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Abstract
Purpose Red wine polyphenols (RWP) are plant-based molecules that have been extensively studied in relation to their 
protective effects on vascular health in both animals and humans. The aim of this review was to quantify and compare the 
efficacy of RWP and pure resveratrol on outcomes measures of vascular health and function in both animals and humans.
Methods Comprehensive database searches were carried out through PubMed, Web of Science and OVID for randomised, 
placebo-controlled studies in both animals and humans. Meta-analyses were carried out on acute and chronic studies of RWP 
in humans, alongside sub-group analysis where possible. Risk-of-bias assessment was carried out for all included studies 
based on randomisation, allocation, blinding, outcome data reporting, and other biases.
Results 48 animal and 37 human studies were included in data extraction following screening. Significant improvements in 
measures of blood pressure and vascular function following RWP were seen in 84% and 100% of animal studies, respectively. 
Human studies indicated significant improvements in systolic blood pressure overall (− 2.6 mmHg, 95% CI: [− 4.8, − 0.4]), 
with a greater improvement in pure-resveratrol studies alone (− 3.7 mmHg, 95% CI: [− 7.3, − 0.0]). No significant effects 
of RWP were seen in diastolic blood pressure or flow-mediated dilation (FMD) of the brachial artery.
Conclusion RWP have the potential to improve vascular health in at risk human populations, particularly in regard to lower-
ing systolic blood pressure; however, such benefits are not as prevalent as those observed in animal models.

Keywords Red wine · Polyphenols · Resveratrol · Vascular health · Blood pressure

Introduction

Red wine polyphenols (RWP) first came to prominence 
within the field of nutrition in the 1980′s with the identifica-
tion of the “French Paradox” [1]. This theory pointed to the 

high levels of red wine consumed by the French as one factor 
that may explain the relatively low level of coronary heart 
disease (CHD) within the country, despite their high fat 
dietary habits [1]. Following on from these initial findings, 
accumulating evidence in the last 30 years suggests that spe-
cific polyphenol components within RWP can exert protec-
tive actions within the vascular system in both humans and 
animal models [2, 3]. In rodents, chronic supplementation 
with RWP and isolated RWP components has been shown 
to lead to improvements in both blood pressure and vascular 
responsiveness in excised vessels across a wide range of 
disease models, such as diabetes, obesity, hypertension and 
aging [4–10]. In vitro studies using human endothelial cells 
[11–13] also demonstrated reduced NADPH oxidase activ-
ity, reduced inflammation and increases in endothelial nitric 
oxide production via increases in endothelial nitric oxide 
synthase (eNOS) activity and intracellular  Ca2+ concentra-
tion in response to RWP pre-treatment. Acute and chronic 
human randomized controlled trials have also revealed 
benefits of RWP supplementation within the vasculature, 
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particularly, improvement in blood pressure and endothelial 
function [14, 15]. However, human intervention studies with 
RWP generally report less consistent findings across dif-
ferent populations (e.g., young, aged, obese, hypertensive, 
type II diabetic) and specific RWP [16–19], in comparison 
to preclinical animal models.

RWP comprise a complex and varied array of molecules, 
including flavonoids such as ( +)-catechin, quercetin, antho-
cyanins, and the stilbene families of polyphenols [resveratrol 
(3, 5, 4′-trihydroxystilbene)] [2]. These have been isolated 
and studied with the objective of identifying the key poly-
phenolic components driving the beneficial effects on vas-
cular health [2]. Evidence in vivo and under physiological 
relevant conditions in vitro, has shown that many of these 
compounds can have a wide range of physiological effects 
within the vasculature by activating key signal pathways 
such as insulin receptor 1 (IR-1) and sirtuin 1 (SIRT1), 
which are involved in insulin sensitivity, inflammation and 
cellular regulation [20]. Amongst RWP, resveratrol has 
emerged as a key component in regulating vascular homeo-
stasis, and has been shown to interact with both IR-1 and 
SIRT1 when applied to either endothelial cells in culture 
and excised aortic arterial tissue ex vivo [21]. Modulation 
of these pathways has the potential to result in an increase 
in antioxidant capacity; improved metabolic health; and can 
act to regulate endothelial function through activation and 
upregulation of eNOS while inhibiting inflammatory path-
ways [21, 22]. Studies in rodents have shown that greater 
Nitric Oxide (NO) availability, reduced inflammation and 
improved antioxidant capacity can all contribute to improve 
vascular function through increased vasodilatory capacity, 
vessel compliance and reduced blood pressure [3, 23–25]. 
Indeed, animal studies in healthy subjects or disease models 
of hypertension, type II diabetes and metabolic syndrome, 
have shown improvements in blood pressure and vascular 
function following chronic supplementation with both whole 
extract polyphenols and pure compounds including resvera-
trol, quercetin and pterostilbene [6–8, 24, 26]. In contrast, 
in healthy human populations there is a consistent lack of 
efficacy on vascular outcomes [27, 28], but greater variabil-
ity in the beneficial responses within clinical populations, 
including type II diabetes, obesity and hypertension [17, 19, 
29–31].

There are a number of important aspects that must be 
considered when directly comparing polyphenol interven-
tions in animal and humans. Firstly, the metabolic fate 
of dietary polyphenols is highly varied both within and 
between species: it can be dose-dependent, and be influ-
enced by the background diet and composition of gut micro-
biota [32–35]. Further differences in metabolic rate between 
humans and animals demands that careful consideration is 
given to ensure that equivalent dietary relevant doses are 
administered across species [36]. Finally, animal studies 

benefit from highly controlled environments which include 
controlled background diets that are typically polyphenol-
free. In humans this level of control is not possible, and in 
cases, where dietary restrictions are put into place adherence 
to restrictions, guidelines, and interventions themselves can 
vary greatly [37, 38].

Previous systematic reviews have mainly focussed on 
the effects of pure RWP in at-risk populations, with arte-
rial blood pressure as the key outcome measure [14, 39, 
40]. Limited attention has so far been given to effects of 
whole RWP, which are expected to be more relevant within 
the context of normal diets. Furthermore, the impact of 
these polyphenolic compounds on key predictive outcome 
measures of future cardiovascular risk, such as brachial 
flow mediated dilation (FMD)) as well as cerebral vascular 
function is limited. Finally, to the best of our knowledge, 
no review has assessed the consensus within animal model 
studies and directly compared these to the effects reported in 
humans. This systematic review, therefore, aims to quantify 
and compare the effects of whole RWP and pure resveratrol 
on whole body vascular health and function (blood pressure, 
flow-mediated dilation and  CO2 reactivity in the cerebrovas-
culature) in both animal and human models. In addition, we 
aim to determine the impact of different human populations 
(e.g., health status, age and BMI) and study characteristics 
(e.g., type, dose and duration of supplementation) on vascu-
lar outcome measures in response to RWP.

Methods

This review was carried out following the Preferred Report-
ing System for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines. A full, updated version of the review 
protocol was produced following the PRISMA-P guide [41, 
42] and published on the PROSPERO register (https ://www.
crd.york.ac.uk/prosp ero) under the registration number 
CRD42018103246, which including details on complete 
sample search query, inclusion and exclusion criteria, and 
data extraction and analysis.

Search strategy

Systematic database searches were carried out from July 
to November 2018, through MEDLINE (PubMed, 1948 
onwards), EMBASE (Ovid, 1980 onwards) and the Web 
of Science Core Collection (Clarivate Analytics, 1900 
onwards). Search terms were selected based on the well sup-
ported PICO format, which separates terms based on Popu-
lation, Intervention, Comparison and Outcome [41, 43] and 
are detailed in Table 1. Population terms were included to 
search for both animal model and human studies, to col-
lect studies within both population types for comparison of 

https://www.crd.york.ac.uk/prospero
https://www.crd.york.ac.uk/prospero
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the results of RWP supplementation in both, as previously 
stated. Full details of the search terms used alongside an 
example search for the Medline database can also be found 
on the PROSPERO register.

Selection criteria and screening procedure

Full citation results for all searches were collected and, 
following removal of duplicates, were screened for inclu-
sion/exclusion using the Rayyan online screening tool 
[44]. Systematic reviews and meta-analyses found during 
literature searches were manually screened for additional 
studies that were not found in the results of initial database 
searches. Studies were initially screened by their abstracts 
and were included for full text screening and data extraction 
if: (1) a specific RWP supplement was orally administered, 
with doses stated and an appropriate placebo/control was 
administered; (2) outcome measures/methods included one 
or more measure of blood pressure; cerebral or peripheral 
vascular function, and (3) details of the specific population 
included health and disease status. This review aimed to 
determine the impact of extracted RWP and specific poly-
phenol isolates. Due to the differences in delivery, dosage 
and inter-variety/batch variability of whole wine/juice [45], 
all of which make direct comparison problematic, studies 
investigating the impact of unrefined grape juice or alcohol-
ised/de-alcoholised red wine were excluded.

