
 
 

University of Birmingham

Influences of dynamic material properties of slab
track components on the train-track vibration
interactions
Li, Ting; Su, Qian; Kaewunruen, Sakdirat

Citation for published version (Harvard):
Li, T, Su, Q & Kaewunruen, S 2020, 'Influences of dynamic material properties of slab track components on the
train-track vibration interactions', Engineering Failure Analysis.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 14. Jun. 2020

https://research.birmingham.ac.uk/portal/en/publications/influences-of-dynamic-material-properties-of-slab-track-components-on-the-traintrack-vibration-interactions(1f97b92c-a464-4490-bd6f-3df07f838c02).html


Influences of dynamic material properties of slab track components on the 1 

train-track vibration interactions 2 

Ting Lia,b,c, Qian Sua,b, Sakdirat Kaewunruenc,* 3 

a School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China 4 

b Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong 5 

University, Chengdu 610031, China 6 

c School of Engineering, University of Birmingham, Birmingham B15 2TT, UK 7 

*Correspondence should be addressed to Sakdirat Kaewunruen (s.kaewunruen@bham.ac.uk). 8 

 9 

Abstract: Slab tracks or so-called ballastless tracks have been widely adopted for highspeed 10 

rail networks. Material properties of slab track components have significant influences on the 11 

serviceability performance of both high-speed trains and the slab tracks. In reality, the 12 

stiffness of rail pads and moduli of elasticity of concrete and CA mortar are quite different 13 

when they are determined by using either quasi-static or dynamic loading tests. Based on a 14 

critical literature review, most previous studies adopted some static material properties despite 15 

the fact that the actual loads from high-speed trains onto slab tracks are dynamic excitation. In 16 

addition, some studies simply adopted the dynamic stiffness of rail pads whilst ignored the 17 

dynamic effect on modulus of elasticity in their simulations. This study is thus aimed at 18 

highlighting the influence of the dynamic material properties on the train-track vibration 19 

interactions. A nonlinear 3D coupled vehicle-slab track model has been developed based on 20 

the multi-body simulation principle and finite element theory using LS-DYNA. This model 21 

has been validated by comparing its results with field test data together with other simulation 22 

results. A good agreement among the results has been found. The magnification effect on the 23 

dynamic modulus of elasticity under dynamic train loads has been determined firstly. The 24 

influences of material properties on the serviceability performance of the vehicle, the 25 

wheel-rail contact force, the vibration responses of the rail, concrete slab, and CA mortar have 26 

then been evaluated. The deviation coefficients of vibration responses of the vehicle and track 27 

under three types of material properties have been determined to emphasise the influences of 28 

the dynamic stiffness and modulus of elasticity. The insight from this study provides a new 29 



reference and recommendation for adopting suitable and realistic material properties of 30 

high-speed slab tracks in practice. 31 

Keywords: dynamic material properties; strain-rate effect; train-track interactions; high-speed 32 

railway; finite element model 33 

1. Introduction 34 

Slab tracks have become a prevalent trend for highspeed railways throughout the world 35 

because of its advantages for higher stability, lower track deformation, and much lower 36 

maintenance compared with ballasted tracks [1, 2]. In China, the operating mileage of 37 

highspeed railway networks has reached 29,000 km by the end of 2018, and most of the track 38 

structures are indeed slab tracks [3, 4]. The China Railway Track System (CRTS) I slab track 39 

is a typical non-ballasted track structure, which has been adopted in many high-speed 40 

railways in China, such as Qinhuangdao-Shenyang passenger dedicated line, 41 

Shanghai-Nanjing intercity railway line, and Chengdu-Mianyang-Leshan High-speed railway 42 

line. This slab track is mainly composed of the CHN60 rail (Chinese standard rail with the rail 43 

mass 60 kg/m), the WJ-7B fastener system, the concrete slab, the cement-emulsified asphalt 44 

(CA) mortar layer, and the concrete base, as illustrated in Figure 1.  45 

 46 

Figure 1 Section of the CRTS I slab track 47 

Material properties of the slab track are an essential element for designing and predicting 48 

the dynamic performance of the high-speed railway under dynamic train loads. This dynamic 49 

performance is often the governing requirement as part of serviceability limit states for track 50 

systems. In practice, the elastic constitutive model of slab tracks is often used in design and 51 

numerical predictions. Material properties of track components are the key factors for the 52 

constitutive models, mainly consisting of the mass density, the modulus of elasticity, and the 53 

Poisson’s ratio for solid elements, and the stiffness and damping for spring-dashpot elements. 54 



In order to determine vehicle-track interactions, the designed static material properties of the 55 

slab track components are normally adopted in most previous studies and these properties are 56 

mainly measured from the quasi-static loading tests in laboratories [5-7]. For example, the 57 

modulus of elasticity of the concrete slab is 3.6×1010 Pa, which is determined by the 58 

compressive strength test for the C60 concrete, and the test loading is simply static [7]. The 59 

stiffness of the rail pads in WJ-7B fastener system is 2.5×107 N/m, which is also measured 60 

from the static loading tests [7]. These material properties are the static properties obtained 61 

from benchmarking test requirements. In real life, a train will apparently impart dynamic 62 

excitations onto slab tracks. Especially when the train speed becomes faster, the vibration 63 

induced by the dynamic train loads will cause a lot of defects to track components [4, 8-10]. 64 

