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Abstract: In this paper the application of cyclostationary signal processing in conjunction with
Ensemble Empirical Mode Decomposition (EEMD) technique, on the fault diagnostics of wind turbine
gearboxes is investigated and has been highlighted. It is shown that the EEMD technique together
with cyclostationary analysis can be used to detect the damage in complex and non-linear systems
such as wind turbine gearbox, where the vibration signals are modulated with carrier frequencies
and are superimposed. In these situations when multiple faults alongside noisy environment are
present together, the faults are not easily detectable by conventional signal processing techniques
such as FFT and RMS.

Keywords: EMD; EEMD; cyclostationary; gearbox; wind turbine; condition monitoring

1. Introduction

With the wind energy global installed capacity reaching 651 GW in 2019 [1], effective remote
condition monitoring and predictive maintenance strategies for wind turbines are becoming more
significant attracting increased attention. Wind turbines are typically expected to have a design lifespan
of 20–25 years. However, they rarely meet this target without major overhauls, particularly in their
drivetrain [2]. Gearbox faults and failures take considerable time to repair. Hence, they result in
major downtime and loss of production capacity leading to increased maintenance costs for wind farm
operators [3–6].

Direct drive wind turbine designs remove the need for a gearbox. However, the power converters
of direct drive wind turbines are among the most frequent failing components which cumulatively
result in excessive downtime [7,8]. Thus, the failure rate of power electronics in direct drive wind
turbines greatly exceeds the failure rate of the gearbox in geared wind turbines [8]. Nonetheless,
due to the advantages and disadvantages of each design, technology forecasts suggest that both geared
and direct drive wind turbines will continue to be used in the future [9].

Unlike simple gearboxes used in conventional steady-state machinery, the vibration signals
recorded from the gearbox of a wind turbine can be contaminated resulting in erroneous interpretation
of the data acquired. Wind turbine gearboxes have very complex designs, comprising many different
gears and bearings resulting in the vibration of different parts of the gearbox to superimpose in
the recorded vibration signal with multiple frequency and amplitude modulations occurring. Hence,
it is very challenging to detect a developing fault in its early stages using conventional signal processing
techniques such as Fast Fourier Transform or RMS [10]. Moreover, once a fault is detected it is extremely
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important from a maintenance point of view to evaluate the severity. Identifying a defect alone is not
sufficient for a wind farm operator in order to decide if maintenance is required. In addition, if it is
deemed that maintenance is required it is very important to identify when it should be carried out
without risking loss of production and expensive outages. Gearboxes are rarely available as spare
parts and therefore it can take several months before a spare gearbox can become available. Therefore,
it is critical for wind farm operators to pinpoint the exact gearbox component affected by the fault
and quantify its severity in order to accurately plan maintenance without the risk of loss of production.

The cyclostationary signal processing technique is a very powerful tool for fault detection in
rotating machinery. Moreover, it can be utilised to evaluate the severity of developing faults in rolling
elements and bearings. However, as it has been suggested by Dong and Chen [11], this technique is
not very successful in complex systems when multiple gears and bearings are present.

Here we have investigated the suitability of combining two advanced signal processing techniques
for the purpose of fault detection in the gearbox of wind turbines. These techniques are known as Cyclic
Spectral Analysis and Ensemble Empirical Mode Decomposition (EEMD), which will be explained in
more details in the next section. It should be stressed, that wind turbines operate in variable loading
conditions and therefore, the accurate evaluation of the severity of faults is very challenging [12].
Moreover, false indications of non-existent faults are not uncommon when using conventional signal
processing techniques.

2. Theory

2.1. Cyclic Spectral Analysis

The concept of cyclostationary signals has been around for almost 40 years [13,14]. In recent
years, the theory of cyclostationary signals has been increasingly used in the field of mechanical
fault detection. Vibration signals extracted from bearings and rotating machines are non-stationary
signals containing some hidden periodicities in their background. To extract the periodicity many
signal processing tools are available. The cyclostationary signal analysis technique is one of the most
powerful techniques from those currently available [15]. The statistics of cyclostationary signals have
periodicity with respect to time [10]. Currently, second-order cyclostationarity which is known as cyclic
correlation [10] has an important role in practical application. Despite the strengths of this technique
and its popularity in signal processing of rotating machinery, it has not attracted much attention in
the field of wind turbine condition monitoring and signal processing. To describe this technique we
start with a random process.

