomorphisms

α : 2Z −→ Z and β : Z −→ Q where α and β are the corresponding in-

clusions. Then we have 0 //2Z
β◦α //Q //Q/2Z //0 is a κ-element, but

0 //2Z α //Z //Z/2Z //0 is not a κ-element as 2Z does not have a sup-

plement in Z.

If X is a Small-submodule of an R-module Y, then Y is a supplement of X

in Y, so X is S-submodule of Y. If U is a S-submodule of an R-module Z, then

a supplement V of U in Z is also a weak supplement, therefore U is a Wsupp-

submodule of Z. These arguments give us the relation Small ⊆ S ⊆ Wsupp for

any ring R.

For the following proposition, recall that for a class E of short exact se-

quences < E > denotes the proper class generated by E.
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Proposition 4.1 〈Small〉 = 〈S〉 = 〈Wsupp〉.
Proof We have the relation Small ⊆ S ⊆Wsupp which implies 〈Small〉 ⊆ 〈S〉 ⊆
〈Wsupp〉. Conversely, let E : 0 //A

f //B
g //C //0 ∈ Wsupp. We can

assume that A is a submodule of B. Let D be a weak supplement of A in B, i.e.

A + D = B and A ∩D� B. Then we have the commutative diagram

0

²²

0

²²
A ∩D

x
²²

A ∩D
y

²²
E : 0 // A

f //

u
²²

B
g //

v
²²

C // 0

E′ : 0 // A/A ∩D h //

²²

B/A ∩D
j //

²²

C // 0

0 0

where x, y are the corresponding inclusion homomorphisms and u, v are canon-

ical epimorphisms. We have A/A ∩ D ⊕ D/A ∩ D = B/A ∩ D, therefore

E′ ∈ Split ⊆ 〈Small〉. Since A ∩ D � B, v and j are 〈Small〉 -epimorphisms.

Then g = j ◦ v is a 〈Small〉 -epimorphism and E ∈ 〈Small〉. Since 〈Small〉 is a

proper class, we have that 〈Wsupp〉 ⊆ 〈Small〉. �

Proposition 4.2 Let R be a domain. Then every bounded R-module is 〈Small〉-
coinjective.

Proof Let B be a bounded R-module and I be an injective hull of B such that

B ⊂ I. We will show that B� I. Let B + X = I for some X ⊂ I. Since B is bounded,

there exists 0 , r ∈ R such that rB = 0. Then I = rI = rB + rX = rX, since I is

divisible. Therefore X = I and B � I. I is 〈Small〉-coinjective, since it is injective.

Then B is 〈Small〉-coinjective by Corollary 3.2. �

Corollary 4.2 If R is a domain, then k(B) ⊆ 〈Small〉.

The main problem with the investigation of the κ-elements in Ext(C,A) is

that they need not form a subgroup. The reason for this is the fact that, in general,

for a homomorphism g : C′ −→ C, the induced map g∗ : Ext(C,A) −→ Ext(C′,A)

need not preserve κ-elements.
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Let us consider the short exact sequences

E : 0 //A α //B //C //0 in which V + Imα = B for some V ⊂ B,

where V ∩ Imα � V and V ∩ Imα is bounded, i.e. V is a supplement of Imα in

B with V ∩ Imα is bounded. Following Zöschinger we will call such sequences

β-exact and denote Imα ⊂β B. In this case we say that E ∈ Ext(C,A) is a β-element.

Over a Dedekind domain, any β-element of ExtR(C,A) is a κ-element as well as

a torsion element. Let us denote the β-elements of ExtR(C,A) by SB. In order to

show that every κ-element need not be a β-element, we give an example over

R = Z.

Example 4.1 Consider the inclusion homomorphism f :
⊕

p
Zp −→

⊕
p
Zp∞ where p

ranges over all prime numbers in Z. Im f =
⊕

p
Zp is small in

⊕
p
Zp∞ , so f is a S-

monomorphism.
⊕

p
Zp∞ itself is the only supplement of Im f in

⊕
p
Zp∞ . Im f =

⊕
p
Zp

is not bounded, hence f is not an SB-monomorphism.

The following proposition holds for a noetherian integral domain of Krull

dimension 1. Recall that B denotes the class of bounded R-modules.

Proposition 4.3 Let R be a noetherian integral domain of Krull dimension 1. Then

SB = k(B). Hence SB is a proper class in this case.