Thus, appropriate material properties of slab track components shall be taken into account 65 

when performing dynamic interaction simulations. Several studies have shown that the 66 

properties of various materials such as concrete and cement-based materials under dynamic 67 

loads will be magnified compared with the properties under static or quasi-static loads, 68 

especially for the modulus of elasticity [11-13]. For rails, it is a composite metal material with 69 

chemical elements like C, Mn, Si, P, S, and so on. The modulus of elasticity of rail is not 70 

sensitive to the dynamic excitation so that it will not change much under dynamic train loads 71 

[14]. However, it is well known that the concrete is a strain-rate dependent material under 72 

dynamic loads, indicating the modulus of elasticity of concrete will be increased significantly 73 

with strain rates [15-18]. The CA mortar is also sensitive to strain rates under dynamic loads 74 

[19-22]. Zeng et al. [23] carried out an experiment to study the dynamic properties of CA 75 

mortar in CRTS I slab track and the dynamic modulus of elasticity of CA mortar could be 76 

increased by 75% of the static values. As the main elastic elements to absorb the vibration 77 

energy, the soft rail pads are normally installed in high-speed railways [24, 25]. The static 78 

stiffness of rail pads is 20-30 kN/mm according to the design code of high-speed railways in 79 

China. However, the dynamic stiffness of rail pads is not easy to be determined because the 80 

rail pad is a frequency- and temperature- dependent material in practice [26]. Hopefully, the 81 

rail pads are normally simplified as the spring elements in numerical simulations and the 82 

constant values have been normally adopted [27]. The dynamic stiffness of rail pads under 83 

cyclic loads is around 1.3-2 times the static stiffness for WJ-7B fastener system [28, 29]. It is 84 



noted that other material properties such as the mass density and the Poisson’s ratio are not 85 

sensitive to the dynamic strain rates, whilst the damping must be determined by the dynamic 86 

loading tests [30]. Therefore, relatively among all of the elastic materials properties, the 87 

modulus of elasticity and the stiffness are the most sensitive properties to the dynamic 88 

excitations in slab tracks. 89 

 Dating back to 1978, Birmann [31] was the first to study the dynamic modulus of 90 

elasticity of the ballasted track with regard to high speeds through simulations. However, at 91 

that time, the train and track were just simplified using a multi-body simulation idealization as 92 

the mass and spring models due to the low computational efficiency, so the train-track 93 

vibration interactions like wheel-rail contact force and dynamic stress of the track 94 

components cannot be acquired. Nowadays, the 3D coupled vehicle-track numerical model 95 

has become an efficient solution to study the complicated dynamic performance of the 96 

high-speed railways [27, 32]. However, the static material properties of the slab track 97 

components are still adopted on a large scale in many numerical models [33-36]. For example, 98 

Zhu et al. [33, 34] developed a 3D coupled vehicle-track model to study the deterioration of 99 

the slab track by using static properties. Xu et al. [35] also used the static properties in the 100 

coupled vehicle-track model to analyze the stochastic vibrations. Sun et al. [36] analyzed the 101 

track-bridge vibration by using static properties of the slab tracks. In addition, some scholars 102 

like Zhai et al., Lei et al., and Ren et al., [37-39] combined the dynamic stiffness of rail pads 103 

with still static modulus of elasticity for concrete and CA mortar in their coupled 104 

vehicle-track models to analyse the dynamic performance, but nearly nobody explains why 105 

both static and dynamic material properties were used in the one simulation model under 106 

dynamic excitations. To the authors’ knowledge, there are no previous studies investigating 107 

the influences of the dynamic material properties of slab track components on train-track 108 

vibration interactions. It is still questionable at large whether it is appropriate for predicting 109 

the dynamic performance of the railway by using static material properties and whether there 110 

is a need to consider fully the dynamic properties of slab track components in the coupled 111 

vehicle-track numerical models under actual dynamic train excitations. 112 

 In order to investigate the influences of the dynamic material properties of the slab track 113 

components on the vibration responses of the train and track, a nonlinear 3D coupled 114 



vehicle-slab track numerical model has been developed based on the multi-body simulation 115 

principle and finite element method using LS-DYNA. Three types of material properties of 116 

slab track components have been adopted for the parametric studies: static stiffness for rail 117 

pads and static modulus of elasticity for concrete and CA mortar, dynamic stiffness for rail 118 

pads and static modulus of elasticity for concrete and CA mortar, and dynamic stiffness for 119 

rail pads and dynamic modulus of elasticity for concrete and CA mortar. The 3D model has 120 

been validated firstly. Then, the magnification effect of the dynamic modulus of elasticity has 121 

been analyzed. Accordingly, the vibration of the vehicle, the wheel-rail contact force, the 122 

vibration responses of the slab tracks can be determined for various train speeds from 10 km/h 123 

to 400 km/h, taking into account the three types of material properties. Ultimately, the 124 

deviation coefficients, which present the influence of the properties on vibration responses, 125 

have been evaluated to provide the evidence and recommendation for adopting suitable and 126 

realistic material properties of high-speed slab tracks in practice. 127 

2. Material properties of the slab track 128 

The material properties of the slab track are different when they are measured by either 129 

quasi-static or dynamic loading tests. When the properties are measured by quasi-static 130 

loading tests, the material properties are named as static properties in this paper. In contrast, 131 

when they are measured by dynamic loading tests, the properties are named as dynamic 132 

properties. The static and dynamic material properties of CRTS I slab track are presented in 133 

the following parts. 134 

2.1 Static properties of the slab track 135 

The static material properties of the CRTS I slab track components can be found in [7], 136 

as shown in Table 1. The stiffness of rail pads and the moduli of elasticity of the concrete slab, 137 

