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Abstract

We explore and demonstrate the capabilities of the upcoming Large Synoptic Survey Telescope (LSST) to study
Type I superluminous supernovae (SLSNe). We fit the light curves of 58 known SLSNe at z≈0.1–1.6, using a
magnetar spin-down model. We use the posterior distributions of the magnetar and ejecta parameters to generate
synthetic SLSN light curves, and we inject those into the LSST Operations Simulator to generate ugrizy light
curves. We define metrics to quantify the detectability and utility of the light curve. We combine the metric
efficiencies with the SLSN volumetric rate to estimate the discovery rate of LSST and find that ≈104 SLSNe per
year with >10 data points will be discovered in the Wide-Fast-Deep (WFD) survey at z3.0, while only ≈15
SLSNe per year will be discovered in each Deep Drilling Field at z4.0. To evaluate the information content in
the LSST data, we refit representative output light curves. We find that we can recover physical parameters to
within 30% of their true values from ≈18% of WFD light curves. Light curves with measurements of both the rise
and decline in gri-bands, and those with at least 50 observations in all bands combined, are most information
rich. WFD survey strategies, which increase cadence in these bands and minimize seasonal gaps, will maximize
the number of scientifically useful SLSNe. Finally, although the Deep Drilling Fields will provide more
densely sampled light curves, we expect only ≈50 SLSNe with recoverable parameters in each field in the
decade-long survey.

Key words: supernovae: general

1. Introduction

Type I Superluminous supernovae (SLSNe) are an observa-
tionally classified class of transients that typically reach a peak
absolute magnitude of −20 mag and display unique early
time spectra with O II absorption superposed on a hydrogen-
free blue continuum (Chomiuk et al. 2011; Quimby et al. 2011;
Gal-Yam 2012). These events also typically exhibit long
durations, with a time to rise and decline by one magnitude of
t 50dur  days, allowing them to radiate ≈1051 erg in the
optical/UV, comparable to the kinetic energies of normal core-
collapse SNe. Despite their high luminosities and long
durations, SLSNe are a relatively recent discovery due to the
advent of untargeted wide-field time-domain surveys. These
surveys are essential due to the low volumetric rate and low-
luminosity host galaxies of SLSNe (Neill et al. 2010; Lunnan
et al. 2014; Leloudas et al. 2015; Angus et al. 2016; Perley
et al. 2016; Chen et al. 2017b; Schulze et al. 2018).

There is ongoing debate about the energy source of SLSNe.
Unlike hydrogen-rich Type II SLSNe, which appear to be
powered by interaction with a dense circumstellar medium
(Chevalier & Irwin 2011), such interaction is disfavored as the
dominant heating source for Type I SLSNe, due to the
exceptionally large CSM mass required to reproduce the bright
observed light curves (Moriya et al. 2018), coupled with low-
density environments suggested by X-ray (Margutti et al. 2018)
and radio (Nicholl et al. 2016b; Coppejans et al. 2018)
observations. Instead, a central engine model is preferred, and it
appears to explain the light-curve shapes and diversity (Nicholl

et al. 2017c), early time spectra (e.g., Dessart et al. 2012;
Howell et al. 2013; Mazzali et al. 2016), and the velocity and
density structures inferred from nebular spectra (Nicholl et al.
2016a; Jerkstrand et al. 2017; Nicholl et al. 2018).
Currently, the best central engine candidate to power SLSNe

is a rapidly spinning magnetar, or a pulsar with a strong
magnetic field (B1013 G; Kasen & Bildsten 2010; Woosley
2010; Chatzopoulos et al. 2013; Inserra et al. 2013; Metzger
et al. 2015; Nicholl et al. 2017c). The magnetar model can
explain the diversity of SLSN light curves (Nicholl et al.
2017c; Villar et al. 2017), and the inferred velocities and
temperatures (Moriya et al. 2018). Recently, Nicholl et al.
(2017c) fit a sample of 38 well-observed SLSNe with a semi-
analytical magnetar model and found that this model is able to
reproduce the observed light curves using a fraction of the
parameter space (see also, Nicholl et al. 2015b; Prajs et al.
2016; Liu et al. 2017; Yu et al. 2017).
Statistical population studies like these are essential for

mapping the properties of SLSNe. Currently, about 10 SLSNe
are discovered per year (Guillochon et al. 2017),1 and this low
rate allows for detailed spectroscopic follow-up of each event.
However, future surveys will lead to a substantial increase in
the discovery rate. For example, Tanaka et al. (2012) and
Tanaka et al. (2013) explored several future optical and near-
infrared (NIR) surveys, concluding that missions like WFIRST
and the Large Synoptic Survey Telescope (LSST) will find

10 102 4~ - SLSNe per year. Due to limited spectroscopic
resources, it is essential to explore what information can be
obtained about these large samples from light curves alone;
namely, their diverse observational properties (Nicholl et al.
2015b), progenitor populations (Lunnan et al. 2014), host
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galaxies (Berger et al. 2012; Schulze et al. 2018), and
potentially cosmological parameters (Inserra & Smartt 2014;
Scovacricchi et al. 2015).

Here, we explore and study the characteristics of SLSNe
observed by the upcoming LSST, an 8.4 m diameter telescope
with a 9.6 deg2 field of view that will conduct several 10 yr
wide-field surveys across the Southern hemisphere in the ugrizy
filters. The current LSST observing strategy spends the majority
(90%) of the time executing the Wide-Fast-Deep (WFD)
survey, covering 18,000 deg2 with a cadence of roughly 4 days
in any filter and 10 days in a specific filter, and with a per-visit
limiting magnitude of m 24.5lim,gr » mag. About 5% of the
observing time will focus on several Deep Drilling fields
(DDFs), each comprised of a single pointing (9.6 deg2) with five
times more cumulative imaging than a typical field in the WFD
survey and with a nightly stack limiting magnitude of
m 26.5lim,gr » mag. The precise number, positions, and cadence
of the DDFs have not yet been determined. The remaining time
will be split between the Galactic Plane and South Celestial Pole
surveys. We focus on the WFD survey and DDFs in this study
(see LSST Science Collaboration et al. 2009 for technical
details).

The large survey area, cadence, and depth make LSST a
potential powerhouse for time-domain astronomy, particularly
in the case of volumetrically rare events like SLSNe. However,
there are two key questions that must be addressed to maximize
the potential of LSST. First, it is essential to quantify the
number of SLSNe that LSST will discover, their redshift
distribution, and their observational properties. Second, it is
vital to predict the information content from LSST light curves
alone to account for cases that will lack spectroscopic follow
up. In this work, we perform the first detailed study of SLSNe
discovered with LSST using an observationally motivated suite
of SLSN models and a realistic observational simulator
provided by the LSST collaboration.

