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Ancestrally Duplicated Conserved Noncoding

Element Suggests Dual Regulatory Roles
of HOTAIR in cis and trans

Chirag Nepal,'”* Andrzej Taranta,’ Yavor Hadzhiev,” Sachin Pundhir,” Piotr Mydel,>* Boris Lenhard,>¢

Ferenc Muller,”* and Jesper B. Andersen’*

SUMMARY

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC
cluster genes in cis, a mechanism that remains unclear. We have identified a 32-
nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence
that likely originated at the root of vertebrate. The second round of whole-
genome duplication resulted in one copy of the CNE within HOTAIR and another
copy embedded in noncoding transcript of HOXD11. Paralogous CNEs under-
went compensatory mutations, exhibit sequence complementarity with respect
to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE
resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-ex-
pressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and
negatively correlated with HOXD11 in trans. We propose a dual modality of HO-
TAIR regulation where transcription of HOTAIR and its embedded enhancer reg-
ulates HOXC11 in cis and sequence complementarity between paralogous CNEs
suggests HOXD11 regulation in trans.

INTRODUCTION

Mammalian genomes are pervasively transcribed, giving rise to thousands of long noncoding RNAs
(IncRNAs) (Hon et al., 2017; Iyer et al., 2015). Only a handful of IncRNAs have well-characterized functions,
which are attained through diverse mechanisms (chromatin regulation, alternative splicing, gene silencing,
trans-regulation) (Guttman and Rinn, 2012; Mercer and Mattick, 2013). Although most early studies showed
IncRNAs repress gene expression, some IncRNAs have enhancer-like functions and regulate genes in cis
(Orom et al., 2010). Genomic deletion of IncRNA also removes cis-regulatory DNA elements, thus con-
founding whether the observed phenotype is due to the underlying genomic DNA, the IncRNA transcript
itself, or transcription (Bassett et al., 2014; Engreitz et al., 2016; Kaikkonen and Adelman, 2018). As such,
transcription blockage and perturbation of the Lockd IncRNA showed that it regulates Cdkn1b transcrip-
tion through an embedded enhancer sequence, whereas the IncRNA transcript is dispensable for Cdkn1b
expression (Paralkar et al., 2016). Deletion of 12 genomic loci encoding various IncRNAs revealed 5 loci
whose deletion affected the general process of transcription and enhancer-like activity, but no requirement
for the IncRNA transcripts (Engreitz et al., 2016). Lincp21 locus previously thought to function through its
RNA transcript was shown to include multiple enhancers and regulate genes in cis (Groff et al., 2016).
Moreover, genomic and epigenomic functional annotation have revealed that most intergenic IncRNAs
originate from enhancers (Hon et al., 2017). In line with enhancer function overlapping with IncRNAs, the
Haunt IncRNA has dual roles (Yin et al., 2015), where its DNA encodes enhancers to activate HoxA genes
and Haunt IncRNA prevents aberrant HoxA expression.

HOTAIR is an intergenic IncRNA located between HOXC11 and HOXC12 in chromosome 12. It was
proposed to regulate HOXD cluster genes (i.e., HOXD8, HOXD9, HOXD10, and HOXD11; located in chro-
mosome 2) in trans by recruiting the Polycomb Repressive Complex 2 (PRC2) (Rinn et al., 2007). However,
this regulatory model was questioned, as PRC2 binding is promiscuous (Davidovich et al., 2013) and PRC2
was found to be dispensable for HOTAIR-mediated transcriptional repression (Portoso et al., 2017). Dele-
tion of the entire Hoxc cluster (including Hotair) in mouse showed limited impact on gene expression and
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H3K27me3 levels and upregulation of posterior HoxD genes (i.e., Hoxd10, Hoxd11, and Hoxd13) (Li et al.,
2013). These observations were challenged as specific knockouts of the Hotair locus in vivo have shown
neither homeotic transformation nor upregulation of HoxD genes, but instead a significant change in
HoxC (especially Hoxc11 and Hoxc12) cluster genes (Amandio et al., 2016). This strongly argues in favor
of a DNA-dependent effect of the Hotair deletion (Amandio et al., 2016). Whether cis-regulation of HOTAIR
is mediated via an unannotated enhancer element within its gene body or through transcription of the
HOTAIR promoter remains unknown. Different regulatory mechanisms (cis versus trans) might be ex-
plained by tissue origin and changes in developmental stages in distinct genetic backgrounds (Li et al.,
20716a). As such, there is no consensus model for HOTAIR-mediated regulation (Selleri et al., 2016). As
the two current models suggest fundamentally different modes of HOTAIR function, we decided to revisit
the role of HOTAIR by a systematic comparative genomic analysis.

To address whether HOTAIR regulates HOXC cluster genes in cis (Amandio et al., 2016) or HOXD cluster genes in
trans (Li et al., 2013; Rinn et al., 2007), we exploited comparative sequence analysis across vertebrates and inte-
grated this with transcriptomic and epigenomic data in human and mouse. The HOXC and HOXD clusters orig-
inated from an ancestral HOXC/D cluster during the second round of whole-genome duplication (WGD). We hy-
pothesized that the two clusters may contain previously undetected remnants of an ancestral sequence, which
might provide important clues on cis and/or trans interactions. We have identified and characterized a 32-nucle-
otide conserved noncoding element (CNE) as the HOTAIR ancestral sequence, which is shared by both paralo-
gous lociin HoxC and HoxD clusters, presenting itself in an inverted syntenic position. Strikingly, the paralogous
CNEs underwent compensatory mutations during vertebrate evolution, which exhibit sequence complemen-
tarity dependent on the transcript orientation. Also, the CNEs have high interaction propensity revealed by
microscale thermophoresis (MST). These observations suggest direct hybridization between the two noncoding
transcripts. HOTAIR CNE represents either an active or poised enhancer in different cellular contexts. Its expres-
sion is positively correlated with HOXC11, whereas negatively correlated with HOXD 11, suggesting dual modal-
ity of HOTAIR CNE in cis and trans.

RESULTS
Identification of HOTAIR Ancient Sequence and Its Paralog in HoxD Cluster

The Hox gene clusters are highly conserved across all vertebrates and contain multiple regulatory elements
that often have small stretches of highly conserved noncoding elements (CNEs) (Engstrom et al., 2008; Lee
etal., 2006). As HOTAIR is located within the highly conserved HoxC cluster, we asked whether it has small
stretches of conserved sequences that were previously overlooked (He et al., 2011). To this end, we
analyzed human and zebrafish annotated CNEs from the synteny analysis tool ANCORA (Engstrom
et al., 2008) and identified a 32-nucleotide long CNE (Figure 1A) that is conserved across vertebrates (Fig-
ures STA and S1B). Depending upon the transcript models, the CNE sequence is either located in the intron
of Ensembl transcripts or in the exon of an intron-retained alternative transcript annotated in the IncRNA
catalog (Figure 1A) (lyer et al., 2015).