Proof (⊆) Let E : 0 //A α //B
β //C //0 be a short exact sequence in

SB. We can assume that α is the inclusion, i.e. A ⊆ B. Then there is a supplement

V of A in B such that V ∩ A is bounded. We have the following commutative

diagram

E : 0 // A //

π
²²

B //

²²

C // 0

πE : 0 // A/(A ∩ V) // B/(A ∩ V) // C // 0

where the second row splits, since it is equivalent with the splitting short

exact sequence 0 //A/(A ∩ V) //A/(A ∩ V) ⊕ V/(A ∩ V) //V/(A ∩ V) //0.

If we apply the functor HomR(C, ·) to the short exact sequence

0 //A ∩ V ι //A π //(A/A ∩ V) //0 where ι is the inclusion homomorphism

and π is the canonical epimorphism, we get the sequence

· · · // ExtR(C,A ∩ V) ι∗ // ExtR(C,A) π∗ // ExtR(C,A/A ∩ V) // · · ·
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and π∗(E) = 0 by the previous argument. Then E ∈ Kerπ∗ = Im ι∗, so there is

an E′ ∈ Ext(C,A ∩ V) such that ι∗(E′) = E. Since A ∩ V is bounded and k(B) is a

proper class, E = ι∗(E′) is an element of k(B). Hence SB ⊆ k(B).

(⊇) By (Zöschinger 1974b, Folgerung after Lemma 1.4) over a noetherian integral

domain of Krull dimension 1, every bounded R-module M is S-coinjective. As M

is bounded, it is SB-coinjective.

Let E : 0 //A //B //C //0 ∈ k(B). Using Theorem 3.2, there ex-

ist I ∈ B and a homomorphism α : I −→ A such that α∗(E′) = E for some

E′ : 0 //I //X //C //0 ∈ Ext(C, I). Then the diagram

E′ : 0 // I //

α
²²

X //

²²

C // 0

E : 0 // A // B // C // 0

is commutative. I is SB-coinjective, since I ∈ B. Therefore E′ ∈ SB. By

(Zöschinger 1978, Folgerung (b) after Lemma 1.3), α∗ preserves β-elements. Then

E = α∗(E′) ∈ SB. �

Corollary 4.3 Over a Dedekind domain R, we haveSB = k(B), thereforeSB is a proper

class.

Let R denote the ring Z of integers till the end of this section.

A homomorphism g : C′ −→ C is called coneat if for every decomposition

g = β ◦ α where β is a small epimorphism, β is an isomorphism.

The following results establish a connection between coneat homomor-

phisms and the κ-elements of Ext(C,A).

Lemma 4.1 ((Zöschinger 1978), Lemma 2.2)

(a) An epimorphism g : C′ −→ C is coneat if and only if Ker g is coclosed in C′, i.e.

for any submodule X of Ker g, Ker g/X� C′/X implies X = Ker g.

(b) A splitting monomorphism g : C′ −→ C is coneat if and only if Coker g has no

small cover.

(c) If g = g2 ◦ g1 is coneat, then g2 is also coneat.

Theorem 4.1 ((Zöschinger 1978), Satz 2.3) For a homomorphism g : C′ −→ C, the

following are equivalent:
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(i) g is coneat.

(ii) Ker g is coclosed in C′ and Im g ⊃ Soc C.

(iii) g(C′[p]) = C[p] for all prime numbers p.

(iv) If the diagram below is a pullback diagram and β is a small epimorphism, then β′ is

also a small epimorphism.

B′
β ′ //

g ′

²²

C′

g
²²

B
β

// C

Corollary 4.4 ((Zöschinger 1978), Folgerung 1 after Satz 2.3) If g : C′ −→ C is

coneat, then g∗ : Ext(C,A) −→ Ext(C′,A) preserves κ-elements.

Corollary 4.5 ((Zöschinger 1978), Folgerung 2 after Satz 2.3) g∗ : Ext(C,A) −→
Ext(C′,A) preserves κ-elements if g satisfies the following two conditions:

(a) Im g ⊃ Soc(C).

(b) Ker g is supplemented and has a supplement in every extension.

We can find an answer to the question if κ-elements of Ext(C,A) form a

subgroup of Ext(C,A), in terms of C and A. The following results give an answer

under some conditions on C and A. Note that the following two results for abelian

groups can be generalized for modules over Dedekind domains.

Lemma 4.2 ((Zöschinger 1978), Lemma 2.1) Let A, A′,C and C′ be R-modules.

(I) If f : A −→ A′, then f∗ : Ext(C,A) −→ Ext(C,A′) preserves κ-elements.

(II) Let g : C′ −→ C and C′ be torsion. If either a primary component of C is zero or A

is torsion, then g∗ : Ext(C,A) −→ Ext(C′,A) preserves κ-elements.

