Abstract ID: 676 for Cities on Volcanoes 10 (Auto-Generated June 13, 2018 2:13 pm)

A new way to reduce the impact from tephra fallout during Etna explosive eruptions

Simona Scollo¹, Michele Prestifilippo¹, Emilio Biale¹, Costanza Bonadonna², Giuseppe Carparelli³, Carmelo Cassisi¹, Stefano Ciolli⁴, Raffaello Cioni³, Stefano Corradini⁵, Wim Degruyter⁶, Luca Merucci⁵, Massimo Musacchio⁵, Emilio Pecora¹, Eduardo Rossi², Malvina Silvestri⁵

¹Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Italy ²Département des sciences de la Terre, Université de Genève, Genève, Switzerland

³Università di Firenze, Dipartimento Scienze della Terra, Italy

⁴Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile, Roma, Italy

⁵Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Italy

⁶School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

The frequent number of explosive events at Mt. Etna, in Italy, over the last ten years, has made necessary the improvement of volcanic ash monitoring and forecasting system at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE). Tephra fallout produced during Etna lava fountains largely impact the population living on the volcano flanks. In addition, during one of the most powerful paroxysms, large clasts fell in proximal areas injured tourists and hikers. To reduce risk, the Italian Department Civil Protection (DPC) asked and funded INGV-OE to do a research project finalized to three specific objectives. First, identify the plume scenario (i.e. weak plume scenario (WPS) and strong plume scenarios (SPS)) based on 1-D plume model. Second, forecast characteristics of tephra deposition using near real time observations. Third, identify the region possibly impacted by large clasts (>5 cm). Two algorithms were developed to measure the column height. One from the calibrated images of two visible cameras installed on the S and W flanks of the volcano, respectively; and the other one from satellite data using a procedure based on the computation of the volcanic plume-top brightness temperature at 10.8 mm. The analysis of lava fountains that occurred between 2011 and 2015 provided the opportunity to differentiate between weak, transitional and strong plumes. The uncertainty associated with eruption source parameters, while maintaining a fixed plume height, was also assessed. In the near future the implementation of these products into the INGV-OE monitoring room will guarantee a better and timely information to civil protection authorities charged of risk prevention at different levels of responsibility.