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Abstract—This paper proposes a novel back-to-back 
competitive learning mechanism (BCLM) for a fuzzy logic 
(FL) supervisory control system for hybrid electric vehicles 
(HEVs). This mechanism allows continuous competition 
between two fuzzy logic controllers during real-world 
driving. The leading controller will have the regulatory 
function of the supervisory control system. Firstly, the 
configuration of the HEV model and its FL-based control 
system are analysed. Secondly, the algorithm of chaos-
enhanced accelerated particle swarm optimization 
(CAPSO) is developed for back-to-back learning of the 
membership function. Thirdly, based on fuel-prioritized 
cost functions, the regulation of competitive assessment is 
designed to select a controller with a better fuel economy. 
Finally, the competitive performance of using the CAPSO 
algorithm is contrasted with other swarm-based methods 
and the BCLM-driven control system is validated by a 
hardware-in-the-loop test. The results demonstrate that the 
BCLM control system significantly reduces fuel 
consumption, at least 9% from charge sustaining 
and charge depleting based, and at least 7% from 
conventional FL-based systems. 

 
Index Terms—Competitive learning; fuzzy logic control; 

hybrid electric vehicles; online energy management; 
parallel computing; particle swarm optimization. 

 

I. INTRODUCTION 

HE increase in emissions that is associated with 

transportation growth is posing a severe challenge to CO2 

mitigation and urban air quality improvement [1]. Conventional 

vehicles propelled by internal combustion engines (ICEs) 

benefit from the very high energy density of petroleum-based 

fuels but suffer from low efficiency [2]. As a transitional 

technology to the full electrification of road vehicles, 

hybridization offers improved fuel economy and reduced 

exhaust emissions [3]. Hybridization is expected to play a 

significant role in the transformation of the automotive industry 

over the next 2-3 decades [4]. For hybrid electric vehicles 

(HEVs), developing optimal energy management strategies is 

critical to achieving the best performance and energy efficiency 
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through power-split control. 

    The existing energy management of HEVs can be generally 

classified into heuristic strategies that depend on a set of rules 

to determine the control action at each time instant, and 

optimization-based strategies that seek to achieve the best 

compromise between competing objectives. The heuristic rules 

are designed in accordance with intuition, human expertise, 

and/or mathematical models and, usually, without a priori 

knowledge of customer usage [5]. The fuzzy logic (FL) 

approach is one of the typical heuristic strategies and it plays an 

essential role in handling measurement noise and component 

variability through its adaptive character [6]. This paper 

elaborates FL-based applications in the automotive industry, to 

encompass forward information fusion and supervisory energy 

management.  
    Forward information fusion is the process of integrating 

multiple data sources to produce more consistent, accurate, and 

useful information [7], especially for human component 

systems like HEVs. Driving style recognition plays an 

important role in vehicle energy management as well as driving 

safety [8]. In the work of Zhang and Xiong [9], a hierarchical 

control strategy is simulated for multiple energy sources, in 

which a driving pattern recognition method  is developed using 

fuzzy logic controllers (FLCs). Jing et al. [10] proposes a 

cooperative method for vehicle speed prediction that uses a 

fuzzy C-mean algorithm with an unsupervised learning process 

to classify acceleration states. In the work of Filev and 

Kolmanovsky [11], a fuzzy encoding technology is presented 

to develop conventional Markov chain models with a 

continuous range, (also applied in the research of Li et al. [12]).  

In intelligent transportation systems, FL theory has been used 

to develop a vehicle detection algorithm for traffic scene 

interpretation [13]. Milanés et al. [14] builds an intelligent 

automatic overtaking system using vision for vehicle detection, 

in which an FLC was developed to emulate how humans 

overtake. 

    The supervisory energy management system is responsible 

for controlling the power flows from the individual sources, 

while guaranteeing sufficient provision for the traction system’s 

operation [15]. FL-based control systems with good robustness 

can optimally address this issue (see Refs [16], [17]). Type-2 

(probabilistic) FLC has been applied in an electrical chain 
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components evaluation vehicle and evaluated by simulation 

[18] and experiment [19]. The results demonstrated that type-2 

FLC can be widely adopted for performing energy 

management. In the work of Kheirandish et al. [20], a dynamic 

fuzzy cognitive network is proposed to describe the behaviour 

of a fuel cell electric bicycle. However, such FL-based systems 

are established based on human cognition, and their 

performance is largely limited by empirical knowledge. Tian et 

al. [21] propose data-driven hierarchical control for online HEV 

energy management, in which driving data is used to train 

membership functions in adaptive neuro-fuzzy inference 

systems working as an online energy management system. In 

the works of Zhou et al. [23] and Collotta et al. [24], the FL-

based control systems are optimized offline using genetic 

algorithms and particle swarm optimization. These proposed 

systems still have potential to upgrade to an online version with 

dynamic fuzzy parameter adaption  [24]. 