The paper is structured as follows. In Section 2, we outline
the simulations used to produce realistic SLSN light curves as
they would appear in the LSST WFD survey and DDFs. In
Section 3, we describe the characteristics of the SLSNe
discovered by LSST based on our simulation results. In
Section 4, we discuss the ability to recover physical parameters
from the LSST light curves, and quantify the information
content of the simulated light curves. We conclude in
Section 5. All magnitudes are reported in the AB system, and
we assume a standard cosmology, with H 67.70 = km s−1

Mpc−1, 0.307MW = , and 0.691W =L (PlanckCollaboration
et al. 2016).

2. Simulation Setup

To simulate the observable SLSN population in the LSST
surveys we construct a sample of light-curve models and inject
these into the LSST Operations Simulator (OpSim). We
describe these steps in the following subsections.

2.1. Constructing Simulated SLSN Light Curves

We construct a sample of simulated light curves based on
known events from the literature. Several studies have
previously aggregated SLSN light curves (e.g., Nicholl et al.
2015b; De Cia et al. 2018; Liu et al. 2017; Prajs et al. 2017;
Lunnan et al. 2018). Recently, Nicholl et al. (2017c) uniformly
modeled a sample of 38 SLSNe requiring the events to be

spectroscopically classified and to have some photometric data
near peak. As such, the sample spans a range of peak
luminosities and light-curve timescales. Here we combine the
sample of Nicholl et al. (2017c) with 12 events discovered by
the Palomar Transient Factory (PTF; De Cia et al. 2018) and 8
events discovered in the Pan-STARRS1 Medium Deep Survey
(PS1-MDS; Lunnan et al. 2018), leading to 58 spectro-
scopically classified SLSNe spanning a wide range of
observational properties (see Table 1).
We model the 21 PTF and PS1-MDS SLSNe with the same

model described in Nicholl et al. (2017c). In short, we use the
open-source code MOSFiT (Guillochon et al. 2018) to fit a
magnetar spin-down model to the multiband light curves. We
assume a modified blackbody spectral energy distribution
(SED) in which flux is linearly suppressed below a “cutoff”
frequency of 3000Å. This SED shape is consistent with
observed SEDs (Chomiuk et al. 2011; Nicholl et al. 2017a, but
see also Yan et al. 2018 who argue that more UV variation is
seen in SLSN SEDs). We remove data in which a pre-peak
“bump” is observed (see Nicholl & Smartt 2016). Our model
additionally assumes a one-zone treatment of the ejecta and a
gray opacity dominated by electron scattering, both assump-
tions being typical during the photospheric phase. Several
choices, such as the precise definition of spin-down time, lead
to additional uncertainties that can affect best-fit values to the
tens of percent level (see Nicholl et al. 2017c for detailed
discussion). In this work, we explore only our ability to recover
known model parameters. Our best-fit parameters and their 1σ
error bars are provided in Table 2.
We use the sample of 58 fitted events to generate our

simulated SLSN light curves. Because drawing walkers directly
from the model posteriors would lead to undersampling of the
parameter space, we sample from a model of the underlying
population distribution as follows. We draw one walker from
the posterior of each event to create a distribution of the model
parameters of the underlying population. We fit this distribu-
tion to a truncated multivariate log-Gaussian that allows us to
capture the correlations between parameters observed in the
sample events. We place physically motivated limits on the
parameters, as listed in Table 3. We then draw samples from
the population distribution to generate 1000 events per redshift
bin of z 0.1D = from z=0.1 to z=6.0. Finally, from this
sample, we eliminate events with M 20r > - mag; although
these magnetar-powered events may exist in nature, they are
not necessarily distinguishable from the broader population of
Type I SNe. The parameters for the modeled SLSNe and for
our simulated events are shown in Figure 1.
The resulting r-band peak-luminosity function of our

simulated events and the observed sample are shown in
Figure 2. Our simulated luminosity function is consistent with
that derived by Nicholl et al. (2017c). We do not attempt to
correct for any potential observational biases within the various
surveys, as we expect these effects to be small relative to the
overall uncertainty in the volumetric rate (approximately a
factor ≈3–5; see Quimby et al. 2013; McCrum et al. 2015;
Prajs et al. 2016 and Section 4). Similarly, we show the
duration distribution of the known SLSNe and of our simulated
events in Figure 3, finding a good agreement between the two.

2.2. Description of the LSST Simulation

After generating the sample of SLSN models, we inject the
simulated events into OpSim, a publicly available application
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that simulates LSST’s scheduler and image acquisition process
over its 10 yr survey. OpSim realistically accounts for the
science program requirements, mechanics of the telescope
design, and potential environmental conditions to produce a
database of observations. We use OpSim to calculate the
estimated signal-to-noise ratios and limiting magnitudes of
each observation, using the formulae outlined in the Appendix.
OpSim offers a number of unique schedulers, each designed to
optimize distinct scientific goals; we use the most recent
simulation, dubbed minion_1016 (Delgado et al. 2014).
Although the final number, positions, and cadence of DDFs is
not finalized, this simulation spends 4.5% of its observing time
across five DDFs optimized for cosmological studies. Each has
an approximate three to four day cadence with about an hour of
nightly integration time across grizY (with occasional observa-
tions in u).

For both the WFD survey and DDFs, we inject our simulated
models uniformly at z=0–6 in bins of Δz=0.1. In each bin,
a sample of 1000 models are randomly injected uniformly
across the sky and in time to calculate the “discovery
efficiency” (see Section 3.1) of the LSST observing strategy
as a function of redshift. We resample the simulated models to
the observed times and add white noise corresponding to the
estimated signal-to-noise ratio reported by OpSim. Addition-
ally, we add Milky Way extinction based on the injected sky
positions. We disregard host galaxy extinction since most
known SLSN host galaxies appear to have negligible extinction
(e.g., Lunnan et al. 2014; Chen et al. 2015; Leloudas et al.
2015; Nicholl et al. 2017c). Example light curves at
representative redshifts are shown in Figure 4; featured light
curves are selected to highlight a combination of best, typical,
and worst cases in the WFD survey.

