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Background: Several candidate genes have been identified in relation to lipid 42 

metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) 43 

gene polymorphisms are major sources of genetically determined variation in lipid 44 

concentrations. This study investigated the association of two single nucleotide 45 

polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common 46 

APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these 47 

SNPs with dietary factors.  48 

Methods: The population studied for this investigation included 660 individuals from the 49 

Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied 50 

baseline data. The findings of the PRECISE study were further replicated using 1,238 51 

individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed 52 

using a validated food-frequency questionnaire (FFQ) in PRECISE and a validated semi-53 

quantitative FFQ in the CaPS. Interaction analyses were performed by including the 54 

interaction term in the linear regression model adjusted for age, body mass index, sex and 55 

country.  56 

Results: There was no association between dietary factors and blood lipids after 57 

Bonferroni correction and adjustment for confounding factors in either cohort. In the 58 

PRECISE study, after correction for multiple testing, there was a statistically significant 59 

association of the APOE haplotype (rs7412 and rs429358; E2, E3, and E4) and APOE 60 

tagSNP rs445925 with total cholesterol (P=4x10-4 and P=0.003, respectively). Carriers of 61 

the E2 allele had lower total cholesterol concentration (5.54± 0.97 mmol/L) than those 62 

with the E3 (5.98± 1.05 mmol/L) (P=0.001) and E4 (6.09± 1.06 mmol/L) (P=2x10-4) 63 

alleles. The association of APOE haplotype (E2, E3, and E4) and APOE SNP rs445925 64 
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with total cholesterol (P=2x10-6 and P=3x10-4, respectively) was further replicated in the 65 

CaPS. Additionally, significant association was found between APOE haplotype and 66 

APOE SNP rs445925 with low density lipoprotein cholesterol in CaPS (P=4x10-4 and 67 

P=0.001, respectively). After Bonferroni correction, none of the cohorts showed a 68 

statistically significant SNP-diet interaction with lipid outcomes.  69 

Conclusion: In summary, our findings from the two cohorts confirm that genetic 70 

variations at the APOE locus influence plasma total cholesterol concentrations, however, 71 

the gene-diet interactions on lipids require further investigation in larger cohorts. 72 

 73 

Keywords: APOE gene, total cholesterol, LDL-C, PRECISE, Caerphilly Prospective 74 

studies 75 

 76 

  77 



5 

 

 Background 78 

Cardiovascular diseases (CVD) are common multifactorial conditions 79 

characterized by dyslipidaemia, type 2 diabetes and hypertension [1, 2]. Elevated 80 

triacylglycerol (TAG) and reduced high density lipoprotein cholesterol (HDL-C) 81 

concentrations are associated with an increased risk of developing CVD [3-5]. 82 

Furthermore, several studies have reported that certain genetic variants influence 83 

susceptibility to altered circulating lipid concentrations, leading to an increased risk of 84 

CVD events [6-8]. Genetic variations have been shown to be associated with lipid 85 

outcomes, while dietary factors appear to modulate the effect of such genes on lipid 86 

concentrations [9, 10]. Previous studies have shown that single nucleotide 87 

polymorphisms (SNPs) of the apolipoprotein E (APOE) [6, 11] and lipoprotein lipase 88 

(LPL) [12-14] genes contribute to significant variation in lipid concentrations.  89 

The APOE protein plays a key role in the transport and metabolism of cholesterol 90 

and TAG containing particles by serving as a receptor-binding ligand that mediates the 91 

clearance of dietary derived chylomicrons, and hepatically derived very low density 92 

lipoprotein (VLDL) and their remnants from the circulation [6]. The three most 93 

recognized alleles of the APOE gene are E2, E3 and E4, with carriage of E4 associated 94 

with CVD risk factors and increased low density lipoprotein cholesterol (LDL-C) 95 

concentrations [11, 15, 16], and hence increased CVD risk [17, 18].  96 

Genetic variations in the LPL gene have been reported to be involved with lipid 97 

metabolism and partly explain the phenotypic variation in blood lipid levels [19]. LPL is 98 

a lipolytic enzyme that catalyses hydrolysis of TAG in all of the major classes of TAG-99 
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rich lipoproteins [20]. High enzyme activity is associated with favourable lipid levels, 100 

including relatively low TAG concentrations [21]. The two most widely studied LPL 101 

SNPs, rs328 (S447X) and rs320 (HindIII) [22, 23]. The ‘G’ minor alleles of both the 102 

SNPs, rs328 and rs320, are associated with decreased TAG concentrations and increased 103 

HDL-C concentrations, whereas the opposite association was found for the ‘C’ allele and 104 

‘T’ allele respectively [24-26].  105 

Data from several studies supports the role of genetic factors in lipid metabolism 106 

[27]; however, only a few studies have examined the effects of lifestyle factors such as 107 

diet on the association of polymorphisms with lipid-related outcomes [10, 28, 29]. 108 

Therefore, the present study aimed to investigate the effect of seven APOE tagSNPs 109 

(rs405509, rs769450, rs439401, rs445925, rs405697, rs1160985, and rs1064725), one 110 

APOE haplotype (rs7412 and rs429358), and two commonly studied LPL SNPs (rs328 111 

and rs320) on blood lipid profile in 660 participants (baseline data) from the Prevention 112 

of Cancer by Intervention with Selenium (PRECISE) study. As diet type and intake is 113 

also known to modify lipid levels [30-32], the potential impact of the interaction between 114 

these SNPs and dietary factors on lipid levels was also investigated. To confirm the 115 

findings, the Caerphilly Prospective Study (CaPS; n=1,238) was used as a replication 116 

cohort.   117 

 118 

Material and methods 119 

PRECISE cohort 120 

Participants and methods 121 
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Baseline data of 660 individuals from the PRECISE study, conducted in two 122 

populations [UK (n=468) and Denmark (n=192)] were used for the analysis [33, 34]. 123 

Briefly, study participants were selected from four general practices (study centres) in 124 

various areas of the UK that were affiliated with the Medical Research Council General 125 

