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Study of the Factors Affecting Road Roughness
Measurement Using Smartphones

Guanyu Wang1; Michael Burrow, Ph.D.2; and Gurmel Ghataora, Ph.D.3

Abstract: The measurement of road roughness is important for the management of economic road maintenance. Not only is it an indicator of
road condition and ride quality, but it also is used to determine road use costs, including travel time, fuel consumption, and vehicle main-
tenance. Because of the importance of roughness for road asset management decision-making, road agencies spend considerable resources
trying to measure road roughness in a repeatable and reproducible manner. However, many road agencies with large road networks are unable
to record the condition of the entire network on a sufficiently frequent basis to determine adequately road condition to make informed
preventative maintenance decisions. To address this, research has been carried out to develop low cost smartphone based technologies fitted
inside vehicles to measure road condition. The trial of these systems has met with varying degrees of success. This paper presents an in-depth
parametric study carried out using state-of-the-art vehicle dynamics software, informed by a review of the literature, to appreciate how and to
what degree various influencing variables might affect roughness measurements using a smartphone fitted to a moving vehicle. These var-
iables included the type and position of the smartphone; the type, speed, mass, dynamic response, suspension system, and tire pressure of the
vehicle in which the smartphone is fitted; and the longitudinal road profile. The results of the parametric analysis were used to build multi-
variate linear regression and machine learning algorithms which predict road roughness from a measure of a vehicle’s vertical acceleration
taking into account the predominant influencing variables. The multivariate linear regression equations can be used to predict road roughness
with a similar degree of accuracy that is expected from a visual inspection. On the other hand, the machine learning algorithms, when suitably
trained, were able to estimate reliably the road roughness on an integer-based rating scale at a level of detail which is suitable for strategic road
asset management, provided that the vehicle type and speed and the type of smartphone are taken into account. DOI: 10.1061/(ASCE)
IS.1943-555X.0000558. This work is made available under the terms of the Creative Commons Attribution 4.0 International license,
https://creativecommons.org/licenses/by/4.0/.

Introduction

The importance of maintaining roads at an appropriate standard
to encourage economic development, minimize road use costs
(i.e., travel time, fuel efficiency, vehicle repair costs, and accidents),
provide social benefit, and reduce environmental impacts of trans-
port is well documented (Robinson 2008). However, road agencies
worldwide generally have insufficient maintenance budgets to treat
their entire road networks, and therefore in order to make best use
of scarce resources they are obliged to prioritize maintenance ac-
cording to the perceived socioeconomic returns (Asphalt Industry
Alliance 2018). To achieve this in a rational manner, the condition
of the road networks must be assessed periodically using appropri-
ate means at suitable frequencies, accuracies, and levels of detail.
Ideally, data collection strategies associated with road surface con-
dition should consider the functional performance of the road
(e.g., roughness, surface cracking, and fretting), the structural con-
dition (e.g., deflection and rutting), and measures of the road surface
associated with the safety of the running surface (e.g., skid resistance

and texture depth) (Paterson and Scullion 1990). Because the cost of
data collection is considerable, data collection strategies for stra-
tegic road networks often are adopted whereby the functional con-
dition, skid resistance, and texture depth of the network is measured
in its entirety on an annual basis to identify problem areas rapidly.
The structural condition, which is much more expensive to assess,
is measured less frequently (McGhee 2004). The assessment of the
condition of secondary, or local, roads is even less frequent, and
often structural condition is ignored. On most road networks, road
roughness usually is adopted as the measure of functional condition
because it can be related readily to road use costs and its measure-
ment can be automated. The most accurate automated methods of
assessing road roughness use vehicles fitted with lasers to measure
the road’s longitudinal profile. The obtained road profile then is
converted to road roughness using a standard mathematical pro-
cedure. Nevertheless, even assessing the roughness of a reasonably
sized network can be costly. McGhee (2004) found that the cost of
collecting road roughness data in the United States is between $1.4
($2.23) and $6.2 per km ($10 per mile), depending on the state. For
example, in Illinois, which has 224,719 km (139,577 mi) of roads,
the cost of data collection is $1.4 million annually. An attractive
solution for measuring the functional condition of large road net-
works economically is to make use of the acceleration sensors
which are built into the majority of smartphones to assess road
roughness by relating measured vertical acceleration to the road’s
longitudinal profile. Because smartphone ownership and use are
widespread, an approach could be envisioned whereby the assess-
ment of the condition of road networks is facilitated using crowd-
sourced data.

To investigate the feasibility of using smartphone technology for
road roughness assessment, the following methodology was used:
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1. The literature was reviewed to assess factors that could influence
the measurement of vertical acceleration by a smartphone
mounted in a moving vehicle.

2. The required accuracy and measurement frequency of the accel-
erometers in smartphones was analyzed, in relation to road con-
dition data collection standards.

3. A vehicle dynamics package was used to examine the effect of
vehicle-related and other external factors on the measurement of
vehicle vertical acceleration.

4. Regression and machine learning models were developed which
can predict road roughness from the vertical accelerations of
vehicles. The data used to develop the models was obtained
from running a large number of simulations using the vehicle
dynamics package. The suitability of the predictive models
was determined by comparing their outputs with the actual road
roughness values of the road profiles.

Roughness and Its Measurement

The International Roughness Index (IRI) is the most commonly
used measure of road roughness and is computed from a road’s
longitudinal profile using a mathematical procedure described by
Sayers (1995). The mathematical procedure simulates a quarter-car
model of a standardized vehicle travelling at a speed of 80 km=h
over the road profile (ASTM 2015). IRI is the unit of slope

(e.g., meters per kilometer) calculated from the accumulated
suspension motions of the quarter-car model divided by the length
of the road assessed. ASTM requires the IRI to be calculated over
a minimum distance of 160 m (0.1 mi) (ASTM 2012). IRI ≤
2.5 m=km is considered to represent roads in very good condition,
2.5 < IRI ≤ 3.5 m=km represents roads in good condition, 3.5 <
IRI ≤ 6 m=km represents roads in fair condition, and 6 < IRI ≤
10 m=km represents roads in poor condition (Archondo-Callao
2008). Commercially available devices for measuring road rough-
ness are categorized into four levels according to their accuracy
(Table 1) (Sayers et al. 1986). The most accurate of these devices
(i.e., Class 1 and Class 2 devices) determine a road section’s IRI
by measuring the road section’s profile, typically with a laser, and
converting the profile to an IRI value using the procedure de-
scribed by Sayers (1995). The World Bank introduced the concept
of information quality levels (IQLs) as a guide to collecting data
to inform road management decision-making (Paterson and
Scullion 1990). Four IQLs are specified. IQL-1 and IQL-2 are
associated with the highest level of accuracy and typically are
used for research and project-level analyses, respectively. Infor-
mation at IQL-3 and IQL-4 is at a coarser level of detail
and is recommended for programming and strategic planning
(i.e., network-level). By analogy with the information presented
in Table 1, Class 1 devices could be used to collect IQL-1 infor-
mation, Class 2 devices could be used to collect IQL-2–IQL-3
information and Class 3 devices could be used to collect

