UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Evaluation of the Peng—Robinson and the Cubic-
Plus-Association equations of state in modeling
VLE of carboxylic acids with water

Roman Ramirez, Luis; Leeke, Gary

DOI:
10.1007/s10765-020-02643-6

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Roman Ramirez, L & Leeke, G 2020, 'Evaluation of the Peng—Robinson and the Cubic-Plus-Association
equations of state in modeling VLE of carboxylic acids with water', International Journal of Thermophysics, vol.
41, no. 5, 61. https://doi.org/10.1007/s10765-020-02643-6

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
» Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy . . _ o . ) .
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 14. Jun. 2020


https://doi.org/10.1007/s10765-020-02643-6
https://doi.org/10.1007/s10765-020-02643-6
https://research.birmingham.ac.uk/portal/en/publications/evaluation-of-the-pengrobinson-and-the-cubicplusassociation-equations-of-state-in-modeling-vle-of-carboxylic-acids-with-water(f4ad31e8-74d5-415a-8a4d-6f1b3c2dc0b5).html

International Journal of Thermophysics (2020) 41:61
https://doi.org/10.1007/s10765-020-02643-6

®

Check for
updates

Evaluation of the Peng—Robinson
and the Cubic-Plus-Association Equations of State
in Modeling VLE of Carboxylic Acids with Water

Luis A. Roman-Ramirez' - Gary A. Leeke'

Received: 23 January 2020 / Accepted: 3 March 2020 / Published online: 16 March 2020
© The Author(s) 2020

Abstract

The performance of the classic Peng—Robinson (PR) and the modern Cubic-Plus-
Association (CPA) equations of state were evaluated in modeling isobaric and iso-
thermal vapor—liquid equilibria (VLE) of binary mixtures of carboxylic acids (for-
mic, acetic, propanoic or butanoic)+ water. Two functionalities of the alpha term
were tested in PR, the original term proposed by Soave and the Matthias—Copeman
term specially developed for modeling polar compounds. Within the Soave function-
ality, two generalized forms of the acentric factor were studied, the original general
form and the Robinson and Peng modification for values of the acentric factor larger
than 0.491. In addition, the case of PR with fitted parameters from saturated proper-
ties (as commonly obtained for modern equations of state) was also evaluated. VLE
calculations without the use of a binary interaction parameter are in general more
accurate with the modern CPA due to the association term; however, when a binary
interaction parameter is used, the performance of the PR versions studied here are
on average similar to those of CPA, and in some cases even superior. The origi-
nal alpha function used in the PR equation and the original generalized form of the
acentric factor are the best options for modeling organic acids + water systems when
the binary interaction parameter is available. Temperature-dependent binary interac-
tion parameters are provided as a database in modeling these complex systems.

Keywords Carboxylic acids - CPA - Peng—Robinson - Thermodynamics - VLE -
Water
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PR Peng—Robinson equation of state

SAFT Statistical Associating Fluid Theory
SRK  Soave-Redlich—-Kwong equation of state
VLE  Vapor-liquid equilibrium

List of Symbols
a Attraction parameter (MPa-L?-mol~?)
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b Repulsive parameter (L-mol™)
¢ Characteristic parameter in CPA (-)
g Radial distribution function (-)
k; Binary interaction parameter (—)
MC Mathias—Copeman parameter (—)
N Number of data points
P Bubble pressure (MPa)
Pc Critical pressure (MPa)
P, Vapor pressure (MPa)
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Tc Critical temperature (K)

; Reduced temperature (-)
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a Alpha function (-)
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A Average deviation (—)
A%8 Association strength (L-mol™")
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0] Acentric factor (-)
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1 Introduction

Carboxylic acids are important commodity chemicals due to their versatile applica-
tions. They are used in polymer synthesis, as food additives, pharmaceutical inter-
mediates, paint and coating additives, plasticizers, among many other applications
[1-4]. Many of the processes involving carboxylic acids will likely have the pres-
ence of water at some stage. It is therefore of interest for engineering design to have
a reliable thermodynamic model applicable to a wide range of conditions of temper-
ature, pressure and composition, and with the lowest computational cost. Thermo-
dynamic modeling of carboxylic acids with water is nevertheless challenging since
the systems exhibit strong non-ideal behavior due the presence of self- and cross-
association as well as polar interactions [1-6].