In relation to human-based studies, studies were included 
if the study design included appropriate randomisation, 
treatment blinding and either a placebo/control arm or a 
cross-over method was applied. In the case of animal-based 
studies, ex vivo analysis of vascular function in excised 

artery samples was also considered an acceptable outcome 
measure for inclusion.

Following initial screening, included studies were then 
assessed as full-texts to determine final inclusion/exclusion 
and were separated into human and animal study catego-
ries to ensure that full details were available regarding the 
supplement type and dosage; duration of supplementation; 
primary outcome measures; population demographics and 
clinical characteristics; and study design. Final exclusion 
produced a total of 89 studies for full data extraction; qual-
ity assessment and analysis; full details of the reasons for 
exclusion are shown in Table 2.

Data extraction and quality assessment

A single reviewer (SW) completed the searches, study 
selection, data extraction and quality assessment. A sec-
ond reviewer assessed all full-text exclusion justifications 
and was consulted in cases, where inclusion/exclusion was 
uncertain (CR). In the event of a disagreement between 
reviewers one and two, a third reviewer independently 
assessed the matter and made a final decision regarding 
inclusion/exclusion (SL). These precautions were taken to 
minimise the risk of single reviewer selection error, as rec-
ommended in the Cochrane guidelines [46].

Data extracted included publication details (authors, date, 
journal, title, etc.); study design characteristics (randomi-
sation, placebo/controls, etc.); population details (number, 
sex, age, physical characteristics, health/disease status and 
medication usage); the type of RWP used; the dosage and 
duration used for supplementation; and all data available 
on pre- vs. post-supplementation and control vs. supple-
mentation vascular measures. If data were not available for 

Table 1  Search terms used for database searches, based on the PICO System for search strategy development

Patient/population/problem Intervention Comparison/Control Outcome

Mice
Mouse
Rodent*
Animal
Animal model[MH]
OR
Healthy adult*
Young adult*
Adult*
Cardiovascular disease[MH]
CVD
TIIDM OR T2DM
Diabet*
Overweight
Obese
Elder*
Old* adj3 adult*
Aging

Red wine polyphenol
RWP
Resveratrol
Pterostilbene[MH]
*stilbene

Placebo
Control
Negative control
(Polyphenol adj3 free adj3 control)

*Vascular function
*Vascular responsiveness
*Vascular reactivity
Blood pressure
(OR BP)
Transcranial doppler (TCD)
Flow mediated dilation (FMD)
fMRI
Blood flow
Peripheral blood flow
Cerebrovascular blood flow
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primary outcome measures reported in methods sections, the 
authors were contacted by the correspondence email address 
and the date of contact was recorded. In the case of stud-
ies that included multiple doses of a single supplement or 
comparisons of multiple supplements, all included measures 
were extracted and recorded as separate trials.

The quality of studies was judged in accordance with the 
Cochrane Collaborations recommendations with bias being 
judged based on six criteria covering random sequence gen-
eration; allocation concealment (selection bias); blinding of 
participants and researchers (performance bias); blinding of 
outcome assessment (detection bias); incomplete outcome 
data (attrition bias) and selective reporting (reporting bias); 
as well as the reporting of sources of funding and conflicts 
of interest (additional bias source) [47]. These sources of 
bias were rated as either high risk, uncertain risk or low risk, 
and allocated a score of 1, 0 or − 1, respectively, to give an 
overall rating of bias risk for each study. In accordance with 
well established guidelines regarding risk of bias assess-
ment, these scores were not taken into account in determin-
ing the estimated effect size of each study, but were used to 
examine bias as a potential cause for heterogeneity within 
the results [43].

Statistical analysis

Animal studies

Animal studies were evaluated to determine the propor-
tion of studies that saw a significant improvement in blood 
pressure or vascular function following RWP treatment, 

including sub-group analysis between healthy and at-risk/
disease-model populations. In addition, summary statis-
tics were calculated to determine the range of supplements 
used and the average supplementation period, presented as 
mean and standard deviation or proportion of total studies 
included.

Data extraction and synthesis

In human studies, the primary outcome measures were 
overall change in vascular measures between pre- and 
post-intervention, calculated as the difference in mean val-
ues. Blood pressure results were extracted as systolic and 
diastolic blood pressure, either as seated “office” measure-
ment using a portable brachial artery cuff, or as ambula-
tory blood pressure over a 12- or 24-h period with the mean 
being included in subsequent quantitative analysis. Vascular 
functional measures of brachial artery dilation in response to 
shear stress were extracted either as percentage or absolute 
diameter change, as well as shear rate if reported (which uses 
diameter change and blood flow velocity to give an indica-
tion of artery wall shear stress). Transcranial doppler meas-
ures were extracted as cerebral blood flow velocity through 
the middle cerebral artery (MCAv) and/or posterior cerebral 
artery (PCAv), with comparison being made between studies 
using matching target artery velocity measures only.

If measures were presented as mean difference with 
95% confidence intervals, the Cochrane Handbook method 
(7.7.7.2) for calculating standard difference from 95% CI’s 
was applied [48]. In the case of studies reporting non-para-
metric results in the form of median and interquartile range, 

Table 2  Study exclusion and summary of reason/justification of exclusion from the present review

Number 
of stud-
ies

Study Reason for Exclusion

6 Akaberi et al., 2016; Baile et al., 2011; Belcaro et al., 2013; 
Evans et al., 2016; Karatzi et al., 2009; Wong et al., 2013

Not RCT (review article or non-randomised/non-placebo control 
study)

19 Always et al., 2017; Bashmakov et al., 2014; Baur et al., 2006; 
Brasnyo et al., 2011; Care et al., 2016; Chan et al., 2008; Glie-
mann et al., 2013; Goh et al. 2014; Gordish et al., 2014; Robich 
et al., 2010; Palmisciano et l., 2015; Pollack et al., 2017; 
Poulsen et al., 2013; Shahraki et al., 2017; Soner et al., 2014; 
Thazhath et al., 2016;Tome-Carneiro et al., 2012a; 2012b; Zare 
et al., 2017

Primary outcomes for the review were not presented or not shown 
in full (e.g., no pre-trial data, no placebo results, only presented 
as figure)

17 Biesinger et al., 2016; Chan et al., 2008; Chu et al., 2011; Cruz, 
2006; Dorri et al., 2017; Gordish et al., 2014; Idris-Khodja 
et al., 2013; Karatzi et al., 2004; Sarr et al., 2006; Silan et al., 
2008; Subramanian et al., 2011; Taguchi et al., 2014; 2015; 
Toklu et al., 2010; Wang et al., 2002; Wang et al., 2005; Xu 
et al., 2009

Not oral administration of RWP or RSV (detail of supp not given/
whole juice or wine/injection of supp/cell culture)

5 Bienholz et al., 2017; Chander et al., 2006; Lopez-Sepulveda 
et al., 2008; Mozafari et al., 2016; Song et al., 2005

No isolation of RWP effects (surgery response)

3 Botden et al., 2012; Wong et al., 2016; Xu et al., 2009 Duplicates
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the mean and standard deviation were estimated from the 
sample size, median and interquartile range [49]. Studies 
were separated based on whether the intervention was acute 
or chronic, and qualitative and quantitative analysis was 
carried out separately to differentiate the acute and chronic 
effects of supplementation. All data were calculated and 
presented as mean ± SD unless otherwise explicitly stated.

Quantitative analysis

Mean differences between the start and end of the inter-
vention period were calculated with comparison between 
group mean differences, and overall effect estimates were 
calculated by random effect models, and reported alongside 
estimate significance (p value) and heterogeneity (I2), with 
significance being determined based on a p value below 
an alpha value of α = 0.05. All blood pressure data were 
reported with the same unit of measure across all studies, 
allowing mean differences to be used for models to esti-
mate a weighted mean difference. Vascular function data 
[e.g., flow-mediate dilation (FMD) response] were reported 
as both percentage change and diameter change; therefore, 
standardised mean differences were calculated to estimate 
overall effect size. The I2 statistic was examined to evalu-
ate heterogeneity, with I2 > 50% and I2 > 75% indicative of 
substantial and considerable heterogeneity, respectively [50].

