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a b s t r a c t 

With the development of deep learning techniques, fusion of deep features has demonstrated the powerful capa- 

bility to improve recognition performance. However, most researchers directly fuse different deep feature vectors 

without considering the complementary and consistent information among them. In this paper, from the view- 

point of metric learning, we propose a novel deep feature fusion method, called deep feature fusion through 

adaptive discriminative metric learning (DFF-ADML), to explore the complementary and consistent information 

for scene recognition. Concretely, we formulate an adaptive discriminative metric learning problem, which not 

only fully exploits discriminative information from each deep feature vector, but also adaptively fuses comple- 

mentary information from different deep feature vectors. Besides, we map different deep feature vectors of the 

same image into a common space by different linear transformations, such that the consistent information can 

be preserved as much as possible. Moreover, DFF-ADML is extended to a kernelized version. Extensive experi- 

ments on both natural scene and remote sensing scene datasets demonstrate the superiority and robustness of the 

proposed deep feature fusion method. 

1

 

s  

p  

a  

p  

b  

A  

i  

i  

b  

e  

t  

i  

s  

r

 

a  

d  

n  

r  

[  

r  

s  

a  

c  

f  

s  

i  

f  

[  

t  

i  

c  

t  

f  

p  

p

 

v  

i  

i  

o  

h

R

A

1

. Introduction 

Scene recognition, which aims to label an image according to a set of

emantic categories, has attracted increasing attention in various com-

uter vision tasks such as image retrieval [1] , visual surveillance [2] ,

nd so on. Although various recognition approaches [3–5] have been

roposed over the past few decades, it remains a challenging problem

ecause of intra-class diversity and inter-class similarity in scene images.

s can be seen in Fig. 1 (a) and (b), the second image in the class ‘Liv-

ng room’ is easily misclassified in the class ‘Bedroom’ due to the high

nter-class similarity of these classes. Traditional methods are mainly

ased on low-level features and mid-level features. The former directly

xtract the basic visual features of scene images, while the latter at-

empt to comprehensively describe a scene image by latent semantic

nformation. Although these methods have produced good results for

cene recognition, the lack of a more meaningful and abstractive scene

epresentation greatly limits their recognition performance. 

In recent years, deep convolutional neural networks (CNNs) have

chieved a prominent performance in the domain of scene recognition

ue to the availability of large-scale image datasets and computer tech-

ology. Existing deep learning approaches can be divided into three di-

ections: (1) pre-trained deep features [6] ; (2) fine-tuned deep features
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7] ; (3) full-trained deep features [8,9] . Actually, for practical scene

ecognition tasks, it is hard to fully train a new deep CNN model from

cratch. Therefore, most researchers focus on pre-trained deep features

nd try to exploit the deep features from convolutional layers and fully

onnected layers. For instance, Liu et al. [10] used deep convolutional

eatures to learn a sparse representative and discriminative model con-

isting of multiple parts. Tang et al. [6] divided the GoogLeNet model

nto three parts of layers from bottom to top and applied the output

eatures from each of the three parts for scene recognition. Xie et al.

11] constructed both a mid-level local representation and a convolu-

ional Fisher vector representation based on dictionary learning, and

ntegrated the CNN features from fully connected layers to obtain the

omplementary information. However, none of these methods pays at-

ention to the fusion of different deep feature vectors. Inspired by the

act that different deep feature vectors possess unique representation

owers, we firmly believe that it is very attractive to explore the com-

lementary and consistent information among them. 

Metric learning has become one of the most popular tools to solve

arious machine learning problems [12] . The essence of metric learning

s to find a transformation that allows to transform the original sample

nto a more representative and discriminative feature space. Depending

n how the sample information is exploited, metric learning can be cat-
u.cn (G. Peng), bernard.debaets@ugent.be (B. De Baets). 
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Fig. 1. Two classes of the Scene-15 dataset: (a) Living room; (b) Bedroom. 
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gorized into global metric learning and local metric learning. In the

lobal view, Metric Learning with Side Information [13] , Information-

heoretic Metric Learning [14] , and Mahalanobis Metric Learning for

lustering [15] have been widely used in many computer vision tasks.

n the local view, representative methods are Neighborhood Component

nalysis [16] and Large Margin Nearest Neighbor [17] . Alternatively,

ther researchers integrated global and local metric learning into a uni-

ed learning framework [18–20] , which is helpful to some extent to

btain a more reasonable distance metric. 

In this paper, taking advantage of metric learning, we propose a

ovel deep feature fusion method for scene recognition. More specif-

cally, we first extract multiple deep feature vectors from pre-trained

NN models. Then, an adaptive discriminative metric learning problem

s formulated, which can simultaneously exploit discriminative informa-

ion from each deep feature vector and adaptively fuse complementary

nformation from different deep feature vectors. Besides, we map differ-

nt deep feature vectors of the same image into a common space by dif-

erent linear transformations, such that the consistent information can

e preserved as much as possible. As a result, the proposed deep feature

usion method has the potential to learn the complementary and consis-

ent information among different deep feature vectors, thereby improv-

ng the performance of scene recognition. The main contributions of our

ork can be summarized as follows: 

(1) We propose a deep feature fusion method through adaptive dis-

criminative metric learning. To the best of our knowledge, it is

the first time that metric learning has been introduced into deep

feature fusion for handling the problem of scene recognition. 

(2) An alternating iterative strategy is devised to solve the corre-

sponding optimization problem effectively. Moreover, the pro-

posed method is extended to a kernelized version for more com-

plex problems. 

(3) Extensive experiments on both natural scene and remote sensing

scene datesets demonstrate the superiority and robustness of the

proposed deep feature fusion method. 

The remainder of this paper is organized as follows. Related work is

resented in Section 2 . Section 3 introduces the proposed deep feature

usion through adaptive discriminative metric learning. Experimental

esults are given in Section 4 . Section 5 concludes this paper. 

. Related work 

In this section, we briefly review two related topics: deep feature

usion and scene recognition. 

.1. Deep feature fusion 

The deep features from convolutional layers exhibit meaningful local

tructural information, while those from fully connected (FC) layers rep-

esent rich global semantic information. Accordingly, most researchers
2 
ave devoted attention to the fusion of convolutional features or FC-

eatures. Khan et al. [21] proposed to transform the structured convolu-

ional activations to another highly discriminative feature space, so as to

xploit rich mid-level convolutional features. Yang et al. [22] presented

 part-based CNN model to optimize and select discriminative mid-level

isual elements, which were applied to multiple layers of a pre-trained

NN to obtain more diverse visual elements. Guo et al. [23] studied

n efficient Fisher convolutional vector (FCV) that successfully rescues

he orderless mid-level semantic information. Then, both the FCV-and

C-features were collaboratively employed in a novel locally supervised

eep hybrid model. Ye et al. [24] put forward a parallel multi-stage ar-

hitecture formed by a low, middle and high deep convolutional neural

etwork sub-model to automatically learn representative and discrimi-

ative hierarchical features. Several others tried to fuse different deep

eature vectors. Yu and Liu [25] adopted two feature fusion strategies to

use two deep convolutional feature vectors extracted from the original

GB stream and the saliency stream. Sun et al. [26] fused deep features

xtracted from three discriminative views including the information of

bject semantics, global appearance and contextual appearance. How-

ver, none of these methods explored the complementary and consis-

ent information among different deep feature vectors, which limits the

ecognition performance to some extent. 