    Optimization-based control approaches rely on analytical or 

numerical optimization algorithms. Kolmanovsky [25] 

describes the development and experimental implementation of 

game theory for HEV energy management. Game theory, 

however, requires deep knowledge of the system elements and 

consequently cannot be extrapolated to other vehicle types [26]. 

In the work of Liu et al. [27], reinforcement learning techniques 

are applied to hybrid electric tracked vehicles, wherein a 

transition probability matrix is learned from a specific driving 

schedule of the vehicle. The upgrade version, deep 

reinforcement learning [28], has been employed by Wu et al. 

[29] to develop a continuous control strategy for hybrid electric 

buses. However, feasibility and stability of implementing such 

model-free algorithms into an actual vehicle controller needs to 

be further investigated and validated. In the research of Ahmadi 

et al. [30], a genetic algorithm is invoked to accurately adjust 

control parameters of an FLC, and its result shows that fuel 

economy and vehicle performance are significantly improved. 

Dynamic programming as a representative of global 

optimization algorithms usually depends on a model to provide 

a provably optimal control strategy by searching all state and 

control grids exhaustively [9], [31]. However, dynamic 

programming and genetic algorithms are not applicable to real-

time problems since precise future driving information is 

seldom available in practice [32]. 

In order to break through these research limitations, this 

paper proposes a novel back-to-back competitive learning 

mechanism (BCLM) for synergistic promotion of robustness 

and efficiency of HEV systems. Relying on parallel computing 

techniques, this mechanism continuously selects from two 

competing FLCs that form part of the supervisory control 

system, during real-world driving. To the best of the authors’ 

knowledge, there are no vehicular applications involved such a 

parallel control system in the literature. The proposed 

mechanism is expected to break through the upper limit of 

heuristic system decision and compensates the lower limit of 

optimization-based system decision then make two systems 

complement each other. Firstly, the configuration of the HEV 

model and its FL-based supervisory control system are analysed 

and discussed. Secondly, the chaos-enhanced accelerated 

particle swarm optimization (CAPSO) algorithm is developed 

for back-to-back learning of the membership function’s scalar 

parameters. Thirdly, based on fuel-prioritized cost functions, 

the regulation of competitive assessment is designed to select a 

controller with better fuel economy. Fourthly, the competitive 

performance of the CAPSO algorithm is contrasted with other 

swarm-based methods, and the BCLM-driven control system is 

validated by a hardware-in-the-loop (HiL) test. Finally, the 

length of observation windows for learning from the backward 

horizon is studied in this paper and its influence on fuel 

consumption is investigated. 

    The configuration of the HEV is presented and its FL-based 

control system is discussed in section II. The concept of the 

proposed BCLM is elaborated in section III and its two modules 

of back-to-back learning and competitive assessment are 

explained. Section IV describes the generation of test cycles, 

the human drivers who produced them, and the HiL 

experimental platform. Section V carries out a comparative 

study of different control policies, including their 

computational efficiency, for HEV energy management. 

Conclusions are summarized in section VI. 

II. PROPOSED SOLUTION 

A. HEV Configuration 

The series-parallel HEV powertrain, which is supervised by 

the vehicle controller, comprises a gasoline engine, an 

integrated starter-generator (ISG), a trans-motor and is powered 

by a combination of fuel and electricity as shown in Fig. 1. The 

ICE’s drive (post transmission) and the trans-motor’s drive are 

combined by coupling them in series so that their speeds are 

added (forcing equal torques), although as set out in [33] they 

can be decoupled via the operation of the clutch and the locks. 

The peak power of the trans-motor is 𝑃𝑚𝑜𝑡∗ = 75 kW  with 

270 Nm  maximum torque. The peak power of the gasoline 

engine is 𝑃𝐼𝐶𝐸∗ = 63 kW with 140 Nm peak torque. The peak 

power of the ISG is 𝑃𝐼𝑆𝐺∗ = 32 kW.  The vehicle data, 

representing a medium passenger car, was sourced from 

ADVISOR software. The main parameters of the HEV model 

are listed in Table 1. 