Corollary 4.6 ((Zöschinger 1978), Folgerung 3 after Lemma 2.1) If C is torsion,

and either a primary component of C is zero or A is torsion, then the κ-elements of

Ext(C,A) form a subgroup.
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4.3. The κ-Elements of ExtR(C,A) over the Category TR for a

Dedekind Domain R

In this section, R denotes a Dedekind domain which is not a field and K

denotes its field of fractions, we will denote the set of maximal ideals of R by Ω.

Let TR be the category of torsion R-modules. Consider the short exact sequences

0 //A
f //B

g //C //0 of R-modules A, B, C and R-module homomorphisms

f and g where A, B, C ∈ TR. From now on, we will consider the short exact

sequences in the form given above.

By Corollary 4.6, κ-elements of Ext(C,A) in TR form a subgroup. It is also a

subfunctor of Ext by Lemma 4.2, so it is an e-functor.

In order to show that κ-elements form a proper class, we need the transitiv-

ity of the relation κ. The following lemma is proved when R = Z in (Zöschinger

1978), note that it holds for all R-modules, but we will use it only for modules in

TR.

Lemma 4.3 ((Zöschinger 1978), Lemma 6.6) Let X ⊂ Y ⊂ Z be R-modules, V be a

supplement of X in Y, and W be a supplement of Y in Z. Then we have:

(a) If Rad(Y/X) = Y/X ∩ Rad(Z/X), then V + W is a supplement of X in Z.

(b) X has a supplement in Z.

Proof (a) The condition on the radical implies that (X + (W∩Y)/X) = ((W + X)∩
Y)/X is small in Y/X. Then the canonical map V −→ Y/X −→ Z/(W + X) is a small

epimorphism. Therefore V is a supplement of W + X in Z. We also have that W

is a supplement of V + X in Z. Hence V + W is a supplement of X in Z.

(b) The R-module ((W + X) ∩ Y)/X is small in Z/X, so it is coatomic. It has

a supplement Y′/X in the torsion module Y/X such that (W + X)/X and Y′/X

are mutual supplements in Z/X. Then we have that Y′ has a supplement in Z,

Rad(Y′/X) = Y′/X∩Rad(Z/X) and (V∩Y′)+X = Y′. Therefore X has a supplement

in Y′. By using the same argument in part (a), X has a supplement in Z. �

We can see that ExtS is an e-functor by Lemma 4.2 and Corollary 4.6 in the

category TR. Lemma 4.3 also holds for modules in TR. Then S gives an e-functor
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and P-3 in the definition of a proper class is satisfied in the category TR, we have

by (Nunke 1963, Theorem 1.1), that S form a proper class in the category TR.

Our next aim is to find the S-injective and S-projective R-modules in TR.

Proposition 4.4 In the category TR, we have:

(a) κ-elements of Ext(C,A) form a proper class.

(b) π(Wsupp) = π(S) = π(Small) = {0}.

(c) S-injective R-modules are only the injective R-modules in TR.

Proof (a) Follows from the previous arguments.

(b) We always have the relationWsupp ⊇ S ⊇ Small which implies π(Wsupp) ⊆
π(S) ⊆ π(Small).

Assume that there is a nonzero element P in π(Small). P =
⊕
p∈Ω

Tp(P) where

Tq(P) , 0 for some q ∈ Ω, since P , 0. Then there is a simple submodule

M ≤ Tq(P), clearly M � R/q � q−1/R (see (Nunke 1959, Lemma 4.4) for the

last isomorphism), and there is a nonzero homomorphism α : M −→ Tq(K/R).

Since Tq(K/R) is injective, there is a homomorphism h : P −→ Tq(K/R) making the

diagram

0 // M
β //

α
²²

P

h{{w
w

w
w

w

Tq(K/R)

commutative. Since α , 0, we have h , 0.

The short exact sequence 0 //q−1/R
j //Tq(K/R)

f //Tq(K/R) //0 where j and

f are canonical homomorphisms, is in Small (see (Wisbauer 1991, Ch. 8, §40.3,

(4))). Since P is an element ofπ(Small), there is a homomorphism g : P −→ Tq(K/R)

making the diagram

0 // q−1/R
j // Tq(K/R)

f // Tq(K/R) // 0

P
g

ffM M M M M M
h

OO

commute, i.e. h = f ◦ g, which implies h|M = ( f ◦ g)|M. Since g(M) is simple in

Tq(K/R), g(M) � q−1/R or g(M) = 0. In both cases, we have 0 , α(M) = h|M =

( f ◦ g)|M = 0. This contradicts with h = f ◦ g.
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(c) We always have ι(Wsupp) ⊆ ι(S) ⊆ ι(Small), and we know that all these classes

include injective R-modules. We will show that the Small-injective R-modules in

TR are only the injective ones.