Classic cubic Equations of State (EoS) such as Soave—Redlich—-Kwong (SRK) [7]
and Peng—Robinson (PR) [8] have been used for decades in the chemical industry
due to their reliability and simple mathematical form, characteristics that make them
easy to implement and to modify [9, 10]. In addition, the method to obtain their pure
component parameters is universal, requiring only inputs of the experimental critical
temperature (7,), critical pressure (P,) and acentric factor (w) [11]. If experimental
values of 7, P, and w are not available, these can be estimated by group-contribu-
tion methods [12]. For the case of mixtures, the binary interaction parameter can
also be estimated from group-contribution methods [13, 14]. The disadvantages of
the cubic equations are, however, well known, especially when modeling complex
mixtures [9], and although PR is in general accepted as an improvement over SRK,
several modifications have been made to the equation to enhance its performance
[10]. A first approach to achieve this is to modify the temperature-dependent alpha
function in the attractive term to obtain better predictions of saturated pressures,
since it is expected that by doing this, the properties of mixtures are consequently
improved. The Mathias—Copeman (MC) alpha function [15], specifically developed
for PR, is one of the most popular functions found in the literature aimed to enhance
the modeling of highly polar compounds [6]. Young et al. [16] have shown in their
comparison of 20 alpha functions that MC is in fact one of the best for modeling
pure component properties (vapor pressures) of water and carboxylic acids. Nev-
ertheless, there are no studies comparing the performance of the MC function with
that of the original alpha function for modeling mixtures of water and carboxylic
acids. It is important to point out that although a common selection, the Soave [7]
and the MC alpha functions do not satisfy the consistency test for alpha functions
proposed by Le Guennec [6, 17-19], this is a requirement to get accurate and physi-
cally meaningful results, particularly in the supercritical region.

It is well established that the applicability of cubic EoS to complex mixtures
is limited since they cannot handle complex intermolecular interactions explicitly
due to their empirical nature. For this reason, in more recent years, theoretically
based EoS such as the Statistical Associating Fluid Theory (SAFT), developed
from statistical mechanical theories, have been formulated to model interactions
explicitly such as strong association (hydrogen bonding). The model has been the
subject of different modifications to increase the theory and applicability giving
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rise to the SAFT-type family of equations [20]. An interesting development was
done by Kontogeorgis et al. [21] who combined a cubic equation (SRK) with the
association term of SAFT producing the Cubic-Plus-Association (CPA) EoS.
Despite its name, CPA is not cubic with respect to volume.

Carboxylic acid + water mixtures using CPA have been studied before but are
mainly focused on the acetic acid + water system, and for low pressures and tem-
peratures. For instance, Kontogeorgis et al. [22] modeled the acetic acid + water
system at sub-atmospheric pressure. Later, and in order to improve the represen-
tation of this system, Muro-Suné et al. [23] introduced the Huron—Vidal mix-
ing rule coupled with an NRTL expression. The model was further studied by
Breil et al. [24] and Tsivintzelis and Kontogeorgis [25], who correlated enthalp-
ies of vaporization and compressibility factors of pure acetic acid and in mix-
ture with water. Although an improvement in the phase equilibria was obtained
with the mixing rule, it was at the expense of increasing the number of adjustable
parameters. Kontogeorgis et al. [26] modeled the formic acid and the propanoic
acid + water systems at sub- and atmospheric pressures requiring a large (>2)
negative binary interaction parameter to get a satisfactory correlation. Roman-
Ramirez et al. [27] modeled the propanoic acid+ water system at temperatures
up to 483 K and pressures up to 1.9 MPa with CPA and the CR1 combining rule.
More recently, Ribeiro et al. [28] evaluated the performance of CPA in modeling
saturated pressure, density, speed of sound, second virial coefficient, compress-
ibility factor, enthalpy of vaporization, and isobaric heat capacity of acetic acid.
The authors concluded that it is not possible to obtain a single set of pure compo-
nent parameters that can describe accurately all the properties of pure acetic acid
and its phase equilibria.

In CPA, the SRK model was adopted; however, a different cubic equation, such
as PR, can also be used, as shown by Pfohl et al. [29] and Perakis et al. [30]. The lat-
ter authors modeled acetic acid 4+ water mixtures concluding that the non-association
contribution of the SAFT and simplified SAFT equations did not offer any advan-
tage over the simpler cubic EoS.

On the other hand, Voutsas et al. [31] have shown that it is possible to improve
the predictive capability of PR if instead of using experimental critical properties
and acentric factor, these are regressed from experimental vapor pressures and satu-
rated liquid density data to calculate the attractive and repulsive parameters. The
authors showed that PR with fitted parameters provided better results compared with
SAFT in modeling alkane systems.

