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Abstract
This paper presents amodel for the endogenous determination of the number of queues
in a G/M/s system. Customers arriving at a system where s customers are being served
play a game, choosing between s parallel queues or one single queue. Equilibria are
obtained for risk-neutral and risk-averse customers. With risk-neutral customers, both
a single queue andmultiple queues are equilibrium states.When risk-averse customers
are considered, there is a unique single queue equilibrium. These results are discussed
and suggestions for further research put forth.

Keywords Queues—Applications: strategic interactions · Queues—Multichannel:
determining number · Games/group decisions: strategic queueing

Mathematics Subject Classification C73 C72

1 Introduction

Queues form naturally whenever there is some delay in service time necessary for the
provision of a good, and the number of providers is smaller than the current number
of customers. Queues force customers to suffer the cost of time spent in the queue, as
well as the monetary cost of the good. Customers will want to minimize this cost, and
increasing queueing efficiency can yield significant social benefits: witness the rise of
self-service check out points at supermarkets.

The present paper takes place in the context of s parallel G/M/1 systems, and pooled
G/M/s systems,where S is anyfinite number of servers, under aFirstComeFirst Served
(FCFS) discipline where reneging is not allowed. It sits within the strategic queueing
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literature, where strategic interactions between customers in queues are modelled
through game theory.

The seminal Naor (1969) considered the setting of an FCFS M/M/1 queue. In
this model, risk-neutral, utility maximizing customers, with a linear utility function,
choose a joining threshold, the largest queue length for which the expected cost of
waiting is weakly smaller than the service’s net value. Once this happens, customers
will balk without the need for an exogenous capacity limit. Naor showed that in such
a queue, average queue length grows beyond the social welfare maximizing level, and
that a social planner can improve social welfare, attaining a first-best optimum where
aggregate waiting time is minimized. This is achieved by shifting the cost structure
faced by arriving customers, through levying a toll on customers who join the queue,
thereby adding its cost to the cost of waiting and reducing the threshold at which
customers join the queue.

Naor’s result was extended in Knudsen (1972) to a general cost function, and a
system with a single queue served by any finite number of servers. Knudsen found
Naor’s result on tolling held even under these relaxed conditions, and crucially for
the present purposes, extended his framework for individual optimization to the more
general case.

Naor’s paper was followed by a variety of further articles examining customers’
strategic queueing behaviour, especially in M/M/1 FCFS queues. For a good overview
of the literature up to publication, see the reviewmonographs Hassin andHaviv (2003)
and Hassin (2016). Since then, many more papers than can be individually mentioned
have been published on this subject.

The second strain of literature relevant for the present paper centres on queues
being considered among what is described in Parsons (1955) as social systems, in
that they involve interactions between individuals according to some set of socially
agreed upon norms. These sorts of interactions can be modelled as a game, which can
then be investigated with standard game theoretic tools, such as the theory of repeated
games, as described in Okuno-Fujiwara and Postlewaite (1995) (and see Mailath and
Samuelson (2006), inter alia, for a thorough review of the repeated games literature).
Kandori (1992) showed the applicability of this type of analysis to situations where
game ‘partners’ change by describing a processwhere ‘punishment’ for deviating from
social norms is meted out by the community rather than by the aggrieved individuals
only. The extent to which queueing is governed by these social norms has been the
object of research in the Psychology and Sociology literatures, following on Schwartz
(1975), which laid out a sociological analysis of waiting for service and customers’
perceptions of the fairness of queueing disciplines. Allon and Hanany (2012) studies a
settingwhere, in the context of repeated interactions and changing priorities, customers
allow queue cutting when their priority is low, with the expectation of being allowed
to cut ahead in future rounds of the game, when their priority is high. Erlichman and
Hassin (2015) looks at a similar problem, but with priorities being sold by the server.
The slightly different case of an unobservable M/G/1 queue is analysed in Haviv and
Ravner (2016), where an efficiency enhancement pricingmechanism is also presented.

Returning to the issue of the number of queues for multiple service points, while
it seems intuitively appealing that a single queue for multiple servers is more socially
efficient than one queue for each, this was only formally demonstrated in Smith and
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Whitt (1981) (but see Rothkopf and Rech (1987) for some situations, not relevant to
the current paper, where this may not hold1). The source of this inefficiency is that
if customers cannot switch queues, then one of the servers may be idle while there
are customers waiting to be served in other queues. The recent work in Sunar et al.
(2017), however, has shown that when customers are risk-neutral, delay sensitive, and
may balk, dedicated queues may be preferable to combining them.