Moderator and meta‑regression analysis

Subgroup analyses were carried out to identify possible 
sources of heterogeneity; specifically by comparison of 
overall and subgroup estimated effects based on the type 
of supplement used and the health status of the participant 
cohort. Meta-regression was assessed using mixed effect 
models to evaluate the impact that potential moderators 
had on the estimated effect and heterogeneity of overall and 
subgroup effects. Models were run collectively to reduce 
the likelihood of failure to detect a moderator due to sup-
pression, or over complication of moderator influence due 
to undetected confounding interactions between moderators 
[51]; with the exception of medication status, which was run 
in isolation on the at-risk subgroup due to the potential for 
interaction effects. The impact of moderators on the effects 
of supplementation was evaluated by assessing the propor-
tion of heterogeneity each one accounted for, with signifi-
cance determined by an Omnibus test for the overall model 
effect and Wald-type Chi-Squared tests for each moderator 
within the model.

Sensitivity analysis

Externally standardised studentized deleted residuals were 
used to evaluate and identify potential outliers, based on 

the size of each study’s individual residual, with residual 
values < − 2 or > 2 considered to be outlying. The impact of 
outliers on the overall result was then assessed using model 
fit impact analysis (DFFITS and Cook’s distance); covari-
ance from the mean; residual heterogeneity test statistics; 
overall result influence (hat values); and study weight [52]. 
If a study was found to be outlying and to have reasonable 
influence on the overall result, the random effect model was 
refitted and reported with and without influential outlying 
studies. All statistical analyses were performed in RStudio 
[53] using the Metafor meta-analysis package [54], and all 
effect estimates are reported as mean difference with 95% 
confidence intervals (MD, [95% CI]) unless otherwise 
stated.

Search results

The search, screening and selection process for eligible stud-
ies is shown in Fig. 1. A total of 759 studies were found 
through database searches and were included in preliminary 
screening, with an additional 31 studies found in reviews 
that had been identified as relevant through the original data-
base searches. Of these studies, following removal of dupli-
cates a total of 607 were screened by title and abstract, 466 
of these were excluded due to either a lack of randomisation 
of placebo/control group, usage of a supplement that did 
not match the inclusion criteria; or absence of details on the 
required primary outcome measures. 141 full-text articles 
were then screened and divided into animal and human stud-
ies, of which 50 were excluded from data extraction due to: 
incorrect study design/non-randomised control trials (RCT) 
study (n = 6); primary outcomes not present (n = 19); non-
oral RWP supplementation (n = 17); RWP response not 
tested in isolation (n = 5); or data were a duplicate of an 
included study (n = 3).

Results

Animal studies

48 of the included studies were conducted in animal mod-
els, the majority of which were in rat models (n = 36) [4, 
9, 55–87], alongside studies in mice (n = 9) [10, 88–95], 
rabbits (n = 2) [8, 96] and swine (n = 1) [7]. Of these all, but 
three, investigated the effects of RWP in clinical or disease 
models, including induced hypertension (n = 8), diabetes 
(n = 4), ageing (n = 6) and high fructose-induced vascular 
dysfunction (n = 7), with 25 studies including a healthy sup-
plemented population (Table 3). A range of different RWP 
were used, including red wine extract, grape seed extract and 
whole-grape RWP, although the majority used single poly-
phenol supplementation with resveratrol (full details shown 
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in Table 3). None of the studies investigated acute supple-
ment effects alone, with the average duration of treatment 
being 8.5 ± 6.9 weeks. Significant improvements in vascular 
measures were seen after supplementation in 24% of studies 
in healthy animals, with specific significant effects on blood 
pressure (n = 21) and vascular function in arterial rings 
ex vivo (n = 10) in 24% and 40% of studies, respectively. 
Compared to response in healthy animals, studies in dis-
ease/clinical animal models saw significant improvements in 
the majority (88%) of studies, with 84% and 100% in blood 
pressure (BP) and vascular function measures, respectively.

Average intervention dosages can be seen in Table 3 
and where possible doses were converted to mg/kg of 
Body Weight. Mean and median doses were then used to 

predict optimal doses for human studies, based on estab-
lished guidelines for conversion [97, 98]. This was carried 
out for resveratrol interventions in rat and mouse studies, 
as only these data contained a large enough number of 
studies for accurate average and conversion calculations. 
The mean dose of resveratrol in rats was 53.6 ± 156.8 mg/
kg (range 1–800 mg/kg), with a median dose of 10 mg/
kg, which upon conversion produced an estimated human 
dose of 8.6 and 1.6 mg/kg for mean and median doses, 
respectively. In mice, the mean dose was 148 + 135.2 mg/
kg (range 10–320), with a median dose of 200 mg/kg, 
which results in an estimated human dose of 12.0 mg/kg 
or 11.0 mg/kg for mean and median doses, respectively.

Fig. 1  PRISMA flow diagram showing the search, screening and selection process, including eligible study numbers for both qualitative and 
quantitative synthesis
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Table 3  Study characteristics of animal intervention studies assessing the impact of red wine polyphenols on vascular health and function

Authors Year Animal Disease/clinical 
model

Supplement Dosage (mg/
kg/day)

Duration Measure Healthy 
effect 
(sig)

Disease 
effect 
(sig)

Akar et al. 2011 Rabbit T2D Resveratrol 5 (mg/l) (8–10 weeks) EVVR Yes
Akar et al. 2012 Rat FVD Resveratrol 50 (mg/l) (10 weeks) EVVR Yes
Aribal-Kocat-

uerk et al.
2009 Rat None Resveratrol 20 (24 weeks) SBP Yes

Aubin et al. 2008 Rat HF Resveratrol 20 (8 weeks) SBP No Yes
Bernatova 

et al.
2002 Rat L-NAME Provinols 2.5 (1–3 weeks) SBP and 

EVVR
Yes

Behbahani 
et al.

2016 Rat SH Resveratrol 40 (10 weeks) EVVR and 
BP

No Yes

Bhatt et al. 2011 Rat SH Resveratrol 5 (10 weeks) SBP Yes
Biala et al. 2010 Rat Transgenic 

(Human Renin 
and angioten-
sin)

Resveratrol 800 (4 weeks) SBP No Yes

Cheng et al. 2016 Rat FVD Resveratrol 10 (1 week) BP Yes
Cheng et al. 2013 Rat FVD Resveratrol 10 (2–4 weeks) SBP and 

EVVR
Yes

Cheserek et al. 2016 Mouse HFD Resveratrol 
(and querce-
tin)

60 + 10 (g/kg 
chow)

(26 weeks) EVVR Yes

da Luz et al. 2011 Rat None Resveratrol 4 (mg/kg 
chow)

(4 weeks) EVVR No

Dal-Ros et al. 2012 Rat Ageing RWP 100 (4 weeks) BP and FMD Yes
Dolinsky et al. 2013 Rat and 

Mouse
SH Resveratrol 146 (rat)

320 (mice)
(5 weeks) EVVR Yes

Franco et al. 2013 Rat Obese Resveratrol 30 (30 days) BP Yes
Gendron et al. 2012 Mouse Ageing ( +)-Catechin 0.75 (12–

36 weeks)
EVVR Yes Yes

Gocmez et al. 2016 Rat Ageing Resveratrol 15 (2 weeks) SBP and 
EVVR

No Yes

Gordish et al. 2016 Rat SH Resveratrol 146 (4 weeks) BP No Yes
Hort et al. 2012 Mouse Transgenic 

(LDL Recep-
tor)

RWE 3–30 (3 months) BP Yes

Inanaga et al. 2009 Mouse AngII induced 
IL-6 expres-
sion

Resveratrol 10 (2 and 
4 weeks)

BP No Yes

Jang et al. 2015 Rat SH GSE 15–30 (8 weeks) SBP and 
EVVR

Yes

Jendekova 
et al.