 
Fig. 1. The architecture of series-parallel HEV powertrain 
 

TABLE 1 
MAIN PARAMETERS OF THE HEV MODEL 

Symbol Parameters Values 

𝑀 Gross mass 1,500 kg 
𝐴𝑓 Windward area 2 m2 

𝑅𝑤ℎ Tire rolling radius 0.3 m 
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𝐶𝑑 Air drag coefficient 0.3 

𝑖0 Differential ratio 3.75 

𝑖𝑔 Transmission ratio  3.55/1.96/1.30/0.89/0.71 

B. FL-based Supervisory Control System 

In order to rationally assign the vehicle’s power demand, 𝑃𝑑, 

which has a corresponding torque demand (measured at the 

reducer input), 𝑇𝑑, to the three machines, it is paired with the 

state of charge, 𝑆𝑜𝐶, of the battery pack (BP) to make up the 

input to the FL-based supervisory control system that chooses 

between the two modes of pure electric traction, 𝑀𝑜𝑑𝑒𝐸𝑉, and 

FL-based traction, 𝑀𝑜𝑑𝑒𝐹𝐿𝐶 , and is expressed as follows: 

(𝑇𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐸𝑉(𝑃𝑑 , 𝑆𝑜𝐶), 𝑆𝑜𝐶 > 0.5,

(𝑛𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐹𝐿𝐶(𝑃𝑑 , 𝑆𝑜𝐶), 𝑆𝑜𝐶 ≤ 0.5,
}  (1) 

where: 𝑇𝑚𝑜𝑡  is the trans-motor torque; 𝑛𝑚𝑜𝑡 is the trans-motor 

speed; 𝑃𝑖𝑐𝑒  is the ICE power; and 𝑃𝑔𝑒𝑛 is the ISG power. 

The electric traction system has the capacity to completely 

satisfy the torque demand, enabling deactivation of the ICE and 

the ISG in the electric mode. The power distribution in this state 

is therefore given by 

(𝑇𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = (𝑇𝑑 , 0, 0).                          (2) 

 

In the fuzzy logic control mode, FLCs are used to perform 

energy management. This structure supplies power to propel the 

vehicle while maintaining the BP’s SoC between safe limits. 

The design of the FLCs is described below. 

1) Fuzzification 
The fuzzy sets with linguistic terms are regulated with 

standard triangular membership functions (MFs), where the 

degree of membership is expressed as a function of normalized 

values in the interval, [0,1]. The values of the MFs in the FLC 

are set at 3 levels: Low, Medium, and High. These functions 

fuzzify the crisp inputs. 

    The power demand may take both positive and negative 

values and is bounded by the maximum (accelerative) power, 

𝑃𝑑
+, and the minimum (powertrain braking) power, 𝑃𝑑

−, which 

is negative. The “knee point” of the corresponding input, 

𝐼𝑛𝑝𝑢𝑡1, is not set at the midpoint between the power demand 

boundaries: it is set via  

𝐼𝑛𝑝𝑢𝑡1 =

{
 
 

 
 1

2
+
𝑃𝑑
𝑃𝑑
+ ∙
1

2
, 𝑃𝑑 ≥ 0.

1

2
−
𝑃𝑑
𝑃𝑑
− ∙
1

2
, 𝑃𝑑 < 0.

                      (3) 

 

Sensitivity homogenization is used in this paper to correct the 

correspondence between the value of the power demand and its 

rule of inference. However, since the FLC is not used in the EV 

mode, the BP’s SoC also needs to be sensitively scaled to satisfy 

the boundaries of the 𝑀𝑜𝑑𝑒𝐹𝐿𝐶  working area. They are 

formulated mathematically through the relationship: 

𝐼𝑛𝑝𝑢𝑡2 =
𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑚𝑖𝑛

𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑚𝑖𝑛
                       (4) 

 

where 𝑆𝑜𝐶𝑚𝑖𝑛 = 0.2 and 𝑆𝑜𝐶𝑚𝑎𝑥 = 0.5 are the value of SoC 

boundary positions when the FLC is engaged. 

2) Inference 
    The rule base, as shown in Table 2, determines the control 

outputs C and D with the inputs states A and B, by applying a 

‘if A and B then C and D’ policy. A mathematic expression of 

the ‘if A and B then C and D’ policy is: 
[𝐶 𝐷] = (𝐴 × 𝐵) ∘ 𝑅                            (5) 

 

where: ‘A’ denotes the fuzzy set of power demand; ‘B’ denotes 

the fuzzy set of SoC value; ‘C’ denotes the crisp value of the 

normalized motor rotational speed; ‘D’ denotes the crisp value 

of the normalized ISG power; and ‘R’ denotes the fuzzy 

relationship matrix indexed by the cross-product of ‘A’ and ‘B’. 

The reasoning process is based on Eq. (5) with the Sugeno fuzzy 

set as described in the following table: 

 

 
 

TABLE 2 
FUZZY LOGIC BASED DECISION SYSTEM INFERENCE 

Rule Demand 

power  

SoC 

value 

Motor speed 

Ref.  

ISG power 

Ref. 

