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With the development of deep learning techniques, fusion of deep features has demonstrated the powerful capa-
bility to improve recognition performance. However, most researchers directly fuse different deep feature vectors
without considering the complementary and consistent information among them. In this paper, from the view-
point of metric learning, we propose a novel deep feature fusion method, called deep feature fusion through
adaptive discriminative metric learning (DFF-ADML), to explore the complementary and consistent information
for scene recognition. Concretely, we formulate an adaptive discriminative metric learning problem, which not
only fully exploits discriminative information from each deep feature vector, but also adaptively fuses comple-
mentary information from different deep feature vectors. Besides, we map different deep feature vectors of the
same image into a common space by different linear transformations, such that the consistent information can
be preserved as much as possible. Moreover, DFF-ADML is extended to a kernelized version. Extensive experi-
ments on both natural scene and remote sensing scene datasets demonstrate the superiority and robustness of the

proposed deep feature fusion method.

1. Introduction

Scene recognition, which aims to label an image according to a set of
semantic categories, has attracted increasing attention in various com-
puter vision tasks such as image retrieval [1], visual surveillance [2],
and so on. Although various recognition approaches [3-5] have been
proposed over the past few decades, it remains a challenging problem
because of intra-class diversity and inter-class similarity in scene images.
As can be seen in Fig. 1 (a) and (b), the second image in the class ‘Liv-
ing room’ is easily misclassified in the class ‘Bedroom’ due to the high
inter-class similarity of these classes. Traditional methods are mainly
based on low-level features and mid-level features. The former directly
extract the basic visual features of scene images, while the latter at-
tempt to comprehensively describe a scene image by latent semantic
information. Although these methods have produced good results for
scene recognition, the lack of a more meaningful and abstractive scene
representation greatly limits their recognition performance.

In recent years, deep convolutional neural networks (CNNs) have
achieved a prominent performance in the domain of scene recognition
due to the availability of large-scale image datasets and computer tech-
nology. Existing deep learning approaches can be divided into three di-
rections: (1) pre-trained deep features [6]; (2) fine-tuned deep features
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[71; (3) full-trained deep features [8,9]. Actually, for practical scene
recognition tasks, it is hard to fully train a new deep CNN model from
scratch. Therefore, most researchers focus on pre-trained deep features
and try to exploit the deep features from convolutional layers and fully
connected layers. For instance, Liu et al. [10] used deep convolutional
features to learn a sparse representative and discriminative model con-
sisting of multiple parts. Tang et al. [6] divided the GoogLeNet model
into three parts of layers from bottom to top and applied the output
features from each of the three parts for scene recognition. Xie et al.
[11] constructed both a mid-level local representation and a convolu-
tional Fisher vector representation based on dictionary learning, and
integrated the CNN features from fully connected layers to obtain the
complementary information. However, none of these methods pays at-
tention to the fusion of different deep feature vectors. Inspired by the
fact that different deep feature vectors possess unique representation
powers, we firmly believe that it is very attractive to explore the com-
plementary and consistent information among them.

Metric learning has become one of the most popular tools to solve
various machine learning problems [12]. The essence of metric learning
is to find a transformation that allows to transform the original sample
into a more representative and discriminative feature space. Depending
on how the sample information is exploited, metric learning can be cat-
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Fig. 1. Two classes of the Scene-15 dataset: (a) Living room; (b) Bedroom.

egorized into global metric learning and local metric learning. In the
global view, Metric Learning with Side Information [13], Information-
theoretic Metric Learning [14], and Mahalanobis Metric Learning for
Clustering [15] have been widely used in many computer vision tasks.
In the local view, representative methods are Neighborhood Component
Analysis [16] and Large Margin Nearest Neighbor [17]. Alternatively,
other researchers integrated global and local metric learning into a uni-
fied learning framework [18-20], which is helpful to some extent to
obtain a more reasonable distance metric.

In this paper, taking advantage of metric learning, we propose a
novel deep feature fusion method for scene recognition. More specif-
ically, we first extract multiple deep feature vectors from pre-trained
CNN models. Then, an adaptive discriminative metric learning problem
is formulated, which can simultaneously exploit discriminative informa-
tion from each deep feature vector and adaptively fuse complementary
information from different deep feature vectors. Besides, we map differ-
ent deep feature vectors of the same image into a common space by dif-
ferent linear transformations, such that the consistent information can
be preserved as much as possible. As a result, the proposed deep feature
fusion method has the potential to learn the complementary and consis-
tent information among different deep feature vectors, thereby improv-
ing the performance of scene recognition. The main contributions of our
work can be summarized as follows:

(1) We propose a deep feature fusion method through adaptive dis-
criminative metric learning. To the best of our knowledge, it is
the first time that metric learning has been introduced into deep
feature fusion for handling the problem of scene recognition.