Where multiple queues are present despite their inefficiency, it has been shown
that in M/M/s systems (where s is any finite number of servers) where all servers
have the same service time distribution, customers should join the shortest queue, and
break ties arbitrarily (Winston 1977).Where expected waiting times vary with servers,
there have been attempts to determine if customers might be better off waiting to gain
information about these, such as that in Hlynka et al. (1994).

Nevertheless, in the light of its inefficiency, the persistence of multiple parallel
queues presents something of a conundrum. While combining queues seems to be
optimal, it often does not match the observed behaviour of customers in day to day
transactions. This may be due to managers enforcing a multiple queue discipline, but
in many cases managers don’t seek to direct customers one way or the other. Why is it,
then, that customers sometimes form multiple queues for multiple service points, and
other times only one? The motivation behind the present paper is to discover whether
and in what circumstances this socially optimal outcome is sustainable without man-
agement intervention—is it individually optimal? Is the incidence of this behaviour
related to customers’ risk aversion? Armony and Plambeck (2005) studies a related
problem on unobservable queues, where customers can place duplicate orders in the
presence of two service points, to protect themselves against supply shocks. Dehgha-
nian et al. (2016) considers jockeying by strategic, risk-neutral customers, between two
parallel queues (assumed as the given system structure), finding it may not be optimal
to initially join the shortest queue. Likewise Ganesh et al. (2012) studies jockeying
between parallel queues, showing that ‘smart’ jockeying does not significantly affect
system-wide sojourn times compared to a ‘random’ strategy. Ata and Olsen (2009)
studies the case of a monopolistic server faced with, inter alia, risk-averse customers,
and prescribes asymptotically optimal pricing policies.

The literature has usually assumed that the number of queues which will form in
the presence of multiple servers is the choice of the service station manager. As such,
they would be the ones to blame for the formation of multiple queues. Rothkopf and
Rech (1987) presents some suggestions as to why this might be the case, but even if
these arguments are valid, they do not explain the emergence of multiple queues where
there is no managerial intervention, such as at self-service points. Zhang et al. (2008)
considers the concept of a ‘blind’ scheduler who makes scheduling decisions without
knowledge of the system state, another setting where management intervention is
limited.

The present paper attempts to answer this question by setting forth a model where
strategic interactions between customers determine the number of queues in a system.
Anecdotally, when they are not prompted to form a given number of queues, customers

1 For instance, management may want to use separate queues as a discrimination mechanism: supermarkets
often have queues for customers with less items. This, however, requires customer heterogeneity, which is
not a feature of the model outlined here.
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faced with busy service points but no queue most often attempt to form a single queue
for all of them, and move to the first service point to become free. The problem with
this strategy is that this position straddlingmultiple service points can be interpreted by
new arrivals as permission to queue for only one of the servers, and the first customer
cannot stop this as any attempt to move to block the new arrival forces the incumbent
to move away from the other service points and commit to that one anyway; most
readers can probably relate to this experience.

The model setting is a system with multiple servers under a no-jockeying condi-
tion, covering in turn risk-neutral and risk-averse customers. The game starts when a
customer arriving at the system encounters all servers as busy, but no queue (if at least
one server is idle, customers’ decision is trivial). It will be outlined how the number of
queues is determined through this multi-stage game, whereby later arrivals can disrupt
a single queue, and so their potential future decisions must be accounted for by earlier
customers. The first arrivals will be demonstrated to strictly prefer a single queue.

The intuition behind this preference for the single queue is that this customer can be
served as soon as the first service occurs, rather than having to guess at which server
will finish the current task first. On the other hand, the sth customer (where s is the
number of servers) does not always have the same benefits from that single queue:
if customers are risk-neutral, customer s is indifferent to the number of queues. In
the case of risk-neutral customers, it will be shown how customers alternate between
strictly preferring one queue and being indifferent to the number of queues, in blocks
of s customers. This will lead to a proof that having a single queue is an equilibrium
outcome for this game. This equilibrium is not unique, however, with s queues also
being an equilibrium state.

In order to address the presence of multiple equilibria, Sect. 3 focuses on risk-
averse customers, arguably a more true-to-life setting. It is found that risk aversion
quashes the multiple queue equilibrium, leaving the single queue state as the unique
equilibrium.