The CNE in zebrafish mapped between hoxd171a and hoxd12ain the hoxd cluster (Figure 1B), but notin the
hoxC cluster. To determine whether the CNE is located in the HoxC cluster (the capitalized “HoxC" is used
to represent the HoxC cluster across multiple species) or HoxD cluster (Figures STA and S1B), we system-
atically mapped CNE sequences across 34 vertebrates and 3 invertebrates (Table S1). Two copies of the
CNE were identified in all jawed vertebrates (except in teleosts and birds), but not in the jawless vertebrate
lamprey and invertebrates (Figure 1C). The homologous CNEs mapped between HoxD11 and HoxD12 (re-
ported target genes of HOTAIR in trans) in the HoxD cluster and between HoxC11 and HoxC12 (reported
target genes of HOTAIR in cis) in the HoxC cluster (Figure 1C) in synteny, suggesting paralogy. The absence
of CNE in HoxC cluster in birds might be due to the unassembled HoxC cluster (Table S2). In contrast, tel-
eosts have well-annotated hoxc17 and hoxc12 genes in the same cluster (Table S2), but underwent an addi-
tional round of teleost-specific WGD, resulting in lineage-specific loss of the paralog. The basal group of
jawed vertebrates, such as elephant shark (cartilaginous fish) and spotted gar (basal ray-finned fish; sister
group of teleosts) (Figure 1C), have two copies of the CNE suggesting that it was already present in the
ancestral HoxC/D cluster and resulted in two copies following the second round of WGD (Figure 1D).
Although CNE and its flanking sequences are duplicated from the common ancestral sequence (Fig-
ure S1C), the flanking regions have limited homology (for example, in human and elephant shark; Fig-
ure S1D). However, CNE and its flanking sequences aligned separately across HoxC and HoxD clusters
and revealed a relatively long stretch of sequence conserved across vertebrates (except teleosts) (Figures
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Figure 1. Identification of the HOTAIR Conserved Noncoding Element (CNE) and Its Homolog in HOXD Cluster
across Vertebrates

(A) A genome browser view around HOTAIR locus showing CNE from ANCORA browser and UCSC PhyloP conservation
track. The CNE highlighted in a rectangular box is located eight nucleotides away from the splice site.

(B) The ortholog of the CNE mapped to the zebrafish hoxd (between hoxd11 and hoxd12) cluster.

(C) Homology search of the CNE across 37 species identified homologous CNEs in only HoxC and HoxD clusters.
Homologs of the CNE are undetected in jawless vertebrate and invertebrates. Homologs in HoxC and HoxD clusters are
represented by blue and red, respectively. Empty boxes indicate absence of homologs.

(D) Schematic representation for the proposed model of the origin of the CNE. The CNE might have a de novo origin in
ancestral HoxC/D cluster where the second round of whole-genome duplication (2R-WGD) resulted two copies in HoxC
and HoxD clusters. Teleost-specific duplication might have resulted in loss of CNE from both HoxC clusters and one of the
HoxD cluster.

STE and S1F). Thus we conclude that HOTAIR CNE is the ancient sequence and has two paralogous copies
in all jawed vertebrates, except teleosts.

Paralogous CNEs Are Transcribed and Embedded in Mature Noncoding Transcripts

Our findings of paralogous CNE in the HoxD cluster suggest the existence of a HOTAIR homolog transcript
overlying the CNE. To understand whether CNEs are embedded in the mature transcript, we first confirmed
that HOTAIR CNE can be embedded in the exon by an intron-retained transcript model (Figure 1A). We
analyzed long RNA sequencing (RNA-seq) data from ENCODE cell types (Djebali et al., 2012) and observed
alarge number of reads mapping to introns, particularly the region overlapping CNE, as shown for HelLa S3
cells (Figure 2A). A significant proportion of reads mapped to introns both in whole cell and in nuclear frac-
tion-enriched RNA libraries and was depleted in cytosol-enriched RNA libraries (Figure 2A). We quantified
reads mapped to exon, intron, and exon/intron junctions across different cell types and observed a large
fraction of reads (relative to exons) mapped to introns in HOTAIR (Figure 2B and Table S3), but not in
HOXC11 and HOXD11 genes (Figure S2A). We observed that a similar pattern of reads mapped to the
intron in the region overlapping the CNE across different cell types (Yue et al., 2014), additionally
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Figure 2. Paralogous CNEs Are Embedded in Mature Noncoding Transcripts

(A) A genome browser view shows HOTAIR transcripts model from RefSeq and MITranscriptome along with RNA-seq
coverage tracks from Hela S3 cells. Large number of reads map to introns in whole cells and nuclear fraction-enriched
libraries and are depleted in cytosol fraction-enriched library.

(B) Distribution of reads mapped to HOTAIR exon, intron, and overlapping exon/intron junctions across multiple cell
types. “#" denotes the Hela S3 cells. Cell types are ordered based on increasing number of mapped reads.

(C and D) A genome browser view to show transcription and sequence conservation around the HOXD11 coding (cyan)
and HOXD11 noncoding (ncHOXD11) transcripts (green) in human (C) and mouse (D). The zoomed-in promoter regions
show lack of sequence conservation of ncHOXD11.

(E) Correlation of expression levels of ncHOXD11 with HOXD11 coding gene across multiple samples in human (from
GTEx and FANTOMS5 cohorts) and mouse (FANTOMS cohort).

(F) Expression levels of ncHOXD11 and HOXD11 coding gene across multiple samples from GTEx and FANTOM.

(G) Ratio of expression levels of ncHOXD11 and coding gene across individual cell types. Positive value on y axis indicates
higher expression levels of ncHOXD11.

confirming that intron retention of Hotair is conserved in mouse (Figures S2B and S2C). Collectively, this
suggests that the HOTAIR CNE is embedded in an intron-retained transcript.

To associate HOXD CNE with the transcript models, we intersected it with Ensembl transcripts and iden-
tified that the CNE is embedded in the exon of a previously annotated noncoding transcript sharing the
locus with HOXD11 coding gene in human (Figure 2C) and mouse (Figure 2D). The CNE is located in the
promoter region of HOXD11 noncoding transcript (referred as ncHOXD11 from here on), which is approx-
imately 55 nucleotides downstream of the dominant transcription start site (denoted by the highest CAGE
peak in FANTOMS5 data) in human and mouse (Figures 2C and 2D). Given the shared locus, we sought to
understand the nature and extent of ncHOXD11 usage in relation to the HOXD11 coding gene. The expres-
sion level of ncHOXD11 is positively correlated with HOXD11 coding gene across GTEx (GTEx Consortium,
2013) and FANTOMS (Arner et al., 2015; FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al.,
2014) data in human and mouse (Figure 2E). The expression of ncHOXD11 is significantly higher than that of
the HOXD11 coding gene (Figure 2F) in the majority of cell types in human (Figure 2G). However, in mouse,
the expression of ncHoxd11 is only marginally higher than that of the Hoxd11 coding gene (Figures 2F and
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Figure 3. Paralogous CNEs Exhibit Sequence Complementarity in Transcript Orientation

(A) Paralogous HOTAIR CNE (blue bar) and HOXD CNE (red bar) are zoomed and aligned in 5’ to 3’ orientation of
respective transcripts.