1 Low Low High High 
2 Medium  Low Low High 

3 High Low Low High 

4 Low Medium High Medium 
5 Medium Medium Medium Medium 

6 High Medium Low Medium 
7 Low High High Low 

8 Medium High High Low 

9 High High Medium Low 

 
3) Defuzzification 
    In inference mechanism, the implied fuzzy sets are produced 

using the max–min composition. In defuzzification, these 

implied fuzzy sets are combined to provide a crisp value of 

controller outputs. There are several approaches to accomplish 

the defuzzification process and here the centroid of area method 

has been adopted because it is relatively simple and has good 

information preserving properties [6]. The final output is then 

expressed as the mean of the individual membership values 

weighted by the corresponding centroids as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡1 =
∑ 𝑂𝑢𝑡1𝑖 ∙ 𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

,

𝑂𝑢𝑡𝑝𝑢𝑡2 =
∑ 𝑂𝑢𝑡2𝑖 ∙ 𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

,
}
 
 

 
 

                     (6) 

where, 𝑂𝑢𝑡𝑖 is the output of rule base i, and 𝑂𝑖  is the centroid 

of the 𝑖th output MF. Based on Eq. (6), the rotational speed of 

the traction motor and the power ref. of the ISG can be 

calculated separately. From these outputs, the power 

distribution under the FLC mode is calculated as follows: 
𝑛𝑚𝑜𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡1 ∙ 𝑛𝑚𝑜𝑡

∗ ,
𝑃𝑔𝑒𝑛 = 𝑂𝑢𝑡𝑝𝑢𝑡2 ∙ 𝑃𝑔𝑒𝑛

∗ ,

𝑇𝑚𝑜𝑡 = 𝑇𝑑 ,

𝑃𝑖𝑐𝑒 = {
𝑃𝑑 − 𝑛𝑚𝑜𝑡 ∙ 𝑇𝑚𝑜𝑡 − 𝑃𝑔𝑒𝑛 , 𝑃𝑑 ≥ 0,

−𝑃𝑔𝑒𝑛 , 𝑃𝑑 < 0,}
 
 

 
 

          (7) 

where, 𝑛𝑚𝑜𝑡
∗  is the maximum speed of the traction motor, and 

𝑃𝑔𝑒𝑛
∗  is the maximum power of the ISG. 

III. BACK-TO-BACK COMPETITIVE LEARNING MECHANISM 

The back-to-back competitive learning mechanism (BCLM) 
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that is proposed in this research is shown in Fig. 2. The concept 

of the BCLM comprises two main modules: back-to-back 

learning; and competitive assessment. In the back-to-back 

learning module, two FLCs with the same structure were 

adopted. The first FLC is trained by an intelligent swarm 

optimizer, while the second serves the supervisory control 

system. In the competitive assessment module, there is an 

evaluator that competitively assesses the two controllers, and its 

assessment result decides both the control assignment to the 

supervisory controller system and the target of the optimizer. 

During the real-world driving, if better MF scalar parameters in 

the controller being trained are detected, both selectors (shown 

on Fig. 2) will be switched to their opposite side in order to 

concurrently exchange the current tasks of the two controllers. 

The controller being trained will take over the supervisory 

control system and the execution controller will hand over the 

optimization task. The main advantage of this parallel control 

structure is that it can ensure strong robustness and high 

efficiency of the supervisory control system whether before or 

after each update takes effect. 

 
Fig. 2. Concept of back-to-back competitive learning mechanism  

A. CAPSO-driven Back-to-back Learning 

1) Search area and constraints 
According to structure of the FLC, the boundary condition of 

the inputs and outputs are fixed at predetermined intervals. 

There is also no change to the fuzzy rules and the triangular 

MFs. The intelligent swarm optimizer is applied to each output. 

Here, the search variables in the multi-objective optimization 

problem are labelled in bold type shown in Fig. 3. 

 
Fig. 3. Representation of triangular MFs 
 

    To simplify the implementation of optimization algorithms it 

is assumed here that the parameters 𝑎𝑀, 𝑏𝐿, 𝑎𝐻, 𝑐𝐿, 𝑏𝐻, and 𝑐𝑀 

are fixed for each input and output. In this way, 24 scalar 

parameters of the MFs need to be optimized, and the structure 

of the generic particle for each input and output is given by 
|𝑎𝑀 𝑏𝐿 𝑎𝐻 𝑐𝐿 𝑏𝐻 𝑐𝑀|                      (8) 

    Considering the structure of the FLC shown in Fig. 2, it is 

supposed that the six parameters to optimize each input and 

output must obey the following order criteria: 
𝑎𝐿 < 𝑎𝑀 < 𝑎𝐻 ,
𝑎𝐿 < 𝑎𝐻 < 𝑏𝑀 ,
𝑏𝑀 < 𝑏𝐻 < 𝑐𝐻 ,

𝑎𝐿 < 𝑏𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝑀 < 𝑐𝐻 .