Steady-state properties will not be considered, as the situation being modelled
takes place when the queue is starting to form, before a steady-state has emerged.
Therefore joining customers will not face the steady-state expected waiting time, but
an individual expected waiting time which varies with the system state at their arrival.
The strategic interactions modelled in the game relate to how incumbent customers
deal with arrivals to the system, who might disrupt the present order by trying to
change the number of queues.2

The model presented here is especially relevant for situations where there is no
channel for managers to interact with customers to establish the number of queues,
such as at any self-service point, or where for some reason engagement with the public
is discouraged—such as when selling tickets behind bullet-proof glass windows on
dangerous parts of a transport network. Further, the model advances the analysis of
strategic interactions between customers.

2 While addressing a different problem, that of whether customers let others cut ahead on the queue in an
M/M/1 system,Allon andHanany (2012) also addresses how customers deal with violations of social norms,
and reaches a conclusion with a similar tenor: undirected customers can, at least in some circumstances,
reach socially efficient outcomes through strategic interaction, although it’s important to note that unlike
the present model, Allon and Hanany (2012) is set in the context of repeated games.
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2 Queue number determination with risk-neutral customers

Consider a stream of customers seeking a service the provision of which requires a
queue; their arrivals at the service stationmay follow any general distribution for inter-
arrival time. This service is provided by s identical servers. Obtaining the good from
these servers takes time, distributed according to an exponential distribution with rate
μ. While the arrival process is not relevant for the game’s equilibrium outcome, the
results rely on the exponential distribution of service times, in particular the exponen-
tial distribution’s memoryless property. Generalizing beyond this distribution is left
for further research.

As there are s servers, only s customers can be served simultaneously. Others will
wait until a server becomes available, and are served in order according to the First
Come, First Served (FCFS) discipline. It is possible for the system to be organized
as s parallel G/M/1 queues, where each server services a separate FCFS queue, and
customers must choose one queue to join, or as one single G/M/s queue serviced by
all s servers, where the customer at the head of the queue is served by the first server
to become free. The number of queues is endogenously determined through customer
choices, being the game’s equilibrium outcome.

It is possible to imagine sub-groups of queues, e.g., one for servers 1 − s/2, and
another for servers s/2+ 1− s, or other, possibly assymetric combinations. However,
only total pooling or separation are considered in this setting. This is for two reasons.
First, for any reasonably small number of queues, this kind of ‘partial pooling’ is not
consistent with observed patterns of endogenous customer behaviour. As such, any
results would have limited application. Second, as in principle ‘partial pooling’ can
be asymmetric (indeed must be so if the number of servers is odd), and the number of
possible combinations increases with the number of servers, the mathematical com-
plexity of the problem is greatly increased for limited benefit. Research along these
lines is left for future work.

Only situations where all servers are active will be considered here, so this can be
assumed and need not be explicitly stated in characterizing the system state, and the
queue lengths do not include them (i.e., they number only the customers waiting).
This state can be described by a matrix �Q composed of Q ∈ {1, . . . , n} column
vectors θq , each with I ∈ {1, 2, . . . ,∞} elements, where Q is the number of queues
in the system, q the (arbitrary) index of each queue, and I the maximum length of
each queue, where each element θi, j is 0 or 1 depending on whether a customer is
queueing in the place in the queue corresponding to that element. If a given element
θi,q = 1, it must be the case that θi,q = 1∀ i < i , i.e., the queue cannot have gaps in it.

Further, if queue length is i , then θi,q = 0 ∀ i > i . Queue length Lq = ∑I
i=1 θi,q for

a given q, and total number of customers waiting in the system L = ∑
q Lq . Finally,

assume by convention that when a system has no waiting customers, Q = 1.
Waiting imposes a cost on customers. Balking will not be considered, so the effi-

ciency issues raised in Sunar et al. (2017) are not relevant. Therefore, only the cost
function is required to analyse customer behaviour. Since they will initially be taken
as risk-neutral, the cost function Ci,q of customer i, q will be linear with unit cost of
time c:
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Ci,q(ti,q(�Q)) = c ti,q(�Q), (1)

where ti,q(�Q) is expected waiting time for customer i, q, a function of system state.
From the linear form of the cost function, it is clear that the risk-neutral customers’
objective in the game is to minimize expected waiting time t .