2006 Rat L-NAME Provinols 40 (4 or 7 weeks) SBP Yes

Jiminez et al. 2007 Rat SH RWP 40 (5 weeks) EVVR No Yes
Kavas et al. 2013 Rat None Resveratrol 20 (6 weeks) BP Yes No
Khodja et al. 2012 Rat Ageing RWP 100 (2 or 4 weeks) BP No Yes
Kosuru et al. 2018 Rat FVD Pterostilbene 20 (8 weeks) EVVR No Yes
Lee et al. 2017 Rat Spontaneous 

Heart Failure
Resveratrol or 

pterostilbene
2.5 (8 weeks) SBP No Yes

Louis et al. 2012 Rat Obese Resveratrol 2.5 (4 weeks) SBP No Yes
Majumdar 

et al.
2013 Rat Ovariectomy-

induced VD 
(+ tobacco 
extract)

Resveratrol 50 (8 weeks) BP and CBF No Yes
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Human studies

Study characteristics

Following full-text screening, 42 human studies were iden-
tified and included in full data extraction; during which 2 
further studies were excluded due to poor study design or 
a lack of usable primary outcome data [99, 100]. Of the 
remaining 40 studies, all were randomised, placebo-control 
studies, with 14 of these of a cross-over design [16–19, 27, 
29–31, 101–106] and 26 of which were parallel arm studies 
[28, 101, 107–130]. Five studies presented results missing 
primary outcome data for either pre- or post-trial measures 
and were contacted to request full details, with data being 
added to extracted data if provided [107, 111, 120, 131, 
132]. In addition, two pairs of studies were found to be using 

data collected within an identical study cohort, consequen-
tially the data were combined into a single entry in the final 
dataset [29, 122, 133, 123].

Of the included studies, the majority included a disease/
at-risk cohort, the most common of which were type II dia-
betes (n = 9), obesity (n = 5) and metabolic syndrome (n = 4), 
while six studies investigated only healthy controls. The 
cohort age ranged from 21 to 65 years (mean = 53.5 years) 
and studies included both mixed and single sex cohorts 
(mean = 39.4% female), with an average BMI of 28.5 kg/
m2 across the full data set. The majority of studies used 
resveratrol as the supplement intervention (n = 25), while 
only one other study looked at a single RWP in isolation 
(pterostilbene) [134]. All remaining studies investigated the 
effects of red wine extract, grape extract, grape seed extract 
or some modification or combination of these. Five of the 

Table 3  (continued)

Authors Year Animal Disease/clinical 
model

Supplement Dosage (mg/
kg/day)

Duration Measure Healthy 
effect 
(sig)

Disease 
effect 
(sig)

Miatello et al. 2005 Rat FVD Resveratrol 10 (12 weeks) SBP and 
EVVR

No Yes

Mizutani et al. 2000 Rat SH Resveratrol 5 (8 weeks) EVVR Yes
Mizutani et al. 2001 Rat SH Resveratrol 1 (8 weeks) SBP No
Moraloglu 

et al.
2012 Rat DOCA-Prec-

lampsia
Resveratrol 20 (16 weeks) SBP No

Mozafari et al. 2015 Rat T2D Resveratrol 5–20 (4 weeks) SBP and 
EVVR

Yes

Ozan et al. 2017 Rat FVD Resveratrol 10 (8 weeks) BP and 
EVVR

No Yes

Phyu et al. 2016 Rat T2D Resveratrol 2 (8 weeks) SBP Yes Yes
Puzserova 

et al.
2006 Rat Stressed Provinols 20 (8 weeks) SBP Yes No

Rezzani et al. 2009 Rat Nephrotoxicity Provinols 40 (3 weeks) DBP and 
EVVR

No Yes

Rivera et al. 2009 Rat Obese Resveratrol 10 (8 weeks) SBP and 
EVVR

No Yes

Robich et al. 2010 Swine Hypercholester-
olemic

Resveratrol 100 (11 weeks) SBP Yes

Rush et al. 2007 Rat SH Resveratrol 0.488–4.48 
(mg/l)

(4 weeks) BP and CBF Yes

Soylemez 
et al.

2009 Rat None Resveratrol 50 (mg/l) (3 weeks) SBP Yes

Thandapily 
et al.

2010 Rat SH Resveratrol 2.5 (10 weeks) EVVR No No

Toth et al. 2014 Mouse Ageing Resveratrol 200 (10 days) BP No Yes
Toth et al. 2015 Mouse Ageing + Hyper-

tensive
Resveratrol 200 (10 days) FMD No

Ungvari et al. 2010 Mouse Trans-
genic + HFVD

Resveratrol 2.4 (g/kg 
chow)

(16 weeks) BP and 
EVVR

Yes

Wang et al. 2018 Mouse T2D Resveratrol 10 (4–24 weeks) SBP No Yes

Type 2 diabetes (T2D), high fructose vascular dysfunction (FVD), high fat diet (HFD), spontaneously hypertensive (SH), L-NAME induced 
vascular dysfunction (L-NAME), ex vivo vascular responsiveness (EVVR), systolic blood pressure (SBP), blood pressure (BP), flow mediated 
dilation (FMD), cerebrovascular blood flow (CBF)
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included studies investigated acute effects [101, 106, 110, 
122, 132], whereas the majority looked at chronic supple-
mentation, of which the most common length was 4 weeks 
(range = 2—52  weeks) [16–19, 27–31, 103–105, 109, 
112–114, 116, 118, 119, 121, 124, 126–130, 134, 135]. To 
discern the potential differences between acute and chronic 
effects of RWP, these studies were separated for the purpose 
of analysis. In acute studies, blood pressure was the only out-
come measure that could be carried forward for quantitative 
analysis, due to low numbers of included studies for other 
vascular measures (FMD, transcranial doppler ultrasound 
(TCD), etc.), as well as the wide variation in study design 
used (e.g., supplement used, dose timing, measurement tim-
ing, etc.). Quantitative analysis was carried out on chronic 
studies presenting blood pressure and/or FMD measures, 
providing full pre- vs. post-supplementation data were avail-
able for both control and supplement study arms.

Quality scores revealed a wide range of study quality: 
despite all studies being randomised, placebo-controlled 
studies, only ~ half reported details of the randomisa-
tion (51%), concealment (54%) and blinding method used 
(51%). All studies reported all pre-specified outcome meas-
ures, 57% reported dropout rates and 86% reported funding 
sources and potential conflicts of interest. Overall the mean 
quality score was 4.4 out of a potential total of 7. The full 
details of individual scores can be found in Table 4.

Effect of RWP on blood pressure in humans

Thirty studies reported measures of blood pressure, of which 
two were acute supplement studies and 28 were chronic (see 
Tables 5 and 6). Marques et al. [106] showed no significant 
effect in systolic or diastolic blood pressure following acute 
administration of grape extract (600 mg). Wightman et al. 
[101] also found no significant change in blood pressure 
with resveratrol alone (250 mg) or with resveratrol combined 
with piperine (250 mg + 20 mg). The combined effects of 
the three cohorts reported from these two studies showed an 
estimated mean difference of − 0.6 mmHg [− 2.4, 1.3] and 
2.0 mmHg [− 0.4, 4.4] for systolic and diastolic blood pres-
sure, respectively, neither of which was significant and both 
of which showed high levels of heterogeneity (p = 0.547; 
I2 = 87.53%, and p = 0.108; I2 = 94.08%, respectively).

Chronic supplementation with a range of RWP resulted 
in significant changes for measures of systolic (SBP) 
and diastolic blood pressure (DBP), in 14 and 12 of the 
included studies, respectively (Table 5). In one study [18], 
a significant change was seen in the placebo group for 
DBP, while no significant change was seen in participants 
supplemented with Muscadine grape seed extract. Of the 
28 studies reporting a blood pressure measure, 24 reported 
pre- and post-trial means for both placebo and interven-
tion groups and were included in quantitative analysis (33 

datasets).The remaining 4 studies were not included due 
to incomplete data (either pre- or post-intervention values 
not given) for the placebo group [105, 115, 124] or incom-
plete data in both intervention and placebo groups [16]. 
Quantitative analysis of pooled data on blood pressure was 
carried out in 25 studies [17–19, 27–31, 103, 104, 108, 
109, 112–114, 116–119, 121, 126–130], with a total of 
33 datasets and standardised mean differences calculated.