(B) Alignment of the paralogous CNEs in 5 to 3’ orientation of respective transcripts reveals sequence complementarity
across vertebrates. Genetic substitutions within paralogous CNEs co-occurred at specific positions, which resulted in gain
or loss of complementarity, where green represents non-complementary DNA and cyan represents complementary DNA.
Teleost-specific change in DNA sequence is shown in orange.

(C and D) Microscale thermophoresis (MST) assay to evaluate the interaction between labeled and unlabeled RNA-oligos
at different concentration. MST-on time of 5 s was used for analysis. Baseline-corrected normalized fluoresce (AFyorm) was
chosen to present data (independent n > 3 measurements; each point on the graphs presents mean + SD). An
extrapolated ECso & SD curve is fitted and shown on the graph. The concentration of the labeled RNA-oligo was constant
at 5 nM. The concentration of unlabeled RNA-oligo was varied at 250 nM to 7.63 pM. The x axis represents the
concentration of titrated unlabeled RNA-oligo. The y axis represents interaction-driven normalized fluorescence change
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Figure 3. Continued

(AFnorm[%,]). Measurement of interaction between (C) labeled HOXD CNE (Cy5-HOXD) RNA-oligo and unlabeled
HOTAIR CNE RNA-oligo and (D) labeled HOTAIR CNE (HOTAIR-Cy5) RNA-oligo and unlabeled HOXD CNE RNA-
oligo.

2G), suggesting a relative gain in the expression of ncHOXD11 in human. Finally, we analyzed RNA-seq
transcript models across species (Basu et al., 2016; Hezroni et al., 2015) and detected both transcripts in
ferret and dog, whereas only ncHoxD11 in chicken (Figure S2D). The location of HoxD CNE, which is down-
stream of ncHoxD11 start site, is conserved across species, suggesting that its transcription from ncHoxD11
is an ancient phenomenon. However, ncHoxD11 was undetected in teleosts (zebrafish and tetraodon; Fig-
ure S2D), which is further supported by absence of ncHoxD11 promoter sequence (Figure 2A). Collectively,
we showed that paralogous CNEs are transcribed and embedded in mature transcripts across multiple
species.

Transcribed CNEs Exhibit Conserved Sequence Complementarity across Vertebrates

As paralogous CNEs are embedded in mature transcripts, we sought to analyze their directionality with
respect to transcript orientation. We observed that human CNEs exhibit sequence complementarity in
transcript orientation (Figure 3A). To ensure that the observed sequence complementarity in human is
not by chance we analyzed its orientation in other vertebrates. As transcriptional evidence of HOTAIR
and ncHOXD11 was limited to a subset of species (Figure S2E), we inferred orientation for missing tran-
scripts (see Methods), as illustrated for chimp and painted turtle (Figures S3A and S3B). We then aligned
CNEs in the transcript orientation and observed sequence complementarity across vertebrates (Figures 3B
and S3C). This suggests that sequence complementarity between CNEs is an ancient feature that has been
under selection pressure for more than 300 million years. It raises an important question as to whether the
key function of these transcripts is to provide transcription of the CNE.

Interestingly, in addition to the conservation and retention of sequence complementarity, we observed
that paralogous CNEs revealed a specific pattern of genetic substitution at two specific positions in
both CNEs that co-evolved in two separate waves in vertebrates and mammals (Figure 3B). The sequence
pairs that co-evolved at two specific positions are depicted in green (non-complementary) and cyan (com-
plementary) (Figure 3B). The nucleotides "A" colored by green in vertebrates are non-complementary,
where both nucleotides co-evolved simultaneously in mammalian lineage resulting in gain of complemen-
tarity (highlighted by cyan). On the other hand, nucleotides “A” and “T" highlighted by cyan in vertebrates
are complementary, where the nucleotide “A” evolved in mammals resulting in loss of complementarity. In
mammals, one substitution resulted in retention of complementarity and the other substitution resulted in
loss of complementarity, reflecting that paralogous CNEs underwent compensatory mutations. Unlike ver-
tebrates, the HoxD CNE in teleosts evolved separately in its own lineage (highlighted in orange) reflecting
no selection pressure to retain sequence complementarity as its putative binding partner in HoxC cluster is
lost. Collectively, the coevolution of CNEs and retention of sequence complementarity in the transcript
orientation raises the potential for such hybridization based on trans function.

Hybridization of Paralogous CNEs In Vitro

To verify whether paralogous CNE transcripts hybridize, we designed two Cy5-labeled RNA-oligos (Table
S4) for HOXD CNE (Cy5-HOXD) and HOTAIR CNE (HOTAIR-Cy5) and analyzed the interaction propensity
using MST (Asmari et al., 2018; Duhr and Braun, 2006a, b; Moon et al., 2018). For labeled Cy5-HOXD RNA-
oligo (5 nM), we analyzed the binding with unlabeled HOTAIR CNE RNA-oligo titrated at concentrations
ranging between 250 nM and 7.63 pM. Similarly, for labeled HOTAIR-Cy5 RNA-oligo, we analyzed the bind-
ing with titrated unlabeled HOXD CNE RNA-oligo (Table S5 and Figures S4A-S4C). The labeled Cy5-HOXD
and unlabeled HOTAIR CNE RNA-oligo showed a strong interaction at the nanomolar scale (ECsp = 2.64 x
1079 (Figure 2C; red line), whereas we observed no binding at control conditions (either labeled oligo
alone or mix of labeled and unlabeled counterparts). Similarly, the labeled HOTAIR-Cy5 and unlabeled
HOXD CNE RNA-oligo showed a strong interaction at the nanomolar scale (ECsg = 1.56 x 1079 (Figure 2D;
blue line), whereas the control showed no binding. To evaluate if an unlabeled oligo can affect the inter-
action between labeled Cy5-HOXD RNA-oligo and the unlabeled HOTAIR CNE RNA-oligo, we added
unlabeled HOXD RNA-oligo and observed that the interaction (ECsg = 70.3 x 1079 was sensitive to the
presence of unlabeled RNA-oligo (Figure 3C; dark red line). A 10-fold excess of the competitor resulted
in a shift of the fluorescent signal resembling depletion of the titrated oligos and correspondingly a shift
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Figure 4. The HOTAIR CNE Represents a Poised Enhancer in HOTAIR-Nonexpressing Stem Cells in Human and
Mouse

(A) Average DNase | hypersensitive site (DHS) signals around HOTAIR CNE in HOTAIR-expressing and HOTAIR-
nonexpressing cells (embryonic stem cells and differentiated cells). The y axis is normalized DHS coverage in reads per
million (RPM). “N” denotes the number of cell lines.

(B) The distribution of H3K4me1, H3K27me3, H3K27ac, and p300 signals around HOTAIR CNE in H9-hESC (human) and
iPSC (mouse) cell lines. The y axis is normalized coverage in reads per million (RPM).