Table 1
Type I SLSNe Used in This Analysis

Name Redshift References Name Redshift References

PTF11hrq 0.057 De Cia et al. (2018) PTF09cwla 0.350 Quimby et al. (2011)
PTF10hgia 0.099 Inserra et al. (2013) De Cia et al. (2018)

De Cia et al. (2018) SN2006oza 0.376 Leloudas et al. (2012)
Gaia16apda 0.102 Yan et al. (2017b) PTF13cjq 0.396 De Cia et al. (2018)

Nicholl et al. (2017b) PTF13bdl 0.403 De Cia et al. (2018)
Kangas et al. (2017) iPTF13dcca 0.431 Vreeswijk et al. (2017)

PTF12hni 0.106 De Cia et al. (2018) De Cia et al. (2018)
PTF12dama 0.107 Nicholl et al. (2013) PTF10vqv 0.452 De Cia et al. (2018)

Chen et al. (2015) PTF09atua 0.502 Quimby et al. (2011)
De Cia et al. (2018) De Cia et al. (2018)
Vreeswijk et al. (2017) PS1-14bja 0.522 Lunnan et al. (2016)

SN2015bna 0.114 Nicholl et al. (2016b) Lunnan et al. (2018)
Nicholl et al. (2016a) PS1-12bqf 0.522 Lunnan et al. (2018)

PTF10nmn 0.124 De Cia et al. (2018) PS1-11apa 0.524 McCrum et al. (2013)
SN2007bia 0.128 Gal-Yam et al. (2009) Lunnan et al. (2018)
SN2011kea 0.143 Inserra et al. (2013) DES14X3taza 0.608 Smith et al. (2016)

De Cia et al. (2018) PS1-10bzja 0.650 Lunnan et al. (2013)
SSS120810a 0.156 Nicholl et al. (2014) Lunnan et al. (2018)
PTF10bfz 0.170 De Cia et al. (2018) DES13S2cmma 0.663 Papadopoulos et al. (2015)
SN2012ila 0.175 Inserra et al. (2013) PS1-11bdn 0.738 Lunnan et al. (2018)
PTF12gty 0.177 De Cia et al. (2018) iPTF13ajga 0.740 Vreeswijk et al. (2014)
PTF11rksa 0.192 Inserra et al. (2013) De Cia et al. (2018)

De Cia et al. (2018) PS1-13gt 0.884 Lunnan et al. (2018)
PTF10aagc 0.207 De Cia et al. (2018) PS1-10awha 0.908 Chomiuk et al. (2011)
iPTF15esba 0.224 Yan et al. (2017a) Lunnan et al. (2018)
SN2010gxa 0.230 Pastorello et al. (2010) PS1-10kya 0.956 Chomiuk et al. (2011)

Quimby et al. (2011) Lunnan et al. (2018)
De Cia et al. (2018) PS1-11aib 0.997 Lunnan et al. (2018)

SN2011kfa 0.245 Inserra et al. (2013) PS1-10ahfa 1.1 McCrum et al. (2015)
iPTF16bada 0.247 Yan et al. (2017a) Lunnan et al. (2018)
LSQ14moa 0.253 Chen et al. (2017a) SCP-06F6a 1.190 Barbary et al. (2008)
LSQ12dlfa 0.255 Nicholl et al. (2014) PS1-10pma 1.206 McCrum et al. (2015)

De Cia et al. (2018) Lunnan et al. (2018)
PTF09cnda 0.258 Quimby et al. (2011) PS1-11tt 1.283 Lunnan et al. (2018)
SN2013dga 0.265 Nicholl et al. (2014) PS1-11afv 1.407 Lunnan et al. (2018)
PTF13bjz 0.271 De Cia et al. (2018) SNLS-07D2bva 1.50 Howell et al. (2013)
SN2005apa 0.283 Quimby et al. (2007) PS1-13or 1.52 Lunnan et al. (2018)
PTF10uhf 0.288 De Cia et al. (2018) PS1-11bama 1.565 Berger et al. (2012)
PTF12mxx 0.327 De Cia et al. (2018) PS1-12bmy 1.572 Lunnan et al. (2018)
iPTF13ehea 0.343 Yan et al. (2015) Lunnan et al. (2018)

De Cia et al. (2018) SNLS-06D4eua 1.588 Howell et al. (2013)
LSQ14bdqa 0.345 Nicholl et al. (2015a)

Note.
a Best-fit magnetar parameters presented in Nicholl et al. (2017c). Other magnetar parameters presented in Table 2.
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Table 2
SLSNe Parameters for Events Modeled in This Paper