Systolic blood pressure

The overall mean difference following RWP supplemen-
tation across all included studies was significant for SBP 
(− 2.6 mmHg, [− 4.8, − 0.4], p = 0.010, I2 = 99.77%). Sub-
group analysis revealed a divergence in effect estimates 
when healthy and at-risk populations were separated 
(Fig. 2), with a loss of the significant effect in healthy 
cohorts (0.7  mmHg, [− 2.5, 3.8], p = 0.673), while a 
clear significant effect was seen in at-risk populations 
(− 3.2  mmHg, [− 5.7, − 0.8], p = 0.010). No notable 
difference was seen in heterogeneity in either subgroup 
(I2 = 97.56% and I2 = 99.81%, respectively). A sufficient 
number of studies allowed for the separation of resveratrol 
trials from the wider pool of studies, with separate analysis 
of resveratrol and all other studies (i.e., non-resveratrol 
supplement; see Fig. 3). This subgrouping resulted in the 
maintenance of a significant mean difference in resveratrol 
studies (− 3.7 mmHg, [− 7.3, − 0.0], p = 0.047), but not 
in the non-resveratrol supplement groups (− 1.4 mmHg, 
[− 3.4, 0.7], p = 0.194); once again subgrouping had 
no significant effect on heterogeneity in either group 
(I2 = 99.63% and I2 = 99.61%, respectively).

Mixed effect modelling was used to evaluate the col-
lective effects of cohort characteristics (health status, age, 
sex and BMI), as well as the study design used (parallel or 
cross-over trials and BP measurement method) and showed 
that these moderators accounted for 53.7% of heterogene-
ity, with an omnibus test showing a significant effect for 
the included moderators (p < 0.001). More specifically, 
health status and measurement method independently 
accounted for a significant proportion of the heterogene-
ity (both p < 0.001), while study design bordered on sig-
nificance (p = 0.051).

Additional mixed effect models were used to test the 
potential collective effects of the type, dose and duration 
of supplementation interventions, as well as the individual 
effect of medicine status for the at-risk cohort. Neither 
of these models showed a significant moderator effect 
(p = 0.99 and p = 0.127, respectively), although controlling 
for medication status accounted for 7.7% of heterogeneity 
in at-risk cohort studies.
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Diastolic blood pressure

No significant effects were found in DBP when consid-
ering overall effect estimate (− 1.0 mmHg, [− 2.2, 0.3], 
p = 0.139, I2 = 99.7%), or when subgroup analysis was car-
ried out on resveratrol studies in isolation (− 0.9 mmHg, 
[− 3.2, 1.3]; p = 0.417, I2 = 99.6%). Subgroup analysis 
based on health status showed no significance in healthy 
or at-risk cohorts (Fig. 4). Specifically, there were non-
significant changes in healthy individuals (0.6 mmHg, 
[− 2.6, 3.8], p = 0.725, I2 = 99.0%) and a relative decrease 

in at-risk cohorts (− 1.2 mmHg, [− 2.6, 0.2], p = 0.08, 
I2 = 99.7%).

Mixed effect models were used to analyse the same 
moderators as were investigated in SBP and showed simi-
lar results. The cohort-study design model accounted for 
40.0% of heterogeneity and this was found to be significant, 
both overall (p < 0.001) and for the health status, BP meas-
urement method and study design moderators individually 
(p  < 0.001, p  = 0.032, p  = 0.023, respectively). Similarly, 
the collective supplement moderator model and medicine 
status model showed no significant impact on heterogeneity 

Table 4  Quality assessment scoring for all human studies included in quantitative data synthesis and analysis, based on the criteria set out in the 
Cochran Handbook

Randomi-
sation

Allocation 
concealment

Blinding Blinding-
outcome

Incomplete 
data

Selective 
reporting

Funding Overall

Barona et al. 2012 0 0 0 0 1 1 0 2
Bhatt et al. 2012 1 −1 −1 −1 1 1 1 1
Bo et al. 2016 1 1 1 1 1 1 1 7
Bo et al. 2013 1 1 1 1 1 1 0 6
Botden et al. 2012 1 1 1 1 1 1 1 7
Draijer et al. 2015 0 0 1 1 1 1 1 5
Evans et al. 2017 1 1 1 1 1 1 1 7
Faghihzadeh et al. 2015 1 1 1 1 1 1 1 7
Fodor et al. 2018 0 1 0 0 0 1 0 2
Fujitaka et al. 2011 0 0 −1 −1 0 1 1 0
Heeboll et al. 2016 0 0 0 0 1 1 1 3
Imamura et al. 2017 0 0 1 1 1 1 1 5
Khodabandehloo et al. 2018 1 1 1 1 1 1 1 7
Kjaer et al. 2017 1 1 1 1 1 1 1 7
Lekakis et al. 2005 0 0 0 0 0 1 0 1
Marques et al. 2018 0 0 0 0 0 1 1 2
Mellen et al. 2010 0 0 1 1 0 1 1 4
Movahed et al. 2013 1 1 1 1 1 1 1 7
Perez-Jiminex et al. 2008 0 0 0 0 0 1 1 2
Ras et al. 2013 0 0 1 1 1 1 1 5
Riche et al. 2014 1 1 1 1 1 1 1 7
Seyyedebrahimi et al. 2018 1 1 1 1 1 1 1 7
Sano et al. 2007 1 1 0 0 1 1 0 4
Sivaprakasapillai et al. 2009 0 0 0 0 0 1 1 2
Timmers et al. 2016 1 1 0 0 0 1 1 4
Timmers et al. 2011 0 0 0 0 0 1 1 2
Tome-Carneiro et al. 2013 0 0 0 0 0 1 1 2
van der Made et al. 2017 0 0 0 0 0 1 1 2
van Mierlo et al. 2010 0 0 1 1 1 1 1 5
Wightman et al. 2014 1 1 1 1 0 1 1 6
Wong et al. 2011 1 1 1 1 0 1 1 6
Wong et al. 2016 1 1 1 1 0 1 1 6
Wong et al. 2013 1 1 1 1 1 1 1 7
Xue et al. 2016 1 1 0 0 0 1 1 4
Yoshino et al. 2012 1 1 0 0 1 1 1 5
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(p  = 0.998; p  = 0.127, respectively), with medicine status 
accounting for a small amount of heterogeneity (7.2%).

Sensitivity analysis

Sensitivity analysis identified one outlying study that 
may have a significant influence on the SBP results [117], 
with a large residual (Τ2 = − 3.014) and model fit impact 
(DFFITS = − 0.542, Cook’s distance = 0.234), although 
this outlier had little influence on residual covariance or 

heterogeneity (Fig. 5). Model refitting showed a reduc-
tion in the overall effect of supplementation when the 
outlier was excluded, without a loss of significance or 
notable change in heterogeneity (− 2.1 mmHg, [− 4.1, 
− 0.1], p = 0.036, I2 = 99.73). Sensitivity analysis did not 
reveal any significant outliers for diastolic blood pressure 
(Fig. 6). Taken in summation, it can be seen that although 
outlying studies may have been included, these studies did 
not significantly affect the results of meta-analyses.

−25 −10 0 10 25

Mean Difference

Xue et al., 2016
Wong et al., 2013
van der Made et al., 2017
Tome−Carneiro et al., 2013
Timmers et al., 2016
Timmers et al., 2011
Sivaprakasapillai et al., 2009b
Sivaprakasapillai et al., 2009a
Seyyedebrahimi et al., 2018
Ras et al., 2013
Perez−Jiminex et al., 2008
Movahed et al., 2013
Mellen et al., 2010
Kjaer et al., 2017b
Kjaer et al., 2017a
Khodabandehloo et al., 2018
Imamura et al., 2017
Heeboll et al., 2016
Fujitaka et al., 2011b
Fujitaka et al., 2011a
Fodor et al., 2018b
Fodor et al., 2018a
Faghihzadeh et al., 2015
Draijer et al., 2015b
Draijer et al., 2015a
Botden et al., 2012b
Botden et al., 2012a
Bhatt et al., 2012

Yoshino et al., 2012
van Mierlo et al., 2010b
van Mierlo et al., 2010a
Sano et al., 2007b
Sano et al., 2007a

  1.00
  1.40
 −6.00
 10.00
 −1.00
 −0.50
 −2.00
 −2.00
 −1.60
 −3.20
 −7.80
  1.37
 −1.40
 −8.00
 −8.00
 −2.35
 −3.90
  4.00
 −2.00
 −2.00
 −3.10
 −3.10
 −3.48
 −7.80
 −1.00
 −2.00
 −2.00
  7.76

 −2.00
 −4.40
 −4.40
  5.10
  5.10

  0.67
  0.70
  3.69
 10.38
  1.16
  1.24
  1.89
  1.89
  5.18
  0.41
  5.62
  3.50
  0.38
  0.87
  0.87
  4.00
  7.29
  5.51
  4.81
  4.81
  2.25
  2.25
  4.03
  2.32
  2.32
  1.56
  1.56
  3.63