.2. Scene recognition 

Existing scene recognition methods can be divided into three cat-

gories based on the features used: low-level features, mid-level fea-

ures and high-level features. Low-level features mainly describe color,

exture, or structure information to characterize the local visual repre-

entation. Examples are Local Binary Patterns (LBP) [27] and the Scale

nvariant Feature Transform (SIFT) [28] . To alleviate the semantic gap

etween low-level features and high-level abstract semantics, mid-level

eatures were developed. Bag of Visual Words (BOVW) [29] is one of

he most successful models for scene recognition. Along this line, Spa-

ial Pyramid Matching (SPM) [30] was further developed by integrat-

ng the spatial information. Fisher Vectors [31] make use of the Gaus-

ian mixture model to produce more statistical information. Owing to

he development of CNN, high-level deep features are capable of gen-

rating more abstractive and meaningful scene representations, thus re-

ulting in state-of-the-art recognition performance. Among various CNN

odels, CaffeNet [32] , AlexNet [33] , GoogLeNet [34] , VGGNet [35] ,

nd ResNet [36] are widely known because of their enhanced repre-

entation power and superior performance. More recently, mainstream

ecognition methods [11,23] focus on combining the deep features from

onvolutional layers and fully connected layers, most of which have

een detailed in Section 2.1. Besides, some other studies [6,37] use rep-

esentative CNN models to improve the recognition performance. Liu

t al. [37] combined ResNet-based transfer learning and data augmen-

ation. In our work, we will aggregate three representative deep fea-

ure vectors to explore deep feature fusion from the viewpoint of metric

earning. 
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𝑑

𝑣 𝑖 𝑙 𝑖 
. Deep feature fusion through adaptive discriminative metric 

earning 

In this section, we first introduce the proposed DFF-ADML in detail,

nd then extend it to a kernelized version to deal with more complex

roblems. Finally, we conduct the corresponding complexity and con-

ergence analysis. 

.1. Deep feature extraction 

For practical scene recognition tasks, the limited availability of train-

ng images makes it difficult to fully train a new deep CNN model from

cratch. Besides, several studies have demonstrated that the deep fea-

ures of images rarely depend on the final application. Therefore, a pre-

rained CNN model can be employed as a feature extractor for any im-

ge. In our work, we employ three representative CNN models to extract

hree deep feature vectors. 

GoogLeNet . In 2014, GoogLeNet won the first prize in the ImageNet

ompetition. It uses inception modules to obtain a deeper network and

void over-fitting. We extract the features of the fully connected layer

s scene representation, which results in a vector of 1024 dimensions. 

VGGNet . VGGNet, who won the second prize in the same competition

s GoogLeNet, also became prominent in many real-world applications.

e select VGGNet-16 as feature extractor, which contains 13 convolu-

ional layers, 5 pooling layers, and 3 fully connected layers. We extract

he features of the first fully connected layer, which results in a vector

f 4096 dimensions. 

ResNet . In 2015, ResNet won the first prize in the ImageNet com-

etition. It is characterized by the design of a block in the form of a

bottleneck’. Specifically, the model of ResNet-152 contains 50 building

locks with each block consisting of 3 layers, and 1 fully connected layer

t the end. We extract the features of the fully connected layer and thus

btain a vector of 2048 dimensions. 

.2. Problem formulation 

Let  = { 
(
( x 1 

𝑖 
, x 2 

𝑖 
, … , x 𝑉 

𝑖 
) , 𝑙 𝑖 

)
∣ 𝑖 = 1 , … , 𝑛 } represent the set of deep

eatures extracted from the training images, where x 𝑣 
𝑖 
∈ ℝ 

𝑑 𝑣 ( 𝑣 =
 , … , 𝑉 ) represents the v -th feature vector of the i -th training image

nd 𝑙 𝑖 ∈ {1 , 2 , … , 𝐶} ( C is the number of classes of scene images) stands

or the associated label; d v denotes the dimensionality of the v -th fea-

ure vector and n is the total number of training images. To overcome

he intra-class diversity and inter-class similarity of scene images, we

ry to learn a discriminative distance metric such that the distance be-

ween samples of the same class is as small as possible, while the dis-

ance between samples of different classes is as large as possible. Most

tudies pay particular attention to the Mahalanobis distance metric be-

ause it is conveniently optimized [38] . For the v -th feature vector, let

 𝑣 ∈ ℝ 

𝑑 𝑣 ×𝑑 𝑣 denote a symmetric positive semi-definite matrix, which is

sed to parametrize the Mahalanobis distance metric. In order to fully

xplore the discriminative information, we use each training sample

ith the associated label and formulate the discriminative metric learn-

ng problem as 

in 
M 𝑣 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

𝑑 2 
M 𝑣 

( x 𝑣 
𝑖 
, x 𝑣 

𝑗 
) − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

𝑑 2 
M 𝑣 

( x 𝑣 
𝑖 
, x 𝑣 

𝑗 
) , (1) 

here the distance between x 𝑣 
𝑖 

and x 𝑣 
𝑗 

is computed as 

 

2 
M 𝑣 

( x 𝑣 
𝑖 
, x 𝑣 

𝑗 
) = ( x 𝑣 

𝑖 
− x 𝑣 

𝑗 
) T M 𝑣 ( x 𝑣 𝑖 − x 𝑣 

𝑗 
) . (2) 

Since the matrix M 𝑣 is positive semi-definite, it can be decomposed

s M 𝑣 = W 𝑣 W 

T 
𝑣 

(for the dimensions of W 𝑣 , see further on). Eq. (2) can

e rewritten as 

 

2 
W 𝑣 

( x 𝑣 
𝑖 
, x 𝑣 

𝑗 
) = ( x 𝑣 

𝑖 
− x 𝑣 

𝑗 
) T W 𝑣 W 

T 
𝑣 
( x 𝑣 

𝑖 
− x 𝑣 

𝑗 
) 

= ‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 . (3) 
3 
This implies that metric learning can be viewed as learning a linear

ransformation, which transforms the deep feature vectors into a more

iscriminative feature space. 

A large number of works have demonstrated that multiple deep fea-

ure vectors can provide richer information than a single deep feature

ector. Different deep feature vectors characterize the scene image from

ifferent points of view, thus these deep feature vectors are able to pro-

ide complementary information. However, how to explore and fuse the

omplementary information from different deep feature vectors remains

 challenging problem. The adaptive fusion strategy [39] fuses different

eature vectors by learning the corresponding adaptive weights, thus

aving the ability to exploit the complementary information of different

eature vectors. Taking advantage of the flexibility and generalization

bility of adaptive fusion, we fuse different deep feature vectors through

he following adaptive discriminative metric learning problem 

in 
W , 𝜶

𝑉 ∑
𝑣 =1 

𝛼𝑣 

⎛ ⎜ ⎜ ⎝ 
𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 ⎞ ⎟ ⎟ ⎠ 

+ 𝛽

𝑉 ∑
𝑣 =1 

‖W 𝑣 ‖2 𝐹 
s.t. 