Practice Research Framework (MRC GPRF). Between June 2000 and July 2001, research 126 

nurses recruited similar numbers of men and women from each of three age groups: 60–127 

64, 65–69 and 70–74 years. The Danish participants were men and women recruited from 128 

the same three age groups from the County of Funen in Denmark.  129 

The UK study obtained approval from the appropriate UK Local Research Ethics 130 

Committees [South Tees (ref: 99/69), Worcestershire Health Authority (ref: LREC 131 

74/99), Norwich District (ref: LREC 99/ 141), Great Yarmouth and Waveney (under 132 

reciprocal arrangements with Norwich District LREC)], and the participants provided 133 

written informed consent. The regional Danish Data Protection Agency and Scientific 134 

Ethical Committees of Vejle and Funen counties approved the Danish study (Journal 135 

number. 19980186).  136 

Dietary information  137 

Information about each participant’s usual dietary intake was obtained using 138 

validated EPIC food frequency questionnaires (FFQ) [35]. Total energy intake and 139 

macronutrient composition were analysed using the FETA software program [36].  140 

Anthropometric measurements and biochemical analysis   141 

Body mass index (BMI) was calculated as body weight in kilograms divided by 142 
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height in square metres (kg/m2). Participants provided non-fasting blood samples for 143 

biochemical analysis and these samples were stored at −80°C. Total cholesterol and 144 

HDL-C concentrations in lithium-heparin plasma were measured using an Architect 145 

c16000 analyser (Abbott) with dedicated reagents. Measurements were performed by 146 

enzymatic colorimetric analysis. Traceability for total cholesterol and HDL-C was 147 

ensured through participation in the National Reference System for Cholesterol 148 

(NRS/CHOL), as established by the Clinical and Laboratory Standards Institute, with 149 

isotope dilution-MS used as the reference method, and reference material taken from the 150 

National Institute of Standard and Technology. Evidence of equivalence in the analytical 151 

performance of the cholesterol-oxidase assays performed in the UK and Denmark from a 152 

comparison of total cholesterol on forty-four serum samples which produced a limit of 153 

variation of 2% [33].  154 

SNP selection: 155 

The APOE gene is located on chromosome 19q13.32. It comprises four exons, 156 

which are transcribed into the APOE mRNA which is 1,180 nucleotides long. The seven 157 

tagSNPs for the APOE gene were chosen based on International HapMap Phase II 158 

collected from individuals of Northern and Western European ancestry (CEU) (HapMap 159 

Data release 27 Phase 2+3, Feb 09, NCBI B36 assembly, dbSNP b126). The Haploview 160 

software V3.3 (http://www.broadinstitute.org/haploview/haploview-downloads) was used 161 

to assess the linkage disequilibrium between SNPs. Tagger software was used to select 162 

tagSNPs with the ‘pairwise tagging only’ option. Two criteria were used to filter the 163 

SNPs included in the analysis, minor allele frequency ≥5% and Hardy–Weinberg 164 

equilibrium P-value >0.01. In total, seven tagSNPs [rs405509 (G>T), rs1160985 (C>T), 165 
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rs769450 (G>A), rs439401 (C>T), rs445925 (G>A), rs405697 (G>A), and rs1064725 166 

(T>G)] representing the entire common genetic variations across the APOE gene were 167 

selected for the study. The APOE haplotype/SNPs [6, 11, 37-44] and LPL [12, 13] SNPs 168 

were chosen based on their previous association with various lipid outcomes.  169 

DNA isolation and genotyping  170 

The genotyping for the selected SNPs using a KASP assay with a competitive 171 

allele-specific PCR assay® was performed on DNA samples by LGC Genomics 172 

(Hoddesdon, Herts, UK).  The eleven SNPs were in Hardy Weinberg Equilibrium (HWE) 173 

(P>0.05 for all comparisons) (Supplementary Table 1). 174 

 175 

Caerphilly Prospective Study (CaPS) 176 

Participants and methods 177 

The CaPS was used to replicate the findings from the PRECISE study. The phase 178 

1 (July 1979 to September 1983) recruitment for the CaPS included 2,512 men aged 45-179 

59 years who were living in the town of Caerphilly and five of its adjacent villages in the 180 

UK; these participants were followed up at regular intervals [45, 46]. The follow-up data 181 

collection included periods from 1984 to1988 (phase 2), from 1989 to 1993 (phase 3), 182 

from 1993 to 1997 (phase 4), and from 2002 to 2005 (phase 5). For the current study, the 183 

data analysed were taken from phase 3 (n=1,238), which had the maximum number of 184 

samples and variables appropriate to this analysis (total cholesterol and dietary 185 

information), and from phase 5 (n=529) (HDL-C and LDL-C). Ethical approval was 186 

obtained from the South Wales Research Ethics Committee D, and each subject provided 187 
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written informed consent. 188 

Dietary information  189 

Participants completed validated semi-quantitative FFQ in phase 3 [47, 48]. The 190 

FFQ included 50 typical food items in the British diet in order to estimate the mean daily 191 

energy intake and macronutrients and micronutrients consumption.   192 

Anthropometric measurements and biochemical analysis   193 

Height and weight was recorded in order to calculate the BMI. Height was 194 

measured on a stadiometer and weight was measured on a beam balance. Plasm prepared 195 

from blood samples taken after an overnight fast were transported at 4°C to the 196 

laboratories on the day of venepuncture. Total cholesterol and HDL-C, LDL-C 197 

concentrations were measured using enzymatic procedures [49]. and the LDL-C levels 198 

were calculated using the Friedewald Formula [50]. 199 

DNA isolation and genotyping  200 

DNA was extracted from blood samples collected during the period 1992–1994. 201 

SNP information was obtained from the Illumina Cardio Metabochip, which includes 202 

data on 200,000 SNPs from regions previously identified for associations with risk 203 

factors for cardiometabolic disease [51]. Imputation was conducted against the 1000-204 

genomes reference panel, providing information on approximately two million typed or 205 

imputed SNPs. Duplicate samples were genotyped to compute the error rate. Quality 206 

control on genotyped samples has been previously reported [52] and the SNPs had a call 207 

rate of >98%. The SNPs were in HWE (P>0.05) (Supplementary Table 1). 208 
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 209 