The game starts when all servers are working, but no customers are waiting to be
served. Each arrival at the system observes the system state, described by matrix �Q .

There are two possible actions available to customers, comprising the action set
A = {S, M}:3
1. Action S: queue for both servers and form a Single queue;
2. Action M : queue for whichever server has the shortest queue, or randomize with

equal probability if at least two queues are of identical size and form Multiple
queues (cf. Winston (1977); if this is done when the customer faces a single queue,
it will force the creation of multiple queues, as explained in more detail below. In
this case, the customer again joins the end of the shortest resulting queue).

However, action S is not available when Q > 1, i.e. when the system is in a multiple
queue state. This reflects the asymmetry between the two states, as it is much more
difficult to persuade customers in two separate queues to combine than to split one
single queue into two. So for S to be available to an arriving customer, all incumbents
must have previously chosen S—i.e., the system must be in a single queue state,
Q = 1. Obviously, a customer arriving at a system with no waiting customers may
take either action as well, which is why it’s defined that Q = 1 in that case.

Each new customer arrival triggers a new round of the game, which is played
sequentially. Formally, the game stages, which are common knowledge, are:

1. A customer i arrives at the system, observes its state, and chooses from action
set A. This choice can be discerned by any incumbent customers with perfect
accuracy. The chosen action is not performed until stage 3, however. If there is
at least one customer waiting, and that customer has taken action M so that the
system is in a multiple state, customers must choose M and the round terminates.

2. This stage only occurs if an arriving customer encounters a system �1 where
L ≥ 1, i.e., a single queue with at least one customer, and chooses action M in
stage 2. In that case, incumbent customers split the single queue into separate
queues, changing the system state. They will choose which server to queue for,
in turns, with incumbents placed closer to the server in the single queue moving
first: choosing the server with the shortest queue or randomizing between queues
of equal length. They do this before customer i can act on the choice made at step
2.4

3. Customer i acts upon his choice in stage 1.
4. The customer remains in the queueuntil service completion, acting as an incumbent

vis-à-vis future arrivals.

3 As previously mentioned, the possibility of balking (i.e., leaving without joining the queue) will not be
considered. It is not the focus of the paper, and is not relevant to the determination of the number of queues. It
is safe to assume that the reward is large relative to waiting time, taking the possibility out of consideration.
4 This response could be endogenized, but to avoid triviality it was embedded into the game.
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Customers’ strategy space is then composed of a choice from set A for each possible
system state�, so that�, a vector whose elements are either of the possible actions in
A for each possible state�, denotes the strategy for any customer. Customers’ waiting
time is uncertain, as the queues are stochastic processes and strategic interactions with
newly arrived customersmay alter the system state. Let then ti,q(α,�Q) be the ex-post
waiting time for customer i, q, as a function of α, the action prescribed by strategy �

for state �Q .

2.1 Waiting times

Given a strategy �, customers’ expected waiting times are a function of system state,
and the customer’s position in the queue. Upon arrival to the system, a customer
observes system state �Q . From this, the customer learns their place i, q for each
of their possible actions. Expected sojourn time is the sum of the exponentially dis-
tributed service time (with rate μ), and waiting time which follows a Gamma (Erlang)
distribution for a given Q. Therefore when Q = s expected sojourn time is given by:5

E[ti,q(�s)] = 1

μ
+ i

μ
, (2)

whereas for a system where one queue feeds s servers it is:6

E[ti,q(�1)] = 1

μ
+ i

sμ
, (3)

where the intuition behind Eqs. (2)–(3) is that having one queue feed s servers mul-
tiplies the processing rate by s (as long as the customer is in the queue, not during
service).

In determining customers’ preferred decisions, it will be helpful to be able to com-
pare expected waiting times directly across the possible system states, for the same
number of customers in the system. This can be done by considering how customers
in a single queue would be redistributed to s queues if the system state changed in the
way prescribed in stage 2 of the game.