𝑉 ∑
𝑣 =1 

𝛼𝑣 = 1 , 𝛼𝑣 ≥ 0 , (4) 

here W = [ W 

T 
1 , W 

T 
2 , … , W 

T 
𝑉 
] T is the transformation matrix, 𝜶 =

 𝛼1 , 𝛼2 , … , 𝛼𝑉 ] 𝛼V ] is the adaptive weight vector, and 𝛽 is the regular-

zation parameter to prevent the entries in the matrices W 𝑣 from being

oo large. If the solution to problem (4) is 𝜶 = [0 , … , 0 , 1 , 0 , … , 0] , only

ne deep feature vector is kept, which deviates from the idea of feature

usion. Motivated by [40] , we modify 𝛼v to be 𝛼𝑟 
𝑣 
, where r > 1 guar-

ntees that more than one deep feature vector is selected so that the

omplementary information can be well employed. Then, the objective

unction is rewritten as 

in 
W , 𝜶

𝑉 ∑
𝑣 =1 

𝛼𝑟 
𝑣 

⎛ ⎜ ⎜ ⎝ 
𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 ⎞ ⎟ ⎟ ⎠ 

+ 𝛽

𝑉 ∑
𝑣 =1 

‖W 𝑣 ‖2 𝐹 
s.t. 

𝑉 ∑
𝑣 =1 

𝛼𝑣 = 1 , 𝛼𝑣 ≥ 0 . (5) 

It is worth noting that adaptive discriminative metric learning not

nly fully exploits discriminative information from each deep feature

ector, but also adaptively fuses complementary information from dif-

erent deep feature vectors. 

While each transformation matrix W 𝑣 in problem (5) exhibits en-

anced discriminative power, different such matrices may not be con-

istent with each other. Actually, different deep feature vectors char-

cterize the same scene image, and hence should be closely correlated

n the learned metric spaces. To this end, we attempt to map the dif-

erent deep feature vectors into a common space. Considering that dif-

erent deep feature vectors usually have a different dimensionality, we

se different transformation matrices W 𝑣 , where W 𝑣 ∈ ℝ 

𝑑 𝑣 ×𝑚 represents

he v -th transformation matrix and m denotes the mapped dimensional-

ty in the common space. After that, we can minimize the discrepancy

etween two different deep feature vectors of the same image as 

in 
W 

𝑉 ∑
𝑣,𝑙=1 

𝑑 2 
W 𝑣 , W 𝑙 

( x 𝑣 
𝑖 
, x 𝑙 

𝑖 
) , (6) 

here 

 

2 
W 𝑣 , W 𝑙 

( x 𝑣 
𝑖 
, x 𝑙 

𝑖 
) = ( W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑙 
x 𝑙 
𝑖 
) T ( W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑙 
x 𝑙 
𝑖 
) 

= ‖W 

T x 𝑣 − W 

T x 𝑙 ‖2 . (7) 
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⋅ ⋅
For the entire set of training images, we have 

in 
W 

𝑛 ∑
𝑖 =1 

𝑉 ∑
𝑣,𝑙=1 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑙 
x 𝑙 
𝑖 
‖2 . (8)

In this way, the different deep feature vectors are consistent with

ach other in the common space, thereby sufficiently exploring the con-

istent information among the different deep feature vectors. 

Finally, the objective function of DFF-ADML is formulated as 

in 
W , 𝜶

𝑉 ∑
𝑣 =1 

𝛼𝑟 
𝑣 

⎛ ⎜ ⎜ ⎝ 
𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 ⎞ ⎟ ⎟ ⎠ 

+ 𝛽

𝑉 ∑
𝑣 =1 

‖W 𝑣 ‖2 𝐹 + 𝜂

𝑛 ∑
𝑖 =1 

𝑉 ∑
𝑣,𝑙=1 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑙 
x 𝑙 
𝑖 
‖2 

s.t. W 

T 
𝑣 
W 𝑣 = I , 𝑣 = 1 , … , 𝑉 , 

𝑉 ∑
𝑣 =1 

𝛼𝑣 = 1 , 𝛼𝑣 ≥ 0 , (9)

here W 

T 
𝑣 
W 𝑣 = I ∈ ℝ 

𝑚 ×𝑚 is set to avoid degenerate solutions [15] . I is

n m -dimensional identity matrix and 𝜂 is a regularization parameter. 

After solving optimization problem (9) , we can obtain the corre-

ponding transformation matrix W 𝑣 for each deep feature vector, which

as the ability to transform the pre-trained deep feature vectors into a

ore discriminative feature space where the complementary and consis-

ent information is fully explored. Combining these discriminative fea-

ure vectors with corresponding weight coefficients 𝛼v , we can generate

he ultimate fused features for the i -th image as 

 

′
𝑖 
= 

𝑉 ∑
𝑣 =1 

𝛼𝑣 W 

T 
𝑣 
x 𝑣 
𝑖 
. (10)

.3. Optimization procedure 

Given the non-linear optimization problem in (9) , solving for the

ariables W and 𝜶 simultaneously is intractable by directly applying

radient descent. W changes along with 𝜶, and vice versa. We solve

his problem with an effective alternating iterative strategy, so that the

ptimal transformation matrix W and the adaptive weight vector 𝜶 can

e jointly learned. Before that, we derived a simplified expression 
𝑛 

𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 

= 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 S 𝑤 

𝑖𝑗 
− 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

‖W 

T 
𝑣 
x 𝑣 
𝑖 
− W 

T 
𝑣 
x 𝑣 
𝑗 
‖2 S 𝑏 

𝑖𝑗 

= 2 tr 
(
W 

T 
𝑣 
X 

𝑣 L 𝑤 ( X 

𝑣 ) T W 𝑣 

)
− 2 tr 

(
W 

T 
𝑣 
X 

𝑣 L 𝑏 ( X 

𝑣 ) T W 𝑣 

)
= 2 tr 

(
W 

T 
𝑣 
X 

𝑣 ( L 𝑤 − L 𝑏 )( X 

𝑣 ) T W 𝑣 

)
= 2 tr 

(
W 

T 
𝑣 
R 𝑣 W 𝑣 

)
, (11)

here R 𝑣 = X 

𝑣 ( L 𝑤 − L 𝑏 )( X 

𝑣 ) T and X 

𝑣 = [ x 𝑣 1 , x 
𝑣 
2 , … , x 𝑣 

𝑛 
] . S 𝑤 

𝑖𝑗 
is defined as

 

𝑤 
𝑖𝑗 
= 1 , if 𝑙 𝑖 = 𝑙 𝑗 , and S 𝑤 

𝑖𝑗 
= 0 otherwise. S 𝑏 

𝑖𝑗 
is defined as S 𝑏 

𝑖𝑗 
= 1 , if l i ≠ l j ,

nd 𝐒 𝑏 
ij 
= 0 otherwise. Furthermore, L 𝑤 = D 

𝑤 − S 𝑤 denotes the Laplacian

atrix of the label matrix S 𝑤 , and D 

𝑤 is a diagonal matrix given by

 

𝑤 
𝑖𝑖 
= 

∑𝑛 

𝑗=1 S 
𝑤 
𝑖𝑗 

. L 𝑏 = D 

𝑏 − S 𝑏 denotes the Laplacian matrix of the label

atrix S 𝑏 , and D 

𝑏 is a diagonal matrix given by D 

𝑏 
𝑖𝑖 
= 

∑𝑛 

𝑗=1 S 
𝑏 
𝑖𝑗 

. 