(C) A genome browser view with transcription factors, DHS, histone modifications, and RNA-seq tracks from H1-hESC cell
line. HOTAIR is not expressed in H1-hESC (as shown by lack of RNA-seq reads) and marked by broad H3K27me3 peak.
H3K27me3 signal is depleted around CNE, reflecting a nucleosome-depleted region and bound by multiple transcription
factors.

in ECsg value (Figure 3C; dark red line). Similarly, addition of an unlabeled HOTAIR CNE RNA-oligo affected
the interaction of the labeled HOTAIR-Cy5 RNA-oligo and unlabeled HOXD CNE RNA-oligo, resulting in a
shiftin fluorescent signal (Figure 3D; cyan line). Even at low concentration of the competitor oligo the shift is
still clear, confirming that the paralogous CNEs have strong interaction in vitro.

Chromatin Structure of HOTAIR CNE Represents a Poised Enhancer in Stem Cells

CNEs are putative cis-regulatory elements (Bejerano et al., 2004, Harmston et al., 2013; Sandelin et al.,
2004), and many of them have been experimentally validated as tissue-specific enhancers (Nobrega
et al., 2003; Pennacchio et al., 2006; Woolfe et al., 2005). We analyzed experimentally validated enhancers
(Pennacchio et al., 2006) and found that the genomic regions overlapping CNEs were not probed for
enhancer activity. However, in the literature, we found that the region overlapping the Hoxd CNE was
tested for enhancer activity in mouse and shown to drive expression in a proximal posterior part of the
developing forelimbs (Beckers et al., 1996). However, subsequent deletion of Hoxd CNE revealed no
phenotype in vivo (Beckers and Duboule, 1998) (see Discussion).

To understand whether chromatin states of CNEs resemble that of enhancers (Andersson et al., 2014; Pund-
hir et al., 2016; Roadmap Epigenomics Consortium et al., 2015), we selected 29 cell lines (Table Sé) from
Roadmap Epigenome project. Based on the expression levels of HOTAIR (see Methods), cell lines were
classified into HOTAIR-expressing (N = 10) and HOTAIR-non-expressing (N = 19) groups (Figure S5A).
The H1-hESC cell line is unique as it is enriched for H3K27me3 and DNase hypersensitive sites (DHSs) (Fig-
ure S5B), thus we separately analyzed H1-hESC cells from remaining HOTAIR-non-expressing cells. The
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Figure 5. The CNE Represents an Active Enhancer RNA in HOTAIR-Expressing Cells

(A) A genome browser view with FANTOMS5 CAGE tags (combined tracks) and individual tracks on myoblast and myotube
along with RNA-seq and histone modifications. Horizontal bars above histone and DHS tracks are annotated peaks.
CAGE tags on forward and reverse strand are represented by blue and red, respectively. Bidirectional CAGE tags flanking
the CNE are shown in dashed rectangular boxes. Bidirectional CAGE tags overlap with H3K4me1 and H3K27ac peaks in
myoblast and myotube.

(B) Expression levels of the HOTAIR CNE and alternative promoters across FANTOM5 samples.

(C) Correlation of the expression levels of the CNE with that of HOTAIR promoter.

(D) Bidirectional transcription (from myoblast and myotube differentiation time points) around the CNE roughly
represents the length of a nucleosome.

(E and F) Bimodal H3K4me1 peaks flank the CNE in human myoblast (E) and embryonic day 10.5 hindlimbs in mouse (F).

HOTAIR CNE has open chromatin in HOTAIR-expressing cells and HOTAIR-non-expressing stem cells and
closed chromatin in HOTAIR-non-expressing differentiated cells in both human and mouse (Figure 4A and
Table S6). We observed a similar chromatin state around HOXD CNE (Figure S5C). The chromatin state of
CNE is dynamically regulated during reprogramming of mouse embryonic fibroblasts to induced pluripo-
tent stem cells (iPSCs) (Chronis et al., 2017) where the CNE has closed chromatin in mouse embryonic
fibroblasts and open chromatin in iPSC (Figure S5D). In addition, enrichment of H3K4me1, H3K27me3,
and p300 signals at the CNE in human H9-hESC and mouse iPSC (Figure 4B) provides evidence that the
HOTAIR CNE represents an embryonic stem cell-specific poised enhancer (Rada-Iglesias et al., 2011).
This is further supported by enrichment of enhancer-associated transcription factors (Sigova et al.,
2015), such as CTBP2, CHD1, SP1, and YY1 that are exclusively enriched at CNE in H1-hESC (Figure 4C
and Table S7). However, p300, H3K4me1, and bimodal H3K27me3 peaks were not enriched around
HOXD CNE in hESC (Figures SS5E-S5G). As HOXD CNE overlaps with the promoter of ncHOXD11 (Figures
2A and S5@G), genomic analyses of chromatin states will be unable to distinguish a putative enhancer from
an overlapping promoter. Collectively, these data suggest that HOTAIR CNE resembles a poised enhancer
in stem cells in both human and mouse.

HOTAIR CNE Represents an Active Enhancer RNA

To determine whether the CNE represents an active enhancer in HOTAIR-expressing cells, we analyzed
FANTOMS CAGE data (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014) to identify
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unstable bidirectional transcription, a hallmark of active enhancer RNA (eRNA) (Andersson et al., 2014). We
observed bidirectional transcription flanking the CNE (Figure 5A; dashed rectangular box), providing
evidence of an active eRNA. Importantly, transcription of HOTAIR primary and alternative promoters is
generally co-expressed with bidirectional transcription around the CNE (Figure 5B and Table S8). This is
exemplified during myoblast to myotube differentiation (Figure S6A), which suggests coregulation. The
expression of CNE is positively correlated with expression from the HOTAIR promoter and alternative
promoters (Figure 5C), with the exception of the distal promoter (labeled as dp1) (Figure S6B). Negative
correlation of the distal promoter is mostly due to a majority of samples in which only the distal promoter
is expressed (Figure 5B). The distance between bidirectional transcription start sites flanking the CNE is
about the length of one nucleosome (Figure 5D), which is conserved across vertebrates (Figure ST1E),
and suggests that the CNE shares an evolutionary conserved typical enhancer structure. On the contrary,
no evidence suggests bidirectional transcription around the HOXD CNE, as it overlaps with the promoter
region of ncHOXD11 (Figure 2C).

Next, we focused on myoblast and myotube cell types, for which RNA-seq, histone modifications, and DHS
data are available as complements to CAGE tags. The RNA-seq reads mapped on introns and across
intron/exon boundary around the CNE (Figure 5A), thus providing evidence for an intron-retained tran-
script. Furthermore, DHS, H3K4me1, and H3K27ac peaks are enriched around the CNE (Figure 5A) in
myoblast and myotube, providing additional evidence for an active enhancer. The observed bimodal
H3K4me1 peaks around CNE are a characteristic feature of active enhancers (Figure 5E). However, in
mouse, relevant tissues and stages wherein Hotair is expressed (Amandio et al., 2016; Li et al., 2013; Schor-
deret and Duboule, 2011) were not included in FANTOMS samples (Figure S6C) and lack CAGE tags
around the CNE. However, H3K4me1 and H3K27ac are enriched in mouse embryonic day 10.5 hindlimbs
(Andrey et al., 2017) (Figures 5F and S6D) around the CNE. Thus, we showed that HOTAIR CNE resembles
an active enhancer in HOTAIR-expressed cells, in both human and mouse. Importantly, transcription of the
HOTAIR promoter is tightly linked to enhancer activity of the CNE, suggesting that its transcription might
be a contributor to the purifying selection acting on the CNE and further provides support to the notion
that the CNE acts as a regulator in cis as previously proposed (Amandio et al., 2016).