In the present paper, a comparison of the performance of the classic PR and the
modern CPA EoS is made on their ability to predict and to correlate isobaric and iso-
thermal vapor-liquid equilibria (VLE) of binary systems of carboxylic acids (from
formic acid to butanoic acid)+ water over a wider range of temperature and pressure
conditions than previous studies. The results with the original alpha function and the
literature recommended MC function for polar compounds are compared to deter-
mine the effect of using this purpose-built function. In addition, the performance of
PR with pure component parameters fitted to saturated pressures and volumes (as com-
monly obtained for modern equations of state) is evaluated to discern whether this
approach can improve the predictive capability of PR. The CPA model as proposed by
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Kontogeorgis et al. [21] is employed in this work with both compounds modeled as 2B
based on former studies [22, 27, 28].

2 Thermodynamic Modeling

2.1 Peng-Robinson

The PR EoS in pressure-explicit form is [8]:

RT a

b= T ot r e =) (1)

where parameters a and b are computed from van der Waals one-fluid mixing rules

according to
PP @)
i

and the following combining rules:
a; = /(1 ~ ky) @

b, +b;

by=— ®)

k; in Eq. 4 is the binary interaction parameter introduced to correct the attractive
forces. Parameters a; and b; are commonly obtained from correlations of 7, P. and @
of the pure compounds:

R*T?
a; = 0.45724 : (6)
RTc,i
b; =0.07780 7 @)

c,i

The alpha function in Eq. 6 is the one proposed by Soave for the Redlich-Kwong
equation [7]:
2

o = [1+m,.<1 - Tm-)] ®)

where the reduced temperature (7,) is defined as T, = T'/T,, and m is a modified
function of w, originally expressed as
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m; = 0.37464 + 1.54220, — 0.2699w; 9)
and later modified by Robinson and Peng [32]:
m; = 0.379642 + 1.487503w; — 0.164423w’ + 0.0166660; (10)

Equation 9 is applicable when w < 0.491 while Eq. 10 when @ > 0.491. When
Eq. 9 is used in this work it is referred as PR (i.e., the original PR formulation), and
when Eq. 10 is used it is referred as PR-m. In the current study, PR-m is only applicable
to propanoic acid and butanoic acid (Table 1).

2.2 Mathias-Copeman Alpha Function

The MC function is [15]:

2 3
4 MC, (1= /T, ) + MGy (1=4/T,) +mCy,(1-/T,,) ]
1D

where MC,, MC, and MC; are compound specific adjustable parameters determined
from VLE data. The PR equation with the MC function is referred here as PR-MC.

2.3 PRFitted

The same Soave-type expression of that used in CPA [21] for the energy parameter is
used in this work but applied to PR, this is

2
a;=ag, |1+ e, (1-4/T,)] (12)
Parameters a,; and c| ;, together with b,, in Eq. 3 can be found through fitting of
experimental vapor pressure (Py) and liquid density (p,) data, as commonly done in

regressing pure component parameters in SAFT-type models. PR with fitted param-
eters is referred in this work as PR-f.

2.4 CPA
CPA can be written as [33]:
RT a L RT 1 dln (g) A)
P= - ——( 1+ 1 — X
v—b viv+b) 2 v ( vd(l/v) 2 Z (13)
where the first two terms are the SRK model to account for the physical interactions,

whereas the third term accounts for the association interactions. The site monomer
fraction (X4/) is computed from
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X4 = I
L+ 2 Ep X0 a®
v -~ j

where association strength (A%5)) is

AAB; b..gAB; ehibi
%= g(1/v)byp" '[eXP( RT ) - 1} (15)
with the radial distribution function (g):
(1fr) = ——
M =10, (16)
and
_ b 17
=7 17)

where €45 and 4 are the association energy and association volume, respectively.
For mixtures, these can be calculated from the CR1 combining rules as follows:
AB gA[Bi + gAij

P = ————— 1
€ 5 (18)

ﬂAiBj =14/ ﬂAiBiﬁAfB.f (19)

The energy parameter is calculated from Eq. 12 and the combining rules for a;
and b;; are those given by Eqgs. 4 and 5, respectively. Five pure component param-
eters are required to define a compound in CPA: ay;, b;, ¢ ;, €% and g%

2.5 Pure Component and Binary Interaction Parameters

Critical properties and acentric factors for the compounds are given in Table 1. Pure
component parameters for PR-f and CPA were obtained by fitting experimental P,
and p, as described elsewhere [27]. For the case of PR-MC only, P, data were used
in the fitting since the model is only focused on improving this property. The tem-
perature range considered was from the triple point up to 0.997,, with data taken
from DIPPR [34].