Statistical analysis  210 

Statistical analysis was performed using the SPSS software package, version 22.0. The 211 

data were presented as mean ± standard deviation (SD) in Tables 1 and 3 and beta 212 

regression coefficients and standard error (SE) were presented in Tables 2, 4, and 5. 213 

Independent t-test was used to compare means between men and women at baseline in 214 

the PRECISE cohort (Table 1). Univariate linear regression analysis was applied to test 215 

for association of the SNPs with total cholesterol and HDL-C, controlling for age, sex, 216 

BMI and country. SNP-diet interactions on total cholesterol and HDL-C were 217 

investigated using a univariate general linear model. In this model, total cholesterol and 218 

HDL-C were the dependent variables, SNPs were fixed factors, and dietary factors (fat 219 

energy %, protein energy %, carbohydrate energy %), sex, age BMI, and country were 220 

covariates. The dominant model was applied for all SNPs with minor allele frequency 221 

≤0.3 and the additive model applied for SNPs with minor allele frequency ≥0.4. For 222 

analytical purposes, the six APOE genotype groups (E2/E2, E2/E3, E3/E3, E3/E4, E4/E4, 223 

and E2/E4) were classified into three groups. The E3/E3 genotype was classified as a 224 

group as it occurs at high frequency in the population (wild type). The E2/E2 and E2/E3 225 

genotypes were combined and presented as E2 carriers. The E3/E4 and E4/E4 genotypes 226 

were also combined, and presented as E4 carriers [29]. Previous studies have shown that 227 

the impact of the E2 allele on serum lipids is greater than that of the E4 allele [17], 228 

therefore, the E2/E4 genotype was excluded from the analysis. The Bonferroni correction 229 

was applied separately for association and interaction analyses. For association between 230 

phenotypic and dietary factors, the Bonferroni-corrected P value was 0.008 (2 lipid 231 



12 

 

outcomes* 3 dietary factors) for the PRECISE study and P value was 0.01 for CaPS (total 232 

cholesterol was the only variable available). For association between SNPs and lipids 233 

(PRECISE study), the Bonferroni corrected P value was 0.003 (10 SNPs*2 lipid 234 

outcomes = 20 tests). For interactions (PRECISE study), the Bonferroni corrected P value 235 

was 0.001 (10 SNPs*2 lipid outcomes*3 dietary factors = 60 tests). In the replication 236 

analysis (CaPS cohort), the Bonferroni corrected P value for association was 0.002 (10 237 

SNPs*3 lipid outcomes = 30 tests), while for interactions it was 0.001 (10 SNPs*1 lipid 238 

outcome* 3 dietary factors = 30 tests).  239 

 240 

Results  241 

Participant characteristics  242 

The general characteristics of the participants by sex are presented in Table 1. In 243 

the PRECISE study, women were found to have significantly higher total cholesterol and 244 

HDL-C concentrations than men (P=2.31x10-10 and P= 2.71x10-16, respectively). The 245 

consumption of carbohydrates (P=1.42x10-9) and protein (energy %) (P=5x10-5) were 246 

higher in women than in men, whereas the consumption of fat (energy %) and total 247 

energy intake were lower in women than in men (P=0.01). Characteristics of the 248 

individuals from CaPS are given in Table 1. Elevated total cholesterol levels were 249 

observed among men at phase 3. Dietary-pattern data showed higher consumption of 250 

energy from total fat.    251 

Association between dietary factors and blood lipids 252 

In both the PRECISE and CaPS, there was no association between the dietary 253 
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factors and total cholesterol or high-density lipoprotein after Bonferroni correction and 254 

adjustment for confounding factors (Table 2). 255 

 256 

Table 2: Association between dietary factors and lipids in PRECISE and Caerphilly 257 

Prospective studies 258 

PRECISE study 

Association between dietary factors and total cholesterol 

Fat total energy % intake 

Beta (± S.E),  

Passociation  

Protein total energy % 

intake 

Beta (± S.E),  

Passociation 

Carbohydrate total energy % 

intake 

Beta (± S.E),  

Passociation 

0.01 (0.01) 

0.47 

-0.01 (0.01) 

0.13 

-0.004 (0.01) 

0.40 

Association between three dietary factors and HDL-C high density lipoprotein 

Fat total energy % intake Protein total energy % 

intake 

Carbohydrate total energy % 

intake 

-0.002 (0.002) 

0.29 

-0.002 (0.004) 

0.59 

-0.004 (0.002) 

0.02 

Caerphilly Prospective study 

Association between three dietary factors and total cholesterol 

Fat total energy % intake 

Beta (± S.E),  

Passociation 

Protein total energy % 

intake 

Beta (± S.E),  

Passociation 

Carbohydrate total energy % 

intake 

Beta (± S.E),  

Passociation  

0.01 (0.004) 

0.06 

-0.01 (0.01) 

0.26 

-0.01 (0.004) 

0.17 

HDL-C, high density lipoprotein cholesterol.  259 

P values were obtained using linear regression adjusted for age, sex, body mass index and 260 

country. 261 

 262 

 263 

Genotypes and serum lipid levels in the PRECISE study 264 

As shown in Table 3, of the seven tagSNPs at APOE, tagSNP rs445925 was 265 

significantly associated with total cholesterol (P=0.003) after correction for multiple 266 

testing. The ‘A’ allele carriers (5.65± 0.98 mmol/L) had 5% lower levels of total 267 
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cholesterol than GG homozygotes (5.99± 1.06 mmol/L).  268 

The levels of HDL-C were significantly different among the LPL SNP genotypes, 269 

rs328 (P=0.04) and rs320 (P=0.02), where the carriers of the ‘G’ minor allele of both 270 

SNPs had higher levels of HDL-C (1.68 ± 0.41 mmol/L for rs328 and 1.66 ±0.40 mmol/L 271 

for rs320) than CC homozygotes (rs328) and TT homozygotes (rs320) (1.61 ± 0.38 and 272 