CA mortar, and concrete base are determined from the quasi-static loading tests. 138 

Table 1 Static properties of the CRTS I slab track 139 

Properties Values 

Mass density of the rail (kg/m3) 7830 



Modulus of elasticity of the rail (Pa) 2.059×1011 

Poisson’s ratio of the rail  0.3 

Stiffness of the rail pads (N/m) 2.5×107 

Damping of the rail pads (N.s/m) 7.5×104 

Mass density of the concrete slab (kg/m3) 2500 

Modulus of elasticity of the concrete slab (Pa) 3.6×1010 

Poisson’s ratio of the concrete slab 0.2 

Mass density of the CA mortar (kg/m3) 1600 

Modulus of elasticity of the CA mortar (Pa) 3×108 

Poisson’s ratio of the CA mortar 0.2 

Mass density of the concrete base (kg/m3) 2500 

Modulus of elasticity of the concrete base (Pa) 3.25×1010 

Poisson’s ratio of the concrete base 0.2 

2.2 Dynamic stiffness of the rail pads 140 

The rail pads play an important role in reducing vibration on track components. They are 141 

normally made out of rubber, high-density polyethylene (HDPE), thermoplastic polyester 142 

elastomer (TPE), and ethylene vinyl acetate (EVA) [24, 25]. The rail pads also come in a wide 143 

range of stiffness due to different types of materials. So that the stiffness of rail pads can be 144 

classified as soft, medium, stiff, very stiff, and extremely stiff [25]. However, there are no 145 

standard classification values for the rail pads around the world since the properties vary in 146 

relation to track characteristics. According to [25], the stiffness of soft pads is less than 80 or 147 

130 kN/mm, and the soft pads are normally used in WJ-7B fastener system, which is widely 148 

adopted in high-speed railways in China. 149 

According to the literature reviewed, the dynamic stiffness of rail pads is temperature- 150 

and frequency-dependent, and it is also sensitive to the preloads when the stiffness is tested in 151 

the laboratory [24, 26, 40]. Therefore, the dynamic stiffness of rail pads is a complicated 152 

parameter in practice. Hopefully, in order to describe the viscoelasticity characteristics of rail 153 

pads, the rail pads are normally simplified as the spring and dashpot elements, so that the 154 



constant values are normally used in the numerical simulation models to describe the dynamic 155 

characteristics of rail pads [27, 32]. 156 

When the constant value is used, the dynamic stiffness of rail pads is normally 1.3-2 157 

times the static value according to previous studies [28, 29]. For the coupled vehicle-track 158 

model, many researchers used two times the static stiffness to represent the dynamic 159 

characteristics of rail pads [28, 37-39]. Since the static stiffness of rail pads in this paper is 25 160 

kN/mm, the dynamic stiffness of rail pads is determined as 50 kN/mm for CRTS Ⅰ slab track 161 

in this study, as shown in Table 2. 162 

Table 2 Stiffness of the rail pads in CRTS I slab track 163 

- Static stiffness Dynamic stiffness 

Values (kN/mm) 25 50 

2.3 Strain-rate-dependent moduli of elasticity of the concrete and CA mortar 164 

The effect of strain-rate on modulus of elasticity for concrete under dynamic loads has 165 

been studied by many researchers [41, 42]. The Comite Euro-International Du Beton (CEB) 166 

has put forward the strain-rate enhancement factors for the compressive and tensile modulus 167 

of elasticity as follows [30]: 168 
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Where 
c  and 

t  are the compressive and tensile strain-rate enhancement factors, 171 

respectively; 
dE  and 

sE  are the dynamic and static modulus of elasticity, respectively; e172 

is the effective strain-rate of concrete under dynamic loads; 
sce is the effective strain-rate of 173 

concrete under compressive static loads, and it equals to 30×10-6 /s; and 
ste is the effective 174 

strain-rate of concrete under tensile static loads, and it equals to 3×10-6 /s. Note that the 175 

relationship between the effective strain-rate and the strain-rate components in different 176 

directions can be calculated as follows: 177 
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Where 
1 2 3, , and   are the principal strain-rates; , , andx y z   are the normal strain-rates in 179 

three directions, and , , andxy yz zx   are the shear strain-rates in three directions. 180 

It is quite difficult to determine which parts of the concrete slab and concrete base are 181 

under compressive- or tensile- state when the train passes by since the dominant mechanical 182 

state changes typically with time. By referring to the method for strain-rate enhancement in 183 

Winfrith concrete model [41, 42], the average strain-rate enhancement factor is used for 184 

concrete slab and concrete base: 185 

1
( )

2
aver c t  = +                              (4) 186 

 The compressive-, tensile-, and average- enhancement factors are calculated with the 187 

effective strain-rate, as shown in Figure 2. When the strain-rate changes from 1×10-6 /s to 1 /s, 188 

the maximum deviation between compressive factor and tensile factor is around 7% at 1 /s, 189 

indicating that the average enhancement factor will not cause a significant deviation to the 190 

dynamic analysis. Note that the static effective strain-rates for compression and tension are 191 