Updating W . Given the initial 𝜶, we compute W . The objective func-

ion in (9) can be rewritten as 

in 
W 

𝑉 ∑
𝑣 =1 

𝛼𝑟 
𝑣 
tr 
(
W 

T 
𝑣 
R 𝑣 W 𝑣 

)
+ 𝛽

𝑉 ∑
𝑣 =1 

tr 
(
W 

T 
𝑣 
W 𝑣 

)

+ 𝜂

𝑛 ∑
𝑖 =1 

tr 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
[
W 

T 
1 , W 

T 
2 , … , W 

T 
𝑉 

]
X 𝑖 L X 

T 
𝑖 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
W 1 
W 2 
⋮ 

W 𝑉 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

s.t. W 

T 
𝑣 
W 𝑣 = I , 𝑣 = 1 , … , 𝑉 . (12)
4 
Here X 𝑖 = diag ( x 1 
𝑖 
, x 2 

𝑖 
, … , x 𝑉 

𝑖 
) and L is a Laplacian matrix defined as

 = D − 1 𝑉 ×𝑉 , where D is a diagonal matrix given by D 𝑖𝑖 = 

∑𝑉 

𝑗=1 ( 1 𝑉 ×𝑉 ) 𝑖𝑗 
nd 1 𝑉 ×𝑉 is a V × V matrix with all ones. 

Since W = [ W 

T 
1 , W 

T 
2 , … , W 

T 
𝑉 
] T , the problem (12) can be further

ewritten as 

in 
W 

tr 
(
W 

T ( R + 𝛽I + 𝜂Q ) W 

)
s.t. 

1 
𝑉 

W 

T W = I , (13) 

here R = diag ( 𝛼𝑟 1 R 1 , 𝛼
𝑟 
2 R 2 , … , 𝛼𝑟 

𝑉 
R 𝑉 ) and Q = 

∑𝑛 

𝑖 =1 X 𝑖 L X 

T 
𝑖 
. Conse-

uently, the solution W to problem (9) can be obtained by solving the

ollowing eigen-decomposition problem 

 ( R + 𝛽I + 𝜂Q ) W = 𝚲W , (14) 

here 𝚲 is a Lagrangian multiplier. Thus W consists of the eigenvec-

ors corresponding to the first m smallest eigenvalues of the matrix

 ( R + 𝛽I + 𝜂Q ) . 
Updating 𝜶. With fixed W , we update 𝜶. The objective function in

9) leads to the following optimization problem 

in 
𝜶

𝑉 ∑
𝑣 =1 

𝛼𝑟 
𝑣 
tr 
(
W 

T 
𝑣 
R 𝑣 W 𝑣 

)
s.t. 

𝑉 ∑
𝑣 =1 

𝛼𝑣 = 1 , 𝛼𝑣 ≥ 0 . (15) 

Following the Lagrange multiplier method, the Lagrange function is

onstructed as 

 ( 𝜶, 𝜆) = 

𝑉 ∑
𝑣 =1 

𝛼𝑟 
𝑣 
tr 
(
W 

T 
𝑣 
R 𝑣 W 𝑣 

)
− 𝜆

( 

𝑉 ∑
𝑣 =1 

𝛼𝑣 − 1 

) 

, (16) 

here 𝜆 is a Lagrange multiplier. Setting 
𝜕𝐿 ( 𝜶,𝜆) 
𝜕𝛼𝑣 

= 0 and 
𝜕𝐿 ( 𝜶,𝜆) 

𝜕𝜆
= 0 , we

et 
 

𝑟𝛼𝑟 −1 
𝑣 

tr 
(
W 

T 
𝑣 
R 𝑣 W 𝑣 

)
− 𝜆 = 0 ∑𝑉 

𝑣 =1 𝛼𝑣 − 1 = 0 . 
(17) 

Thus, we can obtain 𝛼v as 

𝑣 = 

(
1∕ tr 

(
W 

T 
𝑣 
R 𝑣 W 𝑣 

))1∕( 𝑟 −1) ∑𝑉 

𝑣 =1 
(
1∕ tr 

(
W 

T 
𝑣 
R 𝑣 W 𝑣 

))1∕( 𝑟 −1) . (18) 

We iterate the above procedure until the algorithm converges. A

implified pseudo-code implementation of DFF-ADML is summarized in

lgorithm 1 . 

.4. Kernelized version 

Linear metric learning can work well under the linearity assumption,

hereas it is not powerful enough for more complex problems [41] . To

vercome this limitation, we extend DFF-ADML to a kernelized version

y using the kernel trick, and propose deep feature fusion through adap-

ive kernel discriminative metric learning (DFF-AKDML). 

We first map the v -th feature vector into a reproducing kernel Hilbert

pace (RKHS)  via a feature map 𝜙v with corresponding kernel function

 

𝑣 ( x 𝑣 
𝑖 
, x 𝑣 

𝑗 
) = ⟨𝜙𝑣 ( x 𝑣 𝑖 ) , 𝜙𝑣 ( x 𝑣 𝑗 ) ⟩ 

[42] . After that, the feature vector in  is

apped into ℝ 

𝑚 by a linear transformation P 𝑣 :  → ℝ 

𝑚 . Because the lin-

ar transformation P 𝑣 should lie in the span of 𝜙𝑣 ( x 𝑣 1 ) , 𝜙𝑣 ( x 𝑣 2 ) , … , 𝜙𝑣 ( x 𝑣 𝑛 ) ,
here exists a transformation matrix A 𝑣 such that P 𝑣 = 𝚽𝑣 A 𝑣 , where

𝑣 = [ 𝜙𝑣 ( x 𝑣 1 ) , 𝜙𝑣 ( x 𝑣 2 ) , … , 𝜙𝑣 ( x 𝑣 𝑛 )] . Let K 

𝑣 = 𝚽T 
𝑣 
𝚽𝑣 , then the distance be-

ween the v -th feature vector of two different images can be reformu-

ated as 

 

2 
A 𝑣 
( 𝜙𝑣 ( x 𝑣 𝑖 ) , 𝜙𝑣 ( x 𝑣 𝑗 )) = ‖P 

T 
𝑣 
𝜙𝑣 ( x 𝑣 𝑖 ) − P 

T 
𝑣 
𝜙𝑣 ( x 𝑣 𝑗 ) ‖2 

= ‖A 

T 
𝑣 
𝚽T 

𝑣 
𝜙𝑣 ( x 𝑣 𝑖 ) − A 

T 
𝑣 
𝚽T 

𝑣 
𝜙𝑣 ( x 𝑣 𝑗 ) ‖2 

= ‖A 

T 
𝑣 
K 

𝑣 
𝑖 
− A 

T 
𝑣 
K 

𝑣 
𝑗 
‖2 , (19) 



C. Wang, G. Peng and B. De Baets Information Fusion 63 (2020) 1–12 

Algorithm 1 DFF-ADML. 