1.60 ±0.39 mmol/L) respectively. However, these associations were not statistically 273 

significant after Bonferroni correction.  274 

APOE haplotype and serum lipid levels in the PRECISE study 275 

The effects of APOE haplotypes (E2, E3, and E4) on serum lipids are shown in 276 

Table 3. These haplotypes (E2, E3, and E4) were significantly associated with total 277 

cholesterol (P=4x10-4) after correction for multiple testing. The carriers of the E2 allele 278 

(5.54± 0.97 mmol/L) had lower total cholesterol concentrations than the carriers of the 279 

E3 (P=0.001) (5.98± 1.05 mmol/L) and E4 alleles (6.09± 1.06 mmol/L) (P=2x10-4).   280 

Interactions between genotypes and dietary factors on serum lipid in the PRECISE study 281 

None of the dietary factors significantly interacted with the APOE SNPs, 282 

haplotypes and LPL SNPs with plasma lipids after correction for multiple testing (P 283 

>0.001) (Table 4).  284 

Replication analysis: Effect of SNPs at APOE and LPL on serum lipids in the CaPS 285 

The associations of APOE and LPL SNPs with blood lipids in the CaPS are 286 

presented in Table 3. The association of APOE haplotype (E2, E3, and E4) and APOE 287 
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SNP rs445925 with total cholesterol (P=2x10-6 and P=3x10-4, respectively) was 288 

replicated. The ‘A’ allele carriers of APOE SNP rs445925 had lower total cholesterol 289 

(5.96±1.24 mmol/l) than ‘GG’ genotypes (6.24±1.08 mmol/L). In the APOE haplotype 290 

analysis, the carriers of the E2 allele had 5% and 14% lower total cholesterol than carriers 291 

of the E3 (P=4x10-4) and E4 alleles (P=3x10-6), respectively. Additionally, significant 292 

association was seen between APOE haplotypes (E2, E3, and E4) and APOE SNP 293 

rs445925and LDL-C (P=4X10-4, 0.001, respectively). 294 

There was an interaction between fat (% energy) and APOE haplotype (E2, E3, 295 

and E4) on total cholesterol (P=0.038) in CaPS. However, after correction for multiple 296 

testing, all the SNP-diet interactions were consistent with chance variation (Table 5). 297 

 298 

Discussion  299 

Our findings demonstrated significant associations between the APOE haplotype 300 

(E2, E3, and E4) and APOE SNP rs445925 with total plasma cholesterol and LDL-C 301 

(only CaPS) concentration, which were further replicated in an independent UK 302 

Caucasian cohort. The levels of total cholesterol were significantly lower in carriers of 303 

the APOE E2 allele and the ‘A’ allele of the SNP rs445925 than carriers of E3, E4 and 304 

‘GG’ genotype of the APOE SNP rs445925, respectively. Given that our findings confirm 305 

that genetic polymorphisms of APOE influence the inter-individual variation in total 306 

plasma cholesterol, a marker of dyslipidemia, changes in dietary consumption to reduce 307 

disease susceptibility could be implemented for individuals at genetic risk. 308 

  The effects of APOE polymorphisms on lipid concentrations have previously been 309 

investigated in different ethnic groups [11, 53, 54] and studies have shown that the APOE 310 
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gene variants contributed to 7% variability in total cholesterol  [55]. The results of the 311 

current study were in line with previously reported findings that APOE haplotypes (E2, 312 

E3, and E4) are associated with serum total cholesterol and LDL-C, with E4 carriers 313 

associated with increased concentrations compared with E3/E3 wildtype and particularly 314 

E2 carriers [16, 53, 56]. One of the primary roles of APOE is binding the low density 315 

lipoprotein receptor (LDLR) and the LDLR-related protein, to facilitate cellular uptake of 316 

lipoprotein particles [57]. The three alleles, E2, E3, and E4, differ in their amino-acid 317 

sequences, resulting in functional differences in receptors-binding affinity. Amino-acid 318 

sequences of the E2 allele have lower binding affinity than those of the E3 and E4 alleles, 319 

causing decreased hepatic VLDL and chylomicron remnants clearance, thus reducing the 320 

uptake of postprandial lipoprotein particles [57]. Furthermore, it could be postulated that 321 

increase in apoE TAG-rich lipoproteins in E4 carriers could possibly increase the affinity 322 

to bind LDL-receptors resulting in decreased uptake of LDL and increased circulating 323 

plasma cholesterol [58]. E2 carriers also have an impaired conversion of the VLDL 324 

particles to LDL-C compared to E4 carriers [59], who have a higher rate of VLDL 325 

catabolism [60], which explains in part the lower total cholesterol and LDL-C in E2 allele 326 

carriers.  327 

Furthermore, our study highlights an association between APOE SNP rs445925, 328 

which is one of the selected tagSNPs within the APOE gene, and total cholesterol. The 329 

SNP rs445925 has not been extensively studied, however, a genome-wide association 330 

study showed a significant association between SNP rs445925 and LDL-C levels in 3,644 331 

black and white individuals from the US and Europe [61]. In addition, previous genome-332 

wide linkage and association studies have shown linkage disequilibrium (LD) between 333 
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APOE SNPs rs7412 and rs445925 [62] and between ‘A’ allele carriers at SNP rs445925 334 

and E2 haplotype [63], respectively, which could explain in part a similar function in 335 

cholesterol synthesis. It is also possible that A’ allele carriers of the SNP rs445925 might 336 

exhibit lower conversion of the VLDL particles to LDL-C which could have resulted in 337 

the decreased rate of LDL formation and hence lowered the total cholesterol 338 

concentrations [63].   339 

Besides genetic associations, our study also identified an interaction of APOE 340 

haplotypes (E2, E3, and E4) with intake from fat (%) on total cholesterol in the CaPS, 341 

where, among those who consumed a low-fat diet (%), individuals carrying the E2 allele 342 

had significantly lower total cholesterol concentrations than to E4 allele carriers. 343 