3×10-5 /s and 3×10-6 /s, respectively, when the effective strain-rate is lower than the static 192 

values, the enhancement factor is set to equal to 1. And the average static effective strain-rate 193 

is 1.65×10-5 /s. 194 

 195 

Figure 2 The strain-rate enhancement factors with effective strain-rate for concrete 196 
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According to [23], the strain-rate enhancement factor for modulus of elasticity of CA 197 

mortar in CRTS I slab track can be acquired from the tested values, as shown in Figure 3. The 198 

fitting curve is calculated as follows: 199 

0.078362.01416 e =                             (5) 200 

 201 

Figure 3 The strain-rate enhancement factor with effective strain-rate for CA mortar 202 

3. Development of the numerical model 203 

In order to investigate the influence of the dynamic material properties of the slab track 204 

on the vibration responses of the train and track, a 3D coupled vehicle-slab track numerical 205 

model has been developed, as shown in Figure 4. The vehicle is developed based on the 206 

multi-body simulation principle, and the slab track is simulated based on the finite element 207 

theory using the commercial software LS-DYNA. 208 

 209 

Figure 4 The coupled vehicle-slab track numerical model 210 
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3.1 Vehicle and slab track elements 211 

The vehicle consists of one car body, two bogies, four wheelsets, and two-stage 212 

suspension system. The car body, bogies, and wheelsets are simplified as rigid bodies using 213 

shell and beam elements. Each component of the vehicle is connected by the suspension 214 

springs and dashpots. The vehicle has a total 10 degrees of freedom, including the vertical and 215 

pitch motion of the car body, vertical and pitch motion of the bogies, and vertical motion of 216 

the wheelsets. The slab track is composed of rail, rail pads, concrete slab, CA mortar, and 217 

concrete base. The rail is modeled as Euler beam supported by rail pads, which are simulated 218 

as the spring and dashpot elements. The concrete slab, CA mortar, and concrete base are 219 

modeled by solid elements in order to acquire the complicated 3D mechanical state. And the 220 

subgrade is described as the spring-damping system, which is widely used in many simulation 221 

models [27, 35]. The whole model has 38,344 elements including beam, shell, solid, spring, 222 

and dashpot, as shown in Figure 5. 223 

 224 

(a) 225 

 226 

(b) 227 

Figure 5 The coupled vehicle-slab track model in LS-DYNA (a) Top view of the entire model 228 

(b) Detailed slab track model 229 



3.2 Wheel-rail contact theory 230 

The wheel-rail contact is developed by the built-in keywords in LS-DYNA: *Rail_Track 231 

and *Rail_Train. Users can input the contact parameters like the stiffness of the wheel-rail 232 

contact spring, the irregularity of the track, and so on. 233 

 The wheel-rail contact force can be calculated automatically by LS-DYNA based on the 234 

following equation: 235 

( - - )w rF K Z Z =                             (6) 236 

Where F is the wheel-rail contact force; K is the vertical stiffness of the wheel-rail contact 237 

spring, K =1.325×109
 N/m in this study [38]; 

wZ is the vertical displacement of the wheel; 238 

rZ is the vertical displacement of the rail; and is the track irregularity. 239 

The irregularity of the Germany high-speed low disturbance is used to excite the 240 

wheel-rail interactions. The power spectrum density (PSD) function of the track irregularity is 241 

calculated as follows: 242 
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Where ( )vS   is the vertical power spectral density;
vA is the roughness constant 244 

( -7 2=4.032 10 m Rad/mvA   );
c and

r are the cutoff frequency ( 0.8246 rad/mc = ,245 

0.0206 rad/mr = ); and  is the spatial frequency of the irregularities. The PSD function 246 

can be transformed into vertical irregularities along the longitudinal distance of the track by 247 

means of a time-frequency transformation technique [14], as shown in Figure 6. 248 

 249 

(a)                                     (b) 250 

Figure 6 Track irregularity (a) Track irregularity with distance (b) PSD with wavelength 251 
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3.3 Material control 252 

When the static material properties of the slab track are used, the built-in keyword of 253 

001-ELASTIC is used for concrete slab, CA mortar, and concrete base. The mass density, the 254 

static modulus of elasticity, and the Poisson’s ratio are needed to be input by users. Also, the 255 

keywords of S01-SPRING_ELASTIC and S02-DAMPER_VISCOUS are used to describe the 256 

static stiffness and the damping of rail pads. 257 

When the dynamic stiffness of rail pads is considered, the keywords of 258 

S01-SPRING_ELASTIC is still used but using the dynamic stiffness values for rail pads. In 259 

addition, when the strain-rate enhancement effect is considered, the keyword of 260 

019-STRAIN_RATE_DEPENDENT_PLASTICITY is used for concrete slab, CA mortar, and 261 

concrete base. In this keyword, the yield stress and modulus of elasticity are needed as a 262 

function of the effective strain-rate. Note that the concrete and CA mortar are normally within 263 

the static stage under dynamic train loads, the yield stress of these materials can be set as a 264 

constant and high value which can protect the material from yield. The yield stress of concrete 265 

slab, CA mortar, and concrete base are set as 60 MPa, 5 MPa, and 40 MPa, respectively. As 266 

for the modulus of elasticity with effective strain-rate, it can be determined from Figure 2. 267 