z P B Mej vph Emin κ kg MNS Tf AV σ WAICa

(ms) 1014 G M 103 km s−1 1051 erg cm2g−1 cm2g−1
M 103 K mag mag

PS1-11afv 1.41 1.63 0.68
0.57

-
+ 0.20 0.15

0.29
-
+ 4.36 1.85

4.75
-
+ 11.21 1.97

2.23
-
+ 8.25 3.87

7.52
-
+ 0.14 0.05

0.04
-
+ 0.97 0.92

10.94
-
+ 1.87 0.33

0.23
-
+ 6.15 1.13

1.10
-
+ 0.26 0.21

0.15
-
+ 0.01 0.01

0.03
-
+ 34

PS1-11aib 1.00 1.24 0.22
0.28

-
+ 0.60 0.16

0.14
-
+ 28.78 5.68

10.89
-
+ 5.44 0.26

0.37
-
+ 12.47 2.16

5.91
-
+ 0.11 0.04

0.04
-
+ 1.48 1.43

36.52
-
+ 1.83 0.27

0.28
-
+ 6.71 1.27

1.02
-
+ 0.44 0.07

0.04
-
+ 0.09 0.01

0.02
-
+ 137

PS1-11bdn 0.52 3.47 0.57
0.56

-
+ 0.90 0.23

0.30
-
+ 1.09 0.49

0.85
-
+ 8.07 1.27

1.17
-
+ 1.10 0.64

1.42
-
+ 0.10 0.04

0.06
-
+ 21.65 14.03

36.82
-
+ 1.82 0.28

0.27
-
+ 6.77 0.95

0.82
-
+ 0.13 0.07

0.16
-
+ 0.07 0.03

0.05
-
+ 15

PS1-11tt 1.28 1.11 0.25
0.34

-
+ 0.06 0.03

0.05
-
+ 9.24 3.27

4.30
-
+ 13.77 1.14

1.87
-
+ 28.70 10.82

11.37
-
+ 0.16 0.04

0.03
-
+ 0.03 0.02

0.02
-
+ 1.85 0.30

0.23
-
+ 6.07 1.14

0.87
-
+ 0.20 0.14

0.18
-
+ 0.01 0.01

0.04
-
+ 80

PS1-12bmy 1.57 2.31 0.37
0.29

-
+ 0.52 0.17

0.16
-
+ 2.93 0.70

1.17
-
+ 13.10 1.67

1.40
-
+ 7.79 1.71

2.33
-
+ 0.14 0.05

0.05
-
+ 1.05 0.95

14.40
-
+ 1.90 0.29

0.22
-
+ 5.87 1.10

1.05
-
+ 0.36 0.19

0.09
-
+ 0.01 0.00

0.04
-
+ 47

PS1-12bqf 0.52 5.15 0.51
0.61

-
+ 0.83 0.16

0.24
-
+ 2.82 1.19

1.42
-
+ 5.98 0.44

0.46
-
+ 1.51 0.67

0.61
-
+ 0.09 0.03

0.06
-
+ 4.21 3.95

19.42
-
+ 1.81 0.28

0.29
-
+ 6.06 1.05

0.80
-
+ 0.19 0.14

0.16
-
+ 0.01 0.01

0.02
-
+ 108

PS1-13gt 0.88 1.03 0.20
0.45

-
+ 0.04 0.01

0.03
-
+ 7.04 2.30

2.51
-
+ 17.90 3.39

3.58
-
+ 35.96 19.34

26.63
-
+ 0.16 0.04

0.03
-
+ 0.02 0.01

0.03
-
+ 1.75 0.19

0.36
-
+ 6.79 0.67

0.76
-
+ 0.27 0.14

0.16
-
+ 0.01 0.01

0.03
-
+ 76

PS1-13or 1.52 1.82 0.44
0.33

-
+ 0.56 0.25

0.31
-
+ 8.43 3.87

4.60
-
+ 8.84 0.69

1.16
-
+ 9.37 4.93

11.94
-
+ 0.14 0.05

0.04
-
+ 0.48 0.42

17.72
-
+ 1.78 0.27

0.30
-
+ 5.99 0.97

0.81
-
+ 0.02 0.01

0.04
-
+ 0.10 0.02

0.02
-
+ 69

PTF10aagc 0.21 4.48 1.32
1.01

-
+ 7.81 1.74

1.35
-
+ 1.62 0.70

0.37
-
+ 8.16 0.44

0.49
-
+ 1.63 0.70

0.35
-
+ 0.07 0.01

0.05
-
+ 7.34 6.71

38.67
-
+ 1.84 0.27

0.20
-
+ 5.98 0.53

0.64
-
+ 0.14 0.11

0.16
-
+ 0.19 0.03

0.04
-
+ 50

PTF10bfz 0.17 1.21 0.33
0.51

-
+ 4.48 1.02

0.95
-
+ 10.23 2.98

7.23
-
+ 9.84 0.73

1.03
-
+ 17.29 7.13

10.35
-
+ 0.13 0.05

0.05
-
+ 0.88 0.85

13.69
-
+ 1.88 0.28

0.25
-
+ 5.23 0.38

0.38
-
+ 0.20 0.14

0.16
-
+ 0.09 0.02

0.02
-
+ 82

PTF10nmn 0.12 2.21 0.92
1.46

-
+ 1.03 0.27

0.33
-
+ 5.12 2.54

3.64
-
+ 10.38 3.37

3.40
-
+ 7.06 3.72

9.53
-
+ 0.13 0.05

0.05
-
+ 0.43 0.27

0.47
-
+ 1.87 0.31

0.23
-
+ 7.22 0.36

0.47
-
+ 0.19 0.11

0.17
-
+ 0.13 0.06

0.05
-
+ 35

PTF10uhf 0.29 4.35 2.47
1.52

-
+ 3.19 1.12

1.72
-
+ 2.39 0.79

3.14
-
+ 10.54 1.49

1.10
-
+ 3.69 1.51

6.20
-
+ 0.15 0.04

0.04
-
+ 1.56 1.49

9.36
-
+ 1.84 0.30

0.25
-
+ 5.94 1.03

1.17
-
+ 0.35 0.21

0.10
-
+ 0.14 0.03

0.04
-
+ 27

PTF10vqv 0.45 3.12 0.68
0.42

-
+ 1.43 0.34

0.29
-
+ 2.71 1.03

2.51
-
+ 9.30 1.80

1.61
-
+ 3.59 1.31

1.75
-
+ 0.11 0.04

0.06
-
+ 3.44 2.92

34.25
-
+ 1.87 0.26

0.23
-
+ 8.72 0.73

0.63
-
+ 0.05 0.03

0.07
-
+ 0.01 0.01

0.02
-
+ 35

PTF11hrq 0.06 7.68 0.90
1.37

-
+ 1.15 0.28

0.29
-
+ 1.73 0.44

0.34
-
+ 11.36 2.08

1.50
-
+ 3.30 1.03

0.99
-
+ 0.16 0.04

0.03
-
+ 0.38 0.14

0.14
-
+ 1.89 0.30

0.22
-
+ 5.31 0.33

1.40
-
+ 0.19 0.12

0.17
-
+ 0.06 0.01

0.01
-
+ 170

PTF12gty 0.18 6.38 0.97
0.61

-
+ 1.56 0.32

0.34
-
+ 7.92 1.43

1.53
-
+ 5.67 0.21

0.44
-
+ 3.95 0.83

0.94
-
+ 0.17 0.04

0.02
-
+ 1.85 1.69

30.95
-
+ 1.84 0.28

0.25
-
+ 5.71 0.33

0.34
-
+ 0.27 0.17

0.16
-
+ 0.13 0.02

0.03
-
+ 97

PTF12hni 0.11 6.85 1.82
2.00

-
+ 3.21 0.67

0.67
-
+ 3.77 1.73

1.93
-
+ 6.67 1.09

1.12
-
+ 2.56 0.89

0.90
-
+ 0.13 0.05

0.04
-
+ 3.23 2.72

25.48
-
+ 1.84 0.26

0.23
-
+ 5.22 0.25

0.34
-
+ 0.15 0.10

0.20
-
+ 0.33 0.03

0.03
-
+ 39

PTF12mxx 0.33 2.24 0.48
0.44

-
+ 0.95 0.27

0.35
-
+ 6.71 1.76

2.36
-
+ 8.16 0.35

0.51
-
+ 6.78 2.12

2.83
-
+ 0.16 0.05

0.03
-
+ 0.03 0.02

4.70
-
+ 1.85 0.32

0.22
-
+ 6.04 0.88

0.89
-
+ 0.26 0.13

0.11
-
+ 0.05 0.01

0.01
-
+ 197

PTF13bdl 0.40 1.09 0.28
0.34

-
+ 1.40 0.33

0.46
-
+ 68.80 21.18

19.94
-
+ 5.76 0.48

0.78
-
+ 35.18 12.45

17.68
-
+ 0.18 0.03

0.02
-
+ 0.90 0.86

25.42
-
+ 1.84 0.31

0.26
-
+ 5.97 1.11

0.80
-
+ 0.36 0.17

0.08
-
+ 0.01 0.01

0.02
-
+ 59

PTF13bjz 0.27 2.98 1.67
2.19

-
+ 5.51 2.91

2.87
-
+ 2.07 0.68

2.26
-
+ 11.09 2.22

2.05
-
+ 3.90 2.20

5.66
-
+ 0.13 0.05

0.05
-
+ 0.66 0.62

14.75
-
+ 1.75 0.22

0.31
-
+ 5.88 0.81

1.01
-
+ 0.21 0.14

0.19
-
+ 0.18 0.03

0.04
-
+ 19

PTF13cjq 0.40 1.75 0.54
0.85

-
+ 1.49 0.38

0.31
-
+ 7.75 2.93

4.52
-
+ 8.33 1.13

1.26
-
+ 6.96 1.76

4.55
-
+ 0.12 0.04

0.04
-
+ 10.02 8.14

44.17
-
+ 1.86 0.33

0.23
-
+ 6.83 0.52

0.66
-
+ 0.10 0.07

0.11
-
+ 0.22 0.02

0.03
-
+ 63

Note.
a The Watanabe–Akaike information criteria (or “widely applicable Bayesian criteria”; Watanabe 2010; Gelman et al. 2014).
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3. Characteristics of SLSNe Discovered by LSST

The thousands of injected simulated light curves reflect the
wide range of observed SLSN properties expected from LSST.
Here we summarize these properties, define our criteria for
detection, and determine the rate of detected SLSNe as a
function of redshift for both the WFD survey and DDFs.