For the mixtures, the optimum k; was regressed from experimental bubble point
pressures (P) and vapor compositions (y) of the organic acid using the following
objective function:

N exp 1
F = Pm ‘ exp calc 2
2 ) O - (20)

i=1 i
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where N is the number of data points used in the fitting and superscripts exp and
calc stand for an experimental and a calculated property, respectively. Due to the
limited availability of isothermal data for the butanoic acid + water system, k; was
fitted to isobaric data using the bubble temperature (T) instead of P in Eq. 20.

2.6 Thermodynamic Evaluation

The thermodynamic models were evaluated by comparing the average deviations
between experimental and calculated values of Py, and p;, for the case of pure com-
ponents, and of P and y for mixtures, according to Egs. 21 and 22. Two different
modes were considered for mixtures: a predictive (k; = 0) and a correlative (k; # 0)
mode. For the case of the butanoic acid system, the average deviations in T are also
included (Eq. 21).

exp calc
100 9
= Zl, = — 1)
where 6 stands for either Py, p;, PorT.
1 N
_ exp calc
Ay = Z R (22)

i=1

3 Results and Discussion
3.1 Pure Compounds

Fitted parameters for the models are presented in Table 1 together with the esti-
mated deviations in Py, and p;. The parameters for PR-MC are comparable to those
reported by Young et al. [16], and the differences can be attributed to the different
temperature range used in the optimization and the search algorithm. CPA param-
eters for the acids are also between the ranges of previously reported values by Der-
awi et al. [35]. However, water parameters for the same association scheme differ
from previous publications in which monomer fraction data were also used in the
fitting procedure; nevertheless, the deviations in Py, reported in this work are lower
than the values found the literature [36].

In general, for the organic acids, the smallest deviations in Py, are obtained
with PR-MC, whereas the largest are given by PR. Particularly, large deviations
are obtained when PR-m is used for the case of propanoic and butanoic acid.
PR-MC improves considerably the P, calculation compared with PR since it
results in more than 90 % lower deviations. The highest improvement can be seen
in particular for formic acid with a 98 % decrease. The performance of PR-MC
and CPA is quite similar for this property, although for formic acid the corre-
lations are considerably better with the former. As expected, the PR-MC model
does not provide any advantage in terms of p; calculation, it gave practically
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similar errors as those obtained with PR and PR-m. Looking at both properties,
CPA gives overall the best correlation. Figure 1 shows a graphical comparison of
the models for AP, and Ap, calculations.

For the case of water, the best fitting in Py is given by PR-MC whereas the
best fitting in p; by PR-f. The second best fitting for both properties is obtained
with CPA. It is worth nothing that the value of the repulsive parameter is practi-
cally the same between PR-f and CPA for the individual compounds. The major
shift in value is observed for the a,; parameter when the association term is intro-
duced, clearly showing how the attractive term is being affected by the associa-
tion contribution.

(a) 40 4
35
30
25
éi 20
S s
10
5
AAAAAAAAAAAA R
o-F BB HRISHNYRIRANERRNSA0EES
T T T T T 1
0.5 0.6 0.7 0.8 0.9 1.0
Tr
(b) 5 |
*
40 4
X PR
¢ PR-m
e PRMC e
30 + A PR .0
#* CPA &

Ap, (%)
(.

10 4
N
AAAAAAA *
A A
0 *W*ﬁtﬁﬁééAeé" AdAEEREASAAAMMARRRAHAL ABZREKRA
T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

Tr

Fig. 1 Deviations in (a) vapor pressure (AP,) and (b) saturated liquid density (Ap;) for propanoic acid
for the equations of state studied. Experimental data from DIPPR [34]
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As observed for the organic acids and water, the deviations in density for PR-f
are more than 90 % lower compared with PR and PR-m but these are in general
higher than those of CPA. The improved density correlation with PR-f is the result
of obtaining the pure component parameters from saturated properties; but as a con-
sequence, and similarly to the SAFT-type models, the critical pressure is now over-
estimated [11]. There is no benefit in the p; calculation using a different equation
among PR, PR-m or PR-MC. An improvement in density calculation can only be
achieved by applying a volume translation technique (either temperature independ-
ent or temperature dependent) as demonstrated by Jaubert et al. [37].