HOTAIR Expression Highlights Simultaneous Regulation of Known Target Genes in cis and
trans

As we showed that transcribed CNEs exhibit sequence complementarity in transcript orientation, we sought
to understand whether HOTAIR can simultaneously regulate genes in cis and trans mediated via the CNE.
We analyzed transcription levels of the HOTAIR enhancer with HOX clusters genes across 694 cell types from
FANTOMS. The HOTAIRwas expressed in 104 cell types (Figure S7A), and HOX genes were positively corre-
lated with other genes in the cluster (Figure S7B). The expression of HOTAIR CNE with HOXC/D clusters
posterior genes on 104 cell types revealed positive correlation with HOXC cluster genes and a trend toward
negative correlation with HOXD cluster genes (Figure S7C). To ensure that the correlations were not driven
by missing expression of HOX genes, we reanalyzed data by including only those cell types wherein both
HOTAIR and HOX genes are coexpressed. We observed similar correlations wherein HOXC cluster genes
are positively correlated and HOXD cluster genes are negatively correlated (Figure 6A). Strikingly,
HOXC11is the most positively correlated (R = 0.60; p value: 2.6 x 10~% and ncHOXD11 (R = —0.32; p value:
0.009) and coding transcripts (R = —0.29; p value: 0.02) are the most negatively correlated, both of which are
previously reported target genes (Amandio etal., 2016; Li et al., 2013; Rinn et al., 2007). This observation was
further validated in 2,436 tissue samples from GTEx and 605 patients with breast cancer (see Methods) from
The Cancer Genome Atlas (Pereira et al., 2016) where HOXC11 had the most significant positive correlation
and HOXD11 had the most significant negative correlation (Figures 6B and S7D).

Therefore, we propose a model to explain the observed correlation between HOTAIR expression and that
of HOXC11and HOXD11, a dual regulatory mechanism mediated via the CNE sequence. The positive cor-
relation between HOTAIR and HOXC11 might be mediated via an active eRNA, the act of transcription of
HOTAIR, or the combination of both. We observed positive correlation between ncHOXD11 promoter en-
coding HOXD CNE and HOXD11 coding gene. Transcriptional activity of the CNE is coupled to HOTAIR
transcription, suggesting that a key function of the HOTAIR transcript could be to provide active transcrip-
tion for the CNE. Paralogous CNEs embedded in intron-retained HOTAIR and ncHOXD11 transcripts have
retained sequence complementarity in transcript orientation that might facilitate hybridization between
two RNA transcripts. This hybridization between two RNA transcripts downregulates HOTAIR target
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Figure 6. Coregulation of HOTAIR with Validated Target Genes HOXC11 and HOXD11

(A) Correlation of expression levels of HOTAIR CNE with HOXC and HOXD cluster posterior genes across FANTOMS cell
types. The x axis represents expression level of HOTAIR CNE, and the y axis represents the expression levels of HOXC and
HOXD cluster genes. Expression level is measured as tags per million (TPM). The expression levels of HOXC11 have the
highest positive correlation, and those of the HOXD11 coding and noncoding have the highest negative correlation.
(B) Heatmap and correlation of expression levels of HOTAIR with HOXC11 and HOXD11 genes across GTEx cohort.

gene expression. Thus, we propose that HOTAIR can have dual regulatory roles in cis and trans, which is
likely mediated by the CNE paralog sequence.

DISCUSSION

We have identified and characterized a 32-nucleotide CNE as the ancestral sequence that probably orig-
inated in ancestral HoxC/D cluster, where the second round of WGD gave rise to one copy in the HOTAIR
locus and another copy in the ncHOXD11 locus. The paralogous CNEs are only 32 nucleotides, whereas the
conserved sequence flanking the HOTAIR CNE is much longer (Figure S1E) and coincides with a region of
eRNA, suggesting an ancestral sequence within the HOTAIR locus. The remainder of the HOTAIR sequence
has limited homology in vertebrates (Figures S1B and S1E), which evolved rapidly in mammalian lineage
(He et al., 2011). This could be indicative of the HOTAIR locus originating from the CNE and evolution
favoring the development of its sequence, likely expanding its functionality. Although thousands of
CNEs are annotated, only a small minority of them have retained a duplicated copy (McEwen et al.,
2006). As such, retention of both copies of HOTAIR CNE had not been reported before. To the best of
our knowledge, this is the first instance of reported paralogous CNEs that underwent compensatory mu-
tation and have retained sequence complementarity in their transcribed directionality (Figures 3A and 3B).

Many of the experimentally tested CNEs are validated enhancers (Nobrega et al., 2003; Pennacchio et al.,
2006; Woolfe et al., 2005). Genome-wide transcriptomic and epigenomic analyses revealed that enhancers
are characterized by distinct transcription and chromatin states (reviewed in Li et al., 2016b), and we used
these features to define whether CNEs are enhancers. The HOTAIR CNE region is marked by open chro-
matin that is flanked by enriched H3K4me 1 and H3K27ac peaks along with bidirectional transcription, which
collectively meets all characteristic features of an active enhancer. On the other hand, our genomic ana-
lyses did not reveal any enhancer features on HOXD CNE, likely because it overlaps with the ncHOXD11
promoter region (Figures 2C and 2D), and it is therefore difficult to entangle overlapping signals. However,
the sequence overlapping Hoxd CNE drives expression in a proximal posterior part of the developing fore-
limbs in mouse (Beckers et al., 1996). Recent findings suggest that some promoters have dual functions as
enhancers and influence the expression of a neighboring gene in cis (Engreitz et al., 2016; Paralkar et al.,
2016; Yin et al., 2015). Thus, it is plausible that the ncHOXD11 promoter overlapping HOXD CNE has
enhancer function and regulates HOXD11 gene in cis.

Multiple enhancers with similar activity provide an effective buffer to prevent deleterious phenotypic con-
sequences upon loss of individual enhancers (Osterwalder et al., 2018). As the HOTAIR CNE has a
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paralogous copy, how this might affect HOTAIR regulation needs further consideration. Deletion of a
sequence overlapping Hoxd CNE revealed no phenotype in vivo (Beckers and Duboule, 1998), which
was different from in vitro (Beckers et al., 1996). It was speculated that the difference(s) might be due to
other phenotypes that were undetected or might have a redundant copy that masked the effect. In fact,
we now have identified that the probed sequence has a paralogous copy in the Hotair locus that might
have masked the effect in vivo. Thus, whether paralogous CNEs have redundant functions, such that dele-
tion of one CNE might be compensated by the other, remains unclear. Putting this in the context of dele-
tion of the Hotairlocus in vivo (Amandio et al., 2016; Li et al., 2013), it remains unknown whether the effects
of Hotair CNE deletion are compensated for, to a certain extent, by paralogous Hoxd CNE.