Let I be a Small-injective R-module. Then I = D(I) ⊕ I′, where D(I) is the divisible

part of I and I′ is reduced. Since I′ is a direct summand of a Small-injective R-

module, I′ is Small-injective.

Suppose that I′ , 0. With similar arguments we used in part (b), there is a nonzero

monomorphism γ : q−1/R −→ I′ for some q ∈ Ω. If we take the same short exact

sequence we used in part (b), we get the commutative diagram

0 // q−1/R
j //

γ

²²

Tq(K/R)
f //

h
yys s s s s s

Tq(K/R) // 0

I′

where the existence of h is guaranteed by the assumption of I being Small-

injective.Then we have γ = h ◦ j and 0 , γ(q−1/R) = (h ◦ j)(q−1/R) ⊆ h(Tq(K/R)) ⊆
D(I′) = 0, where D(I′) = 0 as I′ is reduced. This is a contradiction.

So Small-injective R-modules in TR are only the injective modules in TR.

�

Corollary 4.7 In the category TZ of torsion abelian groups we have:

(a) κ-elements of Ext(C,A) form a proper class.

(b) π(Wsupp) = π(S) = π(Small) = {0}.

(c) S-injective abelian groups are only the injective abelian groups.

In order to find the form of κ-coinjective R-modules in the category TR, we

need the following lemmas.

Lemma 4.4 Let A, B be R-modules and A ⊆ B. Then A� B if and only if A is coatomic

and A ⊆ Rad B.

Proof (⇒) Suppose that Rad(A/X) = A/X for some X ⊆ A. Then A/X is divisible,

so A/X is a direct summand of B/X. Since A/X is an epimorphic image of A in B,

A/X � B/X which implies A/X = 0.

(⇐) Suppose that A + Y = B for some Y $ B. Then A/A ∩ Y � A + Y/Y = B/Y is

also coatomic, so there is a maximal submodule Z of B containing Y and we have

Rad B + Z = B which is a contradiction. �
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Lemma 4.5 Let S be a DVR, B be a reduced torsion S-module and A be a bounded

submodule of B. If B/A is divisible, then B is also bounded.

Proof If p is the generator of the maximal ideal of S, then p(B/A) = B/A, since

B/A is divisible. Then pB + A/A = B/A and pB + A = B. As A is bounded, pnA = 0

for some n ∈ Z+. We have pnB = pn+1B + pnA = pn+1B, i.e. pnB is divisible. Then

pnB = 0, since B is reduced. �

Lemma 4.6 Let S be a DVR and A ⊆ B be torsion S-modules. If A � B, then A is

bounded.

Proof Let A and B be torsion S-modules and A� B. Then A is reduced and by

Lemma 4.4, A is coatomic. By (Zöschinger 1974a, Lemma 2.1) A is bounded. �

Proposition 4.5 In the category TR of torsion R-modules, an R-module X is S-

coinjective if and only if every primary part of the reduced part of X is bounded.

Proof (⇒) Let X ∈ TR be S-coinjective. Let D be the divisible part of X. Then

X = D ⊕ T where T is reduced. By Corollary 3.2, T is S-coinjective. Let p

be a maximal ideal of R and Y = Tp(T). Again by Corollary 3.2 Y is also S-

coinjective. We can consider Y as an Rp-module,i.e. a module over a DVR. If I is

the injective hull of Y, Y has a supplement A in I. As Y ∩ A is small in A, Y ∩ A

is coatomic by Lemma 4.4 and bounded by (Zöschinger 1974a, Lemma 2.1). We

have Y/Y ∩ A � Y + A/A = I/A is divisible. Then by Lemma 4.5, Y is bounded.

(⇐) Let X = D ⊕ T where D is the divisible part of X. D is injective, hence D is

S-coinjective. Let p be maximal ideal of R, Tp(T) is S-coinjective by (Zöschinger

1974b, Folgerung after Lemma 1.4). Let Y be an R-module containing T. We

have Tp(T) ⊆ Tp(Y) and Tp(T) has a supplement Vp in Tp(Y). Then
⊕
p

Vp is a

supplement of
⊕
p

Tp(T) = T in Y. Therefore T is S-coinjective. Considering the

splitting short exact sequence 0 //D //X //T //0, by Proposition 3.2, X

is S-coinjective. �

The following result holds when R = Z and it can be generalized for

modules over a Dedekind domain. Recall that we denoted κ-elements of Ext(C,A)

by S and β-elements of Ext(C,A) by SB.