However, this interaction was not statistically significant after correction for multiple 344 

testing. A previous study has examined the response of APOE genotype to fat intake in 345 

45 individuals using a prospective design, where after consumption of a lower-fat-346 

cholesterol diet (34% fat, 265 mg/day) according to modified National Cholesterol 347 

Education program there was a significant reduction in total cholesterol by 14%, 9%, and 348 

4% in E4/E4, E3/E4, and E3/E3 genotypes, respectively [64]. Another study showed that 349 

the response to a diet high in cholesterol increases total cholesterol in E3 and E4 350 

compared to E2 allele carries in a study comprising 29 healthy men [65]. By contrast, a 351 

cross sectional study in European Caucasians (n=996) reported that E2 allele carriers had 352 

lower total cholesterol levels, but there were no reported between interactions between 353 

saturated fatty acids and total cholesterol [66]. Given that the previous studies have given 354 

inconsistent results and have used various types of fatty acids, replication of our gene-diet 355 
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interaction finding in a large well-designed randomized controlled trial is highly 356 

warranted.  357 

Previous studies have shown that the minor allele of LPL SNP rs328 enhance 358 

lipolytic activity [12]. Increased activity of LPL results in enhance clearance of TAG 359 

from the circulation, and  associated with higher HDL-C concentrations [67]. The LPL 360 

SNP rs320 (HindIII) is in LD with rs328 (S447X) and they have been shown to have 361 

similar effects on HDL-C, where minor allele was reported to increase HDL-C [24, 68]. 362 

In our study, in accordance with findings from other studies, there were associations 363 

between LPL SNPs, rs320 and rs328, and HDL-C concentrations, where common 364 

homozygotes of both SNPs had lower HDL-C [22-24, 26]. However, in our study, these 365 

associations were no longer statistically significant after Bonferroni correction. 366 

Furthermore, there were no significant LPL SNP-diet interactions with HDL-C or total 367 

cholesterol concentrations in either cohort. To date, there has only been one study that 368 

has shown an interaction between LPL rs328 and total fat intake on HDL-C in 8,764 369 

individuals from the US population, where high fat intake associated with increase HDL-370 

C in CC homozygotes and CG heterozygotes carriers [28]. One of the main reasons we 371 

did not identify a significant interaction may be our small sample size; however, we 372 

cannot rule out an effect of differences in dietary fat sources between European and the 373 

US population. 374 

The present study has some limitations. Importantly, some lipid-related outcomes, 375 

such as LDL-C and TAG concentrations, were not measured in the PRECISE study. The 376 

PRECISE study was also conducted in two populations, a UK cohort and a Danish 377 

cohort, which used different food frequency questionnaires and this might have 378 
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introduced measurement bias, even though the current results were adjusted for country 379 

in the regression analysis to avoid confounding. Another possible limitation is the use of 380 

a cross-sectional design (in both studies) to investigate genetic effects at a single point in 381 

time, whereas a longitudinal analysis design would have captured the genetic effects on 382 

lipid outcomes over a specific time period. The effect-size of the minor allele of some of 383 

the studied SNPs was relatively small, and hence a large sample size is required to detect 384 

reliably detect any interaction between SNPs and dietary factors. Despite the fact that this 385 

study was not adequately powered to detect such an interaction, it was sufficiently 386 

powered to detect the main effects (i.e., associations). Significant gene-diet interactions 387 

were identified, however these did not reach the Bonferroni-corrected P value (P=0.001) 388 

and hence need to be confirmed in larger cohorts. This study is strengthened by the fact 389 

that it is the first study to investigate the role of tagSNPs at the APOE gene in relation to 390 

dietary factors and lipid outcomes. The fact that genetic associations from the PRECISE 391 

study were replicated in another Caucasian cohort (CaPS) confirms the validity of our 392 

findings. Additionally, CaPS was based on a cohort with a very high response rate, and is 393 

therefore closely representative of the general population.  394 

Conclusion 395 

Our study, carried out in two Caucasian populations, confirmed that genetic 396 

variations at the APOE gene locus influence plasma lipid concentrations. Thus, our 397 

results suggest that APOE gene variants affect risk of dyslipidemia in individuals who 398 

carry the E4 risk allele and GG genotype at SNP rs445925. Future studies with a larger 399 

sample size examining tagSNPs at APOE, particularly prospectively genotyped dietary 400 

intervention studies are required to confirm the gene-diet interactions identified in our 401 
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study. 402 
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cholesterol; VLDL: very low density lipoprotein; HWE: Hardy Weinberg Equilibrium; 

CaPS: Caerphilly Prospective cohort; LD: linkage disequilibrium.   

 

  



22 

 

Declarations 

Ethics approval and consent to participate: Written informed consent was obtained 

from each study participant, and the study was approved by the regional Danish Data 

Protection Agency and Scientific Ethical Committees of Vejle and Funen counties 

approved the Danish study (PRECISE), the appropriate UK Local Research Ethics 

Committees [South Tees (ref: 99/69), Worcestershire Health Authority (ref: LREC 

74/99), Norwich District (ref: LREC 99/ 141), Great Yarmouth and Waveney (under 

reciprocal arrangements with Norwich District LREC)] (PRECISE), the South Wales 

Research Ethics Committee D (CaPS). 

Consent for publication: Written informed consent for publication was obtained from 

all the study participants.  

Availability of data and material: Not applicable 

Competing interests: None  

Funding  

We acknowledge the support from the British Nutrition Foundation. Genotyping of the 

genetic variants in the PRECISE study samples were funded by the Saudi government. 

The PRECISE study was supported by the Danish Cancer Society; the Research 

Foundation of the County of Funen; Cypress Systems Inc.; the Danish Veterinary and 

Food Administration; the Council of Consultant Physicians, Odense University Hospital; 

the Clinical Experimental Research Foundation at Department of Oncology, Odense 

University Hospital; K.A Rohde’s Foundation; Dagmar Marshall’s Foundation. Pharma 



23 

 

Nord ApS, Vejle, Denmark provided the selenium and placebo tablets. The Caerphilly 

Prospective Study was undertaken by the former MRC Epidemiology Unit (South Wales) 

and was funded by the Medical Research Council of the United Kingdom. The Caerphilly 

DNA Bank was established by an MRC Grant (G9824960). University of Bristol act as 

the data custodians of CaPS. The funders of the study had no influence on the study 

design, analysis and interpretation of the data, writing, review, approval or submission of 

the manuscript. 

