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Abstract
General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor
function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level
nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state
functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of
anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane
dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in
the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was
associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the
proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the
overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network.
Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of
dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.

Key words: anesthesia, connectivity, consciousness, isoflurane, resting-state functional MRI, unconsciousnesswhole-brain
dynamics
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Introduction

Consciousness is the state of wakefulness and awareness char-
acterized by the ability to receive and respond to sensory stimuli,
and its biological basis has long fascinated neuroscientists, psy-
chologists, and clinicians alike. This fascination not only stems
from the broad implications of consciousness for understanding
human conscious experience but also because disruptions in
consciousness are a hallmark of both pathological (neurology)
and naturally occurring physiological states (sleep) and are often
purposefully induced in clinical treatment (anesthesiology). In
this regard, the neuroscientific investigation of consciousness
has been greatly advanced in recent decades by the study of the
unconscious state. Considerable work now focuses on changes
in brain states that accompany normal and pathological
conditions like sleep and coma, respectively (Mashour and
Hudetz 2018). Likewise, the pharmacological induction and
reversible manipulation of consciousness by general anesthesia
has proven to be a highly productive line of investigation. While
much of this latter work has focused on the cellular effects of
anesthetics (Anis et al. 1983; Peduto et al. 1991; Wu et al. 1996),
it remains poorly understood how these local effects manifest
as unconsciousness at the large-scale, global level (Franks 2006;
Alkire et al. 2008; Brown et al. 2011).

According to integrated information theory (Tononi 2004),
consciousness is linked to the ability to integrate information
both locally and between widely distributed brain areas. Infor-
mation integration is also a fundamental principle of global neu-
ronal workspace theory (Dehaene et al. 2014), which posits criti-
cal roles for long-distance interactions between brain regions in
prefrontal, parietal, and cingulate cortex during general aware-
ness. These theories suggest that general anesthetics impair
functional interactions across remote brain areas, causing the
fragmentation of whole-brain networks (Mashour and Hudetz
2018). Integrated information theory further posits that con-
sciousness is not a fixed state per se but is graded in nature,
decreasing proportionately with the number of discriminable
brain states (Tononi et al. 2016). This gradient further suggests
that interactions between brain networks (and consequently
information integration) diminish beyond the initial threshold
of unconsciousness (light sedation), with greater fragmentation
occurring at deeper levels of sedation. Thus, investigation of the
dose-dependent effects of anesthesia on whole-brain networks
not only quantifies the effects of sedation on the global proper-
ties of neural processing but also serves to characterize the very
nature of unconsciousness.

In recent years, resting-state functional MRI (rs-fMRI) has
provided tremendous insight into the large-scale, network-level
effects of anesthesia. rs-fMRI measures statistical dependen-
cies between the slow-wave blood oxygenation level-dependent
(BOLD) signal in distinct brain regions in the absence of any task
paradigm (Biswal et al. 1995). These spontaneous, low-frequency
fluctuations (0.01–0.1 Hz) of the BOLD signal have been shown
to reflect underlying changes in neural activity, where correla-
tions in the BOLD signal between areas (i.e., FC) correspond to
known patterns of whole-brain connectivity in multiple species
(Fox and Raichle 2007; Vincent et al. 2007; Shmuel and Leopold
2008; Hutchison and Everling 2012; Hutchison et al. 2012, 2015;
Leopold and Maier 2012). Initially, the effects of anesthesia on
FC were largely focused on activity within selected networks
of areas and were assessed by constructing static functional
networks from full scans (Vincent et al. 2007; Boveroux et al.
2010; Deshpande et al. 2010; Liu et al. 2011, 2013). Over these
longer timescales (i.e., a full-length resting-state scan), func-

tional networks may appear similar during levels of wakefulness
and anesthesia (Barttfeld et al. 2015), since static measurements
of FC may largely recapitulate the underlying anatomical map
(Honey et al. 2009; Hermundstad et al. 2013). There is a growing
appreciation, however, that functional networks are temporally
dynamic (Chang and Glover 2010; Bassett et al. 2011; Hutchi-
son, Womelsdorf, Allen, et al. 2013a; Hutchison, Womelsdorf,
Gati, et al. 2013b; Allen et al. 2014) and that an understand-
ing of whole-brain computation requires time-resolved meth-
ods for network analysis (Medaglia et al. 2015; Bassett and
Sporns 2017).

In the study of unconsciousness, changes in the repertoire
of whole-brain states derived from functional networks
constructed over short timescales (e.g., 30 s—1.5 min) have
been shown to correlate with anesthetic dose (Hutchison
et al. 2014; Barttfeld et al. 2015; Hudetz et al. 2015; Uhrig
et al. 2018). Specifically, it has been reported that the number
of discriminable brain states decreases at deeper levels of
unconsciousness, consistent with predictions by integrated
information theory (Tononi et al. 2016). Together with static
FC analyses demonstrating the fragmentation of networks
during unconsciousness (Achard et al. 2012; Boly et al. 2012;
Spoormaker et al. 2012; Monti et al. 2013; Hutchison et al.
2014), this finding implies that the temporal dynamics of
network modularity may be highly informative. Modularity
refers to the degree to which networks can be decomposed
into groups of nodes (brain regions), with dense connectivity
within these groups and sparse connectivity between them
(formally quantifying fragmentation) (Sporns and Betzel 2016).
Modular structure has long been recognized as a crucial
property of complex biological systems, conferring functional
specialization and robustness to change (including damage)
(Kirschner and Gerhart 1998; Kashtan and Alon 2005; Wagner
2005). Analyses of task-based changes to modular structure
have been highly productive in recent studies of the whole-
brain bases of motor skill acquisition (Bassett et al. 2011, 2015)
and cognitive performance (Braun et al. 2015), but to the best of
our knowledge, no studies have leveraged these methods in the
study of unconsciousness (see the Discussion for a summary of
earlier studies using static measures of modularity).