3.2 Binary Mixtures
3.2.1 Predictions

The deviation in P and y (T and y for the case of isobaric calculations for the buta-
noic acid system) are presented in Table 2. The best predictions are undoubtedly
given by CPA with errors in pressure more than 50 % lower compared with the
rest of the equations and with average deviations of 0.14 % in vapor composition.
As examples of the CPA performance, Figs. 2 and 3 show a graphical comparison
of CPA and that of the PR equations. Although the predictions with CPA are an
improvement over the PR equations studied, the deviations can still be considered
high (overall average of 50 %). In addition, like the PR equations, CPA also fails
to represent the observed experimental phase behavior adequately. For instance,
at 423.2 K for the propanoic acid+ water system (Fig. 3), CPA wrongly predicts
a heterogeneous azeotrope instead of the measured homogeneous azeotrope at the
low propanoic acid concentration region. Similarly, and as shown by other studies
[26], a phase diagram opposite to the experimental data is predicted with CPA for
the formic acid + water at all the conditions studied, as exemplified in Fig. 4. These
results show, however, that including the association term in the cubic equation does
improve its predictive capabilities.

Looking only at the PR versions, the PR-m model although resulted in higher
deviations in Py, compared with PR, its performance in P is in this instance slightly
better. Nevertheless, for practical purposes, the results can be considered similar.
The use of PR-MC is in this case detrimental since larger deviations in P are found
compared with the original PR, particularly for the formic acid and acetic acid sys-
tems. This is unexpected considering the PR-MC gave the lowest errors in Py,. PR-f
provides considerably lower deviations in P for the formic acid and acetic acid sys-
tems but for propanoic acid and butanoic acid, the deviations are the highest of all
PR versions. This trend can also be observed in the isobaric calculations for buta-
noic acid. This shows that the CPA predictive capability can be attributed to the
association term and not necessarily to the pure component parameter found through
fitting of saturated properties. In general, PR-f gives the best predictions for formic
acid, PR for acetic acid, and PR-m for propanoic acid and butanoic acid. The perfor-
mance in predicting vapor composition is practically the same for all the PR models
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with average values of Ay=20 %. Considering all the systems, the best predictive
capabilities are given by PR-f whereas the poorest by PR-MC.

3.2.2 Correlations

The k;; for each temperature and system can be found in Table 3. The parameters
were then adjusted to a linear temperature dependency with the form k; = A;; + B;T.
Values for A;; and B;; are presented in Table 4 while the calculated deviations for the
correlations using this functionality are presented in Table 2. Unlike the predictions,
there is no real difference between the correlations with PR, PR-MC, PR-f and CPA
since all models give rounded overall average AP of 7 %.

Depending on the system under consideration, the correlation performance can
differ with one or another model. For instance, for the case of the acetic acid system,
CPA gives the best correlations, especially compared with PR, but for propanoic
acid + water, CPA gives in fact the highest errors against the rest of the models. No
obvious trend was found to explain this.

CPA is better at modeling the formic acid system compared with the PR equa-
tions, but its performance decreases as one moves higher in the carboxylic acid
chain, in such a way that for the propanoic acid and the butanoic acid systems, CPA
results in higher deviations than any of the PR models. This contradicts other stud-
ies in which a poorer CPA performance for the low chain carboxylic acids (formic
and acetic acid) has been reported [52]. This can be attributed to the different val-
ues of the pure component parameters employed, due to differences in the search
algorithm and temperature range covered in the fitting procedure. The CPA perfor-
mance for formic acid can be appreciated in Fig. 5, showing the VLE at 13.33 kPa,
where the linear temperature-dependent k; found from isothermal data is used in the
calculation.

The PR models studied show a similar trend as the results observed for CPA.
With formic acid, the deviations are larger with PR followed by PR-MC and PR-f,
but the order shifts when moving toward butanoic acid, for which the best perfor-
mance is then given by PR, followed by PR-m, PR-MC and finally PR-f. Contrast-
ing the findings in predictive mode, the use of Eq. 10 instead of Eq. 9 introduces
slightly higher errors in the modeing (PR-m: AP=10.13 % vs. PR: AP=9.83 %).
Recently, Pina-Martinez et al. [54] have published updated expressions of the gen-
eralized Soave alpha-function for SRK and PR. We performed calculations for the
formic acid + water and propanoic acid + water systems and the results were simi-
lar to the ones obtained for PR (as defined in this work), and consequently better
than the results given by PR-m (for the case of propanoic acid). As mentioned by
the authors, a noticeable improvement over the original generalized function will be
mainly given for molecules with @ larger than 0.9 [54].