  5.30
  1.79
  1.79
  1.46
  1.46

  2.00
  0.20
 −4.00
  8.00
 −1.00
 −7.30
−11.00
−11.00
−16.67
 −5.50
 −8.50
 −7.58
  2.80
 −6.00
  5.00

−10.00
 −5.50
 −5.00
  4.00
 −2.00
 −9.86
 −8.17
−14.21
 −8.10
 −4.00
 −3.00
 −2.00
−11.79

  1.00
 −0.60
 −1.30
  1.50
  2.80

  0.79
  0.71
  3.58
  8.66
  1.24
  1.30
  1.67
  2.13
  4.68
  0.44
  5.07
  3.15
  0.36
  0.77
  0.76
  2.50
  4.99
  6.08
  3.70
  4.80
  2.85
  2.37
  3.71
  2.28
  2.32
  1.56
  1.56
  4.21

  5.66
  3.02
  3.02
  1.09
  0.96

  1.00 [  0.62,   1.38]
 −1.20 [ −1.57,  −0.83]

  2.00 [  0.50,   3.50]
 −2.00 [−10.26,   6.26]

  0.00 [ −0.81,   0.81]
 −6.80 [ −7.86,  −5.74]

 −9.00 [−10.64,  −7.36]
 −9.00 [−10.86,  −7.14]

−15.07 [−18.13, −12.00]
 −2.30 [ −2.50,  −2.10]
 −0.70 [ −4.75,   3.35]

 −8.95 [−10.56,  −7.34]
  4.20 [  4.05,   4.35]
  2.00 [  1.52,   2.48]

 13.00 [ 12.52,  13.48]
 −7.65 [ −9.66,  −5.64]
 −1.60 [ −5.06,   1.86]

 −9.00 [−13.46,  −4.54]
  6.00 [  3.11,   8.89]

  0.00 [ −3.23,   3.23]
 −6.76 [ −7.64,  −5.88]
 −5.07 [ −5.76,  −4.38]

−10.73 [−12.88,  −8.58]
 −0.30 [ −1.49,   0.89]

 −3.00 [ −4.21,  −1.79]
 −1.00 [ −1.55,  −0.45]

  0.00 [ −0.55,   0.55]
−19.55 [−21.59, −17.51]

  3.00 [ −0.86,   6.86]
  3.80 [  2.64,   4.96]
  3.10 [  1.94,   4.26]

 −3.60 [ −4.39,  −2.81]
 −2.30 [ −3.06,  −1.54]

 −2.62 [ −4.81,  −0.44]RE Model for All Studies (p = 0.02; I2 = 99.8%)

Healthy

At Risk

MD SD MD SD
Control Supplement

Author(s) and Year Mean Difference [95% CI]

0.67 [−2.45, 3.80]

−3.24 [−5.71, −0.77]

RE Model for Healthy Cohorts (p = 0.67; I2 = 97.6%)

RE Model for At Risk Cohorts (p = 0.01; I2 = 99.8%)

Fig. 2  Forest plot showing mean difference and 95% confidence inter-
vals for the impact of chronic red wine polyphenol supplementation 
compared to placebo-controls on systolic blood pressure in humans, 
with subgroup analysis based on the health status of the included 

cohort. Horizontal lines indicate the 95% confidence interval. Shaded 
diamond shows the calculated subgroup and overall mean difference 
alongside the results of the random effect model for each group
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Effect of RWP on vascular function in humans

Flow mediated dilation

Peripheral vascular function measures using FMD were 
reported in 11 studies, of which three were acute interven-
tions [102, 106, 110] and eight were chronic [16, 18, 27, 
31, 103, 104, 128, 133]. The full details for each study are 
presented in Table 6. All three acute FMD studies showed 
a significant improvement in the FMD response following 

resveratrol supplementation across a wide range of doses 
(75–2547 mg/kg/day) [102, 106, 110], as well as supplemen-
tation with whole grape extract [110]. Chronic supplementa-
tion with RWP had varying effects across the eight studies: 
with significant increases reported in two studies [16, 128], 
a significant decrease reported for one [18] and no effect 
observed in the remaining five studies [27, 31, 103, 104, 
133]. Shear rate was also evaluated in three chronic studies 
with varying results: with no change in two studies [16, 18] 
and an increase in one study [103].
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Fig. 3  Forest plot showing mean difference and 95% confidence 
intervals for the impact of chronic red wine polyphenol supplemen-
tation compared to placebo-controls on systolic blood pressure in 
humans, with subgroup analysis comparing studies administering res-

veratrol compared to all other red wine polyphenols. Horizontal lines 
indicate the 95% confidence interval. Shaded diamond shows the cal-
culated subgroup and overall mean difference alongside the results of 
the random effect model for each group
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Quantitative analysis was carried out on the four stud-
ies for which full pre-post, placebo-supplement data were 
available [18, 27, 103, 104]. Random effects modelling 
estimates showed no significant mean difference between 
placebo and intervention supplements (− 1.08, [− 4.57, 
2.41], p = 0.544, I2 = 99.40%). Health status was evalu-
ated as a potential moderator by mixed effect modelling 
and showed that this accounted for 72.5% of heterogeneity 
(p = 0.002). Sensitivity analysis revealed one potentially 

influential outlier [18], which showed a large resid-
ual (− 3.844), as well as a notable impact on model fit 
(DFFITS = − 1.883, Cook’s distance = 0.813) and residual 
covariance (cov.r = 0.271). Model refitting excluding this 
outlier resulted in reversal of the effect of supplementa-
tion over placebo, but no change in significance (0.526, 
[− 1.291, 2.343], p = 0.570), meaning that although this 
study impacted the trend seen it did not result in a loss of 
a significant overall effect.
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Fig. 4  Forest plot showing mean difference and 95% confidence inter-
vals for the impact of chronic red wine polyphenol supplementation 
compared to placebo-controls on diastolic blood pressure in humans, 
with subgroup analysis based on the health status of the included 

cohort. Horizontal lines indicate the 95% confidence interval; shaded 
diamond shows the calculated subgroup and overall mean difference 
alongside the results of the random effect model for each group
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Cerebrovascular function

Only two studies were found that measured cerebrovascular 
function, both of which assessed function using transcranial 

Doppler ultrasound measures of resting blood velocity in 
response to resveratrol [122, 125]. Of these, one aimed to 
determine the acute response to a single dose of resveratrol 
75 min prior to assessment [122], whereas the other looked 
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at the response to 12 weeks of supplementation in compari-
son to a placebo control [125], so comparison of results was 
not possible. Wong et al. [122] examined acute effects in 
type 2 diabetics at both high and low doses of resveratrol 
(75, 150 and 300 mg), reporting significant improvements 

in middle cerebral artery velocity (MCAv) for all doses, 
while only low-dose resveratrol resulted in a significant 
improvement in posterior cerebral artery velocity (PCAv). 
Moreover, Evans et al. [125] showed that chronic (14 weeks) 
of resveratrol (150 mg/day) supplementation in a cohort 
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of postmenopausal women significantly increased MCAv 
response to hypercapnia (i.e., cerebrovascular responsive-
ness), without a significant increase in resting MCAv.

Discussion

General findings

This review aimed to determine the effects of RWP on vas-
cular health, as well as examining the impact of health sta-
tus and population characteristics on vascular outcomes in 
both animals and humans. The resulting data showed effi-
cacy within animal models, while human studies displayed 
larger amounts of variability, which was partly accounted for 
by known causes of heterogeneity. Overall, the majority of 
the current literature on RWP was focused on whole grape, 
seed or skin extracts, or resveratrol in isolation. There was 
a significant dichotomy in the number of studies between 
blood pressure and more specific measures of vascular func-
tion (e.g., ultrasound measures of flow mediated dilation and 
cerebral blood flow); likely due to the more time-consuming 
and technically demanding methods used to assess function. 
The predominant outcome from the meta-analyses was a 
significant reduction in SBP within clinical populations, 
while DBP showed a non-significant reduction following 
supplementation and compared to placebo cohorts. The fol-
lowing discussion will assess the potential of RWP to have 
a beneficial effect in vascular health, both generally and in 
regards to differences seen across different populations and 
RWP interventions.