Input: 

The set of deep features  = { 
(
( x 1 

𝑖 
, x 2 

𝑖 
, … , x 𝑉 

𝑖 
) , 𝑙 𝑖 

)
∣ 𝑖 = 1 , … , 𝑛 } for 

training images; 

The mapped dimensionality 𝑚 ; 

The tuning parameters 𝛽, 𝜂 and 𝑟 . 

Output: 

The transformation matrix W , adaptive weight vector 𝜶 and fused 

feature matrix X 

′ = [ x ′1 , x 
′
2 , … , x ′

𝑛 
] . 

1: Initialize 𝜶 = [1∕ 𝑉 , 1∕ 𝑉 , … , 1∕ 𝑉 ] ; 
2: Calculate R 𝑣 , 𝑣 = 1 , 2 , … , 𝑉 ; 

3: Calculate Q = 

𝑛 ∑
𝑖 =1 

X 𝑖 L X 

T 
𝑖 
; 

4: while no convergence do 

5: Calculate R = diag ( 𝛼𝑟 1 R 1 , 𝛼
𝑟 
2 R 2 , … , 𝛼𝑟 

𝑉 
R 𝑉 ) ; 

6: Solve the eigen-decomposition problem in Eq. (14) and obtain 

W = [ W 

T 
1 , W 

T 
2 , … , W 

T 
𝑉 
] T ; 

7: Update 𝜶 using Eq. (18); 

8: end while 

9: Get the fused features x ′
𝑖 
= 

𝑉 ∑
𝑣 =1 

𝛼𝑣 W 

T 
𝑣 
x 𝑣 
𝑖 
, 𝑖 = 1 , 2 , … , 𝑛 ; 

10: return W , 𝜶, x ′
𝑖 
; 
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here K 

𝑣 

⋅𝑖 
is the i -th column of the kernel matrix K 

𝑣 . Similarly, the dis-

ance between two different feature vectors of the same image can be

eformulated as 

 

2 
A 𝑣 , A 𝑙 

( 𝜙𝑣 ( x 𝑣 𝑖 ) , 𝜙𝑙 ( x 𝑙 𝑖 )) = ‖A 

T 
𝑣 
K 

𝑣 

⋅𝑖 
− A 

T 
𝑙 
K 

𝑙 

⋅𝑖 
‖2 . (20) 

Based on the linear DFF-ADML, we can reformulate problem (9) in

 kernelized version 

min 
 , 𝜶∗ 

𝑉 ∑
𝑣 =1 

𝛼∗ 
𝑣 

𝑟 
⎛ ⎜ ⎜ ⎝ 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 = 𝑙 𝑗 

‖A 

T 
𝑣 
K 

𝑣 

⋅𝑖 
− A 

T 
𝑣 
K 

𝑣 

⋅𝑗 
‖2 − 

𝑛 ∑
𝑖 =1 

∑
𝑗∶ 𝑙 𝑖 ≠𝑙 𝑗 

‖A 

T 
𝑣 
K 

𝑣 

⋅𝑖 
− A 

T 
𝑣 
K 

𝑣 

⋅𝑗 
‖2 ⎞ ⎟ ⎟ ⎠ 

+ 𝛽∗ 
𝑉 ∑
𝑣 =1 

‖A 𝑣 ‖2 𝐹 + 𝜂∗ 
𝑛 ∑
𝑖 =1 

𝑉 ∑
𝑣,𝑙=1 

‖A 

T 
𝑣 
K 

𝑣 

⋅𝑖 
− A 

T 
𝑙 
K 

𝑙 

⋅𝑖 
‖2 

s.t. A 

T 
𝑣 
A 𝑣 = I , 𝑣 = 1 , … , 𝑉 , 

𝑉 ∑
𝑣 =1 

𝛼∗ 
𝑣 
= 1 , 𝛼∗ 

𝑣 
≥ 0 , (21) 

here A = [ A 

T 
1 , A 

T 
2 , … , A 

T 
𝑉 
] T is the transformation matrix, 𝜶

∗ =
 𝛼∗ 1 , 𝛼

∗ 
2 , … , 𝛼∗ 

𝑉 
] is the adaptive weight vector, and 𝛽∗ and 𝜂∗ are two reg-

larization parameters. A 

T 
𝑣 
A 𝑣 = I ∈ ℝ 

𝑚 ×𝑚 is set to avoid degenerate so-

utions. 

Intuitively, it can be seen that the form of DFF-AKDML is consistent

ith that of linear DFF-ADML. Therefore, the optimization procedure

f the transformation matrix A and adaptive weight vector 𝜶∗ is sim-

lar to that for linear DFF-ADML. To be more specific, the solution A

o optimization problem (21) consists of the eigenvectors correspond-

ng to the first m smallest eigenvalues of the matrix 𝑉 ( R 

∗ + 𝛽∗ I + 𝜂∗ Q 

∗ ) ,
here R 

∗ = diag ( 𝛼∗ 1 
𝑟 R 

∗ 
1 , 𝛼

∗ 
2 
𝑟 R 

∗ 
2 , … , 𝛼∗ 

𝑉 

𝑟 R 

∗ 
𝑉 
) , R 

∗ 
𝑣 
= K 

𝑣 ( L 𝑤 − L 𝑏 )( K 

𝑣 ) T , Q 

∗ =
𝑛 

𝑖 =1 K 𝑖 L K 

T 
𝑖 

and K 𝑖 = diag ( K 

1 
⋅𝑖 
, K 

2 
⋅𝑖 
, … , K 

𝑉 

⋅𝑖 
) . Similarly, the weight coeffi-

ients are calculated as 𝛼∗ 
𝑣 
= 

(
1∕ tr 

(
A T 𝑣 R 

∗ 
𝑣 A 𝑣 

))1∕( 𝑟 −1) ∑𝑉 
𝑣 =1 

(
1∕ tr 

(
A T 𝑣 R 

∗ 
𝑣 A 𝑣 

))1∕( 𝑟 −1) . 
.5. Complexity and convergence analysis 

Since DFF-ADML and DFF-AKDML apply a similar optimization pro-

edure, we only analyze the computational complexity of DFF-ADML.

ccording to Algorithm 1 , the computational complexity can be calcu-

ated from three steps. First, the computational complexity of R and

 is 𝑂( 𝑑 𝑛 2 + 𝑑 2 𝑛 ) and O ( Vd 2 n ), respectively, where 𝑑 = Σ𝑉 
𝑣 =1 𝑑 𝑣 . Sec-

nd, the computational complexity for eigen-decomposition problem

14) is O ( d 3 ). Third, the computational cost for updating 𝜶 is about

 ( md 2 ). Thus, the entire computational complexity of DFF-ADML is
5 
 

(
max ( 𝑛, 𝑉 𝑑 ) 𝑑 𝑛 + 𝑇 𝑑 3 

)
, where T is the number of training iterations.

t is worth noting that usually a low value of T (say at most 5) suffices,

hich will be demonstrated in the experiments section. 