We examined the dose-dependent effects of isoflurane on
the temporal modular structure of whole-brain networks in
nonhuman primates, following induction of unconsciousness.
We tested three principal hypotheses. First, we sought to deter-
mine whether, under our time-resolved approach, there would
be greater fragmentation of whole-brain networks at increased
levels of isoflurane dose. Thus, we tested the hypothesis that the
number of temporal modules, and their degree of modularity,
will increase with isoflurane dose. Second, we reasoned that if
the strength of connectivity within brain networks decreases
with increasing dose (e.g. Boveroux et al. 2010; Guldenmund et al.
2013), then smaller perturbations (e.g., background noise) may
be sufficient to drive small, random network reconfigurations,
leading to uncoordinated changes in modular membership. We
therefore quantified the degree to which brain regions move
between modules in a coordinated (and uncoordinated) manner
at different levels of dose. Third, we sought to determine the
extent to which dynamic whole-brain structure would break
down in a spatially uniform versus selective manner at deeper
levels of unconsciousness. Thus, we derived networks from
the temporal modules and tested the null hypothesis that the
strength of interactions within and between those networks
would decrease in a uniform fashion across networks with
increasing isoflurane dose.
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Materials and Methods
To examine the effects of general anesthesia on whole-brain
temporal modular structure following the induction of uncon-
sciousness, we collected rs-fMRI data from five nonhuman pri-
mates at increasing levels of isoflurane dose at 7-T MRI. To
examine the incremental, dose-dependent effects of isoflurane
on temporal module dynamics, we administered isoflurane in
six stepwise increments: 1.00%, 1.25%, 1.50%, 1.75%, 2.00%, and
2.75% (see Fig. 1A for an overview of our approach). We ter-
minated the session for one monkey that experienced abnor-
mal breathing patterns when the isoflurane concentration was
increased to 2.75%, so no data were acquired from that monkey
at that particular dose.

Following the parcellation of each animal’s cerebrum into
discrete brain regions, the time series correlation was computed
between each pair of regions in sliding, half-overlapping win-
dows, resulting in FC matrices for each window. We then con-
structed mutlislice networks from these FC matrices and parti-
tioned them into temporal modules that maximized a quality
function Q (Mucha et al. 2010) (see Fig. 1C). [The same measure
was calculated for three established classes of null networks
(Mucha et al. 2010; Bassett et al. 2011), verifying that subjects’
whole-brain networks exhibited significant modularity (Sup-
plementary Figure 2)]. We then characterized various features
of modular reconfiguration across dose levels, as well as a
summary measure of the modules themselves.

Animal Preparation

Five macaque monkeys (Macaca fascicularis; four females,
weights ranging from 3.6 to 5.3 kg [mean ± standard deviation
(SD) = 4.26 ± 0.76 kg] and ages ranging from 7.71 to 8.22 years
[mean ± SD = 7.83 ± 0.22 years]), were involved in the experi-
ment. All surgical and experimental procedures were carried
out in accordance with the Canadian Council of Animal Care
policy on the use of laboratory animals and approved by
the Animal Use Subcommittee of the University of Western
Ontario Council on Animal Care. Note that the use of an animal
model for investigating the effects of anesthesia on brain
activity offers greater standardization between subjects and
circumvents concerns of potentially inducing a lethal collapse
of the cardiovascular or respiratory system at high dosage
in humans. The complete methods for this experiment have
previously been described in detail (Hutchison et al. 2014). We
therefore provide a more concise description of the methods
relevant to our temporal analyses.

Prior to image acquisition, monkeys were injected intramus-
cularly with atropine (0.4 mg/kg), ipratropium (0.025 mg/kg), and
ketamine hydrochloride (7.5 mg/kg), followed by intravenous
administration of 3 mL propofol (10 mg/mL) via the saphenous
vein. Animals were then intubated and switched to 1.5%
isoflurane mixed with medical air. Each monkey was then
placed in a custom-built monkey chair and inserted into the
magnet bore, at which time the isoflurane level was lowered to
1.00%. Prior to image localization, shimming, and echo-planar
imaging (EPI), at least 30 min was allowed for the isoflurane
level and global hemodynamics to stabilize at this 1.00%
concentration. [Given the rapid recovery properties of propofol
(e.g. Flaishon et al. 1997), it is unlikely that any isoflurane-
dependent effects are attributable to the initial propofol
induction]. We then acquired two functional EPI scans at each
of six increasing isoflurane levels: 1.00%, 1.25%, 1.50%, 1.75%,
2.00%, and 2.75% (0.78, 0.98, 1.17, 1.37, 1.56, and 2.15 minimum

alveolar concentration [MAC], respectively). We interleaved a 10-
min period between each increase in isoflurane dose to allow
for the concentration to stabilize (during this 10-min period, we
did not collect data). Throughout the duration of scanning, the
monkeys spontaneously ventilated, and we monitored physio-
logical parameters (temperature, oxygen saturation, heart rate,
respiration, and end-tidal CO2) to ensure that values were within
normal limits (see Supplementary Figure 1 in Hutchison et al.,
2014). The acquisitions of two anatomical images occurred
during the stabilization periods between isoflurane dose levels.