A negative k; with a relatively high magnitude (average values ranging between
—0.15 to —0.25) was obtained with all models, indicating a large correction of the
attractive forces. PR-f resulted in general in the lowest magnitudes, whereas PR and
CPA gave practically the same values.

In agreement with previous works comparing cubic equations and CPA [55], it
was found that the description of isobaric data is better than the isothermal case, as
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Fig.2 VLE diagram for acetic acid + water at 483.2 K. Symbols: experimental P-x data [48]. Lines: EoS

predictions
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Fig.3 VLE diagram for propanoic acid + water at 423.2 K. Symbols: experimental data [27]. Lines: EoS

predictions

shown in Fig. 6 for the butanoic acid system. In this case, analogous to the isother-
mal calculations, PR provides better correlations than CPA; however, both models
are not able to represent the experimental homogeneous azeotrope, showing a het-

erogeneous azeotrope instead.
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Fig.4 VLE diagram for formic acid+ water at 398.2 K. Symbols: experimental data [42]. Lines: EoS
predictions

All models seem to provide better predictions and correlations as the tempera-
ture increases, probably due to the weakening of the polar and association molecular
interactions, with no clear advantage with one model over another at the highest
temperatures. As an example, Figs. 7 and 8 show the VLE diagram for the propanoic
acid system at 343.2 K and 453.2 K, respectively. At 343.2 K, only PR-f and CPA
are able to correlate the homogeneous azeotrope, with PR-f giving closer correla-
tions to the experimental data. While at 343.2 K there are clear differences in the
performance of the models, at 453.2 K these are less obvious.

It is apparent that while the association term does improve the predictive capa-
bilities of the cubic equation, it also increases the deviations for some of the systems
in correlative mode. It is possible that a different association scheme, other than the
2B model used in this work, could lead to better results, if not for all, at least for
some of the systems. This point is exemplified by Kontogeorgis and Folas [52] who
reported a satisfactory isobaric modeling for the propanoic acid 4+ water system with
the rigorous 1A scheme for the acid and the 4C for water. Nevertheless, isothermal
calculations in the present work at 303.2 K with the 1A—4C combination for propa-
noic acid + water resulted in higher deviations in pressure (13.46 %) than the 2B-2B
case (10.75 %, Table 2). Similarly, for acetic acid + water, the 2B-2B combination
resulted in better correlations (4.89 %) than the 1A—4C (5.54 %, Table 2) at 293.2 K.

4 Conclusions
The PR and the CPA EoS can be found nowadays in almost any process simulation

software. Literature suggestions for modeling polar compounds such as carboxylic
acids and water with the PR EoS include the use of a particular generalized function

@ Springer
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Fig.5 VLE diagram for formic acid + water at 13.33 kPa. Symbols: experimental data [53]. Lines: EoS
correlations
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Fig.6 VLE diagram for butanoic acid + water at 13.33 kPa and 101.32 kPa. Symbols: experimental data
[51]. Lines: EoS correlations

of the acentric factor for values greater than 0.491, as is the case for propanoic acid
and butanoic acid, and the use of the Mathias—Copeman alpha function. However,
the results presented in this work show that the original generalized function of
the acentric factor, in theory applicable only to values lower than 0.491, is a bet-
ter option than the modified function. Alternatively, the updated expression of the
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Fig.8 VLE diagram for propanoic acid + water at 453.2 K. Symbols: experimental data [27]. Lines: EoS
correlations

generalized function published by Pina-Martinez et al. [54] can be used. It is also
shown that an improvement on saturated properties, especially vapor pressure, due
to the use of a particular alpha function, will not necessarily lead to a better perfor-
mance on mixture calculations.

The predictive capability of CPA outperforms that of all the PR versions stud-
ied, although in most of the cases the VLE representations are only qualitative. The
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association term in CPA does in fact improve the predictive capabilities of the physi-
cal term, but when a binary interaction parameter is used there is no real benefit in
the use of the term since the performance of the cubic model is on average similar
to CPA, and in some cases even superior. For engineering calculations at a low com-
putational cost, PR with parameters obtained from correlations of critical properties
and acentric factor, the original generalized function of the acentric factor and the
binary interaction parameters reported in this work, is a suitable alternative to model
organic acids + water systems.
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