}                  (9) 

    For each iteration of algorithm optimization, it is necessary 

to check the constraints in Eq. (9). 

2) Cost functions and CAPSO algorithm 
    This paper considers two principal targets, the first is the 

overall liquid fuel consumption, and the second is the BP’s SoC 

at the end of test. These cost functions are defined by: 

𝐽1 =
1

𝜌𝑔𝑎𝑠𝑜
∫�̇�𝑓(𝑡)𝑑𝑡

𝐽2 =
1

𝑆𝑜𝐶(𝑡𝑒𝑛𝑑) }
 
 

 
 

                         (10) 

where, 𝜌𝑔𝑎𝑠𝑜  is the density of gasoline (0.77 g/ml); �̇�𝑓 is the 

fuel consumption mass rate (g/s); and  𝑡𝑒𝑛𝑑 is the final time of 

the driving cycle. 

    To convert the multi-objective optimization problem into a 

single objective optimization enabling the swarm-based 

algorithm, in the present work, the multi-objective optimization 

is formulated by using the weighted sum method [34]. 

Therefore, the optimal energy-flow control problem with 

constrains is expressed as: minimize the overall cost function, 

𝐽, given by 

min 𝐽 = 𝑤 ∙
𝐽1
𝐽1
∗ + (1 − 𝑤) ∙

𝐽2
𝐽2
∗                   (11) 

𝑠. 𝑡.

{
 
 

 
 
𝑆𝑜𝐶(𝑘), 0.8 ≥ 𝑆𝑜𝐶(𝑘) ≥ 0.2

𝑛𝑚𝑜𝑡(𝑘),
𝑇𝑚𝑜𝑡(𝑘),

𝑛𝑚𝑜𝑡∗ ≥ 𝑛𝑚𝑜𝑡(𝑘) ≥ 0
𝑇𝑚𝑜𝑡∗ ≥ 𝑇𝑚𝑜𝑡(𝑘) ≥ −𝑇𝑚𝑜𝑡∗

𝑃𝐼𝐶𝐸(𝑘),

𝑃𝐼𝑆𝐺(𝑘),

𝑃𝐼𝐶𝐸∗ ≥ 𝑃𝐼𝐶𝐸(𝑘) ≥ 0

0 ≥ 𝑃𝐼𝑆𝐺(𝑘) ≥ −𝑃𝐼𝑆𝐺∗

 

 

In Eq. (11), 𝑤  is a weight coefficient; 𝐽1
∗  and 𝐽2

∗  are scaling 

constants for the cost functions,  𝐽1  and 𝐽2 . The SoC 

contribution to the overall cost function ensures service life of 

the battery. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

    The CAPSO algorithm, which is an upgraded version of the 

accelerated particle swarm optimization (APSO) algorithm, is a 

computational algorithm inspired by animal swarms such as ant 

colonies, bird flocks, fish schools, and other biological 

phenomena [35]. The standard APSO usually keeps the 

attraction parameters as a fixed value [36]; however, the 

solutions still change slightly as the optima are approached. In 

the chaos-enhanced algorithm, a dynamic attraction parameter 

in each iteration is used to create some ‘accidents’, which help 

the particles to jump out of any convergence to a local optimum 

proved by [37], [38]. For the CAPSO, the particle’s position 

updates with the following equation: 

𝑥(𝑖+1,𝑗) = (1 − 𝛽) ∙ 𝑥(𝑖,𝑗) + 𝛽 ∙ 𝑔(𝑖,∗) + 𝛼(𝑖) ∙ 𝑟(𝑖,𝑗)    (12) 

    In Eq. (12), 𝑔(𝑖,∗) is the best position in the 𝑖th iteration, 𝛽 is 

the attraction parameter of CAPSO, 𝛼  is the convergence 

parameters of CAPSO, and 𝑟  is a 𝑈[0, 1]  random variable. 

Here, 𝛼 and 𝛽 are updated in each iteration via: 

𝛼(𝑖) = 𝛼(0) ∙ 𝛾𝑖,

𝛽(𝑖+1) = 𝑎 ∙ 𝛽(𝑖) ∙ (1 − 𝛽(𝑖)),
}                      (13) 

where, the settings, 𝛼(0) = 0.9 and 𝛾 = 0.95, were chosen; and 

the attraction parameter is mapped by the logistic map [35], in 

which the initial values 𝛽(1) = 0.6 and 𝑎 = 4 are used. When 

𝛽 → 0 in any step, the algorithm may lead to slow changes. 