Let then i1 be the customer’s position on the queue when Q = 1, and is their
position on the shorter s queue(s) if the system state changes to �s.7 Then:

is =
⌈

i1
s

⌉

, (4)

5 See Knudsen (1972) and Naor (1969) for derivation of these results, although their intuition is simple:
customers must wait i service completions to begin service.
6 At this juncture, strategic interactions are not being considered, and the number of queues is taken as
given, so t is presented as independent of customer choices.
7 When there are multiple queues, the i refers to the queue chosen by the customer, with the q term kept
implicit to simplify the notation.
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so that, e.g., for s = 2, the first and second customers in the single queue take the first
places in the two queues, and so on. Then a customer arriving at a system�1 will have
the following waiting times depending on system state (which they might influence
through their action choice), and without taking future arrivals’ actions into account:

E[ti1,q(S,�1)] = 1

μ
+ i1

sμ
, (5)

E[tis,q(M,�s)] = 1

μ
+ 1

μ

⌈
i1
s

⌉

, (6)

where of course the system state changes to �s if action M is chosen.
Note again that while customers arriving at a system in a single queue state can

change it to multiple queues by choosing action M and triggering stage 3 of the game,
the reverse is not possible: there is no mechanism for changing the system state from
multiple queues to one, other than the queue clearing. This implies that regardless of
whether Q = 1 or Q = s, arrivals will always get the same expected waiting time
from choosing M , as if they do so on a system in a single queue state, the system will
change to a multiple queue state before they can overtake the incumbents.

2.2 Customers’ actions and equilibria

Customers’ preferred strategy will be comprised of the actions yielding the shorter
expected waiting time for any given system state. As the decision of a customer faced
with multiple queues is trivial, analysis will focus on customers arriving at a single
queue. For these purposes, it will be convenient to divide customers into two sets:

• Set O = {i | i �= ns, n ∈ Z
+}

• Set E = {i | i = ns, n ∈ Z
+}.

Set O comprises those customers whose arriving place in the queue is not a multiple
of the number of servers, while E comprises those for whom it is.

Proposition 1 If a customer is in set O, it is a dominant strategy to choose action S.

Proof For any place in a single queue system which is not a multiple of s, expected
waiting time is strictly smaller than for the corresponding place in a multiple queue
system were the system to change state:

E[tis,q(M,�s)] > E[ti1,1(S,�1)] ∀ i1 ∈ O& q ∈ {1, . . . , s − 1}
⇒ E[tis,q(M,�s)] = 1

μ
+ 1

μ

⌈
i1
s

⌉

> E[ti1,1(S,�1)] = 1

μ
+ i1

sμ
.

(7)

as the change of state takes place according to (4).
Therefore, these customers strictly prefer action S when arriving at a single queue

systemwhere their place would be i ∈ O, as they prefer that place to the corresponding
place in a multiple queue system. Given these customers have no incentive to deviate
from the strategy of always choosing S when arriving at a system in a single queue
state, it is a dominant strategy to do so. �	
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The foregoing times are conditioned on all future arrivals choosing to preserve the
single queue state. However, since customers can always queue ahead of new arrivals
who choose to split the queue, and obtain expected waiting time E[tis,q(M,�s)]
anyway, this does not provide themwith a reason to deviate from the foregoing strategy,
regardless of future arrivals’ choices.

Proposition 2 If a customer is in setE, they are indifferent in choosing between actions
S and M. Therefore, any choice defines an equilibrium.

Proof For any place in a single queue system which is a multiple of s, the expected
waiting time is identical with that of the corresponding place in a multiple queue
system were the system to change state:

E[tis,s(M,�s)] = E[tis,1(S,�1)] ∀ i1 ∈ E

⇒ E[ts,s(M,�s)] = 1

μ
+ 1

μ

⌈
i1
s

⌉

= E[ti1,1(S,�1)] = 1

μ
+ i1

sμ
.

(8)

Since these customers are indifferent between the two possible states, they are
indifferent between the two possible actions S and M . �	

It is therefore the case that if customers in set E choose action S, the single queue
state will emerge, whereas if they break ties the other way and choose action M , the
multiple queue state will emerge. The corollary follows:

Corollary 1 Both the single queue state and the multiple queue state are equilibria in
pure strategies of this game.

It is worth noting, however, that the first customer to arrive strictly prefers a single
queue, and gets to implement it before any of the indifferent customers choose their
action. Once this single queue state exists, there is no incentive for any arrivals to
deviate from it. This might lead one to expect single queue states would be more
prevalent. However, only one arrival needs to deviate from S to M to establish the
other equilibrium. This fragility of the single queue equilibrium may be a reason for
the emergence of multiple queues in real world scenarios.