Data Acquisition

The monkeys were scanned on an actively shielded 7-Tesla 68-
cm horizontal bore scanner with a DirectDrive console (Agilent,
Santa Clara, California) with a Siemens AC84 gradient subsystem
(Erlangen, Germany). We used a custom in-house conformal
five-channel transceive primate-head Radio Frequency (RF)
coil. Each functional run consisted of 150 continuous EPI
functional volumes (repetition time [TR] = 2000 ms; echo time
[TE] = 16 ms; flip angle = 700; slices = 36; matrix = 96 × 96; Field of
view [FOV] = 96 × 96 mm2; acquisition voxel size = 1 × 1 × 1 mm3),
acquired with GRAPPA = 2. A high-resolution gradient-echo
T2 anatomical image was acquired along the same orien-
tation as the functional images (TR = 1100 ms, TE = 8 ms,
matrix = 256 × 256, FOV = 96 × 96 mm2, acquisition voxel size =
375 × 375 × 1000 mm3). We also acquired a T1-weighted anatom-
ical image (TE = 2.5 ms, TR = 2300 ms, FOV = 96 × 96 mm2,
acquisition voxel size = 750 × 750 × 750 mm3).

Image Preprocessing and Analysis

Functional image preprocessing was implemented in the FMRIB
Software Library toolbox (FSL; http://www.fmrib.ox.ac.uk). This
consisted of motion correction (six-parameter affine transfor-
mation), brain extraction, spatial smoothing (Gaussian kernel of
full width at half maximum 3 mm applied to each volume sep-
arately), high-pass temporal filtering (Gaussian-weighted least
squares straight line fitting with sigma = 100 s), and low-pass
temporal filtering (half width at half maximum = 2.8 s, Gaus-
sian filter). Functional data were nonlinearly registered to the
T2 anatomical (FNIRT; http://www.fmrib.ox.ac.uk/fsl/fslwiki/FNI
RT), then registered to the T1 anatomical (six degrees of freedom
rigid transformation), and finally normalized (12 degrees of free-
dom linear affine transformation) to the F99 atlas template (Van
Essen 2004) (see http://sumsdb.wustl.edu/sums/macaquemore.
do).

The F99 template-normalized Lewis and van Essen (Lewis
and Van Essen 2000a, 2000b) divisions were used to define 174
(87 per hemisphere) cortical regions (see Supplementary Figure
1 for an overview of these regions). Following regression of the
average white matter (WM), cerebrospinal fluid (CSF), and six
motion parameters from the regional time series, we calculated
the mean time series for each region by averaging the time
series across all voxels contained within it and then z-scored
the time series within each scan (statistics of the non-z-scored
time series are shown in Supplementary Figure 3). Note that we
did not use regions from subcortical structures, due to concerns
about anatomically based parcellation of small substructures
and decreased signal-to-noise ratio.

There is mounting evidence that variation in FC between
regions and networks that occurs during the resting state
reflects real neural processes that are ignored in standard
resting-state investigations that examine FC over the entire

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhaa085/5848434 by U

niversity of Birm
ingham

 user on 02 June 2020

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa085#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa085#supplementary-data
http://www.fmrib.ox.ac.uk
http://www.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
http://www.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
http://sumsdb.wustl.edu/sums/macaquemore.d
http://sumsdb.wustl.edu/sums/macaquemore.d
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa085#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa085#supplementary-data


4 Cerebral Cortex, 2020, Vol. 00, No. 00

Figure 1. Overview of experiment and analysis approach. (A) For each animal, two 5-min resting-state scans were collected at each of the six isoflurane dose levels.

(B) Each animal’s cerebrum was parcellated into 174 discrete brain regions, and the average BOLD time series was extracted from each region (three example regions
shown). (C) The Pearson correlation coefficient was calculated for each pair of regions in sliding, half-overlapping windows (shown in B), resulting in whole-brain
functional connectivity (FC) matrices for each window (w1—wN). Together, these FC matrices can be used to construct a multislice (temporal) network for each subject

and scan (see D). (D) Time-resolved clustering was then used to detect temporally dynamic modules in these networks (e.g., four modules in this schematic).

resting-state time window (Chang and Glover 2010; Hutchison,
Womelsdorf, Allen, et al. 2013a; Hutchison, Womelsdorf, Gati,
et al. 2013b; Allen et al. 2014). To explore the potential effects
of isoflurane dose on time-varying network dynamics, each of
the 174 regional time series was divided into windows of 60 s

(30 imaging volumes) where contiguous windows overlapped by
50%. We constructed functional networks in each time window
by calculating the Pearson correlation coefficient between
each pair of brain regions (Fig. 1C). To mitigate against the
possibility of spurious correlations (P < 0.05), all correlations

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhaa085/5848434 by U

niversity of Birm
ingham

 user on 02 June 2020



Brain Dynamics Across Depths of Unconsciousness Standage et al. 5

that did not pass false discovery rate correction (Benjamini
and Yekutieli 2001) were set to zero (q = 0.05), as were all
negative correlations, a requirement of the module detection
approach used (histograms and related statistics of positive
and negative FC are shown in Supplementary Figure 4). We
determined the modular structure of the resulting multilayer
(a.k.a. multislice) networks with a generalized Louvain method
for time-resolved clustering (Jeub et al, http://netwiki.amath.u
nc.edu/GenLouvain, 2011–2017). This algorithm was repeated
100 times with random initialization, resulting in 100 clustering
solutions (a.k.a. partitions). On each repetition, the algorithm
was iterated until a stable partition was found, that is, the
output on iteration n served as the input on iteration n + 1 until
the output matched the input (Mucha et al. 2010; Bassett et al.
2011). In this work, we used the standard spatial and temporal
resolution parameters γ = 1 and ω = 1, respectively (see the
Supplementary Material for demonstrations of robustness).
Note that our choice of window length served a balance
between temporal resolution and mitigation against the effects
of noise on network construction (Sakoğlu et al. 2010; Hutchison,
Womelsdorf, Allen, et al. 2013a; Leonardi and Van De Ville
2015), while the overlap between windows served to increase
the number of layers in the multilayer networks. Neither
parameter was crucial to our results (see the Supplementary
Material).