After the convergence has been achieved, the algorithm ends 

the main iteration and outputs the best position at the end 

iteration 𝑔max _𝑖𝑡𝑒𝑟,∗ as the global optimal solution. 

B. Fuel-prioritized Competitive Assessment 

1) Observation window for assessment 
To evaluate the fuel-saving performance for both FLCs with 

back-to-back learning, a short-term moving window 𝐻  is 

introduced. The observation window ensures that the 

competition between both controllers is fair and that the 

reference driving profiles for CAPSO-driven back-to-back 

learning are equal. 

Short-term speed and acceleration profiles are expected to be 

strongly influenced by variables with fast dynamics such as 

traffic congestion and driving style. This paper examines the 

impact of the length of observation windows in the fuel-

prioritized competitive assessment on the vehicle’s fuel 

consumption. Different lengths of short-term windows are 

studied in the control system driven by the proposed 

mechanism. 

2) Competitive assessment procedure 
Figure 4 sets out the competitive assessment procedure for 

electing the controller with the better fuel-saving performance. 

In each time-step, the optimizer calls the CAPSO algorithm to 

search the global best solution for the controller being trained 

based on the short-term driving profile restricted by the 

observation window. The best scalar parameters for the MFs are 

used in the controller being trained then the evaluator calculates 

the fuel-saving performance of both controllers. 

 
Fig. 4. Flowchart of competitive assessment procedure 
 

    Considering the impact of length of observation windows on 

the vehicle’s fuel consumption, the cost function from Eq. (11) 

for each controller is modified as follows: 

𝑐𝑠𝑛𝑒𝑥𝑒 = 𝑤 ∙
𝐽1
′

𝐻 ∙ 𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′

𝐻 ∙ 𝐽2
∗)

2

,

𝑐𝑠𝑛𝑜𝑝𝑡 = 𝑤 ∙
𝐽1
′′

𝐻 ∙ 𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′′

𝐻 ∙ 𝐽2
∗)

2

,
}
 
 

 
 

          (14) 

where, 𝐻  is length of the observation window; 𝑐𝑠𝑛𝑒𝑥𝑒  and 

𝑐𝑠𝑛𝑜𝑝𝑡  are, respectively, the cost functions of the execution 

controller and the controller being trained; 𝐽1
′  and 𝐽2

′  are the 

evaluation objects for the execution controller; and 𝐽1
′′ and 𝐽2

′′ 

are the evaluation objects for the controller being trained. It 

should be noted that the introduced observation window would 

increase the sensitivity to the change of 𝐽1 and reduces that for 

𝐽2. To ensure sufficient service life of the battery, the order of 

penalty 𝐽2 should be increased when SoC value is low. Fig. 5 

investigates the average value of cost function with different 

orders of penalty during real world driving with the initial SoC 

value of 0.2. The cost functions of both objectives are scaled to 

the same range of [0,1]  with 𝑤  fixed at 0.5 in Eq. (14). 

Compared to other investigated orders, the quadratic penalty 𝐽2 

gives the only positive differential related to 𝐽1. 

 
Fig. 5. Statistical results of cost function with different orders’ penalty 

     

    In real time driving, cost functions of the execution controller 

are considered as a learning target to motivate another. At each 
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time-step, the BCLM will calculate the cost functions of both 

controllers. If the current state meets the following conditions: 
𝑐𝑠𝑛𝑜𝑝𝑡(𝑘) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘) < 0, and

𝑐𝑠𝑛𝑜𝑝𝑡(𝑘) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘)

𝑐𝑠𝑛𝑜𝑝𝑡(𝑘 − 1) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘 − 1)
< 1.

}              (15) 

where, errors and its derivatives between two cost function 

values as the main factors in this paper affect the final decision. 
If 𝑐𝑠𝑛𝑜𝑝𝑡(𝑘 − 1) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘 − 1) = 0 , then only the first 

condition of Eq. (15) needs to be satisfied and the proposed 

mechanism takes action to switch both selectors to the other 

side, exchanging the current tasks and roles between the two 

controllers. Otherwise, the two controllers will continue to 

operate their current tasks and the mechanism will explore the 

MF scalar parameters searching for better fuel-saving 

performance for the next time step. 

IV. TESTING AND VALIDATION SET-UP 

A. Real-world Driving Cycles 

As the goal of this work is to develop a supervisory control 

system that learns and adapts to human driving style the 

previously discussed HEV model was implemented in a driving 

simulator. Five human drivers were invited as experimental 

subjects to participate in 8000 seconds of real-world driving. 

The road map model used was a mixture of highway and local 

roads with traffic, multiple stop signs, traffic lights, and speed 

limit changes: it was provided by IPG CarMaker and is shown 

in Fig. 6. The human driver was instructed to follow the speed 

limits, stop signs, traffic lights, and other traffic regulations. 