3 Queue number determination with risk-averse customers

The results in the previous section relied on risk-neutrality: customers only took
expected waiting time into account. In this section, it will be shown that if customers
are risk-averse, the single queue state will be strictly preferred by all customers, and
thus be the unique equilibrium of the game. The intuition behind this result is that the
risk associatedwith themultiple queue state is higher, as in the single queue state active
servers can keep the queue moving even while some are faced with a low-probability
high service time; in the multiple queue state, this safety valve is not present for any
individual queue, so risk-averse customers naturally prefer the former.
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The analysis will mirror that presented in Sect. 2, with an identical game being
played. Let the customer cost function Ci,q(ti,q(�Q)) be strictly convex in time,
instead of the linear utility given at (1), such that it reflects risk aversion:

C ′
i,q(ti,q(�Q)) > 0, (9)

C ′′
i,q(ti,q(�Q)) > 0,

where as before, ti,q(�Q) is the customer’s waiting time conditioned on system state
�Q .

3.1 Expected cost

When customers are risk-averse, comparing expected waiting times is not enough to
determine their preferred action, as an actionmight yield a lower expectedwaiting time,
and still be passed over because the customer considers it too risky. Expected costs
must be compared instead. Since expected service time is separable from expected
waiting time, and the former is equal regardless of the number of queues, only the
latter is going to be considered in the following discussion, as this simplifies the
distribution functions without any loss of generality. Expected cost is given by:

E[Ci,q(ti,q(�Q))] =
∫ ∞

0
c(t) z(t(�Q))) dt , (10)

where z(t(�Q))) is the probability distribution function of waiting time, i.e.:

z(t(�s)) = μi

(i − 1)! exp(−μt) t i−1,∀ q ∈ {1, . . . , s} i ∈ {1, . . . ,∞} when Q = s

(11)

for a system in a multiple queue state, and:

z(t(�1))) = (sμ)i

(i − 1)! exp(−sμt) t i−1, ∀ i ∈ {1, . . . ,∞}, when Q = 1 (12)

for a system in a single queue state. To these correspond the cumulative probability
functions Z(t(�s)) and Z(t(�1)), respectively.

3.2 Customers’ actions and equilibria

When customers are risk-averse, all customers will strictly prefer a place in a single
queue to the corresponding place in a multiple queue state.

Proposition 3 It is a dominant strategy for customers to choose action S, regardless
of their position in the queue.

123



Endogenous queue number determination in G/M/s systems

Proof In order for a customer to prefer the single queue state to the multiple queue
state, it must be the case that the expected cost of the former is smaller than that of the
latter, for corresponding places in the queue:

∫ ∞

0
c(t)z(t(�s)) dt >

∫ ∞

0
c(t)z(t(�1)) dt . (13)

Define S(t) = ∫ t
0 F(t) dt . After some manipulation, and integration by parts, (13)

becomes:

c′(∞)(E[t(�s)] − E[t(�1)]) +
∫ ∞

0
c′′(t)[S(t(�s)) − S(t(�1))] dt > 0. (14)

As c′(t) > 0 and c′′(t) > 0, in order for (14) to hold it is sufficient that:

E[t(�s)] ≥ E[t(�1)], and (15)

S(t(�s)) ≥ S(t(�1)), (16)

with at least one of the inequalities being strict.
The condition at (15) is equivalent to

E[ti2,q(M,�s)] ≥ E[ti1,1(S,�1)])∀ i1, is ∈ {1, . . . ,∞}, (17)

which was shown in Propositions 1 and 2.
On the other hand, (16) corresponds to:

∫ t

0

[
Z(tis,q(M,�s))

]
dt >

∫ t

0

[
Z(ti1,1(S,�1)))

]
dt ∀ i1, is ∈ {1, . . . ,∞}, (18)

which can be shown from the results in section 4.2 of Seth and Yalonetzky (2014)
for stochastic ordering of Gamma distributions, mutatis mutandis for the present case
dealing with cost rather than utility functions.

As the customer is both cost minimizing and risk-averse (c′′(t) > 0), and the single
queue state always offers lower risk and a weakly lower expected waiting time, it
is always strictly preferred to the multiple queue state, for the corresponding queue
states. Therefore, customers choose action S when arriving at a single queue system.

�	

It can also be added that since S is always a dominant strategy, there is no scope
for the use of mixed strategies when customers are risk-averse.