3.4 Numerical solution 268 

The vehicle moves at a constant speed over the rail after the dynamic relaxation. The 269 

explicit central difference method is used to integrate the motion equations of the coupled 270 

vehicle and track model by LS-DYNA. 271 

4. Model validation 272 

The Suining-Chongqing railway in China was constructed as a test section to analyze the 273 

dynamic performance of slab tracks. Many researchers have conducted field tests to acquire 274 

the vibration responses of the vehicle and slab track [43-46]. The passenger vehicle which 275 

was running on this railway was “Changbai Mountain”, which is an old vehicle type in China. 276 

Nowadays, the primary vehicle is the China Railway High-speed (CRH) 2 Electric Multiple 277 



Unit (EMU) train, and properties of the CRH 2 EMU train are shown in Table 3 [39]. 278 

Table 3 Properties of the CRH 2 EMU train 279 

Properties Values 

Mass of the car body (kg) 39,600 

Mass of the bogie (kg) 3,500 

Mass of the wheelset (kg) 2,000 

Inertia of pitch motion of the car body(kg.m2) 1.283×105 

Inertia of pitch motion of the bogie(kg.m2) 2,592 

Stiffness of the primary suspension (N/m) 1.176×106 

Damping of the primary suspension (N.s/m) 1.96×104 

Stiffness of the secondary suspension (N/m) 1.89×106 

Damping of the secondary suspension (N.s/m) 4×104 

Length between the center of bogies (m) 17.5 

Wheelbase for the bogie (m) 2.5 

Radius of the wheel (m) 0.43 

 280 

 The field test results were recorded every time the “Changbai Mountain” or CRH 2 EMU 281 

train passes by the test section, and the train speed was 160-220 km/h. Cai and Zhai et al. [47] 282 

have conducted a numerical simulation to study the vibration responses of the slab track at 283 

200 km/h. In their numerical model, the “Changbai Mountain” vehicle was used and the track 284 

irregularity measured from Qinhuangdao-Shenyang railway was used to excite the train-track 285 

interactions. As for the material properties of the slab track in their model, the dynamic 286 

stiffness of the rail pads and the static modulus of elasticity are used. In order to validate the 287 

simulation results calculated from the model developed in this paper, the CRH 2 EMU train 288 

and the irregularity of Germany high-speed low disturbance are adopted. Three types of 289 

material properties are considered: Case 1: using static stiffness of rail pads and static 290 

modulus of elasticity of concrete and CA mortar; Case 2: using dynamic stiffness of rail pads 291 

and static modulus of elasticity of concrete and CA mortar; Case 3: using dynamic stiffness of 292 

rail pads and dynamic modulus of elasticity of concrete and CA mortar. The vibration 293 



responses are calculated at 200 km/h in order to compare the results with field tests and 294 

simulations. The validation results are shown in Table 4. 295 

Table 4 Validation results 296 

 The field test results have a certain range for every vibration response due to the different 297 

train types and speeds and so on. The simulation results from Cai et al. [47] are within the 298 

range from field tests. Most of the simulation results from this paper in three cases are also 299 

within the range from field tests, except for the displacement of rail in case 1, in which the 300 

static material properties are used. It is also noticeable that the simulation results from this 301 

paper in all three cases are generally a little bit lower than the simulation results from Cai et al. 302 

[47]. This is mainly caused by the different track irregularities. Both PSD and amplitude of 303 

Qinhuangdao-Shenyang track irregularity are higher than the Germany low-disturbance 304 

irregularity [48], so the Qinhuangdao-Shenyang track irregularity could cause a higher 305 

excitation to train-track interactions, but the differences between two simulation models are 306 

still acceptable. Another interesting phenomenon is that there are obvious differences in 307 

vibration responses when the three types of material properties are used. These differences 308 

can be attributable to various dynamic phenomena as previously found in other dynamic track 309 

investigations [49-55]. In short, the simulation results from the model developed in this paper 310 

exhibit a good agreement with the field test results and simulation results. 311 

5. Results and discussion 312 

In order to highlight the influence of the dynamic material properties of the slab track on 313 

the vibration responses of train and track, the strain-rate enhancement effect for modulus of 314 

- 

Field test 

results [43-46] 

Simulation results 

from Cai et al [47] 

Simulation results from 

this paper 

Case 1 Case 2 Case 3 

Wheel-rail contact force (kN) 81-116 98.7 85.4 95.3 96.3 

Rail pad force (kN) 14.4-65.8 37.648 27.4 34.7 35.1 

Displacement of the rail (mm) 0.3-0.88 0.827 1.243 0.878 0.863 

Displacement of the slab (mm) 0.081-0.284 0.283 0.189 0.254 0.240 



elasticity of concrete and CA mortar under dynamic train loads is analyzed firstly. Then, the 315 

vibration responses of the vehicle, wheel-rail contact, and the track components are presented 316 

using three types of material properties: using static stiffness of rail pads and static modulus 317 

of elasticity of concrete and CA mortar (legend is named as using static properties for track 318 

components); using dynamic stiffness of rail pads and static modulus of elasticity of concrete 319 

and CA mortar (legend is named as using dynamic stiffness for rail pads); and using dynamic 320 

stiffness of rail pads and dynamic modulus of elasticity of concrete and CA mortar (legend is 321 

named as using dynamic properties for track components). And the deviation coefficients are 322 

calculated to present the effects of properties on train-track interactions. 323 

5.1 Enhancement effects for the modulus of elasticity 324 

The effective strain-rate is time-dependent when the vehicle is running along the track, 325 

so the dynamic moduli of elasticity of concrete and CA mortar are also time-dependent since 326 

the dynamic modulus of elasticity has the same distribution with the effective strain-rate. 327 