Table 1. Classification of devices used to measure IRI

Class Description Specification Commercial examples Level of detail
Information
quality level

Class 1 • The highest standard of accuracy for
measurement of IRI

• Requires the measure of accurate
elevation points closely spaced along the
travelled wheel path

• Class 1 device is viewed as a primary
method to validate other methods

• Measurement error of less than
0.3 m=km for paved roads and of
0.5 m=km for all other road types;
maximum longitudinal sampling
intervals ≤250 mm

• Precision of vertical elevation
measures between 0.5 and 3 mm

Noncontact laser profilers,
face dipstick, ARRB
walking profiler, rod and
level

Most detailed and
comprehensive

IQL-1

Class 2 • Profile measurement with accuracy less
than that required in Class 1 due to
random and bias errors over a range of
conditions

• Includes IRI determined from profiles
measured by high-speed profilometers or
a static device which do not satisfy the
required sampling intervals and precision

• Measurement error between 0.3
and 0.5 m=km; maximum
longitudinal sampling interval
>250 mm and ≤500 mm

• Precision of vertical elevation
measures between 1 and 6 mm

Profilometers
(e.g., California, Rainhart);
General Motors Research
(GMR) inertial profilers

Detailed IQL-2

Class 3 • IRI estimated from correlation equations
using response-type road roughness
measurement systems (RTRRMS)

• Such devices typically determine
roughness using accumulated suspension
motion to measure average rectified
slope (ABS) or accelerometers as
transducer

• RTRRMS must be calibrated by
correlation to be considered Class 3
method

• Road condition rated by class
(i.e., good, fair, and poor) or
numerically with a measurement
error of 0.5–1 m=km

Roadmaster; ROMDAS;
rolling straight edge

Summary IQL-3

Class 4 • Subjective evaluation of road condition
including the user’s perception of ride
quality and visual inspection, or using
measurements from uncalibrated
instruments

• Road condition rated by class (good,
fair, and poor) or numerically with
measurement error between 2
and 6 m=km

Visual inspection Most summary IQL-4

Source: Data from Sayers et al. (1986).
Note: ROMDAS = road measurement data acquisition system.

© ASCE 04020020-2 J. Infrastruct. Syst.
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IQL-3–IQL-4 information. Class 4 devices are suitable only for
collecting IQL-4 information on roads with high inherent rough-
ness such as gravel or earth roads.

Use of Smartphones to Determine Road Roughness

Modern smartphones have in-built three-axis accelerometers and
GPS capabilities. The measurement of road roughness utilizes the
accelerometer to measure vertical vehicle-body acceleration. Dis-
crete defects, such as potholes, can be recognized by identifying
relatively large perturbations in continuous acceleration recordings.
Road roughness can be determined by transforming the continuous
vertical acceleration recordings and matching these with the
GPS-determined locations (Buttlar and Islam 2014). A variety of
smartphone-based applications for measuring road condition have
been developed using an empirical approach. Table 2 summaries
nine commonly available applications. Despite the availability
and use of approaches such as those listed in Table 2, their accuracy
and degree to which they can measure roughness and identify other
defects, such as potholes, in real time over large road networks is
unclear. Furthermore, because the models are empirical, they may be
valid only for a narrow range of vehicle classes. Moreover, empirical
studies trialing such systems suggested that they may be regarded as
Class 2 or 3 devices (Scholotjes, Visser and Bennett 2014; Chugh
et al. 2014). This is partly because a large number of factors need to
be taken into account when determining road roughness from accel-
eration readings determined from a smartphone. These factors are
associated with the smartphones themselves, vehicle-related aspects,
and the form of the road surface profile.

Characteristics of Smartphones

Various studies have shown that a number of characteristics of a
smartphone may affect the measurement of vertical acceleration
and therefore road roughness (Kos et al. 2016; Belzowski
and Ekstrom 2015; Feng et al. 2015; Jones and Forslof 2014).
The characteristics are associated with the operating range, resolu-
tion, frequency, and sensitivity to gravity and temperature. Accel-
erometers in smartphones were designed for gaming and typically
have an operating range of �2g and a resolution on the order of
0.002 m=s2 (2 × 10−4g) (Del Rosario et al. 2015). Theoretically,
these capabilities exceed the �1g required to measure the road lon-
gitudinal profile from a moving vehicle because road vehicle body
accelerations normally are between 0.07 and 0.7g (Katu et al.
2003). The high resolution of the accelerometers in a smartphone
potentially allows the detection of small changes in measured
vertical acceleration. However, in some smartphone models, issues
with the acceleration sensors may causes random errors due to
manufacturing problems such as the misalignment of the sensor
(causing a bias error in measuring acceleration) and temperature-
related sensitivity (Woodman 2007). In addition to ambient temper-
ature, the number of processes running on a smartphone can
increase a smartphone’s internal temperature and in turn lead to
errors ranging from 1 to 2.4 mg=°C when converting the physical
accelerating force to an electric charge via the smartphone’s micro-
electromechanical system (Kionix 2015). Kos et al. (2016) quanti-
fied the sensitivity to gravity of some common smartphone types.
They found that for older smartphones (e.g., iPhone 4 and LG
Nexus 5) the error in measuring gravity was between 0.0164 and
0.025g, but that more modern smartphones, such as the iPhone 6,

Table 2. Summary of current smartphone technologies for measuring road deterioration

Product Defect Description

StreetBump (MIT) (Carrera
et al. 2013)

Potholes Web-based crowd-sourcing to enable verifications by different drivers. A spike in acceleration
exceeding a threshold is reported as a pothole.

Byrne et al. (2013) Potholes Vehicle vertical accelerations are processed using a band pass filter of 0.5–6 Hz to identify and
quantify the defects in terms of major and minor. The effects of low vehicle speeds (5 km=h),
cornering, and accelerating/decelerating are eliminated.

RoadLab by World Bank
(Wang and Guo 2016)

Road roughness Uses a regression model to determine IRI from vertical accelerations. Takes into account the effects
of the position of the smartphone, vehicle speed and suspension type. Was found not to be an
accurate predictor of the condition of unpaved roads (Workman et al. 2016).

Roadroid (Forslöf 2012) Road roughness A multiple linear regression model is used to determine IRI from RMS of measured vertical
accelerations. The model was developed using three vehicle types travelling at speeds between 20
and 100 km=h, different smartphones were considered. The accuracy of estimated IRI from the
correlation was found to be 70%–80% compared with Class 1, considered as IQL-3/4. Measuring
frequency of 100 Hz.

Bump recorder (Koichi
2014)

Discrete defects
and road roughness

The prototype application was developed using vertical acceleration data obtained from a
smartphone fitted in a Toyota Prius. The application claims to determine both roughness and the
height of discrete defects. The estimated vehicle unsprung elevation is assumed equal to the road
profile. Measuring frequency of 100 Hz.