 

Author contributions 

IMS performed the statistical analysis and drafted the manuscript; KSV conceived and 

designed the nutrigenetics study; KW and MR designed and conducted the PRECISE 

study; PE designed and led the conduct of the Caerphilly Prospective study and YBS was 

involved in the design and conduct of phase V as well as obtaining funding for genetic 

analysis. JAL, BE, KW, MR, YBS, PE, IG, and KSV critically reviewed the manuscript. 

All authors contributed to and approved the final version of the manuscript.  

 

Acknowledgements 

 

Not applicable 

 

  



24 

 

References  

 

1. Wang, J., et al., The metabolic syndrome predicts cardiovascular mortality: a 
13-year follow-up study in elderly non-diabetic Finns. Eur Heart J, 2007. 28(7): 
p. 857-64. 

2. McNeill, A.M., et al., Metabolic syndrome and cardiovascular disease in older 
people: The cardiovascular health study. J Am Geriatr Soc, 2006. 54(9): p. 
1317-24. 

3. Barter, P., et al., HDL cholesterol, very low levels of LDL cholesterol, and 
cardiovascular events. N Engl J Med, 2007. 357(13): p. 1301-10. 

4. Gotto, A.M., Jr., High-density lipoprotein cholesterol and triglycerides as 
therapeutic targets for preventing and treating coronary artery disease. Am 
Heart J, 2002. 144(6 Suppl): p. S33-42. 

5. Forrester, J.S., Triglycerides: risk factor or fellow traveler? Curr Opin Cardiol, 
2001. 16(4): p. 261-4. 

6. Song, Y., M.J. Stampfer, and S. Liu, Meta-analysis: apolipoprotein E genotypes 
and risk for coronary heart disease. Ann Intern Med, 2004. 141(2): p. 137-47. 

7. Ahmadzadeh, A. and F. Azizi, Genes associated with low serum high-density 
lipoprotein cholesterol. Arch Iran Med, 2014. 17(6): p. 444-50. 

8. Nettleton, J.A., Associations between HDL-cholesterol and polymorphisms in 
hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in 
African American and white adults. Atherosclerosis, 2007. 194. 

9. Carvalho-Wells, A.L., et al., APOE genotype influences triglyceride and C-
reactive protein responses to altered dietary fat intake in UK adults. Am J Clin 
Nutr, 2012. 96(6): p. 1447-53. 

10. Couture, P., et al., Influences of apolipoprotein E polymorphism on the response 
of plasma lipids to the ad libitum consumption of a high-carbohydrate diet 
compared with a high-monounsaturated fatty acid diet. Metabolism, 2003. 
52(11): p. 1454-9. 

11. Bennet, A.M., et al., Association of apolipoprotein E genotypes with lipid levels 
and coronary risk. Jama, 2007. 298(11): p. 1300-11. 

12. Radha, V., et al., Association of lipoprotein lipase Hind III and Ser 447 Ter 
polymorphisms with dyslipidemia in Asian Indians. Am J Cardiol, 2006. 97(9): 
p. 1337-42. 

13. Shatwan, I.M., et al., Impact of Lipoprotein Lipase Gene Polymorphism, S447X, 
on Postprandial Triacylglycerol and Glucose Response to Sequential Meal 
Ingestion. Int J Mol Sci, 2016. 17(3). 

14. Munshi, A., et al., Association of LPL gene variant and LDL, HDL, VLDL 
cholesterol and triglyceride levels with ischemic stroke and its subtypes. J 
Neurol Sci, 2012. 318(1-2): p. 51-4. 

15. Calabuig-Navarro, M.V., et al., Apolipoprotein E genotype has a modest impact 
on the postprandial plasma response to meals of varying fat composition in 
healthy men in a randomized controlled trial. J Nutr, 2014. 144(11): p. 1775-
80. 



25 

 

16. Shahid, S.U., et al., Effect of SORT1, APOB and APOE polymorphisms on LDL-C 
and coronary heart disease in Pakistani subjects and their comparison with 
Northwick Park Heart Study II. Lipids Health Dis, 2016. 15: p. 83. 

17. Wilson, P.W., et al., Apolipoprotein E alleles, dyslipidemia, and coronary heart 
disease. The Framingham Offspring Study. Jama, 1994. 272(21): p. 1666-71. 

18. Giger, J.N., et al., Genetic predictors of coronary heart disease risk factors in 
premenopausal African-American women. Ethn Dis, 2005. 15(2): p. 221-32. 

19. Wang, H. and R.H. Eckel, Lipoprotein lipase: from gene to obesity. Am J Physiol 
Endocrinol Metab, 2009. 297(2): p. E271-88. 

20. Merkel, M., R.H. Eckel, and I.J. Goldberg, Lipoprotein lipase: genetics, lipid 
uptake, and regulation. J Lipid Res, 2002. 43(12): p. 1997-2006. 

21. Friday, K.E., et al., Black-white differences in postprandial triglyceride response 
and postheparin lipoprotein lipase and hepatic triglyceride lipase among 
young men. Metabolism, 1999. 48(6): p. 749-54. 

22. Nierman, M.C., et al., Enhanced conversion of triglyceride-rich lipoproteins and 
increased low-density lipoprotein removal in LPLS447X carriers. Arterioscler 
Thromb Vasc Biol, 2005. 25(11): p. 2410-5. 

23. Rip, J., et al., Lipoprotein lipase S447X: a naturally occurring gain-of-function 
mutation. Arterioscler Thromb Vasc Biol, 2006. 26(6): p. 1236-45. 