In general, a random process will have a time-varying autocorrelation:

Rx(t, τ) = E
{

x
(

t +
τ

2

)
x∗
(

t− τ

2

)}
(1)

where E{. . . } denotes the mathematical expectation operator, and τ is the time delay.
If the autocorrelation is considered periodic with a period of T0, the ensemble average can be estimated
with a time average as below:

Rx(t, τ) = lim
N→∞
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The autocorrelation function in Equation (1) can be written in form of Fourier series due to
its periodicity

Rx(t, τ) = ∑
α

Rα
x(τ)e

j2παt (3)
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where α = m/T0 and m ∈ Z. Combining the above equation with the Equation (2), the Fourier
coefficients can be written as below

Rα
x(τ) = lim
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where Rα
x(τ) is known as cyclic autocorrelation function with α being the cyclic frequency. The 〈. . . 〉

symbol represents the time averaging operator. Next, to obtain the cyclic spectrum, the Fourier
transform can be applied to the cyclic autocorrelation function with respect to the time delay τ, yielding

Sα
x( f ) =

∫ ∞

−∞
Rα

x(τ)e
−j2π f τ dτ (5)

that is known as cyclic spectrum or the spectral correlation function.
In this work the Welch’s averaged periodogram technique has been used, that due to its high

computational efficiency is one of the most common estimators for cyclic spectrum [16].
The cyclic coherence that measures the strength of the correlation between spectral components

distanced by cyclic frequencies can be calculated using [16]

Cα
x( f ) =

Sα
x( f )√

S0
x( f + α/2)S0

x( f − α/2)
(6)

2.2. Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is the fundamental part of a technique known as
Hilbert–Huang Transform that is an empirical data analysis technique, developed in late 1990s by
Huang et al. [17–19]. Unlike other techniques such as Fourier or Wavelet Transforms, that use prior
knowledge or fixed basis to decompose the signal, EMD derives its basis adaptively from the data
itself and does not rely on any prior knowledge [20]. This technique is based on an assumption that
any data is consisting of a set of simple intrinsic modes of oscillations [21].

The EMD decomposition process, decomposes the original signal into a set of signals known as
Intrinsic Mode Functions (IMFs). This is accomplished by a novel process known as sifting, which
is repeatedly applied to the signal until it converges on criteria that define an IMF [20]. The EMD
sifting process extracts the fastest varying component first and continues to the next IMF. The process
produces a finite number of IMFs before converging itself.

The extracted IMFs represent simple oscillatory functions with different time-scale. Each IMF
by definition will have the same number of extrema and zero-crossings or differ at most by one.
Furthermore, the mean value of the envelopes of local maxima and local minima of IMFs are zero at
any given point [21]. The technique to calculating the IMFs are briefly explained here but for more
details and derivations on the technique one can refer to [17,21].

The first step to calculate the IMF is to find all the local maxima points of the signal and connect
them using cubic spline to obtain the upper envelope of the signal. The same procedure is applied
to the local minima points to obtain the lower envelope. Next, the mean value of the two envelopes
is calculated. The first component of the signal is calculated by subtracting the obtained mean from
the original signal

h1(t) = x(t)−m1(t) (7)

where x(t) is the original signal and m1 is the calculated mean. If the calculated component h1 meets
the IMF criteria, then it will be the first IMF. However if the calculated component does not meet
the requirement of an IMF, the procedure is repeated again by replacing the original signal x(t) with h1.
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This cycle is repeated until the calculated component meets the IMF criteria. It is then marked as
the first IMF (c1) and subtracted from the original signal.

xnew(t) = x(t)− c1(t) (8)

After this step, the original signal x(t) is replaced with the new signal xnew(t) and the whole
procedure is repeated to calculate the next IMFs. The remaining signal after calculating the last IMF is
called the residual signal r(t) and can be used to reconstruct the original signal using the calculated
IMFs using

x(t) =
n

∑
i=1

ci(t) + r(t) (9)

where n represent the number of calculated IMFs. This process is summarised in Figure 1.