Islam et al. (2014) Road roughness Uses a linear regression model to relate IRI to vertical acceleration. The model was developed from
data captured from a smartphone inside a Honda CRV travelling at 50 mph. The system was found to
have a high repeatability (coefficient of variance less than 15%). Vehicle sprung mass and suspension
were found to affect the accuracy.

Douangphachanh and
Oneyama (2013)

Road roughness An empirical model which relates IRI to vertical acceleration. The data to develop the model were
obtained from studies undertaken with two types of smartphones fitted inside a Toyota VIGO 4WD
pickup truck and a Toyota Camry. The speed of the vehicles was varied, as was the position of the
smartphones inside the vehicles. Measurements were conducted at smartphone capture frequencies
of 100 Hz.

Du et al. (2014) Road roughness A multilinear regression model was developed between IRI and the power spectral density (PSD) of
measured acceleration data. A Lexus sedan was used, travelling at speeds of up to 60 km=h. The
estimated and actual IRI were compared and the error was found to be less than 15%.

Belzowski and Ekstrom
(2015)

Road roughness Multiregression models based on empirical data obtained from nine different smartphones at
sampling frequency of 100 Hz. Roads of five different IRI values were considered. Differences were
found between smartphones.

© ASCE 04020020-3 J. Infrastruct. Syst.
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had improved performance, with bias errors of less than 0.003g.
The maximum speed at which a vehicle fitted with a smartphone
can travel for the data collection system to comply with the require-
ments of the classes of devices specified in ASTM E950 (ASTM
2009) is governed by the sampling frequency (Table 3). This typ-
ically is between 40 and 400 Hz (ASTM 2009). Table 3 lists the
corresponding maximum vehicle speeds for these frequency
ranges.

The sampling frequency range of a smartphone when it is used
to assess roughness should be limited to between 80 and 120 Hz
(Jones and Forslof 2014). This is because at sampling frequencies
lower than 80 Hz, the vehicle needs to travel at relatively slow
and constant speeds to be in accordance with the requirements of
Class 3 and better devices (Tables 2 and 3). At higher sampling
frequencies, data storage and real-time processing can become
problematic. Most of the applications identified in Table 2 were
developed for a sampling frequency of 100 Hz. This suggests that
in slow-moving traffic such as in urban environments where speed
limits are less than 50 km=h, a smartphone used for roughness
measurement would satisfy the requirements of Class 2/3 devices
according to the ASTM E950 specifications (Table 3). This indi-
cates that a smartphone should collect information at a sampling
interval of not greater than 300 mm along the travelled distance.

Smartphone Mounting System and Position

A number of studies have shown that the mounting system and
position of the smartphone in the vehicle can affect the recorded
vertical acceleration values by �15% (Kropáč and Múčka 2005;
Belzowski and Ekstrom 2015). To avoid these issues, the smart-
phone should be mounted on the windshield with a suction cup
and with a bracket that attaches to the dashboard to ensure a rigid
mounting.

Vehicle-Related Aspects

The main vehicle related factors affecting the measurement road
roughness using smartphones are (ASTM 2012; Gillespie 1981)
1. vehicle speed;
2. vehicle type;
3. suspension stiffness and damping;
4. tire pressure;
5. sprung mass (or number of passengers/cargo); and
6. acceleration/braking.

To quantify how the measurement of road roughness is influ-
enced by these factors, a suite of numerical simulations was under-
taken using the vehicle dynamics package CarSim version 2018.12.
CarSim is an industry-standard vehicle dynamics simulator which is
used extensively by vehicle manufactures and researchers (Mechanic
Simulation 2017; So et al. 2014). CarSim is designed to replicate the
real-world behavior of actual vehicle classes, and independent re-
search has demonstrated that the vehicle responses simulated by
CarSim closely replicate the actual responses of a variety of such

vehicles, for example, the suspension and steering kinematics
(Kinjawadekar et al. 2009) and vertical body acceleration
(Organiscak 2014; Varunjikar et al. 2012). The simulations in
the present work consisted of determining vehicle body vertical ac-
celerations for a variety of combinations of vehicle types, speeds,
accelerations, suspension stiffnesses, masses and damping ratios,
tire pressures, and road profiles. For all simulations, the effect
of the driver was included by adding 70 kg to the vehicle’s sprung
mass. Road profiles of 160-m straight sections of road with IRI
values of between 1.0 and 7.3 m=km were used in the simulation,
representing very good to poor road roughness conditions. The
modeled profiles were those of actual roads, and were obtained
from the Federal Highway Administration’s (FHWA) Long-Term
Pavement Performance (LTTP) data set (FHWA 2018). The IRI val-
ues of the road sections were computed directly from the road pro-
files using the standard procedure provided by Sayers (1995).

Research has shown that the power spectral density (PSD) of
a vehicle’s vertical acceleration, obtained from frequency domain
analysis, correlates closely to road roughness (Hesami andMcManus
2009; Sun 2001; Marcondes et al. 1992). According to Parseval’s
theorem, the RMS of the vehicle body vertical acceleration (Grms)
in the time domain is equal to the square root of the integral of the
PSD (Van Baren 2012; Rogers et al. 1997). Therefore, the simulated
Grms values of vertical vehicle body accelerations obtained from
CarSim were used to compare the results of the simulation with
the IRI values of the road profiles. The value of Grms can be calcu-
lated as follows (Jang et al. 2016; Dawkins et al. 2011):

Grms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðaz;i − gÞ2
vuut ð1Þ

where az;i ¼ ith vehicle body vertical accelerations (g);N = number
of acceleration readings over measured road section; and g = accel-
eration due to gravity (i.e., 9.81 ms−2).

Effect of Vehicle Speed
A number of studies have demonstrated that the measured vertical
acceleration is related to vehicle speed (Douangphachanh and
Oneyama 2014; Zeng 2014; Du et al. 2014). To better understand
the influence of vehicle speed on simulated Grms, one type of ve-
hicle was modeled [i.e., a D-class sedan (DSD)] travelling at speeds
ranging from 30 to 100 km=h on four roads of very good (IRI ¼ 1)
to poor road condition (IRI ¼ 7.3) (Table 4). The results are shown
in Fig. 1. Increasing vehicle speed led to logarithmic increases
in simulated vehicle body acceleration (Grms). It was found that
the vehicle body acceleration increased on average by 93% over
all the roads when the vehicle speed increased by 266% (i.e., from
30 to 80 km=h). The increase in simulated Grms was more pro-
nounced at higher values of road roughness. In addition, the rate
of increase in simulated Grms tended to decrease at vehicle speeds
above 80 km=h. These results confirm those of empirical studies
(González et al. 2008; Du et al. 2014; Levulytė et al. 2014).