Statistical Analyses

Statistical analysis of these data is limited by the small num-
ber of subjects (N = 5) and the nonindependence of the data
within each subject (Lazic 2010). Hierarchical modeling is an
ideal solution to this problem, but models allowing for subject-
specific effects are not easily fit to data sets as small as this one.
We therefore used simple linear regression to model network
statistics as a function of dose, which can be interpreted as
assuming that all subjects respond identically to isoflurane. As
shown in our Results, these models provided good fits overall,
as intersubject variability was generally small relative to dose
effects.

Results
Temporal Networks Become More Fragmented with
Increasing Anesthetic Dose

To test the hypothesis that time-resolved modular structure
becomes more fragmented with increasing levels of isoflurane
dose, we calculated the mean number of modules over all
partitions for each subject and scan (two scans per dose).
The fit of a linear regression model to these data revealed
a positive linear relationship between dose and number
(βdose = 0.988, t(56) = 5.096, R2 = 0.317, P = 4.236e − 6; see Fig. 2A).
The SD of the number of modules across time windows showed
a weak, negative linear relationship with dose (βdose = −0.05,
t(56) = −2.129, R2 = 0.075, P = 0.038), suggesting that modular
structure becomes more stable as it becomes more fragmented
and explicitly demonstrating that the increased fragmentation
does not reflect an increase in variability (Supplementary Figure
5). We also examined the relationship between dose and the
quality function Q, capturing the degree to which whole-brain
structure exhibits strong intramodule connectivity and sparse
intermodule connectivity, i.e., higher Q corresponds to more
isolated modules. A linear regression model revealed a similar

Figure 2. Isoflurane dose affects key properties of whole-brain temporal mod-
ules. (A) Mean number of temporal modules plotted as a function of isoflurane
dose. In the plots, means were first taken over both scans for each dose and

then taken over subjects. Error bars show ±1 standard error of the mean (SEM).
Line shows the fit of a linear regression model to the across-subject means.
(B) Mean Q, (C) mean disjointedness, (D) mean cohesion strength, and (E) mean
promiscuity, calculated as in A. Right-side brain plots in panels C,–E show brain

regions for which the relationship (Pearson correlation coefficient) between
dose and the statistic on the left had a corresponding P < 0.05 (orange regions).
Regions in yellow indicate those brain regions at P < 0.05 that further passed a
false discovery rate correction (Benjamini and Hochberg 1995). The above linear

fits were reproduced when both scans for each level of dose were concatenated
(Supplementary Figure 6).

relationship with dose as the number of modules (βdose = 0.039,
R2 = 0.231, t(56) = 4.107, P = 1.32e − 4; Fig. 2B). Together, these
findings suggest that deeper levels of sedation partition
the brain into a larger number of more isolated functional
networks.
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Whole-Brain Reconfiguration Becomes More
Uncoordinated with Increasing Anesthetic Dose

To test our hypothesis that brain regions change modules in a
more uncoordinated manner with increasing levels of isoflu-
rane dose, we calculated the disjointed flexibility (disjointed-
ness) of each brain region on each partition, defined as the
number of times the region changes modules independently
(i.e., without other brain regions) relative to the total number
of possible changes (Telesford et al. 2017). More formally, if
Nslice is the number of time slices in a multislice network,
K(s) and M(s + 1) are the respective memberships of modules
k and m at slices s < Nslice and s + 1, G is the set of regions
moving from k to m at this time, and then region i moves
disjointedly if and only if i ∈ K(s), i ∈ M(s + 1) and G = {i}.
Defining such disjointed movements by di(s,s + 1) = 1 [0 oth-
erwise], then disjointedness is defined for each region i by
Di =

∑
s,s + 1di/(Nslice − 1). We calculated the mean disjointedness

by taking the average over all regions on each partition, before
taking the mean over these partition means (this procedure
was also performed for all other region-specific measures; see
below). The fit of a linear regression model revealed a posi-
tive linear relationship between dose and mean disjointedness
(βdose = 0.016, t(56) = 5.422, R2 = 0.344, P = 1.295e − 6; Fig. 2C). Based
on this finding, we hypothesized that the opposite arrangement
would also be true, that is, that brain regions would change
modules in a more coordinated manner at lower levels of dose.
To test this hypothesis, we calculated the strength of cohesive
flexibility (cohesion strength) of each region on each parti-
tion, an independent measure from disjointedness (Telesford
et al. 2017). We calculated this measure by first determining
the number of times each region changes modules together
with each other region and then summing over all other regions
(Telesford et al. 2017). Following the above definitions, regions
i and j move cohesively between modules k and m if and only
if {i,j} ⊆ K(s) and {i,j} ⊆ M(s + 1). Defining such cohesive move-
ments by csi,j(s,s + 1) = 1 [0 otherwise], then cohesion strength
is defined for each region i by CSi =

∑
s,s + 1

∑
j �= i csi,j. The fit

of a linear regression model revealed a negative linear relation-
ship between dose and mean cohesion strength (βdose = −3.276,
t(56) = −5.648, R2 = 0.363, P = 5.644e − 7; Fig. 2D). These comple-
mentary findings suggest that coordinated modular reconfigu-
ration is a property of whole-brain dynamics under light seda-
tion and that this property breaks down at deeper levels of seda-
tion, such that smaller perturbations (e.g., noise) are sufficient
to drive haphazard modular changes.

Modular Reconfiguration Becomes More Constrained
with Increasing Anesthetic Dose

To further characterize modular changes as a function of dose,
we calculated the promiscuity of each brain region, defined
by the number of modules in which the region participates at
least once, relative to the total number of modules (Sizemore
and Bassett 2018). The fit of a linear regression model revealed
a negative linear relationship between dose and promiscuity
(βdose = −0.062, t(56) = −5.294, R2 = 0.334, P = 2.068e − 6; Fig. 2E).
This finding suggests that despite the fragmentation of whole-
brain networks at deeper levels of sedation (Fig. 2A,B), brain
regions do not participate in a broader repertoire of these
modules.