24. Lopez-Miranda, J., et al., The influence of lipoprotein lipase gene variation on 
postprandial lipoprotein metabolism. J Clin Endocrinol Metab, 2004. 89(9): p. 
4721-8. 

25. Sagoo, G.S., et al., Seven lipoprotein lipase gene polymorphisms, lipid fractions, 
and coronary disease: a HuGE association review and meta-analysis. Am J 
Epidemiol, 2008. 168(11): p. 1233-46. 

26. Ukkola, O., et al., Genetic variation at the lipoprotein lipase locus and plasma 
lipoprotein and insulin levels in the Quebec Family Study. Atherosclerosis, 
2001. 158(1): p. 199-206. 

27. Ordovas, J.M., Genetic influences on blood lipids and cardiovascular disease 
risk: tools for primary prevention. Am J Clin Nutr, 2009. 89(5): p. 1509s-
1517s. 

28. Nettleton, J.A., et al., Associations between HDL-cholesterol and polymorphisms 
in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake 
in African American and White adults. Atherosclerosis, 2007. 194(2): p. e131-
40. 

29. Wu, K., et al., Apolipoprotein E polymorphisms, dietary fat and fibre, and serum 
lipids: the EPIC Norfolk study. Eur Heart J, 2007. 28(23): p. 2930-6. 

30. Zhang, C., et al., Interactions between the -514C->T polymorphism of the 
hepatic lipase gene and lifestyle factors in relation to HDL concentrations 
among US diabetic men. Am J Clin Nutr, 2005. 81(6): p. 1429-35. 

31. Mensink, R.P. and M.B. Katan, Effect of dietary fatty acids on serum lipids and 
lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb, 1992. 12(8): p. 
911-9. 

32. Hwang, J.Y., et al., Carbohydrate intake interacts with SNP276G>T 
polymorphism in the adiponectin gene to affect fasting blood glucose, HbA1C, 



26 

 

and HDL cholesterol in Korean patients with type 2 diabetes. J Am Coll Nutr, 
2013. 32(3): p. 143-50. 

33. Cold, F., et al., Randomised controlled trial of the effect of long-term selenium 
supplementation on plasma cholesterol in an elderly Danish population. Br J 
Nutr, 2015. 114(11): p. 1807-18. 

34. Rayman, M.P., et al., A randomized trial of selenium supplementation and risk 
of type-2 diabetes, as assessed by plasma adiponectin. PLoS One, 2012. 7(9): p. 
e45269. 

35. McKeown, N.M., et al., Use of biological markers to validate self-reported 
dietary intake in a random sample of the European Prospective Investigation 
into Cancer United Kingdom Norfolk cohort. Am J Clin Nutr, 2001. 74(2): p. 
188-96. 

36. Mulligan, A.A., et al., A new tool for converting food frequency questionnaire 
data into nutrient and food group values: FETA research methods and 
availability. BMJ Open, 2014. 4(3): p. e004503. 

37. Komurcu-Bayrak, E., et al., The APOE -219G/T and +113G/C polymorphisms 
affect insulin resistance among Turks. Metabolism, 2011. 60(5): p. 655-63. 

38. Viiri, L.E., et al., Interactions of functional apolipoprotein E gene promoter 
polymorphisms with smoking on aortic atherosclerosis. Circ Cardiovasc Genet, 
2008. 1(2): p. 107-16. 

39. Son, K.Y., et al., Genetic association of APOA5 and APOE with metabolic 
syndrome and their interaction with health-related behavior in Korean men. 
Lipids in Health and Disease, 2015. 14: p. 105. 

40. Kring, S.I., et al., Impact of psychological stress on the associations between 
apolipoprotein E variants and metabolic traits: findings in an American sample 
of caregivers and controls. Psychosom Med, 2010. 72(5): p. 427-33. 

41. Trompet, S., et al., Replication of LDL GWAs hits in PROSPER/PHASE as 
validation for future (pharmaco)genetic analyses. BMC Med Genet, 2011. 12: 
p. 131. 

42. Zhang, Z., et al., Association of genetic loci with blood lipids in the Chinese 
population. PLoS One, 2011. 6(11): p. e27305. 

43. Zhou, L., et al., A genome wide association study identifies common variants 
associated with lipid levels in the Chinese population. PLoS One, 2013. 8(12): 
p. e82420. 

44. Seripa, D., et al., TOMM40, APOE, and APOC1 in primary progressive aphasia 
and frontotemporal dementia. J Alzheimers Dis, 2012. 31(4): p. 731-40. 

45. Caerphilly and Speedwell collaborative heart disease studies. The Caerphilly 
and Speedwell Collaborative Group. J Epidemiol Community Health, 1984. 
38(3): p. 259-62. 

46. Mertens, E., et al., Dietary Patterns in Relation to Cardiovascular Disease 
Incidence and Risk Markers in a Middle-Aged British Male Population: Data 
from the Caerphilly Prospective Study. Nutrients, 2017. 9(1). 

47. Fehily, A.M., J.W. Yarnell, and B.K. Butland, Diet and ischaemic heart disease in 
the Caerphilly Study. Hum Nutr Appl Nutr, 1987. 41(5): p. 319-26. 



27 

 

48. Yarnell, J.W., et al., A short dietary questionnaire for use in an epidemiological 
survey: comparison with weighed dietary records. Hum Nutr Appl Nutr, 1983. 
37(2): p. 103-12. 

49. Yarnell, J.W., et al., Do total and high density lipoprotein cholesterol and 
triglycerides act independently in the prediction of ischemic heart disease? Ten-
year follow-up of Caerphilly and Speedwell Cohorts. Arterioscler Thromb Vasc 
Biol, 2001. 21(8): p. 1340-5. 

50. Friedewald, W.T., R.I. Levy, and D.S. Fredrickson, Estimation of the 
concentration of low-density lipoprotein cholesterol in plasma, without use of 
the preparative ultracentrifuge. Clin Chem, 1972. 18(6): p. 499-502. 

51. Voight, B.F., et al., The metabochip, a custom genotyping array for genetic 
studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet, 
2012. 8(8): p. e1002793. 