The corollary follows:

Corollary 2 The single queue state is the equilibrium of the game.
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4 Discussion and conclusion

This paper has shown that risk-neutral customers derive a small benefit fromcombining
queues whereas the remainder is indifferent between the two situations. This implies
that both the single and multiple queue states are equilibria in pure strategies.

On the other hand, when customers are risk-averse, risk becomes another source
of disutility, as the multiple queue state shows greater dispersion in waiting times,
as it requires customers to bet on which queue is going to move faster. It’s then
quite intuitively appealing, and rigorously confirmed above, that risk-averse customers
would prefer single queues more strongly than risk-neutral ones, as having a single
queue for all servers eliminates the risk inherent in having to choose a queue. This is
why only the single queue is an equilibrium for risk-averse customers.

It has been shown that risk-averse customers have the most to lose from a multi-
plicity of queues, and will, in equilibrium, form a single queue when presented with
multiple servers. It seems a reasonable assumption that customers are at least some-
what risk-averse, yet combining queues is often frowned upon bymanagers. This paper
provides a counterpoint to the views expressed in Rothkopf and Rech (1987). These
results have implications for service station management, as there is great scope for
improving social welfare by reducing the cost of multiple queues, which can be done
in a Pareto improving manner (assuming the conditions in Sunar et al. (2017) do not
hold).

While the results hold for any queue length, it is acknowledged that they are more
relevant to short queues, especially when there is only one customer waiting. This is
because the more customers there are present in a single queue, the greater the social
pressure to conform to it. So while the proofs were kept as general as possible, it
is worth keeping in mind that the model was intended to address the context of few
customers waiting.

This does leave open the question of why it is often observed that customers form
multiple queues even where there is no pressure from management to do so. As pure
strategies are dominant and independent of future arrivals’ strategies, there is no moti-
vation to considermixed strategies. However, it is a plausible conjecture that jockeying
plays a role here. Indeed, for the case of risk-neutral customers, it was seen that both
a multiple queue state and a single queue state were equilibria in pure strategies.
While this is left for future research, under different equilibrium concepts, such as
a trembling-hand equilibrium, the irreversibility of the multiple queue state might
explain its emergence in real world applications, even though this would be against
the wishes of other customers. It is harder to see why this equilibrium would occur
when customers are risk-averse, and further research along these lines is required.

On a similar vein, in contexts where balking is permitted, the results in Sunar et al.
(2017) indicate that under some conditions, social welfare is improved by having
separate queues. Extending the present model to allow for balking would be a fruit-
ful avenue for further research, as it’s not clear whether the results described in the
foregoing would hold. It is worth noting, however, that the results of that paper only
considered risk-neutral customers, and it is not clear whether they themselves would
hold if customers are risk-averse.
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The possibility of jockeying is just the sort of small disturbance which might favour
the multiple queue equilibrium: if jockeying were to be permitted, then in the low
probability event of a server clearing a queue, or at least reducing its length significantly
compared to the others, customers could switch queues and reduce their expected
waiting time. And even if this is a low probability event, it’s enough to reduce expected
waiting time and make the previously indifferent customers prefer the multiple queue
equilibrium instead.

With risk-averse customers, what would happen were jockeying to be allowed is
not so clear: even though the expected value of waiting time in a multiple queue state
might fall below that of a single queue state for some customers, the single queue state
would still be less risky. One may conjecture that the degree of risk aversion possessed
by customers would affect the resultant equilibrium, with more risk-averse customers
preferring the single queue equilibrium more strongly.

Examining in more detail the circumstances in which the single queue equilib-
rium breaks down when jockeying is possible is an inviting topic for further research,
although there are significant tractability problems to consider. Further research should
then investigate customers’ judgement of the probability of jockeying being possible,
their degree of risk aversion in this specific context, and on a slightly behavioural tack,
whether they judge their fellow customers to be rationalwhen it comes to actionswhich
might disturb the single queue equilibrium state.While itmight be quite complexmath-
ematically, it would be interesting to explore the impact of either server or customer
heterogeneity in expected service time. It might also be interesting to investigate the
impact on equilibrium robustness of repeated interactions as in Allon and Hanany
(2012).

Other avenues for further research include the steady-state properties of a system
with risk-averse customers, and providing a full formal treatment of social welfare
issues with risk-averse customers, which still seems to be absent from the literature,
as is research into management incentives when dealing with these customers.
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