Taken together, the above findings provide strong evidence
that at deeper levels of sedation, 1) whole-brain networks

become more fragmented and isolated, 2) individual brain
regions move between modules in a more haphazard, unco-
ordinated manner, and 3) this haphazard movement between
a larger number of modules does not entail more diverse
modular participation by individual brain regions. Importantly,
these results were highly robust across window sizes, the
overlap between windows, and the resolution of time-resolved
clustering (Supplementary Figure 7). Because the across-
subject means in Figure 2B suggest that the relationship
between dose and Q may be nonmonotonic (see Q values
for dose levels of 1% and 1.5%), we fit a quadratic regression
model to these data. The superior fit of the quadratic model
was slightly nonmonotonic and compared favorably to the
linear model according to information statistics (e.g., Akaike
Information Criterion, corrected for small sample sizes).
These results are shown in Supplementary Figure 8 and
Supplementary Table 1. The respective fits of a quadratic
model to dose and the number of modules, disjointedness,
cohesion strength, and promiscuity were all monotonic
(not shown).

Dynamic Network Architecture is Altered by Increasing
Anesthetic Dose

To investigate whether isoflurane dose influences the degree to
which groups of brain regions preferentially interact with one
another, we determined the proportion of modular partitions
(across all time windows of all scans for all subjects) in which
each pair of brain regions was placed in the same module,
referred to as a module allegiance matrix (Bassett et al. 2015).
More specifically, we constructed a matrix T, where the elements
Ti,j refer to the number of times regions i and j were assigned
to the same module over all time slices of all partitions for all
subjects and scans. We then constructed the module allegiance
matrix MA = (1/C)T, where C is the total number of time slices
in all of these partitions. This matrix provides a summary of the
brain network architecture associated with our isoflurane proto-
col. We then clustered the module allegiance matrix using sym-
metric nonnegative matrix factorization (see the Supplementary
Methods and Supplementary Figure 9), identifying four clusters
of regions corresponding to whole-brain networks. Because of
the known degeneracy of the generalized Louvain algorithm
[very different partitions can have nearly identical quality func-
tion scores (Bassett et al. 2011)], this clustering approach effec-
tively identifies a consensus modularity partition (Bassett et al.
2013). In other words, it identifies a set of static brain networks
summarizing the structure of the temporally dynamic modules
from all partitions.

This summary network architecture and the module
allegiance matrix from which it was derived are shown in
Figure 3A,B. For comparison, Figure 3C shows the module
allegiance matrix calculated for each level of isoflurane dose
(across all time windows of both scans for all subjects, for
each dose), labeled according to the four summary networks.
Network 2, composed of regions in the visual, dorsal, parietal,
and primary somatomotor cortex (yellow in Fig. 3B), appears to
remain present across all six levels of dose (Fig. 3C), while the
other networks (1, 3, and 4) appear to dissipate with increasing
dose. Additionally, whereas the other networks appear to lose
their distinctiveness from one another with increasing dose,
Network 2 becomes increasingly isolated and even appears to
fracture along hemispheric lines at the highest levels of dose
(e.g., 2.00% and 2.75% isoflurane, see Fig. 3D).
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Figure 3. Summary architecture across levels of isoflurane dose. (A) Module allegiance matrix showing the probability of any two brain regions being part of the same
temporal module across all subjects, scans and time windows. (B) Clustering of the module allegiance matrix in A identified a summary network architecture from the

temporal modules, consisting of a cingulate–temporal–parietal–frontal network of regions (Network 1, red), a visual-somatomotor network (Network 2, yellow/orange),
a temporal–parietal–prefrontal network (Network 3, green), and a lateral parietal–frontal cingulate temporal network (Network 4, blue). (C) The module allegiance matrix
for each dose level, labeled according the summary network architecture in A. Note the relatively stable strength of allegiance in Network 2 across doses, compared
to the decrease in allegiance in Networks 1, 3, and 4. (D) Magnified views of the visual-somatomotor network (Network 2) from C, which highlights a fracturing of this

network along hemispheric lines at the highest dose levels (e.g., 2.00% and 2.75% isoflurane). The brain insets with yellow and orange regions denote the labelling of
the module allegiance matrix with respect to the left and right hemispheric components of Network 2, respectively.

Within- and Between-Network Integration Is
Modulated by Anesthetic Dose

To quantify our observations of the module allegiance matrix,
we estimated the integration of the four summary networks,
within each network and between networks. With each brain
region assigned to a network, the interaction between any
two networks can be measured by Ik1,k2 = (

∑
i ∈ Ck1, j ∈

Ck2Pi,j)/(|Ck1‖Ck2|) (Bassett et al. 2015), where Ck∈1,2 are modules,
| Ck | is the number of regions they contain, and Pi,j is
the proportion of the time region i and j are in the same
module. The interaction of a module with itself is calculated
by allowing k1 = k2. The integration between two modules
k1 �= k2 is the normalized interaction between them ′k1,k2 =

Ik1,k2/

√(
Ik1,k1Ik2,k2

)
. We refer to the interaction of a network

with itself as within-network integration and to the integration
between different networks as between-network integration.
[Note that “within-network integration” was referred to as
“recruitment” in the task-based analysis from which we
borrowed this method (Bassett et al. 2015).]