52. Shah, T., et al., Population genomics of cardiometabolic traits: design of the 
University College London-London School of Hygiene and Tropical Medicine-
Edinburgh-Bristol (UCLEB) Consortium. PLoS One, 2013. 8(8): p. e71345. 

53. El-Lebedy, D., H.M. Raslan, and A.M. Mohammed, Apolipoprotein E gene 
polymorphism and risk of type 2 diabetes and cardiovascular disease. 
Cardiovasc Diabetol, 2016. 15: p. 12. 

54. Ken-Dror, G., et al., APOE/C1/C4/C2 gene cluster genotypes, haplotypes and 
lipid levels in prospective coronary heart disease risk among UK healthy men. 
Mol Med, 2010. 16(9-10): p. 389-99. 

55. Mozas, P., et al., Apolipoprotein E genotype is not associated with 
cardiovascular disease in heterozygous subjects with familial 
hypercholesterolemia. Am Heart J, 2003. 145(6): p. 999-1005. 

56. Suwalak, T., et al., Polymorphisms of the ApoE (Apolipoprotein E) gene and 
their influence on dyslipidemia in HIV-1-infected individuals. Jpn J Infect Dis, 
2015. 68(1): p. 5-12. 

57. Eichner, J.E., et al., Apolipoprotein E polymorphism and cardiovascular disease: 
a HuGE review. Am J Epidemiol, 2002. 155(6): p. 487-95. 

58. Jackson, K.G., et al., Saturated fat-induced changes in Sf 60-400 particle 
composition reduces uptake of LDL by HepG2 cells. J Lipid Res, 2006. 47(2): p. 
393-403. 

59. Ehnholm, C., et al., Role of apolipoprotein E in the lipolytic conversion of beta-
very low density lipoproteins to low density lipoproteins in type III 
hyperlipoproteinemia. Proc Natl Acad Sci U S A, 1984. 81(17): p. 5566-70. 

60. Gregg, R.E., et al., Abnormal in vivo metabolism of apolipoprotein E4 in 
humans. J Clin Invest, 1986. 78(3): p. 815-21. 

61. Smith, E.N., et al., Longitudinal genome-wide association of cardiovascular 
disease risk factors in the Bogalusa heart study. PLoS Genet, 2010. 6(9): p. 
e1001094. 

62. Hellwege, J.N., et al., Genome-wide family-based linkage analysis of exome chip 
variants and cardiometabolic risk. Genet Epidemiol, 2014. 38(4): p. 345-52. 

63. Deshmukh, H.A., et al., Genome-wide association study of genetic determinants 
of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res, 
2012. 53(5): p. 1000-11. 



28 

 

64. Sarkkinen, E., et al., Effect of apolipoprotein E polymorphism on serum lipid 
response to the separate modification of dietary fat and dietary cholesterol. Am 
J Clin Nutr, 1998. 68(6): p. 1215-22. 

65. Gylling, H. and T.A. Miettinen, Cholesterol absorption and synthesis related to 
low density lipoprotein metabolism during varying cholesterol intake in men 
with different apoE phenotypes. J Lipid Res, 1992. 33(9): p. 1361-71. 

66. Petkeviciene, J., et al., Associations between apolipoprotein E genotype, diet, 
body mass index, and serum lipids in Lithuanian adult population. PLoS One, 
2012. 7(7): p. e41525. 

67. Kaser, S., et al., Phospholipid and cholesteryl ester transfer are increased in 
lipoprotein lipase deficiency. J Intern Med, 2003. 253(2): p. 208-16. 

68. Humphries, S.E., et al., Lipoprotein lipase gene variation is associated with a 
paternal history of premature coronary artery disease and fasting and 
postprandial plasma triglycerides: the European Atherosclerosis Research 
Study (EARS). Arterioscler Thromb Vasc Biol, 1998. 18(4): p. 526-34. 



29 

 

Figure legend: 

 

Figure 1 Association of APOE haplotypes (E2, E3, and E4) with total cholesterol 

concentrations in the Prevention of Cancer by Intervention with Selenium (PRECISE) 

study and Caerphilly Prospective study (CaPS). E2 allele carriers have significantly lower 

levels of total cholesterol than E3 (P=0.001 and P=4x10-4 in the PRECISE and CaPS, 

respectively) and E4 (P=2x10-4 and P=3x10-6 in the PRECISE and CaPS, respectively) 

allele carriers.   

 

  



30 

 

Table 1: Baseline characteristics of the PRECISE and Caerphilly Prospective study 

participants  

 PRECISE study Caerphilly 

Prospective 

study (CaPS) 

Characteristics Men  

(N=248 UK, 95 Danish) 

Women  

(N=220 UK, 97 

Danish) 

P value Men  

(N=1,238) 

 Age (years) 67 ± 4 67± 4 0.12 62± 4 

Body mass index (kg/m2) 27.2± 4.9 27.3± 4.9 0.82 26.8± 3.7 

Total Cholesterol (mmol/L) 5.6± 0.9 6.2± 1.1 2.31x10-10 6.1± 1.1 

High density lipoprotein 

cholesterol  (mmol/L)* 

1.5± 0.3 1.7± 0.4 2.71x10-16 1.3± 0.3 

Protein intake (total energy 

%) 

17.6± 3.7 18.8± 3.7 5X10-5 14.9± 2.7 

Carbohydrate intake (total 

energy %) 

42.8± 13.3 48.2± 8.7 1.42x10-9 48.4± 7.5 

Fat intake (total energy %) 35.3± 7.1 33.9± 6.9 0.01 36.5± 6.9 

Total energy intake (kcal) 2256 ± 658 1992± 613 2.63x10-7 1964 ± 625 

Total energy intake (MJ) 9.4± 2.7 8.3± 2.6 2.63x10-7 8.2± 2.6 

Data shown are represented as means ± SD, wherever appropriate. P values are for the 

differences in the means between men and women. P values were calculated by using 

independent t-test.  

*For CaPS, HDL-C levels were obtained from phase 5 while all other variables were 

obtained from phase 3. 