We calculate the expected number of SLSNe within each
redshift bin by multiplying the sample recovered from OpSim
by the estimated volumetric rate from Quimby et al. (2013)
normalized to the cosmic star formation history (Madau &
Dickinson 2014):

R R
z

z

1

1 1 2.9
Gpc yr , 10

2.7

5.6
3 1=

+
+ +

- -( )
[( ) ]

( )

where R 21 Gpc yr0
3 1» - - is the normalized SLSNe rate at

z=0 with an uncertainty range of R0≈4–72 Gpc−3 (Quimby
et al. 2013; Prajs et al. 2016). Using this prescription, the
volumetric SLSN rate peaks at z≈1.5–2.

We first focus on the r-band light curves to provide an
overview of the broad observational properties. In Figure 5, we
show the observed duration–luminosity phase space for our

injected light curves (weighted by their volumetric rate) using a
kernel density estimate. For the WFD survey, peak observed
magnitudes span ≈19–23 mag, with the distribution peaking at
≈21.2 mag. We also find that the observed durations of the
SLSNe span tdur≈60–300 days. This timescale is comparable
to the expected LSST season length (≈4–6 months), implying
that for a substantial fraction of events the rise or decline will
be missed in seasonal gaps. We find that a typical SLSN is
tracked for ≈100–400 days (1σ uncertainty range). For the
DDFs, we find that average peak magnitudes are slightly
dimmer, with the distribution peaking at ≈21.8 mag. The
observed durations are similar to those in the WFD survey.
The total number of observed light-curve data points

(combined in all filters) rapidly decreases with redshift; see
Figure 6. For the WFD survey, SLSNe at z1 will have
≈50–100 data points, while the majority of SLSNe have light
curves with 50 data points. The number of observed data
points roughly doubles for the SLSNe in the DDFs due to both
their higher cadence and deeper limits, enabling a longer
temporal baseline.

Figure 1. Subset of the model parameters for the SLSN magnetar model,
showing the results for the observed sample (orange circles: Nicholl et al.
2017c; purple squares: Lunnan et al. 2018; green diamonds; De Cia et al.
2018), and our simulated population (blue circles). The simulated sample
captures intrinsic correlations between parameters (including nuisance para-
meters) that are seen within the observed population.

Figure 2. Observed (orange) and simulated (blue) r-band peak-luminosity
function for SLSNe. The luminosity functions are in good agreement, with only
≈5% of our models extending to brighter r-band peak luminosities
(M 23r  - ) than currently observed.

Figure 3. Same as Figure 2 but for the r-band duration (tdur) of the observed
(orange) and simulated (blue) SLSNe. The duration distributions are in good
agreement, with only ≈2% of our models extending to durations longer than
those in our observed sample.

Table 3
Model Parameters and Imposed Limits

Parameter Min Max

Pspin/ms 0.7 100a

B 1014
^ G 10−2a 10
Mej/M 1 100a

v 10ej
4 km s−1 0.5 100a

κ/g cm−2 0.05 0.2
kg/g cm

−2 10−2 103

MNS/M 1.4 2.2
T 10floor

3 K 0.1a 50a

Note. Parameters described in detail in Nicholl et al. (2017c).
a Indicates limits well within the tail of the Gaussian distribution.
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3.1. Efficiency and Metrics for Detectability

We now focus on more quantitative measures of “detect-
ability” for the simulated light curves. There can be many
definitions of a detection of a transient. We are most interested
in the ability to (1) accurately estimate the physical parameters
from the light curve, and (2) discover events sufficiently early
to enable follow up with other instruments. To address these
points, we quantify the information content of the observed
light curves by defining several properties that can be easily
measured directly from the light curve. We focus on 19
representative properties, summarized in Table 4.

Using each property as an independent criterion of detection,
we calculate the total detection efficiency for SLSNe in LSST.
The efficiency can be divided into two multiplicative parts. The
first is the survey efficiency, s , arising from the survey
footprint and cadence. We calculate this by injecting events
uniformly across the complete survey duration and the sky. We
then calculate the fraction of events that are in the LSST
footprint during at least one observation. This efficiency is
effectively the area covered by the survey, given the long
duration of SLSNe compared to the cadence of LSST. The
second efficiency, m , is the fraction of simulated events that
satisfy the metrics listed in Table 4.

The total efficiency, s m  º ´ , as a function of redshift is
shown in Figure 7 for light curves with >10 observations (1 of
our 19 metrics). For both the WFD survey and DDFs, the
efficiencies decline monotonically as a function of redshift;
however, the decline is shallower in the case of the deeper
DDFs. Within the WFD survey footprint, the efficiency peaks
at ≈70% at low redshift; in the DDF fields, the efficiency peaks
at ≈100%. The WFD survey peaks at a lower efficiency due to
the fact that SLSNe (particularly if they explode outside of the
observing season for their part of the sky) can be discovered
well beyond peak, at which point they may already be below
the LSST detection limit. The WFD survey efficiency reaches
50% at z≈1 and declines to 10% at z≈3. For the DDFs, the
efficiency reaches 50% at z≈3 and declines to 10% at z≈5.
We combine the efficiency and the estimated volumetric rate

to calculate the total expected number of SLSNe, the integral of
the observed rate over the comoving volume, corrected for time
dilation:

N
R

z

dV

dz
dz

4

1
. 2

z

z

min

max

 ò
p

=
+

( )

We estimate the statistical uncertainty in the number of
detections due to the uncertainty in ò using a bootstrap

Figure 4. Sample ugrizy LSST light curves from OpSim at four representative redshifts. For each redshift, the light curves are ordered by the number of observations,
with the left-most representing the bottom tenth percentile, the two middle panels representing the fiftieth percentile, and the right-most panel representing the ninetieth
percentile.
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analysis; namely, we resample the properties of the observed
light curves repeatedly, recalculating the efficiencies each time.
There is an overall scaling uncertainty due to the systematic
uncertainty in the volumetric rate, but we expect this to be
improved with new rate measurements from DES (The
Dark Energy Survey Collaboration 2005) and ZTF (Kulkarni
2018). Therefore, in Figures 7–9, we show only the statistical
uncertainties.