We show that the optimization procedure in Algorithm 1 monoton-

cally reduces the objective function value. For simplicity, we denote

he objective function (9) as  ( W , 𝜶) . According to the updating rules,

ith 𝜶t fixed, we have  ( W 

𝑡 +1 , 𝜶𝑡 ) ≤  ( W 

𝑡 , 𝜶𝑡 ) . If W 

𝑡 +1 is fixed, we get

 ( W 

𝑡 +1 , 𝜶𝑡 +1 ) ≤  ( W 

𝑡 +1 , 𝜶𝑡 ) . Thus, we have  ( W 

𝑡 +1 , 𝜶𝑡 +1 ) ≤  ( W 

𝑡 , 𝜶𝑡 ) . It
s easy to conclude that the objective function monotonically decreases

nd the corresponding iterative algorithm will converge to a local opti-

um. 

. Experiments 

To evaluate the effectiveness of DFF-ADML and DFF-AKDML for

cene recognition, we conduct experiments on both natural scene and

emote sensing scene datasets. First, we introduce the datasets and ex-

erimental setup. Second, we conduct a parameter analysis to evaluate

he impact of each parameter in the proposed method. Third, we com-

are our methods with different fusion methods as well as the state-of-

he-art scene recognition methods. Finally, we conduct a convergence

tudy to verify the efficiency of the proposed algorithm. 

.1. Datasets and experimental setup 

Scene-15 [30] . This dataset includes 4485 images from 15 outdoor

nd indoor scene classes, with the number of images in each class rang-

ng from 200 to 400. Sample images of each class are shown in Fig. 2 .

he average resolution of these images is 300 × 250 pixels. Based on the

tandard setting, we use 100 images per class as training images, and

he remaining images per class as testing images. 

MIT-67 [43] . This dataset contains 15,620 images of 67 indoor

lasses. The number of images varies, with at least 100 images per class.

ample images are shown in Fig. 3 . Each image has a minimum resolu-

ion of 200 pixels on the smallest axis. We followed the standard evalua-

ion protocol, randomly selecting 80 images from each class for training

nd 20 images for testing. 

UCM-21 [44] . This dataset contains 2100 images from 21 high-

esolution remote sensing classes, each class containing 100 images.

ample images are shown in Fig. 4 . The resolution of these high-

esolution images is 256 × 256 pixels. For fair comparison, we use 80

mages per class as training images, and the remaining 20 images per

lass as testing images. 

According to previous experience, for the Scene-15 and MIT-67

atasets, we use three deep models pre-trained on the scene-centric

lace dataset [9] to extract three deep feature vectors, while for the

CM-21 dataset, we use those deep models pre-trained on the object-

entric ImageNet dataset [45] to extract three deep feature vectors.

o improve the computational efficiency of our proposed methods, the

imensionality of each feature vector is first reduced by PCA to pre-

erve 99% energy. The resulting dimensionalities are denoted by 𝑑 ′
𝑖 
,

 = 1 , … , 𝑉 . Once these reduced feature vectors are obtained, we can

rain DFF-ADML to generate the corresponding fused features, which are

irectly fed into an extreme learning machine (ELM), a classifier with

 good recognition performance and a low computational cost. From

ere on, when we talk about the performance of DFF-ADML and DFF-

KDML, we tacitly refer to the performance of ELM trained on the basis

f the fused features generated by these methods. The experiments are

epeated 10 times with the training data and testing data of each class

andomly selected, and the average recognition accuracies are taken

s the final recognition accuracies. As for the kernel function in DFF-

KDML, the Gaussian kernel is adopted. To achieve the optimal recog-

ition performance, the kernel parameter 𝜎 is selected from {0.1, 0.2,

.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2}. 
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Fig. 2. Sample images of the Scene-15 dataset. 

Fig. 3. Sample images of the MIT-67 dataset. 

Fig. 4. Sample images of the UCM-21 dataset. 
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Fig. 5. Recognition accuracy with respect to the mapped dimensionality m on the three scene datasets. (a) Scene-15; (b) MIT-67; (c) UCM-21. 

Fig. 6. Recognition accuracy with different tuning parameters on the three scene datasets. (a) parameter 𝛽; (b) parameter 𝜂; (c) parameter r . 
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Table 1 

Recognition accuracies (%) of DFF-ADML for two deep feature vectors. 

Method Scene-15 MIT-67 UCM-21 

DFF-ADML (GoogleNet + VGGNet) 94.54 84.57 97.14 

DFF-ADML (GoogleNet + ResNet) 95.42 85.62 97.86 

DFF-ADML (VGGNet + ResNet) 95.91 86.78 98.31 

DFF-ADML 96.39 88.43 99.14 
.2. Parameter analysis 

For the sake of simplicity, we only analyze the parameters of DFF-

DML on the three scene datasets, since DFF-AKDML can be analyzed

imilarly. In order to apply DFF-ADML, essentially four parameters need

o be set: the mapped dimensionality m , the regularization parameter 𝛽,

he parameter 𝜂 allowing to balance the complementary and consistent

nformation and the parameter r allowing to make sure more than one

eep feature vector is selected. Since tuning four parameters is quite

hallenging, we have adopted a pragmatic approach. Extensive explo-

ative experiments have indicated that the recognition accuracy is not

ery sensitive to the two parameters 𝛽 and r ; this will be illustrated

urther on. We therefore decided to first fix these two parameters at

= 1 and 𝑟 = 5 , and then tune the other two parameters m and 𝜂 al-

ernately until convergence. We noticed that the optimal value of m

as always situated around the smallest of the dimensionalities of the

CA-reduced feature vectors involved, and we thus systematically set

 = min ( 𝑑 ′1 , 𝑑 
′
2 , … , 𝑑 ′

𝑉 
) . For the parameter 𝜂, we obtained as optimal val-

es 𝜂 = 500 , 𝜂 = 1000 and 𝜂 = 100 for the Scene-15, MIT-67 and UCM-21

atasets, respectively. 

For the sake of analyzing the impact of each parameter in DFF-ADML,

e fix three of the four parameters as the above optimal values and re-

ort the recognition accuracy by varying a single parameter only [46] .

irst, we evaluate the effect of different values of the mapped dimension-

lity m . As shown in Fig. 5 (a) and (c), for the Scene-15 and UCM-21

atasets, the recognition accuracies of DFF-ADML rise gradually with

n increase in the number of dimensions and up to a relative saturation

oint. In Fig. 5 (b), for the MIT-67 dataset, DFF-ADML achieves an op-

imal recognition accuracy when the mapped dimensionality is around

00. The results support our choice 𝑚 = min ( 𝑑 ′1 , 𝑑 
′
2 , … , 𝑑 ′

𝑉 
) . One plausi-

le explanation is that the consistent information among the different

eep feature vectors can be well preserved with lower dimensionality. 