To quantify our observation that the majority of networks
(all except the visual-somatomotor network) dissipated at
higher levels of isoflurane dose, we fit a linear regression
model to within-network integration as a function of dose for
all subjects and scans. The model revealed a negative linear
relationship between dose and within-network integration
(Fig. 4A) for Network 1 (βdose = −2.368, t(56) = −6.3, R2 = 0.415,
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Figure 4. Within- and between-network integration is modified by isoflurane
dose for all networks except for the visual-somatomotor network. (A) Within-
network integration and (B) mean between-network integration of each network
for each level of isoflurane dose. In the plots, means were taken over both scans

for each dose and then over all subjects. Error bars show ±1 SEM. Lines show fits
of a linear regression model to the across-subject means.

P = 4.92e − 8), Network 3 (βdose = −4.238, t(56) = −6.078, R2 = 0.397,
P = 1.135e − 7), and Network 4 (βdose = −1.964, t(56) = −4.52,
R2 = 0.267, P = 3.252e − 5). Network 2, the visual-somatomotor
network, did not show this relationship (βdose = −0.217, t(56) =
−0.533, R2 = −0.013, P = 0.596). These findings confirm our
observation that three of the four networks dissipated at deeper
levels of sedation.

To quantify our observation that the majority of brain
networks became less distinct with increasing isoflurane dose,
we calculated the mean integration between each network
and the other three networks. The fit of a linear regression
model revealed a positive linear relationship between dose
and mean between-network integration (Fig. 4B) for Network
1 (βdose = 0.168, t(56) = 7.559, R2 = 0.505, P = 4.118e − 10), Network
3 (βdose = 0.196, t(56) = 7.151, R2 = 0.477, P = 1.951e − 9), and
Network 4 (βdose = 0.166, t(56) = 6.64, R2 = 0.441, P = 1.357e − 8).
Again, Network 2 was the exception, showing no such dose-
dependent relationship with the other networks (βdose = −0.02,
t(56) = −0.743, R2 = 0.01, P = 0.46). Furthermore, the integration
between each pair of networks precisely tracked these mean

interactions, that is, the integration between Networks 1, 3,
and 4 showed a positive linear relationship with dose, whereas
the integration between Network 2 (the visual-somatomotor
network) and each of the other networks failed to show a
dependence on dose (Supplementary Figure 10). Together, these
findings confirm our observation that three out of four networks
became less distinct with increasing isoflurane dose.

Network-Specific Effects on Region-Based Measures
of Modular Reconfiguration

Lastly, having found network-specific differences for within-
network and between-network integration, we sought to deter-
mine whether the movement of brain regions between temporal
modules would also show differences according to network
membership. We therefore calculated the mean disjointedness,
cohesion strength, and promiscuity of each summary network,
taking the same approach as above (Fig. 2C–E) but averaging
these measures within each network, rather than across all
brain regions. For each network, we fit a linear regression model
to each measure of modular adaptability as a function of dose,
finding that mean disjointedness increased with dose for all
networks (Fig. 5A, left) and that mean cohesion strength (Fig. 5B,
left) and promiscuity (Fig. 5C, left) decreased with dose for all
networks. Across the 12 fits, R2 values ranged from 0.173 to
0.384, and P values ranged from 0.01e − 3 to 2.13e − 7. Averaging
across dose levels for each subject, the respective magnitudes
of disjointedness (Fig. 5A, right) and promiscuity (Fig. 5C, right)
were notably smaller in the visual-somatomotor network, while
the magnitude of cohesion strength did not obviously differ
between networks (Fig. 5B, right). Together, these findings sug-
gest that the increase in uncoordinated modular reconfiguration
at higher levels of sedation occurs globally throughout the brain
but that the magnitude of the effect is smaller in primary sen-
sory and motor areas (which make up the visual-somatomotor
network).

Discussion
We investigated the dose-dependent effects of isoflurane on
temporal modular structure in nonhuman primates following
the induction of unconsciousness. Our analyses revealed that
whole-brain structure became more fragmented at deeper
levels of sedation, where the number and isolation of temporal
modules increased with dose (Fig. 2A,B). When we characterized
this modular reconfiguration at the level of brain regions, we
found that deeper levels of sedation were associated with more
uncoordinated movement of brain regions between modules, as
revealed by an increase in disjointed flexibility (Fig. 2C) and a
decrease in cohesive flexibility (Fig. 2D). Notably, this uncoordi-
nated reconfiguration coincided with a proportional decrease
in the number of modules in which brain regions participated,
as measured by their promiscuity (Fig. 2E). Next, by determining
the probability that each pair of brain regions was assigned to
the same module over time, we identified four whole-brain
networks that summarized subjects’ dynamic whole-brain
architecture across levels of sedation (Fig. 3A,B). Three out of
four of these networks dissipated at deeper levels of sedation,
as measured by their within-network (Fig. 4A) and between-
network (Fig. 4B) integration. Interestingly, a lone network
comprised of visual and somatomotor regions was impervious
to these dose-dependent effects on integration. Together, our
findings indicate that higher anesthetic dose results in the
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Figure 5. Mean disjointedness, cohesion strength, and promiscuity of each
network. (A) Mean disjointedness for each level of isoflurane dose (left), where

means were taken over both scans for each dose and then over all subjects. Error
bars show ±1 SEM. Lines show fits from a linear regression model to the across-
subject means. Distribution of subject means, taken over all doses, is shown on
the right for each network. (B) Mean cohesion strength. (C) Mean promiscuity.

uncoordinated reconfiguration of modular structure across
the cortex but that the breakdown in network structure is
relatively spared in primary visual, somatosensory, and motor
regions. These dose-dependent effects on whole-brain modular
structure are consistent with the view that unconsciousness
is graded in nature, selectively driven by disordered commu-
nication between circuits within the association cortex and
other brain areas involved in integrative processes (Tononi et al.
2016). As such, our results not only characterize changes in the
dynamics of whole-brain network structure across depths of
unconsciousness, but they characterize the global, network-
level effects of different anesthetic doses in clinical treatment.
Consequently, the neural measures of coordinated versus
uncoordinated network reconfiguration reported here may offer
potential diagnostic tools for identifying minimally conscious
states or residual consciousness in vegetative state patients
(Owen et al. 2006; Sitt et al. 2014).