Table 3. Vehicle operation speeds for different smartphone sampling frequencies

Smartphone
sampling
frequencies (Hz)

Sampling time
interval (s)

Speed range to
satisfy a Class 1
device, sampling
interval ≤ 25 mm

Speed range to
satisfy a Class 2

device, 25 mm ≤ sampling
interval ≤ 150 mm (km=h)

Speed range to
satisfy a Class 3

device, 150 mm ≤ sampling
interval ≤ 300 mm (km=h)

40 0.025 ≤3.6 ≤21.6 ≤43.2
80 0.0125 ≤7.2 ≤43.2 ≤86.4
100 0.01 ≤9 ≤54 ≤108
400 0.0025 ≤36 ≤216 ≤432

© ASCE 04020020-4 J. Infrastruct. Syst.
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Effect of Vehicle Type
The influence of vehicle type on the simulated Grms was assessed
by carrying out simulations using 15 different vehicle types avail-
able in CarSim (Table 4). Comparisons were made for vehicles
travelling at a constant speed of 50 km=h on four 160-m road sec-
tions of very good, good, fair, and poor condition (i.e., IRI values of
1.0, 3.1, 5.0, and 7.3 m=km, respectively). Fig. 2 plots the simu-
lated Grms as a function of road condition and vehicle type. For all
vehicle types, the simulated Grms increased with worsening road
condition, and the difference in simulated Grms between vehicle
types also increased with worsening road condition. Unsurpris-
ingly, the large European van (LEV), European van (EV), and util-
ity truck (UT) had the highest Grms responses. These responses
were between 40% and 190% greater than those for passenger ve-
hicles, depending on road condition. This reflects the relatively stiff
suspension and heavy unsprung masses of vans and utility trucks
commensurate with their requirement to carry cargo. Because the
differences in simulated Grms for vans and trucks were so much
greater than for all other vehicle types, it would be better to exclude
these vehicle types from a system which considers data from a fleet
of many different classes of vehicles, particularly on roads of
relatively poor condition (IRI > 5 m=km). Alternatively, a fleet
consisting of only these vehicle types could be used. The lowest
Grms responses, for all four roads, occurred for D-class minivans
(DMVs) and F-class sedans (FSDs). This is because they are rel-
atively heavy vehicles and the suspension of a FSD, a luxury car, is
relatively soft. Some vehicle types are relatively alike in terms of
simulated Grms (i.e., within�10%) and therefore will provide sim-
ilar IRI values for the same road sections. These include hatchbacks
and DSDs, D and E classes of sport utility vehicles (SUVs), and the
two types of European vans. This is because these groups are of a
comparable shape, chassis configuration, and weight, and therefore
have similar wheel-hop natural frequencies (González et al. 2008).
The acceleration data provided by a fleet consisting of such similar
vehicle types fitted with comparable smartphones and travelling
at similar speeds therefore could be used to provide estimates of
roughness at IQL-3 and IQL-4 without needing to make adjust-
ments for vehicle type.

Effect of Suspension and Tire Pressure
An examination was carried out to determine the effects of suspen-
sion stiffness, suspension damping, and tire pressure by comparing
the responses of a DSD and a LEV. The vehicles were simulated to
travel at a constant speed of 50 km=h on four 160-m road sections
representative of good, fair, poor, and very poor conditions. For the
analysis of suspension stiffness, the suspension spring rates of the
vehicles’ front and rear springs were varied by �20%. The resultsT

ab
le

4.
Pa
ra
m
et
er
s
of

di
ff
er
en
t
ve
hi
cl
e
co
nf
ig
ur
at
io
ns

in
C
ar
Si
m

V
eh
ic
le

ty
pe

E
xa
m
pl
e

A
bb
re
vi
at
io
n

Sp
ru
ng

m
as
s

(k
g)

L
en
gt
h
×
w
id
th
×
he
ig
ht

(m
m
)

W
he
el
ba
se

(m
m
)

Fr
on
t
su
sp
en
si
on

R
ea
r
su
sp
en
si
on

T
ra
ck

w
id
th
,

w
he
el

ce
nt
er

(m
m
)

T
ir
e
si
ze

M
as
s

(k
g)

Sp
ri
ng

ra
te

(N
=m

m
)

M
as
s

(k
g)