Start

Input signal r0 = x(t), i = 1

Set hi(k−1) = ri−1, k = 1

Find the local exermas of hi(k−1)

Obtain upper and lower envelopes

Calculate the mean mi(k−1)

Calculate hi,k = hi(k−1) −mi(k−1)

is hik an IMF? k = k + 1

Obtain the ith IMF ci = hik

Set ri+1 = ri − ci

ri+1 extermas > 1

Set resedual r(t) = ri+1

i = i + 1

Stop

no

yes

yes

no

Figure 1. The procedure to obtain Intrinsic Mode Functions (IMFs) using Empirical Mode Decomposition
(EMD) technique, adapted from [22]. Refer to the text for more details.
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Although this technique is very effective in decomposing non-linear and non-stationary signals,
it suffers from certain problems such as end effect or mode mixing (aliasing) which was noted by
Huang himself [19]. One solution to avoid the mode mixing problem is to use a newly proposed
technique known as Ensemble EMD (EEMD) [23]. This technique uses noise assisted analysis to solve
the problem of mode mixing in the EMD algorithm.

This can be done by adding White Gaussian noise to the signal. Consider adding noise to
the proposed signal for M times and each time decomposing the signal using EMD technique. Each new
signal can be presented as

xi(t) = x(t) + wi(t) (10)

where wi(t) represents the i-th added white noise to the original signal x(t) and xi(t) is the generated
noisy signal. Using Equation (9) we can reconstruct the i-th noisy signal as

xi(t) =
n

∑
j=1

cij + ri(t) (11)

where cij is the j-th calculated IMF of noisy signal xi(t) and ri(t) is the residual signal. Now we can
ensemble the corresponding IMF over noisy signals to obtain the resulting IMFs

cj =
1
M

M

∑
i=1

cij + r(t) (12)

where M is the total number of times that the white noise was added to the signal. The accuracy of
the result obtained using EEMD is highly dependent on the number of ensemble and the amplitude
of the added noise (ε). Using a well-established statistical rule such as Equation (13), the standard
deviation of error (εn) in the final IMFs can be calculated [23].

εn =
ε√
N

(13)

3. Measurement Setup

The evaluation of the proposed technique was done using three different testing setups. Initially,
a lightly contaminated signal recorded from a simple rolling element bearing was used to evaluate
the performance of the cyclostationary analysis, as well as its combination with EEMD.

Next, a more complex scenario was considered with a signal recorded from an input shaft of
a 3-stage gearbox in a mock-up wind turbine. Finally, the data recorded from the gearbox of a real
wind turbine, during full load operation, was used to evaluate the performance of the technique. Each
of these three setups is detailed below.

3.1. Rolling Element Test Rig

A simple customised test rig shown in Figure 2 was used for bearing test at the University of
Birmingham. The test rig consists of an AC motor rotating a shaft via pulley and belt. A controlled
load was applied to the rolling element under investigation. The speed of the bearing was monitored
using a tachometer. The sensor which was used to record the vibration signal was a high frequency
712F accelerometer by Wilcoxon Corporation with a nominal range of 3 Hz to 25 KHz.
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AC Motor

Belt

Load

Accelerometer
Bearing

Tachometer

Controlled Load

Accelerometer

Bearing

Figure 2. Test-rig used to measure the vibration of rolling elements. The figure on the left showing
the complete setup and the image on the right is zoomed in on the rolling element under the test.

3.2. Tidal Turbine Gearbox Test Rig

The test rig used for these measurements has been developed by TWI Ltd. in the UK
and the University of Brunel in an effort to replicate a geared tidal turbine with the ability to be
submerged into the water. The test rig consists of a 3-phase 750 Watt AC motor controlled by a Variable
Frequency Driver (VFD) capable of running at 1500 rpm, a 3-stage spur and helical parallel gearbox
with a ratio of approximately 1:69 and 3 blades at the main shaft turning at approximately 22 rpm.
The tidal turbine gearbox test rig setup is shown in Figure 3.

3 Phase
Motor

Accelerometers

3 Stage
Gearbox

Blades AC Motor

Accelerometers

Gearbox

Blades
Figure 3. The test setup used to measure the vibration of the simple gearbox. On the left the system
with 3 blades is visible and on the right a different setup with a single blade is shown.

This test rig is instrumented with two accelerometers in X and Y directions mounted on the input
shaft of the gearbox (i.e., slow speed shaft) over the bearing to record vibration data of the gear box.
The sensors used are AC 150-2C accelerometer by Connection Technology Centre Inc with a nominal
range of 1 Hz to 10 kHz.