The number of SLSNe discovered per year as a function of
redshift is shown in Figures 8 and 9. For our most lenient
definition of a detection (at least 10 light-curve points), we find
that LSST will discover ≈9600 SLSNe per year. This is in
agreement with the rate reported in the Scientific Handbook
(LSST Science Collaboration et al. 2009) and previous studies
(Tanaka et al. 2013; Scovacricchi et al. 2015). The distribution
roughly traces the cosmic star formation history to z≈1, at
which point the observed distribution drops more rapidly due to
the declining detection efficiency. The distribution extends to
z≈3 in the WFD survey and to z≈5 in the DDFs.
Measuring both the peak brightness and duration can lead to

robust measurements of the SLSN properties. About 2700
SLSNe per year will have more than 20 observations within
one magnitude of their peak brightness. We find that the
duration is most readily measurable in r-band, and that for
about 950 SLSNe per year tdur (as defined above) will be
measured; we note that this represents only 10% of the overall
SLSN sample.
Capturing the light-curve rise can be especially important for

constraining the underlying power source in SLSNe and to
search for early bumps in the light curve. We find that ≈800
SLSNe per year will be discovered within 10 days (in the rest
frame) of their explosion time, comparable to the typical time
frame of the early pre-peak bumps seen to date (Leloudas et al.
2012; Nicholl et al. 2015a; Nicholl & Smartt 2016; Smith et al.
2016). About 100 SLSNe per year will be discovered within
five days of explosion, most being located at z1. About
4200 SLSNe will be detected with at least 10 observations
during the rising phase; however, fewer than 10 SLSNe with
this property will be found annually in each DDF, due to their
small areal footprint.

Figure 5. Duration–luminosity phase space for a representative sample of our simulated SLSNe as observed with LSST in the WFD survey (orange) and DDFs (blue).
Contours are a kernel density estimate of the two populations, while points represent outliers. The majority of objects have a peak magnitude of r≈21–22 mag and
durations of ≈100 days. The events in the DDFs extend to lower peak magnitudes and longer durations.

Figure 6. Number of observed data points per event as a function of redshift.
Bold lines show the mean in each redshift bin, with the shaded regions
representing 1σ ranges due to event-to-event variations. The number of
observed points drops to <10 (our minimum criterion for a detection) at z≈3
in the WFD survey, while it typically remains at >20 in the DDFs even
to z≈6.
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4. Recovering the SLSN Parameters

In the previous section we explored the overall detection
rates and the redshift distributions for a range of observational
light-curve metrics. Here we fit the simulated LSST light
curves with the same model used to generate them to determine
how well we can recover the injected model parameters. Our
goals are to understand how well we can determine the model
parameters from LSST data, and to correlate our simple light-
curve metrics to the information content of the light curves.
The latter goal is important because the final survey strategies
of LSST will be determined by providing a simple, measurable
metric that can be optimized for a specific science goal.

4.1. Injection and Recovery of Representative SLSNe

We fit the output light curves using MOSFiT in the same
manner that was used to generate them (Section 2). We focus
on three SLSNe representative of the larger population:
SN2013dg (t 45dur » days), LSQ12dlf (t 60dur » days), and
SN2015bn (t 130dur » days). All three have roughly the same
peak luminosity, ≈3×1044 erg s−1. We inject and recover
about 100 iterations of these SLSNe at z=0.5, 1.0, 1.5,
2.0, 3.0.

We fix the redshift to its input value when fitting, finding that
without doing so it is nearly impossible to constrain the
explosion parameters. In reality, it is unclear how well we will
know the redshift a priori through photometry or (in some
cases) spectroscopic measurements of their host galaxies.
SLSNe are typically found in low-luminosity (M 17B » - mag)
host galaxies (Lunnan et al. 2014). For z0.5, most of these
hosts will fall in the so-called LSST “gold” galaxy sample
(defined as galaxies with m 25.3i < mag), which will have a

Table 4
Observational Metrics

WFD DDF

Metric Limiting za Discoveredb Useful Useful Limiting za Discoveredb Useful Useful
(yr−1) (lenient)c (strict)d (yr−1) (lenient)c (strict)d

>10 detections 2.9 9600 4810 (0.50) 1680 (0.18) 3.9 13 5 (0.40) 1 (0.13)
>50 detections 2.3 3320 2170 (0.65) 900 (0.27) 3.5 9 4 (0.50) 1 (0.17)
>100 detections 2.0 590 416 (0.71) 216 (0.37) 2.7 3 2 (0.62) 0 (0.24)
>10 detections in u 2.5 50 30 (0.65) 20 (0.37) 2.4 4 2 (0.61) 0 (0.22)
>10 detections in g 2.3 1090 720 (0.66) 320 (0.29) 3.1 6 3 (0.55) 1 (0.20)
>10 detections in r 2.8 6600 3190 (0.48) 1170 (0.18) 3.7 10 4 (0.40) 1 (0.13)
>10 detections in i 2.7 6120 3170 (0.52) 1170 (0.19) 3.8 10 4 (0.41) 1 (0.13)
>10 detections in z 2.3 2770 1730 (0.63) 730 (0.27) 3.8 10 4 (0.45) 1 (0.15)
>10 detections in y 2.0 1300 890 (0.69) 420 (0.33) 3.2 6 3 (0.53) 1 (0.19)
>10 observations in rise 3.6 2240 577 (0.26) 131 (0.06) 4.0 8 2 (0.35) 0 (0.10)
>20 during peake 2.2 2690 1740 (0.65) 780 (0.29) 3.4 9 4 (0.49) 1 (0.17)
Detected <5 days after explosion 2.9 100 36 (0.36) 13 (0.14) 3.7 2 0 (0.31) 0 (0.10)
Detected <10 days after explosion 3.2 350 119 (0.34) 42 (0.12) 3.9 5 1 (0.28) 0 (0.09)
Measurable duration in u 1.2 50 39 (0.77) 23 (0.46) 1.8 0 0 (0.71) 0 (0.34)
Measurable duration in g 2.1 280 185 (0.66) 78 (0.28) 2.2 1 0 (0.65) 0 (0.27)
Measurable duration in r 2.2 960 618 (0.65) 261 (0.27) 2.7 2 1 (0.59) 0 (0.22)
Measurable duration in i 2.0 770 514 (0.67) 221 (0.29) 3.1 2 1 (0.60) 0 (0.22)
Measurable duration in z 2.1 310 215 (0.70) 108 (0.35) 3.2 2 1 (0.57) 0 (0.22)
Measurable duration in y 2.0 90 64 (0.69) 41 (0.44) 2.0 0 0 (0.63) 0 (0.26)

Notes.
a Cumulative redshift at which 90% of SLSNe are discovered.
b Total number of discovered SLSNe satisfying given metric.
c Total number of discovered SLSNe satisfying given metric with recoverable parameters to within a factor of two.
d Total number of discovered SLSNe satisfying given metric with recoverable parameters to within 30%.
e Here we define “peak” as within one magnitude of peak brightness.