Blood pressure

The findings of the meta-analysis indicated that RWP and 
isolated grape polyphenol have the capacity to significantly 
improve SBP beyond the clinical threshold for meaningful 
effects (− 2 mmHg). The results further indicate that supple-
mentation with resveratrol in isolation may be more effective 
than supplementation with whole grape or grape seed extract 
in improving blood pressure. However, this comes with a 
significant caveat that very high levels of heterogeneity are 
observed across the studies that have reported SBP as an 
outcome measure. Although this review did not restrict the 
type of intervention given, as has been previously described 
[15, 40, 136], this potential issue was addressed by subgroup 
analysis of resveratrol alone, alongside meta-regression to 
investigate supplement type as a moderator; neither of which 
showed a significant reduction in heterogeneity. Further-
more, despite the greater level of heterogeneity seen in this 
meta-analysis, the overall findings are in agreement with 
those reported in previous studies of grape polyphenols and 
resveratrol [15, 40, 136].

No significant overall effect was found in diastolic blood 
pressure, although reductions in blood pressure approached 
significance in the non-healthy sub-group. These findings 
are consistent with previous reviews in resveratrol [40], but 
not grape seed extract [15]. The dichotomy between SBP 
and DBP may be the result of relatively smaller changes 
in DBP seen in clinical hypertension and the greater the 
potential impact of heterogeneity between studies as a result 
of this smaller changes [137]. In addition, within the review 
by Zhang et al. [15] significance was only maintained in 
early stage hypertension and “other” clinical studies within 
subgroup analyses, highlighting the limited consistent 
findings within this measure. Although both systolic and 
diastolic blood pressure are indicative of increased morbid-
ity, changes in SBP are considered to be of greater risk in 
hypertension and CHD [138]. Taken together, these find-
ings indicate that RWP supplementation may be effective 
at treating hypertension regardless of the lack of consistent 
responses on DBP.

Importantly, significant heterogeneity was observed 
across the literature and a number of studies showed an 
increase in SBP with supplementation, albeit non-signifi-
cant. Subgroup and meta-regression analysis found no clear 
pattern with disease type, medication or participant char-
acteristics, indicating that there are unaccounted modera-
tors causing the significant variability in the intervention 
effects reported. One factor that may have contributed to the 
large level of heterogeneity may be associated with the vari-
ability between placebo and intervention arms at baseline. 
One likely cause of such variability may related to studies 
in which blood pressure was not a primary outcome meas-
ure; if randomisation was stratified against another outcome 
measure that could lead to differences in baseline blood pres-
sure between groups. Alternatively, randomisation was not 
controlled for and this variability is the result of chance, 
potentially linked to the large number of outcome meas-
ures included in some studies. Although BP differences at 
baseline were not statistically significant in any of the stud-
ies considered, they can be considered clinically relevant 
(> 3 mmHg) in some cases (within the range of the average 
effect seen under statin treatment [139, 140]). This is a key 
point that should be taken into consideration in future stud-
ies, given that clinically relevant differences in baseline BP 
measures may increase the risk of type II errors and can 
be avoided by stratifying randomisation against multiple 
baseline measures, as opposed to uncontrolled or sex-based 
stratified randomisation [141].

RWP and vascular function

The present analysis indicates that RWP supplementation 
does not result in any significant changes in peripheral vas-
cular function as measured by brachial FMD, with only one 
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study reporting a significant decline in vasodilation follow-
ing RWP supplementation [18]. Interestingly, this study 
also showed a significant increase in SBP over 4-weeks of 
grape seed extract supplementation, indicating that the sup-
plementation had a deleterious effect on the population in 
this case [18]. Despite the current lack of consistent findings 
in regards to vascular function, the reported NO-dependent 
mechanism of action of RWP and more specifically resvera-
trol [142], would suggest that improvements in measures 
such as FMD would be expected alongside improvements 
in blood pressure.

A small number of studies have investigated the specific 
role of RWP in the cerebrovasculature, with resveratrol sup-
plementation leading to a significant improvement in cer-
ebrovascular function in both studies [122, 125]. The limited 
number of studies and lack of studies outside of isolated 
resveratrol supplementation restricts the conclusions that 
can be drawn regarding cerebrovascular response and war-
rants further investigation. A direct comparison between the 
effects of supplementation on the different vascular beds will 
help to determine whether RWP effects are indeed distinct 
across vasculatures, or due to limitations of the experimental 
approaches used to detect the response to RWP supplements.

Animal study results and transition into humans

Findings from animal studies consistently demonstrated sig-
nificant improvements in both blood pressure and vascular 
function in disease models across a wide variety of supple-
ment types and pathologies. In particular, studies into the 
effects of RWP on vascular responsiveness showed improved 
vasodilatory response in excised arterial rings in all cohorts, 
regardless of disease model or species [6, 8, 10, 58, 60, 65, 
67, 78, 85, 87–89, 92, 96, 143, 144]. In regards to effects on 
blood pressure, the large majority of studies showed signifi-
cant improvements (84%) [6, 7, 9, 57–60, 64, 67, 73, 77–79, 
82–86, 88, 93, 95, 144–150], while a smaller number of 
studies did not show any beneficial response to supplemen-
tation. Interestingly, in all studies showing no significant 
improvement in blood pressure [69, 70, 75, 81, 94], a sig-
nificant improvement was seen in vascular responsiveness, 
indicating that supplementation did have an effect within 
the vasculature despite no significant changes in blood pres-
sure being found. In the three studies involving hypertensive 
models that saw no significant improvement [69, 81, 94], 
no consistent pattern was seen in regards to study duration, 
dosage, supplement type or animal model used, which could 
explain the differences seen between these studies and the 
majority of findings.

Consistent effects were not seen in healthy animals, with 
less than half of studies showing a beneficial change in blood 
pressure and vascular responsiveness outcomes following 
supplementation. This indicates that even in the highly 

controlled environment in which animals are raised, RWP 
have limited potential to improve vascular health or func-
tion above the ‘healthy physiological normal’. This generally 
agrees with what has been reported in human studies, in 
which no significant impact was seen across healthy cohorts.

The lack of reproducibility from animal models to 
humans is well documented and is by no means unique to 
nutrition research [151]. This is clearly visible within this 
review, wherein despite similar trends in regards to the 
benefit in healthy and at-risk populations, the response 
to RWP in at -risk and disease populations was markedly 
more consistent in animal models than in human studies. 
Broadly speaking the potential causes of this variation fall 
into three categories: (i) issues in effectively transitioning 
animal-model research into humans; (ii) the condition dif-
ferences in which studies can and are conducted between 
animals in captivity and humans; and (iii) the biological 
differences between animals and humans. One of the most 
common issues to be considered in study designs when try-
ing to emulate animal model results in humans is that of 
dosage. Traditionally when transitioning from animal to 
human models, it was common practice to directly translate 
dosage in milligrams per kilogram of body mass. However, 
it has now been shown that due to the higher metabolic rate 
in smaller animals a more appropriate method is to convert 
doses based on body surface area (BSA) [97]. Within the 
studies included in this review, the dose administered varied 
widely across both human and animal studies, highlight-
ing there is as yet no clear consensus on optimal dosage in 
either field. When resveratrol doses were compared between 
rodents and humans, median doses were greater in humans 
when compared to rats (conversion ratio 1:6.2), but lower 
than that used in mice (1:12.3) [97, 98]. Given the similarity 
in results between rats and mice, these results would indicate 
that either the dosage used in mouse studies is in excess of 
what is required to see an effect, or that a significant varia-
tion in responses is seen between species. If the latter is the 
case then the same may be true when comparing humans to 
animal models and future research must establish the dose 
response curve in humans specifically, rather than relying on 
dose conversion from animal studies. In addition, it should 
be noted that future studies in animals need to establish clear 
optimal doses to exclude variability in dosage as a potential 
cause for variability in outcome.

Greater variability in outcome measures of human 
studies is to some degree unavoidable, as replicating the 
level of control experienced in animal studies is near 
impossible in a free-living population of humans. Fur-
thermore, the introduction of dietary polyphenols into 
an animal population can be guaranteed to be novel, as 
chow diets can be ensured to be free of these compounds. 
In humans consumption during intervention can be con-
trolled to some extent, however, adherence to polyphenol 
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free conditions is likely to be as problematic as adherence 
to other dietary interventions [37, 38], while controlling 
for lifetime consumption is simply not possible. This 
might result in a fundamental difference in the physio-
logical response in humans and animals, given that rodent 
models are being exposed to these compounds for the first 
time, whereas humans are likely to have been previously 
exposed to them and may have variable responses depend-
ent on their dietary background. In addition, despite the 
present review including only animal studies in which 
supplementation was carried out through oral administra-
tion, differences in compound delivery still occur: e.g., 
through oral gavage [60], incorporation into chow [89], 
or via drinking water [152], which ultimately will cause 
inter- and intra-subject variability in the dose consumed 
and its bioavailability.