3.3. Wind Turbine Gearbox

Vibration data were recorded from an operational industrial wind turbine at full load using
an INGESYS system manufactured by INGETEAM Service, Spain. The monitored wind turbine had
a rated power of 850 kW with a 3-stage planetary gearbox and a ratio of approximately 1:62. The wind
turbine was known to be due for maintenance and it had some gear teeth wear and bearing damage at
the planetary stage.
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The INGESYS monitoring system was installed in an industrial cabinet in the nacelle of
the wind turbine. It consists of the power supply, communications and vibration acquisition system.
During testing it was connected to the ground data recording unit using fibre optic.

In order to measure vibrations in the drive-train, 8 piezoelectric accelerometers were used. Two of
them were specifically selected to measure low vibration frequencies in the main shaft. The two
types of the accelerometer sensors that were used are PRE-1010-MS and PRE-1030-MS by IMI Sensors
capable of covering the range of 0.5 Hz to 10 kHz and 2 Hz to 10 kHz, respectively. These sensors
were installed on both radial and axial directions on the main shaft, planetary stage, high speed
shaft and the generator. Some of the accelerometers installed on the wind turbine gearbox are shown
in Figure 4.

Accelerometer

Gearbox

Radial Accelerometer

Generator

Axial Accelerometer

Figure 4. The radial vibration sensor installed near the planetary gear on the left and both axial
and radial vibration sensors installed on the generator drive end on the right.

4. Results and Discussions

4.1. Rolling Element Analysis

Two identical tapered roller bearing with different induced faults were used in this setup. The first
roller bearing was damaged on its both outer races and the second roller bearing was scuffed on
the roller surface as shown in Figure 5. Each scuffed roller was placed in one of the bearing races.
The recorded signal from these bearings was also expected to be contaminated with some noise
originating from the AC motor, pulley, belt and other nearby bearings used in the test-rig itself.
The characteristic frequencies of the rolling element used for the experiments using the customised
test rig at the University of Birmingham are summarised in Table 1.

Figure 5. The induced scuffing on the bearing outer race (left) and the roller (right).
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Table 1. Summary of the characteristic frequencies of the rolling element used for the experiment.
Here, FTF stands for Fundamental Train Frequency, BPFO and BPFI are Ball Pass Frequency of Outer
and Inner race respectively; and BSF is Ball Spin Frequency.

Speed Characteristic Frequency (Hz)

PRM Hz FTF BPFO BPFI BSF

600 10 4.4 92.3 117.7 40.0

In each case, it is expected to observe the presence of the bearing characteristic frequency
corresponding to the induced fault. In the case of the first bearing, the Ball Pass Frequency of
Outer race (BPFO) is expected to be dominant. For the second bearing, the Ball Spin Frequency (BSF)
that indicates the frequency of which the roller is turning can be used to identify the fault. However,
as the rollers turn, the scuffed area will hit both the inner and outer race in each revolution. Thus,
the observed defect frequency is expected to be twice the BSF frequency.

The Cyclic Spectral Coherence was calculated over 4 s of the vibration data. As it can be seen in
Figure 6, the BPFO frequency is clearly visible. Alongside the BPFO frequency, some modulations at
the BSF frequency are also present which indicate damage in the rolling elements. This was confirmed
by inspection of the rollers after testing. The outer race damage and heavy load on the bearing caused
the surface of the rollers to degrade. However, the degradation was not significant.

38.4Hz

92.4Hz54Hz38.8Hz

130.8Hz

38.4Hz

38
.8
H
z

54
H
z

13
0.
8H
z92.4Hz

Figure 6. Cyclic Spectral Coherence of the first bearing; top figure shows the BPFO frequency (92.4 Hz)
and the BSF (~38 Hz) modulation and the bottom figure shows a slice of the top figure at 7.5 kHz.



Appl. Sci. 2020, 10, 3334 9 of 15

Similar to the first bearing, 4 s of vibration data were recorded from the second bearing and then
used to calculate the Cyclic Spectral Coherence as shown in Figure 7.

80.0Hz
4.4Hz

8.
8H
z

4.4Hz

2×BSF

Figure 7. Cyclic Spectral Coherence of the second bearing with roller defect; top figure shows
the 2 × BSF frequency (80.0 Hz) and the FTF (4.4 Hz) frequency and the bottom figure is the integration
of the top figure along frequency axis.