Transcriptional activity of CNEs is coupled to HOTAIR and ncHOXD11 transcription, suggesting that a key
function of these transcripts is to provide active transcription for the CNEs. With respect to transcript orien-
tation, paralogous CNEs exhibit sequence complementarity, which raises the potential for this hybridiza-
tion principle based on trans function. This is supported by the observed hybridization in vitro (Figures
3C and 3D) and needs future experiments to confirm in vivo. Transcription of HOTAIR CNE is positively
correlated with HOXC11 (Figure 6é), and transcription of ncHOXD11 is positively correlated with
HOXD11. Simultaneously, the transcription of HOTAIR CNE and ncHOXD11 are negatively correlated
(Figure 6), which is likely mediated via sequence complementarity between CNEs.

In summary, our analyses suggest that HOTAIR could regulate both HoxC and HoxD cluster genes simul-
taneously and provide a unifying model of HOTAIR regulation that should clarify ongoing controversies
(Amandio et al., 2016; Li et al., 2013; Portoso et al., 2017; Rinn et al., 2007; Schorderet and Duboule,
2011). Our work highlights how an IncRNA locus could possibly function at the DNA and RNA levels to regu-
late genes both in cis and trans. Unraveling such IncRNAs and determining/validating mechanisms through
which they function at the DNA and/or RNA levels is an ongoing challenge. We propose that such integra-
tive analyses bridging evolutionary genomics and comparative transcriptomics/epigenomics could prove a
powerful tool for better understanding of IncRNA-dependent regulation processes.

Limitations of the Study

Our conclusion is based on analyses of large-scale genomics data, thus future work is needed to validate the pre-
dicted models in vivo. We showed hybridization between paralogous CNEs in vitro, which needs to be validated
in vivo. Furthermore, targeted experiments are required to understand how specific deletion of individual CNE(s)
along with simultaneous deletion of both CNEs alters HOTAIR-dependent regulation in cis and trans.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

Data used in the study were downloaded from ENCODE, mouse ENCODE, GTEx, TCGA, FANTOMS5, NIH
Roadmap Epigenome project, and additional publicly available datasets mentioned in the methods. All
custom code is available upon request.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/.isci.2020.101008.
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Figure S1. Sequence alignment of HOTAIR. Related to Figure 1. (A-B) A genome browser view of HOTAIR in human (A) and
mouse (B) show sequence alignments across vertebrates. Conserved noncoding elements (CNEs) track from ANCORA
browser is shown as on top. CNE that is conserved across all mammals and vertebrates is highlighted. (C) Schematic
representation to show the origin of HoxC and HoxD cluster from the ancestral HoxC/D cluster after second round of whole
genome duplication (2R-WGD). Schematic representations of HoxC and HoxD clusters separately across vertebrates. (D)
Alignment of sequences flanking paralogous CNEs in human and elephant shark show little conservation despite both
sequences being duplicated from the same ancestral sequences. (E-F) Alignment of sequences flanking HOTAIR CNE (E)
and HOXD CNE (F). Species are aligned in the same order as in A.
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Figure S2. Paralogous CNEs are embedded in mature noncoding transcrips. Related to Figure 2. (A) Distribution of reads
mapped to HOXC11 and HOXD11 exon, intron and overalpping exon/intron junctions across multiple cell types. Cells types
are ordered based on increasing number of mapped reads. (B) A geneome browser view of Hotair transcript along with
RNA-seq coverage tracks across different cell types from mouse ENCODE. (C) Distribution of reads mapped to mouse Hotair
and Hoxc11 across multiple cell types. Cells types are ordered based on increasing number of mapped reads. (D) Evidence
of HOTAIR and HoxD11 noncoding transcript across multiple species. The CNEs are represented by rectangular blue and
red bar in HoxC and HoxD cluster respectively. The hoxc11 and hoxc12 genes are assembled in different contigs in chicken,
and homolog of HOTAIR CNE is undetected because the intergenic region between hoxc11 and hoxc12 is not assembled.
Zebrafish hoxc11 and hoxc12is assembled but lacks the CNE. HoxD11 noncoding transcript is detected across tetrapods but
not in teleosts (zebrafish and tetraodon).
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Figure S3. Paralogous CNEs exhibit sequence complementarity with respect to transcription directionality of HOTAIR and
HoxD11 noncoding transcript (ncHOXD11). Related to Figure 3. (A-B) Schematic representation to depict the inferred orienta-
tion of missing transcripts in chimp and painted turtle. HOTAIR is antisense to HoxC11 gene, so the same convention was used
to infer the orientation of HOTAIR. The ncHOXD11 is an alternative splice variant of HoxD11 coding gene across multiple
species; thus, the same convention was used. Expected transcripts are represented by dashed rectangular boxes and lines.
Arrows indicate directionality of transcript. The CNE sequences are zoomed in and shown as genomic DNA and transcribed
RNA. Paralogogous CNEs exhibit sequence complementarity when aligned in 5’ to 3’ orientation. (C) Sequence logos of
HOTAIR CNE and HoxD CNE show paralogous CNEs exhibit sequence complementarity in transcribed orientation.
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Figure S4. A schematic workflow to describe samples preparation for miscroscale thermophoresis (MST). Related to
Figure 3. (A) Two-fold dilutions of unlabeled RNA-oligo were prepared starting at 250nM concentration. Labelled RNA-oli-
go was kept constant at 5nM. (B) An illustrative example of raw experimental data. Fluorescent of labelled RNA-oligo was
measured at 5th second of the MST experiment. (C) Raw data were normalized as AFnorm [%o] and plotted against log,
concentration of titrated RNA-oligo.
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Figure S5. Transcription and chromatin environment of parlogous CNEs. Related to Figure 4. (A) Expression
levels of HOTAIR in twenty-nine cell lines from Roadmap Epigenome data. A threshold of 0.5 RPKM (reads per
kilobase per million mapped reads) was used to separate HOTAIR-expressing cell lines. HOTAIR-unexpressing
cell lines were further separated into stem cells (N=1) and terminally differentiated cells (N=18). (B) Heatmap
shows the normalized read counts in 250 nucleotides flanking HOTAIR CNE across 29 cell lines. (C) DHS signals
around the HOXD CNE across three groups. Y-axis represents normalized counts in reads per million (RPM). (D)
Dynamics regulation of chromatin state around mouse Hotair CNE during reprogramming of mouse embryonic
fibroblast to iPSC. (E) Distribution of H3K4me1, H3K27me3, H3K27ac and p300 signals around human HOXD
CNE in H9-hESC cell line. (F) Pattern of H3K27me3 marks around paralogous CNEs across three groups. (G) A
genome browser view around HOXD CNE shows enrichment of multiple signals (transcription factors, DHS,
histone modifications, chromHMM marks) in H1-hESC cell line.
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Figure S6. Transcriptional dynamics of HOTAIR promoters. Related to Figure 5. (A) Expression levels of HOTAIR
promoter (p1), alternative promoters (ap1, ap2), distal promtoer (dp1) and CNE across nine different time points
during differentiation from myoblast to myotube. (B) Expression correlation of HOTAIR promoter, alternative
promoters and CNE across FANTOMS samples are positively correlated except for distal promoter (dp1). (C)
Distribution of CAGE tags around mouse Hotairlocus in FANTOMS samples. No significant CAGE tags are detect-
ed as it lacks tissues (embryonic hindlimbs, genital tubercle and a piece of trunk corresponding to sacro-caudal
region) where Hotairis expressed. Orthologs of promoter region of HOTAIR are aligned to mouse. (D) Hotair CNE
is flanked by bidirectional H3K27ac on mouse hindlimbs (E10.5 days).