Figure 7 shows the contours of the distribution of the effective strain-rate of concrete slab and 328 

CA mortar when the maximum effective strain-rate occurs with the train speed of 400 km/h. 329 

The maximum effective strain-rates for concrete slab and CA mortar are 4.796×10-2 /s and 330 

1.683×10-1 /s, respectively, and they occur at the corner of the concrete slab and CA mortar, as 331 

shown in Figure 7. Note that although the minimum effective strain-rates of concrete slab and 332 

CA mortar in Figure 7 are 2.507×10-4 /s and 2.082×10-3 /s, respectively, they are just 333 

minimum values at one moment. The actual minimum values are static effective strain rates. 334 

 335 

(a) 336 



 337 

(b) 338 

Figure 7 Contours of the effective strain-rate of the concrete slab and CA mortar at 400 km/h 339 

(a) Concrete slab (b) CA mortar (max displacement factor=3000) 340 

 The maximum and minimum effective strain-rates of concrete slab, CA mortar, and 341 

concrete base under dynamic train loads with different train speeds (from 100 km/h to 400 342 

km/h) are shown in Table 5. When the train speed is increased, the maximum effective 343 

strain-rate is increased obviously. For concrete, the magnitude of the maximum effective 344 

strain-rate does not increase much, but the maximum effective strain-rate of CA mortar 345 

increases significantly with train speeds. As for the minimum effective strain-rate, it is within 346 

the quasi-static range and does not change much with the train speed. The minimum effective 347 

strain-rates of concrete and CA mortar at these four train speeds are 4.667×10-6 /s and 348 

6.251×10-5 /s, respectively. 349 

Table 5  Maximum and minimum effective strain-rates of track components under dynamic 350 

train loads 351 

- Train speeds 100 km/h 200 km/h 300 km/h 400 km/h 

Maximum effective 

strain-rate (/s) 

Concrete slab  1.646×10-2 3.122×10-2 4.021×10-2 4.796×10-2 

CA mortar  7.671×10-2 7.457×10-2 1.231×10-1 1.683×10-1 

Concrete base  1.206×10-2 1.487×10-2 3.000×10-2 3.884×10-2 

Minimum effective 

strain-rate (/s) 

Concrete slab 4.667×10-6 9.121×10-6 9.186×10-6 6.054×10-6 

CA mortar  9.009×10-5 7.017×10-5 6.251×10-5 8.252×10-5 

Concrete base 8.524×10-6 1.479×10-5 8.252×10-5 1.061×10-5 

 352 



 353 

(a)                           (b) 354 

Figure 8 Enhancement range (a) Concrete (b) CA mortar 355 

The enhancement range for dynamic moduli of elasticity of concrete and CA mortar can 356 

be determined from the maximum and minimum effective strain-rate, as shown in Figure 8. 357 

Since the effective strain-rate of concrete changes from 4.667×10-6 /s to 4.796×10-2 /s, the 358 

strain-rate enhancement factor for the modulus of elasticity of concrete changes from 1 to 359 

1.19. And for CA mortar, the strain-rate enhancement factor changes from 0.94 to 1.75. This 360 

indicates that there will be at most 19% and 75% of amplification for the moduli of elasticity 361 

of concrete and CA mortar under dynamic train loads. Also, note that although the minimum 362 

effective strain-rates of concrete and CA mortar are determined from the values at four train 363 

speeds, they are quasi-static values, indicating that these values will not change much with 364 

train speeds and can represent the minimum effective strain-rates and minimum enhancement 365 

factors.  366 

5.2 Effects on the vibration of the vehicle 367 

  368 
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(a)                                     (b) 369 

  370 

(c)                                   (d) 371 

Figure 9 Vertical acceleration of the vehicle (a) Time history of the acceleration of car body at 372 

350 km/h (b) Time history of the acceleration of bogie at 350 km/h (c) Time history of the 373 

acceleration of wheelset at 350 km/h (d) Acceleration of the wheelset with train speeds 374 

The influence of the material properties on the vibration acceleration of the vehicle is 375 

shown in Figure 9. The dynamic material properties (both dynamic stiffness and dynamic 376 

modulus of elasticity) have no significant influences on the acceleration of the car body, as 377 

shown in Figure 9 (a), but they increase the amplitudes of the acceleration of the bogie and 378 

wheelset obviously, as shown in Figure 9 (b) and (c). And there are no obvious differences in 379 

the acceleration of the bogie and wheelset whether the dynamic modulus of elasticity is used 380 

or not. Figure 9 (d) shows the relationship between the maximum acceleration of the wheelset 381 

and the train speeds. When the train speed is no more than 70 km/h, the maximum 382 

accelerations of the wheelset are quite similar either using static or dynamic material 383 

properties of slab tracks because the low train speed cannot induce significant dynamic 384 

excitation. However, once the train speed is higher than 70 km/h, the influence of the material 385 

properties on the acceleration of the wheelset can be observed. The acceleration of the 386 

wheelset is the lowest when the static material properties are used. And when the dynamic 387 

stiffness of rail pads is used, the acceleration of the wheelset is increased obviously. In 388 

addition, the influence of the dynamic modulus of the elasticity on the acceleration of the 389 

wheelset is not significant at most of the train speeds. Moreover, it seems to be two resonant 390 

peaks occurring in the acceleration of wheelset at all train speeds. One is at around 200 km/h, 391 
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and another is at around 320-360 km/h. 392 