Furthermore, distinct absorption and metabolism are 
likely key determinants of the variability in physiological 
responses to dietary polyphenols across species. Gener-
ally, polyphenols have poor bioavailability in their origi-
nal form and are dependent on the activity of circulat-
ing metabolites to elicit beneficial effects [34, 153]. The 
complex metabolic fate of combined RWP [154] within 
human populations, alongside the dependence on the lower 
digestive tract for absorption [34], highlights the potential 
for variability between bioavailability humans and animal 
models. Direct comparison of metabolic fate between 
humans and rodents of the dietary polyphenol epicatechin 
found in grapes, as well as in high levels in dark chocolate, 
demonstrated the striking differences that can be found 
when determining metabolic fate [155]. Furthermore, 
Ottaviani et al. [155] also highlighted the importance of 
gut microbiota in defining this fate, as large changes in 
circulating metabolites occurred following sufficient time 
for the dose to the colon. Clear differences have also been 
found in the metabolic fate of resveratrol and pterostil-
bene (a dimethyl analog of resveratrol), due largely to sig-
nificant differences in the microbial biotransformation of 
both polyphenols prior to absorption into the blood stream 
[156]. Once again indicating that the differences in gut 
microbiota between species can have a significant impact 
on the impact of dietary polyphenols.

Although animal models do provide unique opportuni-
ties to explore the mechanistic and structural responses 
to RWP supplementation, the differences between animal 
models and free living humans dictate that findings from 
these models cannot readily predict responses in human 
populations [157]. To maximise the potential for human 
studies to replicate the results seen in animals, researchers 
must ensure adherence to both intervention and dietary 
restrictions are monitored closely and undertaken further 
work to establish the differences in biological response 
under supplementation.

Causes of heterogeneity

The large level of heterogeneity within this meta-analysis 
was not unexpected, particularly when considering the data 
as a whole, since multiple types of interventions (pure poly-
phenols and more complex extracts) were included, as well 
as various vascular dysfunctions associated with “at-risk” 
populations. However, meta-regression results based on the 
moderators identified in previous meta-analyses accounted 
for just over half of variability between studies, with no sig-
nificant heterogeneity accounted for by dose and duration 
of intervention, which have previously been reported as 
major sources of heterogeneity [15, 40]. Disease character-
istics appear to be responsible for the largest proportion of 
accountable heterogeneity, despite the similarity in causes 
of vascular endothelial dysfunction between many of the 
included diseases [158–160].

Given the impact of disease characteristics and the lack 
of effect when controlling for medication, it may be that 
there is an unknown interaction between the specific treat-
ments for each condition and RWP supplementation, which 
could go some way as to explain the lack of significant 
interaction with medication status. Alternatively, the wide 
variety of vascular-linked diseases and the wide variations 
in the symptoms presented by each disease may all alter 
the response to RWP supplementation. Regardless, it does 
appear that the response to RWP supplementation is highly 
variable across different pathologies and this must be taken 
into account when considering the efficacy for supplementa-
tion within a given cohort.

Whole extracts or isolated components

To the best of our knowledge, this is the first review, that has 
sought to directly compare the vascular response to whole 
RWP interventions with pure resveratrol, both of which have 
been suggested to have vasoprotective properties [23, 24]. 
The results of this meta-analysis indicated that resveratrol 
alone produces similar vascular responses to those seen in 
whole grape and grape seed extract supplements. Further-
more, resveratrol seems to produce more consistent results 
than those seen in whole extracts, as indicated by the greater 
effect size and lower number of equivocal findings. There are 
clear benefits to supplementation with resveratrol in isola-
tion, as it is purified and produced at a given concentration 
per dose. Whole extracts can vary in the relative content 
of individual components and optimal dosage will vary 
dependent on grape variety and extraction process. It should 
be noted that there are potential issues with resveratrol sup-
plementation, as research has highlighted that although oral 
absorption is relatively high, the bioavailability of resvera-
trol in the blood stream was low [161]. Conversely, there 
are additional stilbene compounds, such as pterostilbene, 
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that exhibit similar effects as resveratrol while displaying 
improved bioavailability [162].

Recommendations for future studies

Before recommendations can be made regarding any form 
of RWP supplement, further research should be conducted 
to determine the efficacy, optimal dose and minimum dura-
tion for that supplement within a target cohort. The studies 
included in this review demonstrate the lack of a clear con-
sensus on dosage, as even single supplement studies dem-
onstrated a wide dosage range. For example, resveratrol was 
administered at a minimum dose of 75 mg/day [28, 103] and 
a maximum of 1000 mg/day [109, 112].

Alongside the need for greater clarity on dose and dura-
tion responses, future studies must look to determine the 
specific interaction of different medications. Indeed, our 
analysis indicates that only taking into consideration whether 
a participant cohort is taking medication does not appear to 
explain the differences in outcomes observed between stud-
ies. Future studies should also look to determine the efficacy 
of other stilbenes and polyphenols in improving vascular 
function, given that resveratrol is one of many potentially 
vasoactive components found in red wine and grape extracts. 
To better determine the effects of RWP in vascular dysfunc-
tion, more research that is less reliant on measures of blood 
pressure alone is needed, as a loss of vascular responsiveness 
is also an essential component of disease risk and at present 
there is a notable shortage of studies identifying peripheral 
and cerebral vascular function changes with RWP supple-
mentation. In addition, Gliemann et al. [163] demonstrated 
that the adaptation response to regular exercise was blunted 
with resveratrol supplementation in older men and further 
studies are essential to determine if this is an issue with 
resveratrol and RWP supplementation in general, as regular 
exercise has been consistently shown to improve vascular 
health and risk factors [164].

Limitations

In this meta-analysis a large amount of heterogeneity was 
accounted for as a result of specific data on disease status and 
disease type. H, detailed meta-regressions were not possible 
with regards to medication status, as the data available only 
indicated whether a cohort as a whole was medicated. Due to 
the large number of health conditions within the included stud-
ies and the potential variation in interaction effects with each 
prescribed medication, it was not possible to determine the 
impact of specific medicines on the effects of a given supple-
ment and to do so would increase the risk of type I error [51]. 
In future, reviewers will need to establish a method for address-
ing or identifying the interaction of specific medications with a 

given supplement to control for this moderator across a wide 
range of populations, or alternately determine the interaction 
effect within a less varied population with a smaller num-
ber of potential medications. Secondly, full comorbidity and 
multimorbidity data were not extracted from included stud-
ies, which prevented us from assessing the impact that this 
had on results and heterogeneity. Future studies will need to 
determine how this can be done as vascular dysfunction rarely 
appears in isolation and a number of diseases are characterised 
by the accumulation of multiple conditions (e.g., metabolic 
syndrome), making differentiating between primary disease 
and comorbidity difficult. Finally, due to the low number of 
studies in peripheral and cerebral vascular function, only basic 
effect size could be calculated for FMD outcome measures. As 
such, limited conclusions could be drawn and it was not pos-
sible to identify potential moderators with regards to vascular 
responsiveness measures.

Conclusion

This review has shown that RWP supplementation has the 
capacity to improve SBP in human clinical populations, but 
with no clear response in DBP and vascular function (as 
measured by brachial FMD). Furthermore, we have shown 
that pure resveratrol was as effective as whole RWP extract 
supplementation in improving blood pressure and vascular 
function. Animal models, most of which were rodent mod-
els of disease, have shown a consistent and large response 
in all markers of blood pressure and in vitro and in vivo 
vascular function. In comparing human and animal data, 
although some of the beneficial responses seen in rodent 
models appear to be carried over into humans, the consist-
ency and magnitude of the changes seen are not emulated 
and this is likely due to differences in biology, lifestyle and 
experimental control. Finally, there is significant heterogene-
ity within the literature as to the efficacy of RWP interven-
tions targeting human vascular health and function, and for 
this reason future research needs to address the scope of 
conditions for which RWP are beneficial and the dose and 
duration required for a given intervention and population. 
Overall, at present it is not possible to accurately predict 
the effects of RWP supplements due to the significant levels 
of heterogeneity between studies. Further research in RWP 
must focus on how to improve consistency and generalisabil-
ity of findings through more effective control of confounding 
factors, such as medication status, diet composition and daily 
physical activity levels.
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