A HOXC cluster HOXD cluster HOXA cluster HOXB cluster % B HOXC cluster HOXD cluster HOXA cluster HOXB cluster
PR GN <= e _ > > >
2 1.0
=
T 3
s 08
1.0 3
-0.8 é)
-0.6 = 0.6
-0.4 o
0.2 T
-o.o r 04
L 0.2
L 0.0
1-0.2
-0.4
-0.6
-0.8
| |
= =—== -1.0
45 RDN T SBBERTANETSRRILAVOTIILOIVYTORZNERIANE LB IPN S OBRERI NN AT SRRIRANCILEIIT ORLERIBAT
O Eo0RessEs 08 PRan TR aEaa8858Rn5550058  CEEobRenaasRe p8a5asssEEEii588588553550580
% g’;gg%gm::::%g gggtII:I%%%IIIIIII%II:IJ:IIII '{;E gE%%%%IIIII%% §ggtIIII%%%IIIII:I%IIIIIII:I
BER > QLR >
I=Q 5 TEQ g
oI Is} oI o
I 2 I 2
g g
S 8
T T
C HOXC13 HOXC12 HOXC11 HOoXc10 HOXC9
8 o 0 - i o :
0 0
E 6 0o ° ! 0 ‘ ’ 0 0 o 0 00 00" 0 o’;o J’, :o‘mojzmoo 0 00"‘.’0 00, 0 0 ¢
b 4 a'ﬁ,oo oo o.,° 0 o ° . 0“0 0 0 0g 0 “o o8, 0 ) 0:30 o‘,} H ° "%o £ ;}? m%ﬁ‘w” 0 o
g2/, e e R=03{ . ¢ ) R=036| | s ¢ o R=os4| [1jeed © ° R=os8 |V %Y R=030
e (U S .00 ° P = 0.0001 i S e, 0 =220 |08y =67em | ¢ =
0 ‘\M'“ T 0\%{ "3‘ ' T P =\0-00\1 ‘i"’“&o‘\‘w ‘?‘zww‘?wﬁ, T \. T A ' - T . T ‘P \2'26 — ¢‘p ! e T \P \6.7e T ?" "'o‘w o T F \0'00\1
HOXD13 HOXD12 HOXD11 noncoding transcript HOXD11 HOXD10
8] R=-0.12 R=0.1 . R=-0.23 R=-0.25 R=-0.16
— N ' . N . N N
E 6 P=0.224 , P=0I8] 0o o P=0017|{ P =0.009 s P =0.093
= 0 00 o §o R 0o N 0 o N
4 Qo 0 o )0 0 0 o )
05;‘2 :o N 0 , 0 N .""%% °oo H . [N 0 0 .
Ol _oatli0 0, o, Y ‘ Py ST o 00 o
0 7ﬁ—v*°o“b?“%o% 4‘@@1\‘;%}7\7 - 701)\ — - | o'ventomerh 8 &:WM%T» 00 9 &nmoo B0’ ﬁo"a ° 9 ;ﬁﬁ%“x\ymgﬁﬁh\i““ e ﬂmo! ﬁ J\?m“‘b"‘* —00
0 1 2 3 4 5 6 o 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
log, (TPM) of HOTAIR CNE
D Breast cancer mRNA data from TCGA
L R=0.140 R=0.207 R=0.148 o R=0.19
T4 . p=0.00052 A p=2.63E-07 <4 ... p=0.00025 - - .. . p=2.2E-06
[N . . . - . .o o . . . e s
— - - o R
o O IS O
< < < <
o o o o
I I I I
© o o  ° © o
o o o o
(8] [$] [$] (S}
P @ @ P
N § N [N N
T T T T T T T T T T T T T T T T
05 1.0 15 20 25 30 35 40 0.5 1.0 15 20 25 30 35 40
R=-0.01
& = 2" P B p=0787
a ) ) a A
< < < <
O « - @) O « O «
I I I I
<] < <4 <]
Q o4 [o] Q o 4 Q o -
(5} (%] (&) [&]
P P P P
N N N N
3 3 4 9
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
05 1.0 15 20 25 30 35 40 0.5 1.0 16 20 25 30 35 40 05 1.0 15 20 25 30 35 40 0.5 1.0 15 20 25 B30 35 40
z-score HOTAIR z-score HOTAIR z-score HOTAIR z-score HOTAIR

Figure S7. Co-expression analysis of HOTAIR with genes from four HOX clusters. Related to Figure 6. (A) Heatmap shows the
expression level of HOTAIR and four HOX cluster genes across FANTOMS5 samples. Cell types are sorted based on the expres-
sion levels of HOTAIR CNE. Expression levels are scaled between 0-1 across each column. (B) Correaltion of expression levels
of HOTAIR with genes from four HOX clusters. (C) Correaltion of expression levels of HOTAIR CNE with HOXC and HOXD
cluster posterior genes. Expression level is measured as tags per million (TPM). The most positively correalted gene (HOXC11)
and most negatively correalted gene (HOXD11 noncoding transcript) is highlighted in green border. (D) Correaltion of expression
levels of HOTAIR with HOXC and HOXD cluster posterior genes on individual breast cancer patients.



Transparent Methods

Genome assemblies and gene annotations

Analyses on human and mouse were done in hg19 and mm9 genome version respectively.
The genome assemblies of 37 species are listed in Table S1. Gene models were downloaded
from UCSC (Speir et al., 2016). The conserved noncoding elements (CNEs) were
downloaded from ANCORA (Engstrom et al., 2008).

Roadmap Epigenome data sets

Roadmap Epigenome data were downloaded from NIH Roadmap Epigenome browser
(Roadmap Epigenomics et al., 2015). Annotated chromatin states were downloaded from 127
cell lines. Histone modifications (H3K4me1/3, H3K27ac/me3) and DNase | hypersensitive
sites (DHSs) data were downloaded as mapped (tagAlign format) files. RNA-seq data for 57
cell lines were downloaded in the computed gene expression (RPKM) matrix (Roadmap
Epigenomics et al., 2015). Only 29 cell lines that had all four (H3K4me1/3, H3K27ac/me3)

histone modifications, DHS and RNA-seq were used for downstream analyses.

ENCODE and mouse ENCODE data sets

Histone modification and RNA-seq data from ENCODE were downloaded as mapped BAM
files. ENCODE transcription factor ChlP-seq were downloaded as annotated peaks (Gerstein
et al.,, 2012). Histone modifications (H3K4me1/3, H3K27ac/me3), DHS and RNA-seq data
from mouse ENCODE were downloaded as mapped BAM files (Yue et al., 2014). Samples
with replicates were merged into a single file. A threshold of 0.5 RPKM (reads per kilobase
per million) was used as the cutoff expression to determine whether HOTAIR is expressed or

not in the given RNA-seq samples.