5.3 Effects on the wheel-rail contact force 393 

  394 

(a)                               (b) 395 

Figure 10 Wheel-rail contact force (a) Time history of the wheel-rail contact force at 350 396 

km/h (b) DIF with train speeds 397 

It is important to calculate the dynamic impact factor (DIF) based on the wheel-rail 398 

contact force for designing the slab track in railway engineering. The DIF is calculated as 399 

follows: 400 

max

static

DIF=
P

P
                                (8) 401 

Where 
maxP is the maximum dynamic wheel-rail contact force, and 

staticP is the static 402 

wheel-rail contact force.  403 

Figure 10 shows the effect of the material properties on the wheel-rail contact force. 404 

When the train speed is 350 km/h, the time history of wheel-rail contact force is shown in 405 

Figure 10 (a). The dynamic material properties (both dynamic stiffness and dynamic modulus 406 

of elasticity) could increase the amplitudes of the wheel-rail contact force, but the dynamic 407 

modulus of elasticity has no additional enlargement effect compared with the dynamic 408 

stiffness. Figure 10 (b) shows the relationship between the DIF and train speed. Similar to the 409 

acceleration of the wheelset, when the train speed is no more than 70 km/h, the material 410 

properties have no influences on the DIF. When the train speed is higher than 70 km/h, the 411 

DIF is the lowest with the static material properties. The dynamic stiffness of rail pads could 412 
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increase the DIF significantly, but the dynamic modulus of elasticity has little influences 413 

compared with the dynamic stiffness of rail pads. Also, the two resonant peaks in DIF occur at 414 

around 200 km/h and 320 km/h. 415 

5.4 Effects on the vibration of the rail 416 

  417 

(a)                                  (b) 418 

  419 

(c)                                  (d) 420 

Figure 11 Dynamic responses of the rail (a) Time history of the vertical displacement of rail at 421 

350 km/h (b) Time history of the vertical rail pad force at 350 km/h (c) Displacement of the 422 

rail with train speeds (d) Rail pad force with train speeds 423 

Figure 11 shows the effects of the material properties on the vertical displacement of the 424 

rail and the rail pad force. When the train speed is 350 km/h, the maximum displacement of 425 

the rail using dynamic material properties is much lower than that using static properties, and 426 

the dynamic modulus of elasticity still has little influences compared with the dynamic 427 

stiffness, as shown in Figure 11(a). In contrast, the rail pad force using dynamic properties is 428 
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much higher than that using static properties, as shown in Figure 11(b). This phenomenon can 429 

also be observed at all train speeds, as shown in Figure 11 (c) and (d). And the resonant peaks 430 

using static properties seem to occur at 210 km/h and 320 km/h. When the dynamic properties 431 

are used, the peaks move to the right side at 220 km/h and 330 km/h. 432 

5.5 Effects on the vibration of the concrete slab and CA mortar 433 

  434 

(a)                                   (b) 435 

  436 

(c)                                  (d) 437 

Figure 12 Dynamic stress of the slab track components (a) Time history of the bending stress 438 

of the concrete slab at 350 km/h (b) Time history of the compressive stress of the CA mortar 439 

at 350 km/h (c) Bending stress of the concrete slab with train speeds (d) Compressive stress 440 

of the CA mortar with train speeds 441 

 The concrete slab mainly undertakes bending moments under dynamic train loads. Thus 442 

the bending stress is the dominant stress for concrete slab. Also, the CA mortar mainly bears 443 

compressive loads, so that the compressive stress is the highest stress for CA mortar. When 444 
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the train speed is 350 km/h, the time history of the bending stress of the concrete slab and the 445 

compressive stress of CA mortar with three types of material properties are shown in Figure 446 

12 (a) and (b). Unlike the effect of the dynamic modulus of elasticity on the acceleration of 447 

the vehicle, wheel-rail contact force, and vibration of the rail, the dynamic modulus of 448 

elasticity has a significant influence on the stress of the concrete slab and CA mortar. When 449 

the dynamic stiffness of rail pads is used, the maximum bending and compressive stress are 450 

increased. When the dynamic modulus of elasticity is considered, the bending and 451 

compressive stresses are increased furthermore. This can also be observed at all train speeds, 452 

as shown in Figure 12 (c) and (d). 453 

5.6 Deviation coefficients 454 

In order to investigate the deviation of the vibration responses of the train-track 455 

interactions induced by either static or dynamic material properties, the three deviation 456 

coefficients are calculated as follows: 457 

1 100%
dynamic static

static

P P

P


− 
=  
 

                         (9) 458 

2 = 100%
dyn stiffness static

static

P P

P


− − 
 

 
                       (10) 459 

3= 100%
dynamic dyn stiffness

static

P P

P


−− 
 

 
                     (11) 460 

Where
1 is the deviation coefficient which presents the deviation of vibration responses 461 

induced by the dynamic stiffness of rail pads and dynamic moduli of elasticity of concrete and 462 