The specification of the real-world driving cycle is listed in 

Table 3. 

 
Fig. 6. Data collection of driving profiles 
 

TABLE 3  
SPECIFICATION OF REAL-WORLD DRIVING CYCLE 

Human 

driver 

Traffic 

type 

Driving 

time(s) 

Driving 

distance(km) 

A Urban  1880 11.6 
B Urban  1590 17.8 

C Urban  940 8.1 

D Highway  1350 22.5 
E Highway 2240 40.0 

B. Hardware-in-the-loop Experiment 

The work was carried out using the industry standard real-

time testing equipment sourced from the ETAS Group [39]. The 

configuration of the HiL testing system is shown in Fig. 7. 

Firstly, the HEV model and its FL-based control system were 

compiled as MATLAB® code. Secondly, through the host PC, 

they were imported into the integration platform, which is the 

user interface through which the HiL system is configured, in 

preparation for creating signal paths between the models and 

the hardware, and generating code for the LABCAR simulation 

target LABCAR-RTPC. Thirdly, the whole vehicle system was 

downloaded to the DESK-LABCAR using the ETAS 

experimental environment (EE) via Ethernet protocol. In the 

experiment, vehicle performance was entirely supervised by the 

ETAS EE in the host PC. From the recorded results, the average 

computational time for CAPSO algorithm to complete an 

iterative convergence is 0.225 seconds so the computing 

resource still has a surplus for the current version given the fact 

that its capacity will continue to increase. As indicated by 

Moore's Law, it is anticipated the BCLM can perform on the 

actual on-board controller of HEVs for real-time energy saving. 

 
Fig. 7. Hardware-in-the-loop testing system 

V. RESULTS AND DISCUSSION 

A. Back-to-back Learning Performance 

In this section, the evaluation of the back-to-back learning is 

presented in two parts as a performance comparison of 

optimization algorithms and the MF evolution process. Fig. 8 

shows the cost function values achieved by the different swarm-

based optimization algorithms averaged over 30 runs for 15 

iterations. 

 
Fig. 8. Performance comparison of optimization algorithms 

 

In each run: 20 particles for each variable in the swarm-based 

algorithms were initialized randomly; the weight coefficient of 

the cost function was set to w =  0.7 ; and the termination 

criterion was 15 iterations. From the results, all swarm-based 

algorithms realize fitness function convergence within 15 

iterations. Especially at the fifth iteration, the CAPSO 

algorithm has reached the best global solutions while others are 

still in convergence. Therefore, the CAPSO algorithm enhanced 

by the chaos mapping strategy is more ambitious in expanding 

the exploration area for the global solution search. 
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Fig.9. Real-time performance of two FLCs boosted by the BCLM 
 

Figure 9 shows a fragment of real-time performance of two 

FLCs, wherein the green dotted line indicates the timing of two 

controllers’ work exchange and the black circle indicates the 

fitness in the execution controller of HEV systems. From the 

results of the top subfigure, two controllers are alternately 

updated by the BCLM and their work exchanges frequently at 

protruding spikes, which are caused by the dramatic changing 

in human driving behaviours. Although the working time and 

training time between two controllers cannot exactly equal in 

each optimization fragment, the BCLM can schedule them in 

relative balance to make both controllers have fair workloads 

(50.6% and 49.4%) during the long-term driving. The bottom 

subfigure dissects output surface evolution process between 

two FLCs at the 2889th seconds. It can be seen that the BCLM 

will abandon a relatively smooth output surface used for most 

driving scenarios and replace to an aggressive one for targeting 

higher fuel economy.   

B. Vehicle Performance Comparison 

In Fig. 10, the FL-based supervisory control system with the 

proposed mechanism is further compared with the conventional 

FL-based one during real-world driving. The fuel consumption 

under the FL-based control system with the proposed 

mechanism is significantly lower than the conventional one, 

while maintaining the higher SoC value. Boosted by the BCLM, 

the ICE initially tends to compensate for the total power 

demand to avoid the potential danger of a rapid drop in the BP’s 

SoC. The ISG maintains a higher workload compared to that 

supervised by the conventional FL-based control system. 

 
Fig. 10. Vehicle performance comparisons at initial SoC=0.4 
 

The vehicle performance with different control strategies is 

summarized in Table 4. An analogous result can also be 

observed for initial SoCs of 0.5 and 0.3. The classic rule-based 

control strategies of charge depleting (CD) and charge 

sustaining (CS) were considered and used as a baseline for 

comparison with the FL-based strategies. As the decrease of 

initial SoC values, the space for freely distributing energy is 

narrowed. Compared to the CD/CS strategy, the static FL-based 

system after offline optimization can adaptively adjust energy 

distribution in the narrow SoC range but its improvement is not 

significant. Relatively, the dynamic FL-based system with the 

help of the BCLM always selects a controller with better cost-

function value in real time to counter driving scenario change. 