U
til
ity

tr
uc
k

A
T
V

m
in
i
tr
uc
k

U
T

60
0

2
,7
5
0
×
1
,2
6
0
×
2
,7
5
0

1,
92
3

80
35

88
1,
26
0

Pa
ce
kk
a
5.
2

L
ar
ge

E
ur
op
ea
n
va
n

Sk
od
a
va
n

L
E
V

2,
10
0

4
,1
5
0
×
2
,1
0
0
×
1
,9
6
0

3,
10
0

15
0

98
15
0

1,
55
0

26
5/
75

R
16

D
-c
la
ss

m
in
iv
an

V
ol
ks
w
ag
en

To
ur
an

D
M
V

1,
80
0

4
,1
5
0
×
1
,9
0
5
×
1
,6
6
9

3,
00
0

10
0

31
10
0

1,
64
0

23
5/
65

R
17

E
ur
op
ea
n
va
n

R
en
au
lt
K
an
go
o

E
V

1,
10
0

3
,6
0
0
×
1
,7
0
0
×
1
,8
0
0

2,
58
0

10
0

31
10
0

1,
50
0

18
5/
65

R
15

D
-c
la
ss

SU
V

A
ud
i
Q
2

D
SU

1,
43
0

3
,7
2
5
×
1
,8
4
5
×
1
,7
0
5

2,
66
0

80
13
0

10
0

1,
56
5

23
5/
55
/R
18

E
-c
la
ss

SU
V

A
ud
i
Q
3/
B
M
W

X
1

E
SU

1,
59
0

4
,2
2
0
×
1
,8
7
5
×
1
,8
0
0

2,
95
0

12
0

14
6

15
0

1,
57
0

26
5/
75
/R
16

Fu
ll-
si
ze

SU
V

A
ud
i
Q
5/
B
M
W

X
5

FS
U

2,
25
7

4
,4
7
5
×
2
,0
2
9
×
1
,9
5
5

3,
14
0

12
5

18
9

15
0

1,
72
5

27
5/
65
/R
18

C
om

pa
ct

pi
ck
up

N
is
sa
n
N
av
ar
a

C
P

1,
30
6

4
,1
7
5
×
1
,6
6
5
×
1
,8
4
0

2,
78
0

90
13
0

12
5

1,
65
0

21
5/
70

R
15

A
-c
la
ss

ha
tc
hb
ac
k

Sm
ar
t
Fo

rt
w
o

A
H
B

75
0

3
,0
0
0
×
1
,7
8
0
×
1
,1
6
0

2,
35
0

41
.5

18
41
.5

1,
41
5

17
5/
65

R
14

B
-c
la
ss

ha
tc
hb
ac
k

Sm
ar
t
Fo

rf
ou
r

B
H
B

1,
10
0

3
,3
0
0
×
1
,6
9
5
×
1
,5
3
5

2,
60
0

60
28

60
1,
48
0

18
5/
65

R
18

B
-c
la
ss

sp
or
ts

ca
r

M
in
i

B
S

1,
02
0

3
,2
2
5
×
1
,7
5
0
×
1
,2
0
0

2,
33
0

60
13
0.
5

60
1,
48
0

20
5/
45

R
17

C
-c
la
ss

ha
tc
hb
ac
k

M
in
i

C
H
B

1,
27
0

3
,8
5
0
×
1
,9
1
6
×
1
,6
1
0

2,
91
0

71
27

71
1,
67
5

21
5/
55

R
17

D
-c
la
ss

se
da
n

A
ud
i
A
1

D
SD

1,
37
0

3
,9
7
5
×
1
,7
9
5
×
1
,4
7
1

2,
78
0

80
15
3

80
1,
55
0

21
5/
55

R
17

E
-c
la
ss

se
da
n

B
M
W

3
se
ri
es

E
SD

1,
65
0

4
,3
2
5
×
1
,8
8
0
×
1
,4
8
0

3,
05
0

90
24

90
1,
60
0

22
5/
60

R
18

F-
cl
as
s
se
da
n

B
M
W
5
se
ri
es

FS
D

1,
82
0

4
,5
0
0
×
1
,8
7
0
×
1
,4
7
5

3,
16
0

10
0

83
10
0

1,
60
5

22
5/
60

R
18

Fig. 1. Effect of vehicle speed on vehicle vertical body accelerations.
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suggest that a decrease in suspension stiffness (i.e., improving ride
comfort) reduced the simulated Grms values for both vehicle types
(by approximately 0%–7% for the DSD and 7%–13% for the LEV),
and an increase in stiffness increased the simulated Grms values for
both vehicle types (1%–7% for the DSD and 8%–15% for the
LEV), indicating reduced ride quality (Table 5). The percentage
changes were found to be greatest for the roads in the worst con-
dition. The effects of suspension stiffness on a LEV were found to
be generally higher than those on a DSD because the relatively
stiffer suspension of a LEV results in a higher simulated Grms.

For the analysis of suspension damping, the suspension
damping ratio (shock force versus compression rate) was varied

by þ20% on both the front and rear dampers. A decrease in damp-
ing ratio reduced the simulated Grms values for both vehicle types
considered, and the effect increased as road condition worsened
(Table 5). For a 20% reduction in damping, the Grms decreased
by 2%–7% for a DSD and by 3%–8% for a LEV. However, a
20% increase in damping ratio increased the simulated Grms by
3%–7% for a DSD and 0%–8% for a LEV. The effect increased
as road condition worsened.

The influence of underinflation of tire pressure was simulated
by changing the tire spring rate to 70% and 90% of their default
values. The results of the analysis demonstrate that reducing the tire
spring rate led to a reduction in the simulated Grms of between 2%

Fig. 2. Simulated Grms of different vehicle types as a function of road condition.

Table 5. Effects of suspension stiffness, damping, and tire pressure

Vehicle type IRI
Stiffness
ratio (%) Grms Difference (%)

Damping
ratio (%) Grms Difference (%)

Tire spring
rate (%) Grms Difference (%)

DSD 1 100 0.021 — 100 0.021 — 100 0.021 —
DSD 1 80 0.021 −0.49 80 0.019 −5.83 90 0.020 −3.40
DSD 1 120 0.021 1.05 120 0.022 6.31 70 0.018 −11.17
DSD 3.1 100 0.057 — 100 0.057 — 100 0.057 —
DSD 3.1 80 0.082 −5.43 80 0.055 −2.81 90 0.056 −1.93
DSD 3.1 120 0.060 5.96 120 0.059 3.68 70 0.055 −3.86
DSD 5 100 0.087 — 100 0.087 — 100 0.087 —
DSD 5 80 0.082 −5.43 80 0.083 −4.39 90 0.085 −2.31
DSD 5 120 0.092 6.71 120 0.091 5.55 70 0.082 −4.97
DSD 7.3 100 0.115 — 100 0.115 — 100 0.115 —
DSD 7.3 80 0.108 −6.26 80 0.112 −6.43 90 0.112 −3.13
DSD 7.3 120 0.120 4.00 120 0.117 4.83 70 0.109 −5.39
LEV 1 100 0.034 — 100 0.034 — 100 0.034 —
LEV 1 80 0.031 −7.46 80 0.031 −7.46 90 0.033 −1.49
LEV 1 120 0.036 8.06 120 0.036 8.06 70 0.034 2.09
LEV 3.1 100 0.099 — 100 0.099 — 100 0.099 —
LEV 3.1 80 0.087 −12.41 80 0.095 −3.94 90 0.096 −3.43
LEV 3.1 120 0.113 14.13 120 0.099 0.30 70 0.080 −19.17
LEV 5 100 0.146 — 100 0.146 — 100 0.087 —
LEV 5 80 0.130 −11.15 80 0.137 −6.33 90 0.085 −2.31
LEV 5 120 0.164 12.34 120 0.156 6.53 70 0.082 −4.97
LEV 7.3 100 0.149 — 100 0.149 — 100 0.115 —
LEV 7.3 80 0.137 −8.59 80 0.144 −3.55 90 0.112 −3.13
LEV 7.3 120 0.162 8.85 120 0.156 4.22 70 0.109 −5.39
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and 12% for a DSD and between 1% and 20% for a LEV, depend-
ing on the degree of change in tire spring rate and road condition
(Table 5). The highest reductions in Grms were associated with a
lower tire spring rate and a worse road condition.

Effect of Sprung Mass
The addition of weight (e.g., a passenger) was simulated by chang-
ing the vehicle sprung mass. For the comparison, five vehicle types
were modeled travelling at a speed of 50 km=h on a road in good
condition (i.e., IRI ¼ 3.1 m=km). The results show that adding ad-
ditional weight resulted in a reduction of the simulated Grms value
(Fig. 3). Every 70 kg (i.e., approximately one additional passenger)
resulted in approximately a 5% decrease in Grms irrespective of the
vehicle type or road condition.

Driving Style
The influence of driving style on simulated vehicle body acceler-
ation was investigated by simulating a DSD travelling on a road
with IRI ¼ 5 m=km (i.e., an older road in fair condition) for the
five different regimes (Table 6). Compared with driving at a con-
stant speed, accelerating or decelerating affected the simulated
Grms body acceleration by between 3% and 7%.