CA mortar compared with the static material properties; 
2 is the deviation coefficient which 463 

presents the deviation of vibration responses induced by the dynamic stiffness of rail pads 464 

compared with the static material properties; 
3 is the deviation coefficient which presents the 465 

deviation of vibration responses induced by the dynamic moduli of elasticity of concrete and 466 

CA mortar compared with the static material properties; dynamicP is the maximum vibration 467 

responses considering both dynamic stiffness and dynamic modulus of elasticity; 
staticP is the 468 

maximum vibration responses using static material properties; and dyn stiffnessP − is the maximum 469 



vibration responses using dynamic stiffness for rail pads. 470 

 471 

Figure 13 Contour of the deviation coefficient 472 

Figure 13 shows the distribution of the deviation coefficient (
1 ). The maximum 473 

deviation coefficient occurs at 350 km/h in bending stress of the concrete base, and this might 474 

be induced by the resonance of the train-track interactions. The minimum deviation 475 

coefficient occurs in the displacement of the rail, which is negative because the displacement 476 

of the rail using dynamic properties is lower than that using static properties. For all of the 477 

vibration responses, the deviation coefficients are still pronounced at around 200 km/h and 478 

350 km/h because of the resonance.  479 

Table 6 Deviation coefficients at 350 km/h 480 

Components  1 (%) 
2 (%) 

3 (%) 

Acceleration of the car body -3.82 -1.74 -2.08 

Acceleration of the bogie 8.33 9.36 -1.03 

Acceleration of the wheelset 95.06 52.68 42.37 

Wheel-rail contact force 2.54 6.24 -3.70 

Rail pad force 44.33 38.84 5.50 

Displacement of the rail -22.19 -21.31 -0.88 

Displacement of the concrete slab 30.98 30.56 0.42 

Displacement of the CA mortar 30.73 30.57 0.16 

Displacement of the concrete base 31.79 30.77 1.02 



Bending stress of the concrete slab 91.32 23.82 67.50 

Compressive stress of the CA mortar 34.67 26.33 8.34 

Bending stress of the concrete base 144.36 29.89 114.47 

 Table 6 shows the three deviation coefficients at 350 km/h. The maximum deviation 481 

coefficient between static and dynamic material properties (
1 ) is 144.36% in the bending 482 

stress of the concrete base. The effects of the material properties on the acceleration of the 483 

wheelset and the bending stress of the slab are also pronounced since the
1 equals to 95.06% 484 

and 91.32%, respectively. The deviation coefficients of
2 are quite high on the displacement 485 

of the track components and rail pad force, indicating the dynamic stiffness of rail pads makes 486 

a significant contribution to these responses. The deviation coefficient of
3 accounts for a 487 

large proportion on the dynamic stress of the track components, indicating the dynamic 488 

modulus of elasticity has a significant influence on the dynamic stress of the track 489 

components. 490 

6. Conclusions 491 

Most train-track interaction studies have merely considered only static and quasi-static 492 

properties of materials. Despite the use of field data to tune the values of the material 493 

properties for model validations and agreements, the fundamental body of knowledge is 494 

unclear and questionable. In order to investigate the influences of the dynamic material 495 

properties on the train-track vibration interactions, the coupled vehicle-track numerical model 496 

has been developed based on the multi-body simulation principle and finite element theory in 497 

LS-DYNA with three types of material properties: static stiffness for rail pads and static 498 

moduli of elasticity for concrete and CA mortar, dynamic stiffness for rail pads and static 499 

moduli of elasticity for concrete and CA mortar, and dynamic stiffness for rail pads and 500 

strain-rate-dependent moduli for concrete and CA mortar. The model has been validated by 501 

comparing the results with the field test results and other simulations results, and a good 502 

agreement has been found. The following conclusions can be drawn: 503 

(a) When the strain-rate-dependent moduli of elasticity of concrete and CA mortar are 504 

considered, the dynamic moduli of concrete and CA mortar are increased by at most 19% and 505 



75% under dynamic train loads. 506 

 (b) When the train speed is no more than 70 km/h, the effect of material properties does 507 

not need to be considered for the vibration of the vehicle and wheel-rail contact force. In 508 

contrast, when the train speed is higher than 70 km/h, the dynamic material properties have a 509 

significant influence on the train-track vibration interactions. 510 

 (c) The maximum bending stress of the concrete base is increased by at most 114.36% 511 

when the dynamic material properties are used. The effect of material properties on the 512 

acceleration of the wheelset and the bending stress of concrete slab is also pronounced, 513 

although such effect on the acceleration of the car body and bogie is rather little. 514 

 (d) The stiffness of rail pads has the dominant influence on the train-track vibrations, and 515 

the dynamic modulus mainly affects the vibration stress of the track components. So the 516 

dynamic stiffness of rail pads should be considered in simulations in all cases, and the 517 

dynamic modulus of elasticity of concrete and CA mortar could be considered depends on the 518 

analysis purpose under normal track irregularities. 519 
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