Next, we evaluate the effect of the other three tuning parameters 𝛽,

and r . More specifically, the value of 𝛽 is varied in the set {0.001,
7 
.01, 0.1, 1, 10, 100, 1000} and the recognition results are displayed

n Fig. 6 (a). As announced earlier, the recognition accuracy of DFF-

DML is not sensitive to this parameter, indicating that DFF-ADML can

btain a robust recognition performance for a wide range of values of 𝛽.

urthermore, we vary 𝜂 in the set {50, 100, 200, 500, 1000, 2000, 5000}

nd report the experimental results in Fig. 6 (b). As can be seen, the

erformance of DFF-ADML initially increases and then starts to decrease

hen 𝜂 becomes too large, i.e. the value of 𝜂 should not be too large

r too small because it controls the consistent information among the

ifferent deep feature vectors. Hence, we can conclude that exploring

onsistent information is beneficial to improve the performance of scene

ecognition. Finally, the value of r is varied in the set {2, 3, 4, 5, 6, 7,

, 9} and the recognition accuracies are presented in Fig. 6 (c). The

ecognition accuracy on the MIT-67 dataset is more sensitive than that

n the other two datasets, as the result of more complex spatial layouts

resent in the MIT-67 dataset [7] . This confirms the selection of the

onsensus value 𝑟 = 5 . 

.3. Comparison and analysis of results 

Comparison with different fusion strategies . We first investigate

FF-ADML and DFF-AKDML for two deep feature vectors and com-

are their recognition performance. From Tables 1 and 2 , we draw

he following conclusions. (1) DFF-ADML (GoogleNet + ResNet)

nd DFF-AKDML (GoogleNet + ResNet) consistently perform bet-
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Table 2 

Recognition accuracies (%) of DFF-AKDML for two deep feature vectors. 

Method Scene-15 MIT-67 UCM-21 

DFF-AKDML (GoogleNet + VGGNet) 94.59 83.34 97.06 

DFF-AKDML (GoogleNet + ResNet) 95.04 85.23 97.45 

DFF-AKDML (VGGNet + ResNet) 95.47 86.19 98.02 

DFF-AKDML 96.12 87.07 98.93 

Table 3 

Recognition accuracies (%) of DFF-AKDML with different ker- 

nel functions. 

Method Scene-15 MIT-67 UCM-21 

DFF-AKDML (Linear) 95.28 86.45 98.33 

DFF-AKDML (Polynomial) 96.07 86.93 99.12 

DFF-AKDML 96.12 87.07 98.93 

Table 4 

Recognition accuracies (%) of DFF-ADML with 

two classical fusion methods. 

Method Scene-15 MIT-67 UCM-21 

CDFF-DML 95.52 86.96 98.07 

PDFF-DML 94.21 85.11 97.61 

DFF-ADML 96.39 88.43 99.14 

t  

(  

m  

G  

A  

r  

f  

b  

r  

d  

r  

A  

s  

p  

o  

i  

t  

D  

t  

2  

w

 

s

 

 

 

 

 

 

 

 

 

 

s  

d  

l  

b  

Table 5 

Recognition accuracies (%) of DFF-ADML with three 

widely used classifiers. 

Method Scene-15 MIT-67 UCM-21 

DFF-ADML (KNN) 95.25 85.34 98.03 

DFF-ADML (RF) 95.44 86.79 97.38 

DFF-ADML (SVM) 96.38 87.68 98.57 

DFF-ADML 96.39 88.43 99.14 

Table 6 

Performance comparison with the state-of- 

the-art methods on the Scene-15 dataset. 

Method Scene-15 (%) 

ScSPM [3] 80.28 

Object Bank [47] 80.90 

ISPM [48] 83.30 

ImageNet-AlexNet [9] 84.05 

DDSFL [49] 84.42 

ImageNet-GoogLeNet [9] 84.95 

ImageNet-VGGNet [9] 86.28 

Places365-AlexNet [9] 89.25 

URDL [10] 91.15 

Places365-GoogLeNet [9] 91.25 

Places365-VGGNet [9] 91.97 

DSFL + CNN [50] 92.81 

G-MS2F [6] 92.90 

FTOTLM [37] 94.01 

Khan et al. [21] 94.50 

SDO + fc features [5] 95.88 

DFF-ADML 96.39 
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er than DFF-ADML (GoogleNet + VGGNet) and DFF-AKDML

GoogleNet + VGGNet), respectively. This is because ResNet extracts a

ore meaningful representation than VGGNet [36] . (2) DFF-ADML (VG-

Net + ResNet) and DFF-AKDML (VGGNet + ResNet) outperform DFF-

DML (GoogleNet + ResNet) and DFF-AKDML (GoogleNet + ResNet),

espectively, as the result of more deep scene information generated

rom VGGNet [35] . (3) Both DFF-ADML and DFF-AKDML achieve the

est recognition performance by fusing three deep feature vectors. The

esults confirm that the proposed methods can effectively exploit those

ifferent deep feature vectors, thus having the ability to improve the

ecognition performance to some extent. (4) The performance of DFF-

KDML is inferior to that of DFF-ADML, since we only apply a Gaus-

ian kernel to generate the fused features. For fair comparison, we com-

are the performance of DFF-AKDML versus different kernel functions

n the three scene datasets. The experimental results are summarized

n Table 3 . DFF-AKDML with the linear kernel performs slightly worse

han that with the polynomial kernel and the Gaussian kernel, while

FF-AKDML with the polynomial kernel achieves competitive recogni-

ion result than that with the Gaussian kernel, especially for the UCM-

1 dataset. However, the polynomial kernel requires more parameters,

hich results in a higher computational cost. 

Next, we compare the DFF-ADML method with two classical fusion

trategies for three deep feature vectors: 

• Concatenated deep feature fusion through discriminative metric

learning (CDFF-DML): we concatenate three deep feature vectors

into a long feature vector, and then use discriminative metric learn-

ing (see Eq. (4) , where only one feature vector is kept) to obtain

corresponding discriminative feature vectors as the fused features. 
• Parallel deep feature fusion through discriminative metric learning

(PDFF-DML): we use discriminative metric learning (see Eq. (4) ,

where only one feature vector is kept) to obtain corresponding dis-

criminative feature vectors for each deep feature vector, and then

combine these feature vectors with equal weights to generate the

fused features. 

Table 4 reports the comparison results for three different fusion

trategies. The following conclusions can be drawn. (1) For the three

atasets, DFF-ADML performs better than CDFF-DML, which means that

earning discriminative information from each deep feature vector is

eneficial to improve the recognition performance. (2) The performance
8 
f DFF-ADML is superior to that of PDFF-DML. In particular, DFF-ADML

ains a 3.3% improvement over PDFF-DML for the MIT-67 dataset, in-

icating that the parallel fusion method fails to explore the comple-

entary and consistent information for scene recognition. (3) On the

hole, DFF-ADML achieves the best recognition performance. The re-

ults demonstrate that our method not only helps to exploit discrimi-

ative information from each deep feature vector, but also adaptively

uses complementary information from different deep feature vectors. 