As it was mentioned earlier, the fault frequency (2 × BSF) was observed in the Cyclic Spectral
Coherence. However, unlike the first bearing frequency, it was more spread across the frequency
spectrum. This could have been caused due to two damaged rollers or slight change in the bearing
speed during the test arising from the load imposed.

As it can be seen in Figure 7, the fundamental train frequency (4.4 Hz) is also very dominant.
This was assumed to be due to the interaction between the damaged roller and the cage. However,
after inspection, it was found that one of the damaged rollers led to fracture of the cage of
the second bearing.

4.2. Simplified Gearbox Analysis

A simple gearbox operating at steady-state was studied with imbalance caused in the rotor i.e.,
slow shaft, and the high speed shaft rotating at 750 rpm. The characteristic frequencies of the gearbox
are summarised in Table 2.
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Table 2. The characteristic frequencies of the used gearbox at 740 rpm speed. Here the GAPF stands
for Gear Assembly Phase Frequency.

Feature Frequency (Hz)

Output Shaft 12.5
3rd Stage Gear-mesh 337.5

Interim Shaft 3.55
2nd Stage Gear-mesh 35.5

Slow Shaft 0.83
1st Stage Gear-mesh 11.6

1st GAPF 5.8
Input Shaft 0.18

The Cyclic Spectral Coherence was calculated using 4 s vibration signals. The calculated results
are presented in Figure 8. As the induced fault was imbalance, modulations and cyclic behaviour at
the gear-mesh (GM) frequency of the first stage of the gearbox (10.5 Hz) were caused.

10.5Hz 10.5Hz

10.5Hz
10.5Hz

3.5Hz

5.3Hz

(a) (b)

(c) (d)

(e) (f)

Figure 8. Cyclic Spectral Coherence of unbalanced condition. From left to right the top row shows
the original signal and filtered signal using Wavelet Daubechies-3 (db3) filter. The middle row is
the first and second IMFs and the bottom row is 6th and 8th IMFs.
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As it can be seen in Figure 8a, the result from the analysis of the original raw signal is less clear
in comparison with the bearing test. For comparison purposes, the analysis was also applied to
the de-noised signal using the Wavelet de-noising technique. This was carried out using Daubechies-3
wavelet. However, de-noising the signal worsened the Cyclic Spectral Coherence result as it is shown
in Figure 8b.

Using the EEMD technique, the signal was decomposed into 8 IMFs and the Cyclic Spectral
Coherence of each IMF was calculated. The result of the first two IMFs is presented in Figure 8c,d
respectively. As it can be seen, the result is slightly less contaminated compared with the raw
and de-noised signal. However, more interestingly, in Figure 8e,f which shows the result on the 6th
and 8th IMFs two other frequencies are visible. These frequencies are the first stage GAPF frequency
(5.3 Hz) and the second stage rotational frequency (3.5 Hz).

The presence of both first stage gear mesh and GAPF cyclic behaviour clearly indicates
the imbalance applied to the first stage. The existence of the second stage rotational frequency
could as well indicate the imbalance. Nonetheless, it can also show the normal vibration contaminating
the signal.

4.3. Wind Turbine Gearbox Analysis

The studied gearbox in this part contained 11 different types of bearings. Including the corresponding
frequencies of the gears, more than 50 different frequencies of interest were available to analyse.
In the present study only the result corresponding to the planetary stage of the gearbox and its bearing
defect are shown.

The vibration signal used to analyse the bearing defect at the planetary stage was obtained from
the Radial sensor placed at the planetary stage of the gearbox.

The damaged bearing was a cylindrical roller bearing with its characteristic frequencies listed in
Table 3. Given the wind turbine working at full rated load, the planets were turning at around 1.07 Hz.
The other frequency of interest in the planetary stage fault is the gear-mesh of the planets which was
calculated to be 140.84 Hz. The next nearest calculated frequencies to this frequency were 99.1 Hz
and 192.5 Hz belonging to the intermediate and high-speed shaft bearings.

Table 3. The unit characteristic frequencies and the operation characteristic frequencies of the bearing
used for the planets in the monitored gearbox.

