

Bollettino Sismico Italiano

Maggio - Settembre 2016*

DOI: 10.13127/BOLLETTINO/2016.02

I parametri dei terremoti registrati dalla Rete Sismica Nazionale Italiana, localizzati nella sala di monitoraggio di Roma, sono immediatamente disponibili sul web alla pagina http://cnt.rm.ingv.it/ e nell'Italian Seismological Instrumental and parametric Data-base (ISIDe working group (2016) version 1.0, DOI: 10.13127/ISIDe). Gli analisti del Bollettino Sismico Italiano (BSI) ricontrollano i parametri dei terremoti ottenuti inserendo pesi e polarità degli arrivi delle onde sismiche e integrando i dati letti in sala con tutti guelli disponibili nel sistema di acquisizione. Dal 1985 i dati del bollettino sono consultabili nel data-base ISIDe.

Gruppo di lavoro: A. Nardi, A. Marchetti, F. M. Mele, L. Margheriti, G. Modica, P. Battelli, M. Berardi, C. Castellano, C. Melorio, M. Pirro, A. Rossi, S. Spadoni, L. Arcoraci, G. Lozzi, A. Battelli, C. Thermes, M. G. Ciaccio, B. Castello, N. Pagliuca, A. Lisi, L. Pizzino, P. Baccheschi, A. Bono, C. Marcocci, V. Lauciani, A. Mandiello.

Collaborano: S. Pintore, D. Pietrangeli, M. Quintiliani, A. Frepoli, D. Latorre, D. Cheloni, A. Lombardi, M. Vallocchia, M. Fares, M. Moretti, F. P. Lucente, L. Scognamiglio, B. Palombo, A. Basili, A. Michelini,

* II 24 agosto 2016 un terremoto di magnitudo 6.0 ha dato inizio ad una sequenza sismica in Italia centrale, che ha generato decine di migliaia di eventi sismici. Per l'analisi e revisione di guesta sequenza si rimanda ad un uscita speciale del BSI prevista per fine 2017(S BSI CI). In questo quadrimestre e nel successivo gli eventi nella zona della sequenza (rettangolo in mappa) sono quelli localizzati nella sala di sorveglianza. Solo gli eventi con M ≥3.5, e pochi altri (vedi Marchetti et al. Annals of Geophys. DOI: 10.4401/ag-6116) sono stati rivisti dal BSI.

con M ≥3.5

Nel secondo quadrimestre 2016 si sono verificati sedici eventi di magnitudo superiore a 4.0 (M_L) rivisti dagli analisti del BSI uno vicino alle coste tunisine quindi fuori dal territorio nazionale; l'evento di Mw 4.1 che è avvenuto il 30 maggio in provincia di Terni vicino al Lago di Bolsena (coordinate geografiche (lat=42.7, lon=11.98 ad una profondità di 8 km) e 14 eventi nella zona della sequenza nell'ultima settimana del quadrimestre: il 24 agosto 2016 si è verificato l'evento di magnitudo M_L =6.0 (Mw=6.0) che ha iniziato una sequenza sismica per la quale sono stati localizzati decine di migliaia di terremoti e che alla fine di ottobre 2016 ha generato eventi persino più forti (fino a Mw=6.5) della prima scossa.

Grafico del numero di terremoti giornaliero per le diverse classi di magnitudo nel Ш quadrimestre 2016 (colonne colorate dal verde al giallo al rosso), e andamento del numero cumulato di terremoti (punti neri). Il 24 agosto con il terremoto di Amatrice Mw=6.0 inizia una sequenza con centinaia di eventi localizzati ogni giorno. Il BSI analizzerà la sequenza nel corso del 2017 e farà uscire uno speciale dedicato a questi

Grafico del momento sismico (Mo) giornaliero in scala logaritmica (per la conversione da M_L a Mo si utilizza la relazione di Castello 2007 et al., http://csi.rm.ingv.it/biblio.ht m). E' interessante notare che il rilascio di momento sismico giornaliero in questo quadrimestre in Italia prima del 24 agosto è molto basso e oscilla tra $2*10^{13}$ Nm a $2*10^{14}$ Nm. solo raramente in degli occasione eventi maggiori: il 30 maggio e nell'ultima settimana di agosto supera 2*10¹⁵ Nm, raggiungendo nel giorno del mainshock del 24 agosto valori maggiori di 1*10¹⁸ Nm.