Comparison with different classifiers . To further evaluate the effec-

iveness of the proposed deep feature fusion method, we compare the

erformance of DFF-ADML with that of different classifiers for scene

ecognition. Apart from the ELM classifier, three widely used classifiers

re employed, i.e., k -nearest neighbors (KNN), random forest (RF) and

upport vector machine (SVM). Table 5 reports the comparison results

or the four classifiers, from which we can draw the following conclu-

ions. (1) The performance of the SVM and ELM classifiers is superior to

hat of the KNN and RF classifiers. The main reason lies in the fact that

VM and ELM have trained more elaborate classification models based

n the learned low-dimensional discriminative features, thus achieving a

etter recognition performance. (2) SVM achieves an almost comparable

ecognition performance as ELM, while ELM has a lower computational

ost. (3) On the three scene datasets, we can see that DFF-ADML is able

o suit different classifiers well, which demonstrates the robustness and

ffectiveness of the proposed deep feature fusion method. In particu-

ar, ELM always outperforms KNN, RF and SVM in terms of recognition

ccuracy. 

Comparison with scene recognition methods . We compare DFF-

DML with a number of state-of-the-art scene recognition methods. The

xperimental results are summarized in Tables 6 , 7 and 8 for the Scene-

5, MIT-67, and UCM-21 datasets, respectively. From these tables, we

an draw the following conclusions. (1) Methods based on high-level

eep features are always superior to methods based on low-level and

id-level features. For example, AlexNet gains a higher recognition ac-

uracy than OTC+HOG and DDSFL for the MIT-67 dataset. The results

rove that deep CNN models have the ability to generate more semanti-
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Table 7 

Performance comparison with the state-of- 

the-art methods on the MIT-67 dataset. 

Method MIT-67 (%) 

OTC + HOG [51] 47.33 

DDSFL [49] 52.26 

ImageNet-AlexNet [9] 56.79 

ImageNet-GoogLeNet [9] 59.48 

IFV + BOP [52] 63.10 

ImageNet-VGGNet [9] 64.87 

Places205-AlexNet [9] 68.24 

Hybrid-CNN [8] 70.80 

URDL [10] 71.90 

FTOTLM [37] 74.63 

DSFL + CNN [50] 76.23 

Places205-GoogLeNet [9] 75.14 

G-MS2F [6] 79.63 

Places205-VGGNet [9] 79.76 

Xie et al. [11] 82.24 

Guo et al. [23] 83.75 

Wang et al. [7] 86.70 

SDO + fc features [5] 86.76 

DFF-ADML 88.43 
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Table 8 

Performance comparison with the state-of- 

the-art methods on the UCM-21 dataset. 

Method UCM-21 (%) 

LBP [53] 36.29 

GIST [53] 46.90 

BOVW(LBP) [53] 77.12 

IFK(CH) [53] 83.79 

GoogleNet [53] 94.31 

VGGNet [53] 95.21 

LGF [4] 95.48 

ResNet + GMM [54] 96.67 

Yu and Liu [25] 98.02 

PMS [24] 98.81 

DFF-ADML 99.14 
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ally meaningful scene information. (2) The performance of DFF-ADML

s superior to that of the other baseline deep CNN models, so it is effec-

ive to learn more informative deep features by discriminative metric

earning, which therefore improves the performance of scene recogni-

ion. (3) DFF-ADML outperforms other fusion methods. Concretely, for

he Scene-15 dataset, DFF-ADML yields a 3.5% higher accuracy than

-MS2F. For the MIT-67 dataset, DFF-ADML gains a 8.8% improve-

ent over G-MS2F and an almost 1.7% improvement over SDO+fc fea-

ures. For the UCM-21 dataset, DFF-ADML yields an almost 3.7% higher

ccuracy than LGF. The results demonstrate that our method actually

akes a great contribution to adaptively fuse complementary informa-

ion, while it has the potential to preserve the consistent information.

4) On both natural scene and remote sensing scene datasets, DFF-ADML

chieves superior recognition accuracies, which also confirms that the

roposed deep feature fusion method is more effective and robust. 

Additionally, in order to detail the recognition accuracies for each

lass, Figs. 7 , 8 and 9 show the confusion matrices of DFF-ADML on
9 
he Scene-15, MIT-67 and UCM-21 datasets, respectively. As shown in

ig. 7 , some of the images in the class ‘open country’ are more eas-

ly classified into the class ‘mountain’. The main reason is that part of

he image information in the class ‘open country’ is similar to that of

he class ‘mountain’. In Fig. 8 , it can be seen that the diagonal values

or the classes ‘deil’ and ‘museum’ are relatively low, but the diagonal

alues for several other classes are extremely high, such as ‘cloister’,

inside bus’, and ‘meeting room’. In Fig. 9 , given the diagonal elements,

ost of the scene categories achieve satisfactory recognition results, ex-

ept for some of the images in the class ‘buildings’ misclassified into the

lass ‘dense residential’ or ‘storage tanks’. To sum up, the recognition

esults demonstrate that DFF-ADML holds great potential to learn com-

lementary and consistent information among the different deep feature

ectors, and hence improve the performance of scene recognition. 

.4. Convergence study 

To verify the efficiency of DFF-ADML, we also investigate the recog-

ition accuracy in terms of the number of iterations on the Scene-15,

IT-67, and UCM-21 datasets. Fig. 10 (a)-(c) show the recognition per-

ormance of DFF-ADML over 20 iterations. We can see that the perfor-

ance of DFF-ADML converges very quickly, usually within 5 iterations.
Fig. 7. Confusion matrix of DFF-ADML on the Scene-15 

dataset. 
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Fig. 8. Confusion matrix of DFF-ADML on the MIT-67 dataset. 

Fig. 9. Confusion matrix of DFF-ADML on the UCM-21 

dataset. 
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. Conclusion 

In this paper, from the viewpoint of metric learning, we have pro-

osed a novel deep feature fusion method for scene recognition. We have

ormulated an adaptive discriminative metric learning problem, which

imultaneously exploits discriminative information from each deep fea-

ure vector and adaptively fuses complementary information from dif-

erent deep feature vectors. Besides, we have mapped different deep
10 
eature vectors of the same image into a common space by different

inear transformations, such that the consistent information can be pre-

erved as much as possible. Extensive experiments on three benchmark

cene datasets have demonstrated the superiority and robustness of the

roposed deep feature fusion method. However, the performance of our

ernelized version is not that impressive. In future work, we will ex-

lore more suitable kernel functions to further improve the recognition

erformance of the proposed method. 
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Fig. 10. Recognition accuracy of DFF-ADML versus different number of iterations on the three scene datasets. (a) Scene-15; (b) MIT-67; (c) UCM-21. 
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