FANTOMS5 data sets

Human and mouse CAGE-seq data were downloaded from FANTOMS5 (Arner et al., 2015;
Consortium et al., 2014). Replicates were pooled into single file and resulting CAGE tags in
each sample were quantified as tags per million (TPM). CAGE tags with the highest
expression level were defined as the dominant transcription start site (TSS). CAGE based
expression level was computed by summing all CAGE tags in the defined promoter region
(300 bases upstream and downstream of TSS). To compare the expression correlation
across four HOX clusters genes, we selected only that samples/cell types if any of HOX

genes had a minimum expression level of 5 TPM, which resulted in a total of 694 cell types.

GTEx RNA-seq data sets

Mapped GTEx RNA-seq expression data (Consortium, 2013) for genes and transcripts were
downloaded from GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz and
GTEx_Analysis_2017-06-05_v8 RSEMv1.3.0_transcript_tpm.gct.gz respectively. These data
contain 17382 samples from different tissues. For comparative analysis of expression levels

of HOXD11 coding and noncoding transcripts, we selected only those samples where both



transcripts had a minimum expression level of 0.1 TPM and additionally one of the transcripts
had a minimum expression level of 0.5 TPM, which resulted in 1830 samples. For
comparative analysis of expression levels of HOTAIR, HOXC11 and HOXD11 gene, we
selected only those samples where all three transcripts had a minimum expression level of
0.1 TPM and additionally one of the transcripts had a minimum expression level of 0.5 TPM,

which resulted in 2633 samples.

Data sets used from multiple studies

RNA-seq transcripts for multiple species were used from previous studies (Basu et al., 2016;
Hezroni et al., 2015; Nepal et al.,, 2013). Raw data during reprogramming of mouse
embryonic fibroblast to iPSC were download from GEO (GSE90894) (Chronis et al., 2017).
Raw data for H3K27me3, H3K4me1, H3K27ac and p300 from H9-hESC cell lines were
download from GEO (GSE24447) (Rada-Iglesias et al., 2011). Mouse embryonic (10.5 days)
hind limb data were downloaded from GEO (GSE84793) (Andrey et al., 2017). Raw fastq
reads were mapped using bowtie2 (Langmead and Salzberg, 2012). Only unique mapping
reads were considered for downstream analysis. Breast cancer patients’ mRNA (lllumina
Human v3 microarray) data (Pereira et al., 2016) were downloaded from TCGA portal.
Expression levels are measured in z-scores. We filtered samples where HOTAIR expression
(<= 0.5) and were left with 605 patients.

Intron retention reads of HOTAIR

For intron retention analysis, we downloaded long RNA-seq data from ENCODE in human
and mouse, in the form of mapped BAM files. For intron retention analysis, only polyA+
libraries were analyzed, and further classified into whole cell, nuclear fraction and cytosol
fraction enriched libraries. To compute the ratio of intron and exon reads, we used gene
annotation from RefSeq and computed the number of reads mapped to exons and introns.
We only included samples if the total number of reads mapped to HOTAIR was higher than
hundred. The sequence reads that were unspliced and overlapped the exon/intron junctions
were counted separately from exonic and intronic reads.

Mapping of HOTAIR CNE across multiple species

The HOTAIR CNE sequences from both human and zebrafish was used as a query
sequence. We used BLAST (blastall —p blastn —d —e 0.01 —m 8)(Altschul et al., 1997) to find
homologous sequences against 37 species (Supplementary Table S1). Even at the

permissive e-value cutoff of 0.01, only two homologous sequences were identified.

Annotation and directionality of HOTAIR and HOXD11 noncoding transcripts
overlapping CNEs

The HOTAIR transcript is annotated in multiple species (Hezroni et al., 2015; Speir et al.,
2016), such as human, chimp, mouse, ferret and dog, and its orientation is antisense to
HoxC11 and HoxC12 genes. Species lacking HOTAIR annotation, orientation of HOTAIR



CNE was assigned antisense to annotated HoxC cluster genes. In multiple species, such as
human, chimp, mouse, ferret, dog and chicken, HoxD CNE is embedded within the exon of
ncHoxD11, which is an alternative transcript of HoxD711 coding gene. Thus, orientation of
HoxD CNE was assigned similar to annotated HoxD11 gene. Among teleosts fish, we
analyzed RNA-seq transcripts in zebrafish (Hezroni et al., 2015; Nepal et al., 2013) and
tetraodon (Basu et al., 2016), and did not identify ncHoxD11.

Software and tools

Multiple alignments were generated using ClustalW (Chenna et al., 2003) and Jalview
(Waterhouse et al., 2009). Sequence logos were generated using WebLogo (Crooks et al.,
2004). Data were visualized by uploading bigwig tracks on UCSC genome browser and
images were downloaded. Bedtools (Quinlan and Hall, 2010), bash, perl and R scripts were

used for data analysis.

Microscale thermophoresis experiment

The microscale thermophoresis (MST) is based on the phenomenon of molecule drift in
temperature gradient (Asmari et al., 2018; Duhr and Braun, 2006a, b; Moon et al., 2018). In
constant buffer conditions, thermophoresis depends on molecule size, charge and solvation
entropy (hydration shell) which may change upon ligand binding. To measure the
thermophoretic effect, the ligand is fluorescently labelled and kept at a constant
concentration, whereas its interactor is titrated. Change in fluorescence emission at different
ligand concentrations reflects an altered response based on the force of a temperature
gradient. Plotting of fluorescent signal change against altered ligand concentration allow the
calculation of Kd/ECso.

Cy5-labelled or unlabelled RNA oligonucleotides (Supplementary Table S3) corresponding to
CNEs and short flanks were used (TAG Copenhagen). To minimize potential influence of
labelling on CNEs’ interaction experiment was set up with mixtures of HOXD with labelled
HOTAIR-Cy5, and HOXC with Cy5-HOXD. Fluorescent and regular RNA oligos dilutions were
prepared in 1x MST buffer. In initial experiment MST buffer and MST buffer with addition of
unspecific RNA was tested returning comparable results. Thus, data presented here were
recorded on samples prepared in 1x MST buffer only. Unlabelled oligo was prepared as serial
2x dilutions in 15 pyL volume accordingly to manufacturer recommendation. Fifteen L of
labelled 10 nM oligo was added to serial dilutions and mixed by pipetting. Final concentration
of labelled RNA-oligo was 5nM and ligand was in range of 250 nM to 7.63 pM. Regular RNA-
oligo corresponding to the labelled probe used in particular experimental setup was used as
competitor. Details on samples and RNA-oligo types and concentration used are described
(Supplementary Table S4). After short incubation, prepared mixtures were loaded into
Standard Treated Capillaries and MST signal was measured on Monolith NT.115

(NanoTemper Technologies) with default settings (auto-detect LED and medium MST power).



Each experimental condition was run at least 3 times. Representative graphs of raw MST
data are depicted on (Figure S4). For the analysis baseline corrected normalized fluoresce
(AFnom) was used as recommended in MST software manual, and plotted against the log10
ligand concentration in GrapPad Prism 7 (GrapPad Software). The threshold values were

extrapolated from sigmoidal fitting curve.
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