Figure 7. WFD survey and DDFs efficiencies as a function of redshift. The left-
hand y-axis shows the efficiency of SLSN detection, assuming the SLSNe are
within the survey footprint (i.e., an SLSN may be in the footprint but too dim to
detect). The right-hand y-axis shows the total efficiency, ò, including the effect of
survey area. The shaded region represents the 1σ error bars from bootstrap analysis.
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root-mean-square scatter in the photometric redshifts of
z1 0.05z s +( ) (see LSST Science Collaboration et al.

2009). We additionally fix the host reddening to be negligible.
We are interested in our ability to recover four key

parameters: the ejecta mass, the ejecta velocity, the initial
magnetar spin period, and the magnetic field. In our model, the
spin period and magnetic field have strong degeneracies with
several nuisance parameters, making them difficult to directly
measure. We therefore recover the following variables, which
directly correlate with the rotational energy and spin-down
timescales of the magnetar (Nicholl et al. 2017c; Villar et al.
2017):

B B M

P P M

sin

,

2 2
NS
3 2

spin
2

NS
3 2

*

*

qº

º

- -

-

( )

where θ is the angle between the rotational axis and magnetic
dipole, and MNS is the neutron star mass.

How well we need to recover the SLSN parameters depends
on the scientific goal. For cosmological studies, determining
the average distance modulus (assuming SLSNe are standar-
dizable; see Inserra & Smartt 2014) to ≈0.25 mag is sufficient
to constrain, for example, mW to within 2% (Scovacricchi et al.
2015). In Nicholl et al. (2017c), constraining parameters to an

average of ≈30%–50% was sufficient to probe the underlying
population with a sample of ≈50 events. We track our ability to
recover the four key parameters to (1) 30% of their input
values and with error bars of <50% (“strict”), and (2) within a
factor of two of their input values with error bars of <50%
(“lenient”).
Example light curves and their best-fit models are shown in

Figure 10. At low redshifts, many of the light curves are well-
sampled both near and post peak, leading to better recovery of
the input parameters. At higher redshifts, the majority of light
curves are caught near peak and quickly drop below the
detection limit, leading to typically poorer recovery. Addition-
ally, due to the much deeper limits available in gri-bands, the
light curves of higher redshift events are typically limited to
these filters. Thus our ability to recover the input parameters
significantly drops with redshift. At z0.5, our strict recovery
rate is ≈60% and our lenient recovery rate is ≈100% for light
curves with >10 data points. By z=2, the strict recovery rate
drops to zero, while the lenient recovery rate is ≈50%. By
z=3, the lenient recovery rate also drops to zero.
The parameter recovery rate is a function of both redshift and

luminosity. The above calculations used a peak luminosity of
L 3 100

44» ´ erg s−1. We now consider the full luminosity
function of our simulated SLSNe (Figure 2) to capture the

Figure 8. First and third rows: the WFD survey annual detection rate of SLSNe as a function of redshift (black lines) for various metrics. The green shaded regions
represent 1σ errors from our bootstrap analysis. Also shown are the rates for SLSNe with (strict) recoverable parameters (purple line and shaded area); note that the
purple line is calculated assuming the same information efficiency for each metric. Second and fourth rows: cumulative distributions of SLSNe that satisfy each metric
(black) and those that have lenient recoverable parameters (purple).
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overall recovery rate. For any luminosity, the recovery curve as
a function of redshift, zrecov ( ), is set to 1 at z=0 and to zero at
z=zlim, where z=zlim is the limiting redshift for a given
luminosity. For SLSNe with peak luminosity L0, the limiting
redshift is z 3.0lim,0 » . We assume that for all other
peak luminosities, the recovery rate can be described as

z z zrecov lim,0 lim = *( ). This allows brighter events to be
captured at higher redshifts, and all events will be capped to
their limiting redshifts. After reweighting the recovery rate
through this process with our simulated luminosity function,
we find that the overall efficiencies decline more rapidly with
redshift. For example, the lenient recovery rate drops to ≈40%
at z=2, rather than to ≈50% when we used just a single peak
luminosity.

Multiplying our corrected recovery rates by the overall
discovery efficiency from Section 3, we find that ≈18% (about
1700 out of 9600 discovered annually) of SLSNe discovered in
the WFD survey will have light curves that satisfy our strict
criterion, and ≈50% will satisfy the lenient criterion. Even at
the high-redshift end (z≈3), ≈50 SLSNe per year will satisfy
the lenient criterion.

For the DDFs, we find that the fraction of useful light curves
is slightly smaller than that of the WFD survey. This is likely
due to the fact that the overall efficiency reaches higher
redshifts, although fewer of the high-redshift light curves are
useful due to their lower luminosities.

Finally, we test the robustness of our results given an
uncertain redshift. For each model at a representative z=1, we
rerun our fits with a uniform prior on redshift with three levels
of uncertainty: 5%, 10%, and 20%. These levels range from the
expected “gold standard” (5%) and a worst-case scenario
(20%). Using a bootstrap analysis, we find no statistically
significant (p 0.05> ) bias or error inflation in any of the four
key parameters given the different redshift priors. This is likely
due to the fact that the errors are dominated by the other 11
parameters being fit. At higher redshift, it is possible that
similar uncertainties will have a larger effect on the models, but
we expect these to still remain at the ≈10% level.

4.2. Correlating SLSN Properties to Parameter Recovery

Finally, we turn to the question of what properties of an
SLSN light curve allow us to best recover key physical
parameters. Unsurprisingly, the number of observations
strongly correlates with our ability to recover parameters. This
is demonstrated in Figure 11, in which we show the average
parameter residual for each of the four important physical
parameters (e.g., M M Mej,fit ej,true ej,true-∣ ∣ ) as a function of the
number of observations for a sample of light curves spanning
from z=0.5 to z=2. We consider both the total number of
observations (taken at any point during the event) and
observations taken within the first 2tdur days in the rest frame
(i.e., near peak). In both cases, light curves with 50 points are

Figure 9. Same as Figure 8 but for each DDF.
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significantly more likely to have recoverable physical para-
meters compared to the average light curve with ≈20
observations (≈65% compared to ≈50% recovery rate). Light
curves with 100 observations are only somewhat more useful
than those with 50 observations when using the lenient
definition (≈70% versus ≈65%); however, they are more
useful when using the strict criterion, with ≈40% compared
to ≈30%.