Speed Characteristic Frequency (Hz)

PRM Hz FTF BPFO BPFI BSF

60 1.00 0.405 5.676 8.323 2.550
64 1.07 0.433 6.057 8.881 2.721

As it can be seen in the Figure 9a,b, the gear-mesh of the planets (140.8 Hz) are present in both
spectra, indicating possible damage in the planetary gear. It is also evident that the cyclic spectral
coherence of the first IMF of the signal is considerably less contaminated with noise originating from
other gears.
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(a) (b)

(c) (d)

Figure 9. Cyclic Spectral Coherence of vibration signal recorded from planetary gearbox of wind
turbine. From left to right the top row shows analysis on the original signal and its first IMF showing
the gear-mesh of the planets. Similarly, the bottom row is the analysis of the same signal (down
sampled) and its first IMF showing the BPFI of the bearing of the planet.

Similarly in the Figure 9c,d, the Ball Passing Frequency of Inner race (BPFI) at 8.8 Hz is distinctly
visible. The other closest present frequencies to this frequency are 7 Hz and 9.5 Hz corresponding
to the sun gear defect and carrier bearing frequencies. Again, similar to the gear mesh analysis
the cyclostationary analysis on the first IMF of the signal shown in Figure 9d shows less artefacts
related to the other gears.

For comparison purposes, the same signal recorded from the planetary stage was also analysed
using FFT, Hilbert transform and Cepstrum that are commonly used in condition monitoring
and fault detection. As it can be seen in Figure 10a,b the gear-mesh frequency is not detectable
in the applied Cepstrum, FFT or Hilbert analysis while the cyclic spectral coherence enhanced with
EEMD preconditioning was able to detect it. Similarly, Figure 10c,d show the same analysis applied to
the signal to detect BPFI frequency. Similar to the gear mesh analysis, the BPFI frequency was not
detected using either Cepstrum or FFT analysis. Although, the Hilbert transform analysis shows
some peaks around the BPFI frequency, the amplitude of the peaks are not very significant which can
lead to underestimation of the severity. Again, using the cyclic spectral coherence with EEMD the BPFI
frequency was detected clearly reducing the likelihood of underestimation of the severity of the defect.
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(a) (b)

(c) (d)

Figure 10. Conventional techniques applied to vibration signal recorded from planetary gearbox
of wind turbine with bearing and gear defect. (a) The Cepstral analysis on the original signal with
red dashed line on 7.1 ms representing the gear-mesh of the planets at 140.8 Hz. (b) The Hanning
windowed single sided FFT amplitude of both original signal and its Hilbert transform with the red
dashed line on 140.8 Hz corresponding to the plants gear-mesh. (c) Same as (a) with the red dashed
line showing BPFI of the bearing of planets at 114 ms or 8.8 Hz. (d) Same as (b) with the red dashed
line showing BPFI of the bearing of planets at 8.8 Hz.

5. Conclusions

The rapid growth in the use of wind turbines combined with their operation under severe loading
conditions has increased the need for efficient condition monitoring technologies. Early fault detection
is important for wind farm operators in order to improve predictive maintenance strategies, reduce
unexpected downtime and associated repair costs. Continuously variable operation of the wind
turbines and complexity of the multi-stage gearboxes employed makes it very challenging to detect
developing faults particularly during the early stages of evolution.

The cyclostationary technique has been proven to be a very effective tool to detect faults in
rotating machinery. However as the complexity of the system increases, the performance of this
technique degrades and the results get contaminated with various artefacts coming from different
parts of the system.

In this paper the Ensemble Empirical Mode Decomposition technique was used to precondition
the vibration signal prior to perform the cyclostationary technique. It has been shown that this
can improve the performance of the cyclostationary technique and reduce the contamination in
the resulting analysed signals.

The Ensemble Empirical Mode Decomposition technique is a very powerful method that has
not been fully explored in the field of wind turbine condition monitoring. The present study has
shown the potential of this technique to be employed in conjunction with other techniques to enhance
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the overall performance of various signal processing techniques in wind turbine gearbox condition
monitoring. The ability of this technique to separate the signal into its intrinsic modes, as it was
demonstrated in this paper, opens new opportunities in advanced signal processing that are yet to be
explored in more depth.
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BPFI Ball Pass Frequency of Inner race
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EEMD Ensemble Empirical Mode Decomposition
EMD Empirical Mode Decomposition
FTF Fundamental Train Frequency
GM Gear-mesh
GAPF Gear Assembly Phase Frequency
IMF Intrinsic Mode Function
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