Road Profile

Road longitudinal profiles of different shapes can have the same
roughness value. Fig. 4 shows an example in which two (real) very
different road profiles of similar IRI values (i.e., 5.0 m=km,

determined over a length of 160 m) have different PSD curves
(Fig. 5). The frequency domain plot shows that Section A had
lower amplitudes for wavelengths smaller than 0.5 m=cycle
(e.g., potholes), whereas Section B had higher amplitudes in the
vicinity of 20-m=cycle wavelengths (e.g., due to deformations
or displacements which occur in the subgrade) (Fig. 5). To further
investigate how this may affect the measurement of IRI using a
smartphone, simulations were carried out using three vehicle types
travelling at 30 and 50 km=h on four different road sections 160 m
in length. Two of the road sections had an IRI of 5 m=km (A and B)
and two had an IRI of 1.5 m=km (C and D). The results of the
simulation are given in Table 7. For all simulations, the Grms
values were different for roads with the same IRI value. The differ-
ences were greatest (approximately 25%) for road sections with low
IRI values (i.e., 1.5 m=km). This suggests that it may be appropri-
ate to introduce a bandpass filter to eliminate the effects of short
wavelength features (e.g., cracks, microtexture, and potholes), es-
pecially when assessing roads with low IRI values.

Table 8 classifies the influence of the aforementioned factors
into three classes according to their degree of influence determined
from the parametric study (i.e., high > 30%, moderate = 10%–
30%, and low < 10%).

Development of Predictive Models

Mathematical models based on a multivariate linear regression
analysis and machine learning were developed to predict road

Fig. 3. Effects of adding additional weight on vehicle sprung mass.

Table 6. Effects of driving regimes on simulated Grms

Acceleration/braking
Speed

ranges (km=h)
Travelled

distance (m) Time (s) Grms (g)
Difference compared

with driving at constant speed (%)

Constant acceleration (20% throttle control) 0–78 160 11.7 0.083 −2.71
Constant driving speed 49 160 11.7 0.085 —
Half-throttle acceleration 0–100 160 10.0 0.087 −6.88
Constant driving speed 58 160 10.0 0.092 —
Deceleration at constant brake pressure 78–0 152 15.9 0.070 4.95
Constant driving speed 35 152 15.9 0.067 —
Constant speed 100 km=h and braking after 2 s 100–0 137 7.7 0.091 −5.96
Constant driving speed 64 137 7.7 0.096 —
Full-throttle acceleration, then braking 0–82, then to 62 160 10.7 0.085 −5.55
Constant driving speed 54 160 10.7 0.090 —
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Fig. 4. Road profiles of Roads A and B.
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Fig. 5. PSD curves for Roads A and B.
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roughness from vehicle body vertical acceleration. The purpose of
developing the models was to identify the most suitable model
forms and the influencing variables which need to be included
in the development of similar predictive models, and to gauge
the accuracy which might be expected from the models. The mod-
els were developed from a data set produced from 6,000 CarSim
simulations of two vehicle types travelling over road sections with
different road profiles. The accuracies of the developed models
were determined by comparing the IRI values predicted by the
models with the IRI values (i.e., target variable values) of the road

profiles determined using the industry-standard approach used to
determine IRI from data collected by devices which measure the
road profile (Sayers 1995). For the simulation, a large European
van and a D-class sedan were modeled and subject to the variables
which were found to have a high or moderate impact on vertical
vehicle body acceleration (Table 8). The variables considered in
the simulation are given in Table 9. The data obtained from the
CarSim simulation were split into three separate data sets, one as-
sociated with the large European van only, one associated with the
D-class sedan, and a third which combined the data from both data
sets. The vertical acceleration data were converted to Grms values
as discussed previously.

Table 10 gives the results of the multivariate regression analysis;
the data therein were used to develop a linear model for a large
European van (Eq. 2), a linear model for a D-class sedan (Eq. 3),
and a linear model which does not include the vehicle type (Eq. 4)

IRI ¼ 55.25 × Grms − 0.07 × Speedþ 0.19 × Npeop − 2.93

× Stif − 1.09 × DampF − 1.44 × TyreSþ 7.66

R2 ¼ 0.83; SE ¼ 1.39 m=km ð2Þ

IRI ¼ 53.43 × Grms − 0.06 × Speedþ 0.18 × Npeop − 0.87

× Stif − 0.89 × DampF − 0.27 × TyreSþ 5.75

R2 ¼ 0.79; SE ¼ 1.54 m=km ð3Þ

IRI ¼ 50.32 × Grms − 0.06 × Speedþ 0.17 × Npeop − 1.86

× Stif − 0.90 × DampF − 0.78 × TyreSþ 6.68

R2 ¼ 0.74; SE ¼ 1.69 m=km ð4Þ
where SE = standard error. The coefficient of multiple determina-
tion (R2) of the three linear models was 0.83 for the LEV model,
0.79 for the DSD model, and 0.74 for the model which does not
take into account vehicle type. Compared with the target variable
values of IRI determined from the road profile using the standard
method given by Sayers (1995), the standard error of the three
linear models was 1.39, 1.54, and 1.69 m=km, respectively. Com-
monality analysis was carried out to determine how much variance
in predicted IRI each of the six variables uniquely contribute
(i.e., the significance of the variable). The results show that Grms
contributes 82% of the variance in IRI in the case of the LEV and
79% for the DSD (Table 10). The Pearson’s correlation also indi-
cated strong correlation between Grms and the target IRI values
(0.81 and 0.83 respectively). Thus, as is self-evident, the simulated
Grms is the dominant factor influencing the prediction of IRI from
the simulated data sets. Speed was found to have the second largest
influence on the prediction of IRI, accounting for 14% of the vari-
ance in the case of the DSD and 10% for the LEV. The other influ-
encing variables do not appear to significantly affect the prediction
of IRI when using multivariate linear regression.

Table 7. Grms values for four different road profiles

Vehicle type
Speed
(km=h)

IRI ¼ 5 m=km

Change (%)

IRI ¼ 1.5 m=km

Change (%)Road A Grms (g) Road B Grms (g) Road C Grms (g) Road D Grms (g)

D-sedan 30 0.051 0.053 2.12 0.015 0.018 19.38
50 0.070 0.065 −8.08 0.021 0.024 14.58

Full-size SUV 30 0.057 0.061 7.59 0.017 0.021 24.92
50 0.079 0.076 −3.94 0.023 0.028 23.31

European van 30 0.111 0.110 −1.14 0.047 0.043 −8.52
50 0.126 0.109 −12.97 0.061 0.065 5.62

Table 8. Summary of different influencing factors on simulated vehicle
body acceleration

Factor Severity Influence

Smartphone types H Very different in measuring IRI value but
can be minimal in categorical analysis

Vehicle speeds H Simulated Grms increases logarithmically
with speed. Increase of 93% in Grms with
a speed increase of 266% (i.e., from 30 to
80 km=h)

Vehicle types H Differences in Grms between vehicle types
of up to 190%

Sprung mass M Every 70 kg (i.e., approximately one
additional passenger) added to the sprung
mass results in approximately a 5%
decrease in Grms

Longitudinal profile M Up to 25% change in Grms due to change
in longitudinal profile

Suspension stiffness M 5%–15% change in simulated Grms as a
result of �20% of changes in spring rate

Tire pressure M Up to 20% change in simulated Grms due
to �30% change in tire pressure

Driving style L 3–7% change in simulated Grms due to
changing driving behavior

Suspension
damping

L Less than 8% change in simulated Grms as
a result of �20% of changes in damping

Note: H = high; M = moderate; and L = low.