Additionally, having a measurable duration in any filter is a
good indicator of an information-rich light curve, with ≈65%
compared to ≈50% recovery rate for the typical light curve.
This is likely due to the fact that the light-curve peak and width
greatly constrain the model parameter space. For example, a

bright and broad light curve cannot be produced by a small
ejecta mass or weak magnetic field. The most “useful” filter for
measuring duration appears to be u-band, although this is likely
due to the fact that light curves that are well-sampled in u-band
tend to be at low redshifts (i.e., the limiting redshift for this
metric is only z=1.2). In contrast, light curves with a
measurable r-band duration can occur at higher redshift
(z≈2). Again, this suggests that well-sampled light curves
near peak are more scientifically useful.
These findings indicate that a survey strategy that optimizes

a higher cadence in the most sensitive bands, gri, will provide
the greatest return on scientifically useful light curves even at
high redshift. Given the average SLSN duration of ≈100 days

Figure 10. Light-curve fits from MOSFiT to a sample of simulated LSST light curves at representative redshifts. For each event we list the ratio of the injected to fitted
values for the four key model parameters. The light curves are ordered by the quality of parameter recovery from left (worst) to right (best).
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(Figure 5), a cadence of roughly two to four days (similar to the
nominal cadence) in any filter would be sufficient to recover
magnetar parameters directly from most SLSN light curves at
z 3.0< . Perhaps more importantly, the current WFD observing
strategy has large seasonal gaps every 4–6 months which
interrupt many SLSN light curves. This is due to the fact that
the WFD survey observes fields with airmass 1.4 (LSST
Science Collaboration et al. 2009). Reducing these gaps with
even a few observations at higher airmass would be beneficial
to provide more comprehensive temporal coverage and greater
opportunity to recover SLSN properties. In a similar vein,
stacking late-time observations can significantly extend our
light-curve coverage across seasons.

5. Summary and Conclusions

We presented detailed simulations of Type-I SLSNe in the
upcoming LSST survey. We constructed a realistic distribution
of magnetar and explosion parameters from an existing sample
of 58 SLSNe spanning z=0.1–1.6 and used this to simulate
thousands of SLSNe at z=0–6 in the LSST Operations
Simulator.

We define a number of measurable light-curve metrics,
which we use to define a “detection.” For our loosest definition
of a detection (observing >10 data points in all filters
combined), we find that the detection efficiency of the WFD
survey quickly declines from ≈50% at z=1 to ≈10% at
z=3, while for the DDFs, the efficiency declines from ≈100%
at z=0.5 to ≈50% at z=3 and 10% at z=5. We combine
this detection efficiency with an estimate for the cosmic SLSN
rate to find that LSST will discover ≈104 SLSNe per year
within the WFD survey and ≈15 per year in each DDF. Most
(90%) of the discovered SLSNe are found at z3, although
≈1 SLSN per year should be discovered at z≈5.

We refit the light curves of representative SLSNe injected
into the LSST WFD survey and DDFs, and test how well we
can recover four key physical parameters (initial magnetar spin
period, magnetic field strength, ejecta velocity, and ejecta
mass). We find that we can successfully recover the four
parameters in ≈18% of all SLSNe to within 30% with error
bars of <50% of the parameter values. We can recover the
parameters to within a factor of two for ≈50% of all SLSNe.
The majority of SLSNe with recoverable parameters will be
found at low redshift (z 1.5). Parameter recovery relies on
having accurate redshifts; while LSST will provide photometric
redshifts for many host galaxies this may become a challenge at
the high-redshift end.
We correlate our ability to recover physical parameters with

the defined light-curve metrics. In both the WFD survey and
DDFs, light curves with 50 observations, especially con-
centrated near peak, are typically those with recoverable
parameters. LSST survey strategies that maintain a rapid
cadence (≈2–4 day) in the most sensitive gri-bands will
provide the most scientifically useful SLSN light curves.
Similarly, strategies that minimize seasonal gaps with some
high airmass observations will increase our chance of covering
the light curves’ peak and duration, and therefore provide more
scientifically useful light curves. Finally, stacking observations
at late times may allow us to probe more SLSNe across
multiple seasons and better anchor our models.
Compared to the WFD survey, we find that the DDFs (in

their current form) will not provide higher quality SLSNe, or
SLSNe at significantly higher redshifts in large quantities due
to the small area covered by these fields. It is therefore
imperative to maximize the scientific return from events in the
WFD survey, rather than relying on a small number of events
from the DDFs.

Figure 11. Average parameter residuals (for M v B P, , ,ej ej * *) as a function of number of observations per light curve. The blue points show the total number of
observations per light curve, while the oranges points show the number of observations within 2tdur days of explosion (in the event’s rest frame). The solid lines are fits
to exponential functions to guide the eye. Dotted lines show both the lenient and strict information criteria. There is little gain beyond ≈50 observations per light
curve, and almost no light curves have more than 50 observations within 2tdur days post-explosion.
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Overall, our simulations indicate that LSST will be a
powerhouse for discovering SLSNe. About 1700 SLSNe per
year will have sufficient photometry to extract key physical
parameters directly from the light curves (given an accurate
redshift estimate) to within 30%, significantly increasing our
current sample by at least two orders of magnitude.
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discussions and an anonymous referee for valuable feedback.
The computations presented in this work were performed on
Harvard University’s Odyssey computer cluster, which is
maintained by the Research Computing Group within the
Faculty of Arts and Sciences. The Berger Time Domain group
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MOSFiT (Guillochon et al. 2018).

Appendix

Using information provided by OpSim, we can calculate the
signal-to-noise ratio (S/N) of our injected observations:2

C

C g B g n
S N , 3

instr
2

effs
=

+ + *( )
( )/

where C is the source counts in ADU, B is the background
count per pixel in ADU, 12.7instrs = e− is the instrumental
noise in ADU, g=2.3 e−/ADU is the gain, and neff is the
effective number of source pixels. Both B and instrs are
provided by OpSim. The source counts are calculated using:
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where Fν is source spectrum, and S l( ) is the filter throughput,
Δt=30 s is the integration time, A 3.24 10eff

10= ´ cm2 is
the effective collecting area and h is Plank’s constant. The
effective number of pixels can be calculated as:

n 2.266 FWHM px , 5eff eff
2= ( ) ( )

where FWHMeff is the effective full width at half maximum of
the source PSF as reported by OpSim and px=0.2″/pixel is
the pixel scale.

For the DDFs, the exposure time is increased according to
the number of exposures taken in a single night in each filter,
allowing us to probe deeper limiting magnitudes.
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