Lemma 4.7 ((Zöschinger 1978), Lemma 1.2) If A, C ∈ TR, then

ExtSB(C,A) = ExtS(C,A) ∩ T(Ext(C,A)).
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We have a similar result to Lemma 4.3 for β-elements.

Lemma 4.8 Let X ⊂β Y ⊂β Z. If Z is torsion, then X ⊂β Z.

Proof Following the proof of Lemma 4.3, there exists Y′ ⊆ Z such that X has a

supplement V′ in Y′ and Y′ has a supplement W′ in Z. We know that V′ + W′ is a

supplement of X in Z. What we need to show is that X ∩ (V′ + W′) is bounded.

We have X∩(V′+W′) ⊆ (V′∩(X+W′))+(W′∩(X+V′)) = (V′∩(X+W′))+(W′∩Y′).

We know that W′ ∩ Y′ is bounded. Let v′ = x + w′ ∈ V′ ∩ (X + W′), then w′ =

v′ − x ∈ W′ ∩ (V′ + X) = W′ ∩ Y′. W′ ∩ Y′ is bounded, so r(v′ − x) = 0 for some

r ∈ R. rv′ = rx ∈ V′ ∩ X. V′ ∩ X is also bounded, therefore srv′ = 0 for some s ∈ R.

Hence V′ ∩ (X + W′) is also bounded. �

By using (Nunke 1963, Theorem 1.1), we have that β-elements of ExtR(C,A)

form a proper class. With similar arguments in Proposition 4.4, we have the

following proposition.

Proposition 4.6 Let TR be the category of torsion R-modules and A, C ∈ TR. Then we

have:

(i) β-elements of ExtR(C,A) form a proper class.

(ii) π(SB) = {0}.

(iii) SB-injective R-modules are only the injective R-modules in TR.

Corollary 4.8 In the category TZ of torsion abelian groups we have:

(i) β-elements of Ext(C,A) form a proper class.

(ii) π(SB) = {0}.

(iii) SB-injective abelian groups are only the injective abelian groups in TZ.

The following proposition characterize SB-coinjective R-modules in the

category TR.

Proposition 4.7 In the category TR of torsion R-modules, an R-module X is SB-

coinjective if and only if reduced part of X is bounded.
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Proof (⇒) Let X ∈ TR be SB-coinjective. Let D be the divisible part of X. Then

X = D ⊕ Y where Y is reduced. By Corollary 3.2, Y is SB-coinjective, so it is

S-coinjective. By Proposition 4.5, Tp(Y) is bounded for every maximal ideal p of

R. Suppose that Tp(Y) , 0 for infinitely many maximal ideals p of R. We can write

Y =
⊕
p∈G

Tp(Y) where G ⊆ Ω and Tp(Y) , 0 for all p ∈ G. Let A be the supplement

of Y in an injective hull I of Y. We have (
⊕
p∈G

Tp(Y)) + (
⊕
p∈G

TpA) =
⊕
p∈G

Tp(I). Since

Y ∩ A is bounded, there is q ∈ G such that Tq(Y ∩ A) = Tq(Y) ∩ Tq(A) = 0. Then

Tq(Y) ⊕ Tq(A) = Tq(I), so Tq(Y) = 0, since Y is reduced. This contradicts with our

assumption that Tq(Y) , 0 for every q ∈ G. Therefore Y is bounded.

(⇐) Let X = D ⊕ Y where D is the divisible part of X. D is injective, hence D is

SB-coinjective. Y is S-coinjective by (Zöschinger 1974b, Folgerung after Lemma

1.4). Since Y is also bounded, it is SB-coinjective. By Proposition 3.2, X is SB-

coinjective. �

Corollary 4.9 In the category TZ of torsion abelian groups, an abelian group X is

SB-coinjective if and only if reduced part of X is bounded.
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CHAPTER 5

CONCLUSIONS

In this thesis we applied homological methods for description of the sub-

modules of modules that have supplements. The corresponding elements in

the module of extensions are called κ-elements. These elements for the case of

abelian groups were studied in (Zöschinger 1978). We showed that when R is

a Dedekind domain, the proper class 〈S〉 generated by the class S consisting of

κ-elements coincides with the classes 〈Small〉 and 〈Wsupp〉. We have also inves-

tigated β-elements and showed that over a noetherian integral domain of Krull

dimension 1, β-elements form a proper class and this proper class coincides with

the proper class coinjectively generated by the class of bounded R-modules. We

restricted our attention to the category TR of torsion R-modules for a Dedekind

domain R and characterized S-projective, S-injective, SB-projective and SB-

injective R-modules. We have also given the characterization of S-coinjective and

SB-coinjective R-modules in the category TR.
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