Table 9. Values selected for model development

Variable Abbreviation Range of variables considered

Vehicle speed Speed 30, 50, and 80 km=h
Vehicle type — LEV and DSD
Sprung mass (number
of people)

Npeop 1, 2, 3, and 4 (70 kg per person)

Suspension stiffness Stif 0.8, 1, and 1.2
Suspension damping DampF 0.8, 1, and 1.2
Tire pressure TireS 0.7, 0.9, and 1
Road profile
(160-m length)

— Nine different road profiles

© ASCE 04020020-10 J. Infrastruct. Syst.
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Accordingly, simplified regression models which predict IRI
from Grms, speed, and vehicle type were developed as follows:

For a large European van

IRI ¼ 53.19 × Grms − 0.64 × Speedþ 2.99

R2 ¼ 0.80; SE ¼ 1.57 m=km ð5Þ

For a D-class sedan

IRI ¼ 52.90 × Grms − 0.055 × Speedþ 4.23

R2 ¼ 0.78; SE ¼ 1.51 m=km ð6Þ

Ignoring vehicle type

IRI ¼ 49.30 × Grms − 0.055 × Speedþ 3.73

R2 ¼ 0.73; SE ¼ 1.741 m=km ð7Þ

The values of the R2 and SE of the preceding sets of equations
which consider all the influencing variables, and that which con-
siders speed alone, suggest that multivariate linear regression could
be used to determine IRI to a similar degree of accuracy as might be
expected from a visual inspection (Table 1), i.e., IQL-4, even with-
out taking into account the class of vehicle. However, considering
all of the influencing variables does not seem to improve the results
to an extent which would allow roughness to be measured to a
higher IQL.

Three machine learning algorithms based on a decision regres-
sion tree, an artificial neural network (ANN), and a random forest
were developed. The three machine learning algorithms were de-
scribed by (Han et al. 2011). The three model types were chosen
because their structures (i.e., dendritic and neuron based) have been
shown to be applicable to large and complex data sets, yet they can
be trained quickly using a relatively small sample of test data (with-
out overfitting) to produce accurate predictions (Chandra et al.
2012; Melhem and Cheng 2003). Furthermore, the model types
have been used successfully in related applications which predict
road condition from field measurements (Jang et al. 2016; Seyfi
et al. 2013; Nitsche et al. 2012; Soleimani and Sahebi 2012).

A classification and regression tree (CART) decision regression
tree type, as advocated by Breiman et al. (1984), was selected with
an unlimited tree depth and no pruning. The ANN utilized the

RProp algorithm described by Riedmiller and Braun (1993) and
consisted of two hidden layers with four neurons per layer. For each
analysis the RProp algorithm was iterated 500 times. The random
forest algorithm was of the form suggested by Breiman et al. (1984)
and had two hundred trees with an unlimited tree depth.

The values chosen for the aforementioned parameters (number
and depth of trees, number of layers, and so forth) for the three
algorithms were determined on a trial-and-error basis to achieve
a reasonable balance between model accuracy and the length of
the required training time.

A 10-fold cross-validation process was used to train and test
the machine learning algorithms. Such a validation process strongly
increases the randomness (i.e., variance) in the data modeling and
thereby reduces the likelihood of the model achieving a good ac-
curacy by chance (Han et al. 2011). The validation process con-
sisted of portioning the LEV, DSD, and combined data sets
randomly into 10 equal-sized subsets. Each machine learning algo-
rithm was trained using nine subsets, and the remaining subset was
used for testing. This process was repeated a further nine times until
all subsets were tested. The results of the 10 different trials were
averaged to give an indication of the overall performance of each
algorithm. Table 11 presents the results of this analysis for the three
data sets. The three machine learning algorithms performed better
than the regression approach described previously, as evidenced by
higher R2 and lower RMS error (RMSE) values. Furthermore, the
neural network and random forest performed better for all three
data sets than did the decision tree.

A feature elimination approach was used to remove each vari-
able in turn in order to better understand the influence of the six
selected variables on the prediction of IRI. The results of this pro-
cess also are given in Table 11. The simulated Grms, as expected,
was found to have the greatest influence on predicting IRI. Speed
was found to be the second most important variable for all three
data sets. For example, when speed was not taken into account, for
the LEV data set the RMSE increased from 0.91 to 1.74 m=km and
the R2 value decreased from 0.92 to 0.72. In comparison, the four
other variables had a relatively minor influence on the prediction of
IRI. This supports the findings of the regression analysis described
previously.

Comparing the performance of all three machine learning algo-
rithms in analyzing the three data sets indicated that the ANN and
random forest algorithms were better predictors of IRI than was the

Table 10. Regression analysis for large European van and D-class sedan

Model
Estimated

coefficients β
Coefficient of

determination (R2)
Standard
error

Commonality
coefficient (unique)

Pearson’s correlation

Target IRIa Grms Speed Npeo Stif DampF

D-class sedan
(Constant) 7.66 — Target IRIa 1.00 0.81 −0.05 0.00 0.00 0.01
Grms 55.25 0.82 Grms 0.81 1.00 0.37 −0.06 0.15 0.07
Speed −0.07 0.14 Speed −0.05 0.37 1.00 0.01 0.01 0.01
Npeop 0.19 0.83 1.39 0.00 Npeo 0.00 −0.06 0.01 1.00 0.00 0.00
Stif −2.93 0.02 Stif 0.00 0.15 0.01 0.00 1.00 0.01
DampF −1.09 0.00 DampF 0.01 0.07 0.01 0.00 0.01 1.00
TireS −1.44 0.00 TireS 0.00 0.06 0.01 −0.00 0.01 0.00

Large European van
(Constant) 5.75 — IRIa 1.00 0.83 −0.03 0.00 0.02 −0.01
Grms 53.43 0.79 1.54 0.79 Grms 0.83 1.00 0.33 −0.06 0.06 0.04
Speed −0.06 0.10 Speed −0.03 0.33 1.00 0.00 0.00 −0.00
Npeop 0.18 0.00 Npeo 0.00 −0.06 0.00 1.00 −0.00 0.00
Stif −0.87 0.00 Stif 0.02 0.06 0.00 −0.00 1.00 0.01
DampF −0.89 0.00 DampF −0.01 0.04 −0.00 0.00 0.01 1.00
TireS −0.27 0.00 TireS 0.00 0.01 0.00 −0.00 0.00 0.00
aTarget IRI = target IRI computed directly from measured road profile values using technique provided by Sayers (1995).
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decision regression tree. Both algorithms performed better for the
LEV and DSD data sets than for the combined data set. Removing
the vehicle type variable from the analysis using the ANN and ran-
dom forest algorithms increased the RMSE by between 3% and
29%. For both algorithms, the RMSE for the LEV data set was
higher than for the DSD data set. This suggests that it is important
to take into account vehicle type when predicting IRI. However,
removing all variables that were found from the parametric study
to have a medium influence on IRI prediction, i.e., number of peo-
ple, stiffness, damper force, and tire pressure (Table 11), did not
affect the error in the prediction. For example, for the neural net-
work model when considering the LEVand combined data sets, the
RMSE value increased by 27% (0.91–1.16 m=km) and by 17%
(0.97–0.94), respectively.