Several earlier studies have used static module detection
methods to characterize network fragmentation during uncon-
sciousness (Achard et al. 2012; Boly et al. 2012; Spoormaker et al.
2012; Monti et al. 2013; Tagliazucchi et al. 2013; Hutchison et al.

2014), so it is important to differentiate the present method-
ology from those of these earlier investigations. Static module
detection methods operate according to the same general prin-
ciple as temporal module detection methods (i.e., they partition
a network into modules that typically maximize the ratio of
within-module to between module connectivity), but they do
so for single-layer networks. Thus, even if these methods are
used in each layer of a multilayer network constructed from
windowed time series (e.g., Tagliazucchi et al. 2013), there is
no formal relationship between a module in one time window
and the modules in any other time window (Mucha et al. 2010;
Bassett et al. 2011). Consequently, summary statistics (e.g., Q and
the number of modules) can be computed over multiple time
windows, but modular reconfiguration cannot be measured. Our
temporal module analysis was in large part motivated by these
earlier studies, which provided evidence for the increased frag-
mentation of whole-brain networks according to the number of
static modules during isoflurane- (Monti et al. 2013; Hutchison
et al. 2014) and propofol-induced (Monti et al. 2013) uncon-
sciousness, as well as the magnitude of static modularity during
propofol-induced unconsciousness (Monti et al. 2013) and sleep
(Boly et al. 2012; Spoormaker et al. 2012; Tagliazucchi et al. 2013).
Our finding that both Q (the magnitude of modularity, Fig. 2B)
and the number of temporal modules (Fig. 2A) increased with
dose offers novel support for the hypothesis that network frag-
mentation occurs in a graded fashion across levels of sedation.
In this regard, it is important to note how these two measures
are distinct. Q captures the degree to which modules are iso-
lated from one another, but does not imply that more (or less)
modules exist in a given partition. An increase in the number of
modules with dose indicates a different kind of fragmentation
altogether. Concurrently, these two findings further characterize
a large body of evidence from static FC analyses that shows
the breakdown of distributed networks, whereby brain networks
decompose into a larger number of more isolated subnetworks
during unconsciousness (MacDonald et al. 2015; Cavanna et al.
2018).

It is also important to note that maximal modularity does
not equate to optimal modularity. While modules confer func-
tional specialization and robustness, excessive modularity fore-
goes the advantages of integration over specialized subsystems
(Kirschner and Gerhart 1998; Kashtan and Alon 2005; Wagner
2005). Thus, optimal modularity can be defined as a balance
between these competing requirements. Our results imply that
this balance is increasingly skewed toward specialization at
deeper levels of unconsciousness, and we envision a continuum
of optimal balance that peaks at higher levels of alertness during
conscious processing. From this viewpoint, it is intuitive that
connectivity between association cortical areas breaks down
at lower levels of sedation than connectivity between sensory
and motor systems. Integration over specialized subsystems is
widely believed to be the role of the association cortex in the cor-
tical hierarchy (Jones and Powell 1970; Kaas 1989), supporting the
analytic and creative processing associated with awareness and
higher cognitive function. Here, it is worth noting the intriguing
similarity between the notion of optimal modularity and the
foundational principles of integrated information theory, which
posit that consciousness emerges from a balance between differ-
entiation and integration of distributed computational compo-
nents (Tononi et al. 2016). This balance is hypothesized to max-
imize systemic complexity, resulting in a large number of more
diverse brain states, required to account for a large, diverse set
of conscious experiences (Cavanna et al. 2018). Our finding that
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fragmentation (corresponding to differentiation) increased with
dose appears to support this hypothesis. Future work should
systematically explore the relationship between measurements
of modularity and complexity in whole-brain networks and the
dependence of this relationship on anesthetic dose.

The dose-dependent decrease in within-network integra-
tion in three out of four summary networks derived from tem-
poral modules (Fig. 4A) accords with earlier evidence for the
breakdown of static networks at deeper levels of sedation (Mac-
Donald et al. 2015), while the imperviousness of the visual-
somatomotor network to this effect provides further evidence
that the breakdown of network structure under suprathreshold
anesthetic dose is spatially nonuniform, with primary sensory
and motor cortical areas less affected than higher-order associ-
ation cortical areas (He et al. 2008; Boveroux et al. 2010; Martuzzi
et al. 2010; Liu et al. 2013; Hudetz et al. 2016). This general
pattern of observations supports the view that unconsciousness
results not from a breakdown in sensory processing per se but
rather from a breakdown in integrative processing by higher-
order brain networks involved in integrating and interpreting
that sensory information (Hudetz 2006; Alkire et al. 2008).

At first glance, our finding that between-network integration
across the majority of networks increased with dose (Fig. 4B)
appears to conflict with earlier evidence showing a “decrease” in
the integration between networks under anesthesia (MacDonald
et al. 2015). However, we measured network integration relative
to a module allegiance matrix, which describes the probability
that regional pairs were assigned to the same module over time
(Fig. 3A), not the magnitude of coactivation of their constituent
regions (as is typical in static FC investigations). To reconcile
these observations, we calculated the mean FC of our summary
networks and found that it decreased with dose, both within and
between networks (Supplementary Figure 11). Thus, the increase
in between-network integration among three of four summary
networks reflects a general weakening of network structure at
higher levels of dose, rather than an increase in functional inter-
actions. A thorough characterization of the dose dependence
of FC is provided by Supplementary Figure 4. In addition, the
preservation of the integrity of the visual-somatomotor network
across levels of dose may reflect the overall reduction in FC,
which tends toward the underlying structural connectivity (Mac-
Donald et al. 2015). Our finding that the variability in the number
of modules decreased with increasing dose (Supplementary Fig-
ure 5) is consistent with this possibility, which may account for
earlier evidence that functional brain states become more stable
at higher anesthetic dose (Hutchison et al. 2014; Barttfeld et al.
2015).