The result shows the improved system has the lowest fuel 

consumption while maintaining the highest SoC value, 

compared to the performance of others. 

 
TABLE 4  

THE VEHICLE PERFORMANCE WITH DIFFERENT CONTROL STRATEGIES 

Control strategy Initial SoC Final 

SoC 

Used Fuel 

(L) 

Saving  

(%) 
CD/CS 0.5 0.353 6.41 - 

Static FLC 0.5 0.379 6.24 2.7% 
Dynamic FLC 0.5 0.408 5.44 15.1% 

CD/CS 0.4 0.351 6.63  

Static FLC 0.4 0.379 6.48 2.3% 

Dynamic FLC 0.4 0.412 5.88 11.3% 

CD/CS 0.3 0.352 6.89 - 

Static FLC 0.3 0.379 6.75 2.0% 

Dynamic FLC 0.3 0.408 6.26 9.14% 

C. Horizon Sensitivity Analysis 

As discussed earlier, the observation window was introduced 

into the BCLM to regulate the learning range of the optimizer. 

In this section, the impact of the length of the observation 
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window on the input-output signals of the controller is 

investigated, following which the sensitivity of the length of the 

observation window to the average applicable time for one set 

of MFs is analysed.  

 
Fig. 11. The signal comparison over observation window lengths 
 

Fig. 11 presents the signal comparison with different lengths 

of the observation window (𝐻 = 1 s/10 s/50 s ) when the 

initial SoC=0.5. As the length of the observation window 

increases, the early-cycle power provided by the motor rises, 

and the number of occurrences of peak trans-motor rotational 

speed increases gradually. For the improved control system, the 

aggressive braking power can be better absorbed when the 

observation window, 𝐻, is 50 s than when it is 1 s or 10 s. This 

leads to the signal of SoC value dropping fast at an early stage, 

after which the signal is stable within a small range of 

oscillation. 

 
Fig. 12. Computational efficiency over backward horizons 
 

    Figure 12 shows the average application time and the fuel 

consumption over backward horizons, wherein the tests with 

the initial SoC=0.4 in each scenario were each repeated 10 

times. As the length of observation windows shorten (< 5 s), 
the rules in the fuzzy inference to be called lessen, and involved 

scalar parameters of corresponding MFs to be optimized are 

relatively limited and fixed. Therefore, optimized scalar 

parameters have longer average application time. The average 

application time troughs at 6.60 seconds at which the length of 

observation windows is 5 seconds. After that, as the length of 

observation windows increases (> 5 s), the rules in the fuzzy 

inference to be called increases and even some single rules are 

called multiple times. It results in that involved scalar 

parameters of corresponding MFs to be optimized need to 

balance under multiple scenarios. Therefore, optimized scalar 

parameters with stronger adaptability can handle more driving 

scenarios thereby average application time is longer. The lowest 

fuel consumption (on the second y-axis) occurs when the length 

of observation windows is 2 seconds. As the most suitable 

observation duration of driving events, this result is consistent 

with the view of Clara Marina and Cao [40]. After which the 

fuel consumption rises rapidly to 6.03 L (𝑎𝑡 𝐻 = 20 s)  then 

remains at a high level on further increase of 𝐻. 

VI. CONCLUSIONS 

This paper proposes a back-to-back competitive learning 

mechanism for a FL-based supervisory control system to 

improve the fuel-saving efficiency of HEV energy 

management. The back-to-back learning performance is 

evaluated and compared with that optimized by other swarm-

based algorithms. The contributions drawn from the 

investigation are as follows:  

1) The proposed mechanism has demonstrated abilities to 

adapt to the change of driving behaviours and to ensure the 

effectiveness of the FL-based control system by real-time 

MF parameter updates (957 times) in the case study. 

2) Under different initial SoC conditions (𝑆𝑜𝐶 = 0.3/0.4/

0.5), the FL-based control system driven by the proposed 

mechanism can significantly improve the fuel consumption 

when compared to CD/CS and conventional FL-based 

control strategies. 

3) The improved FL-based control system reduces fuel 

consumption over the testing real-world cycle, at least 9% 

from CD/CS-based and at least 7% from conventional FL-

based systems. 

4) Comparing the various size of observation windows from 

1 to 50 s, the 2-second observation window appears to be 

the best for learning from backward horizons achieving the 

lowest fuel consumption of 5.88 litres/100 km. 
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