Concluding Discussion

The suitability of using a smartphone suitably fixed inside a mov-
ing vehicle to determine road roughness (IRI) was assessed by re-
viewing existing approaches using a parametric study carried out
with the aid of CarSim, a vehicle dynamics package. CarSim has
been shown to accurately replicate actual vehicle behavior, and its
use allowed a large number of controlled simulations to be carried
out in a relatively short time.

It was found that an important aspect of measuring road rough-
ness with a smartphone is to convert the smartphone’s vertical
acceleration data to RMS body accelerations (i.e., Grms). The sim-
ulation results showed that because Grms is strongly correlated
with the actual road IRI in a real-world system, the calculation
of the Grms of potentially millions of measured acceleration signals
accruing from road users requires less computational processing
than approaches that require the additional transformation of the
data to the frequency domain.

The parametric study showed that vehicle speed and type and
Grms (i.e., vertical vehicle body acceleration) had a large effect
(>30%) on the assessment of IRI. Sprung mass, suspension stiff-
ness, longitudinal profiles giving the same IRI, and tire pressure
had a moderate effect (i.e., between 10% and 30%), whereas
acceleration/braking and suspension damping had a relatively mi-
nor influence (<10%). Multivariate linear regression and machine
learning algorithms were developed to predict IRI from the vertical
acceleration (i.e., Grms) values obtained from the CarSim simula-
tion. The results suggest that a multivariate linear regression which
takes into account vehicle speed could be used to predict IRI to an
accuracy equivalent to that which might be expected by visual ob-
servation (i.e., a Class 4 device at IQL-4). However, using a ma-
chine learning algorithm as part of a suitable smartphone-based
system could enable road roughness to be predicted in accordance
with the requirements of a Class 3 device and to an IQL of 3
(Table 1). For example, the ANN that was trialed was able to pre-
dict road roughness to a RMSE of between 0.73 and 0.91 m=km
when vehicle class and speed were considered. Data at IQL-3, and
at the frequency of collection possible with a smartphone, would
enable long-term strategic road management decision-making.
Such decision-making enabled by roughness data collected using
such a smartphone system would allow for (Sayers et al. 1986)
• The summarizing at low cost of the condition of the entire road

network on a regular basis (e.g., annually).
• The use of network level models that evaluate and compare

maintenance policies, and assess road use and road agency
costs. For example, IRI values at IQL-3 could be utilized within
a decision support tool, such as the World Bank’s standard for

road investment appraisal, HDM-4, to enable economic road
maintenance strategies to be identified (Odoki et al. 2013).

• The primary screening of road sections to identify and prioritize
road sections requiring maintenance and rehabilitation. In prac-
tice, road sections identified for treatment would be further
assessed using project-level data (i.e., data to IQL-2) to deter-
mine the type of treatment required.
To support such strategic road asset management, the routine

inspection of the condition of a road network could be achieved
using low-cost data collection systems which utilize smartphones
with similar characteristics inside a fleet of vehicles of similar
types, travelling at normal traffic speeds.

Without knowing the vehicle type and speed, vertical acceler-
ation data obtained from smartphones could be analyzed using
machine learning algorithms to enable IRI to be predicted to a sim-
ilar accuracy as would be expected from a visual inspection, but
with arguably improved repeatability and reproducibility. Such data
could be suitable for the routine analysis of the condition of local
road networks. A particularly useful application could be the as-
sessment of the condition of low-volume rural road networks in
developing countries where the majority of rural roads are con-
structed from either gravel or earth and where smartphone owner-
ship is surprisingly high (World Bank Group 2016).

It is recognized that the work presented herein is based on
simulation, and therefore the work has a number of possible lim-
itations. An objective of the research was to compare the simulated
vertical accelerations measured by a smartphone of a vehicle trav-
elling on actual road sections, with the roughness of the road sec-
tions determined from a profile of the road using a standard method
(Sayers 1995). The former was simulated using the CarSim vehicle
dynamics package. The road roughness values of the road sections
were computed using a standard procedure developed by Sayers
(1995) which is used by the road data collection industry to deter-
mine IRI from data collected by devices which measure the road
profile. CarSim and the method provided by Sayers (1995) use
models of vehicle motion to determine the vertical vehicle body
acceleration and the IRI, respectively, from the summation of
model vertical displacements. CarSim replicates the behavior of ac-
tual vehicles, whereas the quarter-car model used by Sayers (1995)
is a simplified model of a standardized vehicle. Although CarSim
has been shown by independent studies to closely replicate the per-
formance of real vehicles, the components of real vehicles that
might affect vehicle vertical body acceleration will vary because
of age, use, and maintenance (i.e., suspension stiffness, damping,
tire pressure, and mass). The combined effects of these parameters
on the vertical vehicle accelerations for a single vehicle class were
not considered in this work. Furthermore, the work presented as-
sumed that the simulated vertical vehicle body accelerations were
equivalent to the accelerations measured by a smartphone fixed in-
side a vehicle. However, the simulation did not replicate the effect
of varying the mounting system nor the position of the smartphone
in a vehicle. These collectively can affect the recorded vertical ac-
celeration values by �15% (Kropáč and Múčka 2005; Belzowski
and Ekstrom 2015). For a practical system, the smartphone should
be adhered to the windshield with a suction cup and a bracket that
attaches to the dashboard to ensure a rigid mounting, preventing the
smartphone from moving freely.

The following conclusions can be drawn from the research:
1. Converting vehicle body acceleration to Grms greatly facilitates

the prediction of road roughness;
2. Vehicle body acceleration, smartphone type, vehicle type, and

speed were found to be the dominant factors that influence road
roughness measurement;
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3. A data collection system which utilizes smartphones suitably
fixed inside a moving vehicle to assess road roughness can sat-
isfy the frequency of data collection and accuracy requirements
of a Class 3 device if vehicle speed is taken into account and a
suitable data processing approach is adopted;

4. Without knowing vehicle type and speed, Grms data can be
utilized to assess road roughness to a similar degree of accuracy
as can be achieved by a visual inspection; and

5. The use of a bandpass filter to eliminate high frequencies should
be considered to account for the effect of the shape of road pro-
files on the measurement of IRI using a smartphone, particularly
for roads in good condition.
These factors notwithstanding, although the algorithms pre-

sented for the analysis of vertical vehicle body acceleration dem-
onstrated promising results for the artificial data sets developed for
the research, clearly they need further testing using data obtained in
the field, calibration, and refinement to the conditions at hand for
their practical application.
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