TDMT del II QUADRIMESTRE 2016 si trovano alla pagina (http://cnt.rm.ingv.it/tdmt)

Mappa dei Time Domain Moment Tensor (TDMT) calcolati per il II quadrimestre 2016 presenti nel database <u>http://cnt.rm.ingv.it/tdmt</u>.

I meccanismi della sequenza del centro Italia **non** sono riportati e saranno parte dello speciale del bollettino sulla sequenza (S_BSI_CI). L'evento di Terni (arancione) che è l'unico nel territorio italiano con magnitudo superiore a 4.0 ha un meccanismo puramente distensivo; anche quello in Appennino meridionale è di tipo distensivo. Gli altri eventi in Piemonte, in Liguria, nelle Marche e in Puglia sono trascorrenti, mentre quello nel Mar Ionio è di tipo compressivo.

Per alcuni degli eventi con magnitudo maggiore (sempre escludendo quelli della sequenza) sono stati calcolati anche i meccanismi focali con le polarità (dati riportati nella tabella sottostante e nella figura a fianco). Il terremoto di Mw 4.1 fornisce una soluzione multipla ma la sua replica il giorno successivo ha un meccanismo di tipo puramente trascorrente. I risultati sono consistenti con quelli dei TDMT per il terremoto in Appennino meridionale, della Puglia, del Piemonte e della Liguria, mentre quello nel Mar Ionio, pur rimanendo compressivo, ha i piani orientati in modo diverso. Vari meccanismi in più sono stati calcolati: l'evento in Emilia è compressivo, mentre quelli nel Mar Ionio e nel canale di Sicilia presentano meccanismi vari.

	Data tempo origine (UTC)	Lat.	Long.	Prof.(Km)	Mag.	Piano di faglia strike dip e rake
1	2016-05-07	37.1390	14.7405	20.03	M _L 3.5	5 85 0
2*	2016-05-25	36.8110	15.8052	14.33	M _w 3.8	155 45 140
*	2016-05-30	42.7003	11.9762	7.9	M _w 4.1	soluzione multipla
3	2016-05-31	42.7352	11.8710	6.73	M _L 3.4	175 75 -180
4	2016-06-03	36.1700	13.0487	6.72	M _L 3.9	155 55 150
5*	2016-06-23	44.1263	9.8807	17.84	M _w 3.7	155 65 -30
6*	2016-06-28	41.3112	14.0183	3.05	M _w 3.6	80 65 -120
7	2016-07-04	44.9323	11.3207	4.43	M _L 3.5	140 30 40
8	2016-07-05	37.5023	17.2483	63.04	M _L 3.9	25 55 70
9*	2016-07-30	44.9190	7.1815	34.74	M _w 3.7	130 40 160
10*	2016-08-09	41.7857	14.8733	27.02	M _w 3.5	80 85 160
11	2016-08-17	36.1160	14.8082	22.17	M _L 3.5	140 25 -100

Tutte le localizzazioni vengono nuovamente ricalcolate, (*) sono disponibili i corrispondenti TDMT.

Osservando i colori della mappa è evidente che le stazioni situate sulle Alpi e sull'Appennino, così come quelle dell'arco calabro, sono in media meno rumorose di quelle situate in Pianura Padana (molte delle quali sono solo accelerometriche) e lungo le coste italiane, che al contrario registrano solo una percentuale piuttosto bassa degli eventi (considerando distanze e intervalli di magnitudo riportati nel grafico soprastante). Questo tipo di analisi è utile per evidenziare l'eventuale malfunzionamento di alcune stazioni. Si nota un generale miglioramento delle percentuali delle stazioni sia in Appennino meridionale sia nel Promontorio del Gargano rispetto al quadrimestre precedente, si nota invece un peggioramento di alcune stazioni della Sicilia orientale. In questa mappa compaiono anche stazioni del progetto AlpArray (http://terremoti.ingv.it/it/struttura-di-ricerca/lda-t1-geodinamica-e-interno-della-terra/33-contenuti/983-il-progetto-alparray.html)

I dettagli tecnici sul calcolo degli ipocentri e delle magnitudo sono descritti nel Quaderno di Geofisica n. 85 (http://istituto.ingv.it/l-ingv/produzione-scientifica/quaderni-di-geofisica/numeri-pubblicati-2010).

Per il periodo che va dal gennaio 2002 al 16 aprile 2005 i dati del BSI, in formato GSE, sono reperibili anche nella pagina http://bollettinosismico.rm.ingv.it/; mentre per il periodo che va da gennaio 2015 ad oggi il bollettino è reperibile in formato QuakemI su http://cnt.rm.ingv.it/bsi.