Our finding that disjointed flexibility increased with
isoflurane dose (Fig. 2B) supports our hypothesis that weaker
network structure should lead to more haphazard, unco-
ordinated changes in the affiliation of brain regions with
modules. Likewise, our finding that cohesion strength decreased
with increased isoflurane dose (Fig. 2C) is consistent with
the decrease in whole-brain state transitions at higher dose
(Hutchison et al. 2014; Barttfeld et al. 2015), assuming that
such state transitions are more readily driven by groups of
brain regions acting in concert than by individual brain regions.
The inverse relationship between disjointedness and cohesion
strength, which serve as two independent measures of regional
flexibility (Telesford et al. 2017), suggests that these measures
may also provide a useful marker for tracking levels of conscious
processing. Prior work using dynamic connectivity methods
has shown that the awake state is characterized by a rich

and flexible repertoire of whole-brain states (Barttfeld et al.
2015; Uhrig et al. 2018) and that these states are expressed
more frequently at lighter (compared to deeper) levels of
sedation (Hutchison et al. 2014; Barttfeld et al. 2015). From this
perspective, coordinated changes in modular structure may
provide a neural signature of an engaged mind, suggesting
that cohesive flexibility should correlate with the performance
of demanding cognitive tasks, from learning (Telesford et al.
2017) and problem solving to creative thinking. Our finding that
promiscuity was greater at lower isoflurane dose is consistent
with this possibility, assuming that the exploration of a larger
number of diverse brain states entails a broader range of
modular reconfigurations and, correspondingly, a proportionally
larger repertoire of modules in which brain regions participate.
Future work should address these possibilities. Finally, it is
worth noting that earlier work has shown correlations between
modular flexibility in general (the relative frequency of changes
in modular affiliation) and the performance of cognitive tasks
(Braun et al. 2015) and it would be informative to subcharacterize
flexibility as disjointed or cohesive in these data.

Our findings should be interpreted in light of several method-
ological considerations. Firstly, our study did not measure sub-
jects’ FC during the awake state, restricting our discussion to
changes in network architecture during unconsciousness and
at deepening levels of sedation. Secondly, because our study
was focused on anesthetic-related changes in cortical brain
networks, our current findings do not address the role of the
thalamus, a site of suppression for many anesthetic agents
(Alkire et al. 2000), in contributing to these cortical changes.
Thirdly, because we used isoflurane in our study, we are unable
to distinguish the extent to which our results reflect whole-brain
properties of general anesthesia or the specific mechanisms of
action of isoflurane. Fourthly, isoflurane has effects on cerebral
blood flow and volume (Masamoto and Kanno 2012), leading to
concerns that its neurovascular effects could obscure potential
neural changes. We believe this effect is unlikely to explain our
results, as studies using fMRI with electrophysiological record-
ings have indicated a close coupling between neural activity
and hemodynamics under anesthesia (Vincent et al. 2007; Liu
et al. 2013). Finally, we also recognize the inherent limits of fMRI
in characterizing the dose-dependent effects of anesthesia, not
only because of the limits of its spatial and temporal resolution
but also because it provides an indirect assay (via hemody-
namics) of underlying neural changes. We address these, and
other considerations, in the Supplementary Material. Overall, we
believe it is unlikely that our findings reflect the specific mecha-
nisms of isoflurane or purely neurovascular effects, rather than
neural effects.

Unconsciousness has been extensively characterized as a
decrease in the integration of regional activity in whole-brain
networks, both theoretically (Dehaene et al. 2014; Tononi et al.
2016) and experimentally (MacDonald et al. 2015; Cavanna et al.
2018). Two general mechanisms have been suggested to under-
lie this decrease (Hudetz 2006; Alkire et al. 2008). On the one
hand, FC breaks down nonuniformly at suprathreshold levels of
anesthesia, suggesting an overall decrease in correlated activ-
ity between brain regions (Peltier et al. 2005; Lu et al. 2007;
Deshpande et al. 2010). On the other hand, a global decrease in
functional segregation suggests a decrease in the specificity of
connectivity (Liu et al. 2011, 2013; Kalthoff et al. 2013). Our results
take an important step toward reconciling these observations,
offering evidence in support of both views within a common
framework. With respect to the first view, our finding that the
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integrity of three out of four summary networks diminished
at deeper levels of sedation provides compelling evidence for
the spatially nonuniform breakdown of network structure. With
respect to the second view, our finding that both the strength
of modularity and the number of modules increased at deeper
levels of sedation implies an increase in functional segrega-
tion, rather than a decrease; however, our finding that the
strength of FC decreased both within and between networks at
deeper levels of sedation (Supplementary Figure 11) is consis-
tent with a general breakdown of network connectivity. More-
over, the dose-dependent increase in disjointedness, decrease in
cohesion strength, and decrease in promiscuity occurred in all
networks (Fig. 5A), further demonstrating global network-level
effects. Indeed, we hypothesized that the global weakening of
FC would render small background perturbations sufficient to
drive uncoordinated modular changes (Fig. 2B). This weakening
of FC and its effects on modular reconfiguration may underlie
the dissipation of three out of four summary networks, since our
module allegiance matrix quantified the probability that brain
regions were grouped together in dynamic modules. Thus, in so
far as our temporal modular approach addresses each of the core
aspects of the two views, our findings suggest that they account
for quantifiable expressions of the same underlying mechanism.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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