(2) An alternating iterative strategy is devised to solve the corre-
sponding optimization problem effectively. Moreover, the pro-
posed method is extended to a kernelized version for more com-
plex problems.

(3) Extensive experiments on both natural scene and remote sensing
scene datesets demonstrate the superiority and robustness of the
proposed deep feature fusion method.

The remainder of this paper is organized as follows. Related work is
presented in Section 2. Section 3 introduces the proposed deep feature
fusion through adaptive discriminative metric learning. Experimental
results are given in Section 4. Section 5 concludes this paper.

2. Related work

In this section, we briefly review two related topics: deep feature
fusion and scene recognition.

2.1. Deep feature fusion

The deep features from convolutional layers exhibit meaningful local
structural information, while those from fully connected (FC) layers rep-
resent rich global semantic information. Accordingly, most researchers

have devoted attention to the fusion of convolutional features or FC-
features. Khan et al. [21] proposed to transform the structured convolu-
tional activations to another highly discriminative feature space, so as to
exploit rich mid-level convolutional features. Yang et al. [22] presented
a part-based CNN model to optimize and select discriminative mid-level
visual elements, which were applied to multiple layers of a pre-trained
CNN to obtain more diverse visual elements. Guo et al. [23] studied
an efficient Fisher convolutional vector (FCV) that successfully rescues
the orderless mid-level semantic information. Then, both the FCV-and
FC-features were collaboratively employed in a novel locally supervised
deep hybrid model. Ye et al. [24] put forward a parallel multi-stage ar-
chitecture formed by a low, middle and high deep convolutional neural
network sub-model to automatically learn representative and discrimi-
native hierarchical features. Several others tried to fuse different deep
feature vectors. Yu and Liu [25] adopted two feature fusion strategies to
fuse two deep convolutional feature vectors extracted from the original
RGB stream and the saliency stream. Sun et al. [26] fused deep features
extracted from three discriminative views including the information of
object semantics, global appearance and contextual appearance. How-
ever, none of these methods explored the complementary and consis-
tent information among different deep feature vectors, which limits the
recognition performance to some extent.

2.2. Scene recognition

Existing scene recognition methods can be divided into three cat-
egories based on the features used: low-level features, mid-level fea-
tures and high-level features. Low-level features mainly describe color,
texture, or structure information to characterize the local visual repre-
sentation. Examples are Local Binary Patterns (LBP) [27] and the Scale
Invariant Feature Transform (SIFT) [28]. To alleviate the semantic gap
between low-level features and high-level abstract semantics, mid-level
features were developed. Bag of Visual Words (BOVW) [29] is one of
the most successful models for scene recognition. Along this line, Spa-
tial Pyramid Matching (SPM) [30] was further developed by integrat-
ing the spatial information. Fisher Vectors [31] make use of the Gaus-
sian mixture model to produce more statistical information. Owing to
the development of CNN, high-level deep features are capable of gen-
erating more abstractive and meaningful scene representations, thus re-
sulting in state-of-the-art recognition performance. Among various CNN
models, CaffeNet [32], AlexNet [33], GoogLeNet [34], VGGNet [35],
and ResNet [36] are widely known because of their enhanced repre-
sentation power and superior performance. More recently, mainstream
recognition methods [11,23] focus on combining the deep features from
convolutional layers and fully connected layers, most of which have
been detailed in Section 2.1. Besides, some other studies [6,37] use rep-
resentative CNN models to improve the recognition performance. Liu
et al. [37] combined ResNet-based transfer learning and data augmen-
tation. In our work, we will aggregate three representative deep fea-
ture vectors to explore deep feature fusion from the viewpoint of metric
learning.
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3. Deep feature fusion through adaptive discriminative metric
learning

In this section, we first introduce the proposed DFF-ADML in detail,
and then extend it to a kernelized version to deal with more complex
problems. Finally, we conduct the corresponding complexity and con-
vergence analysis.

3.1. Deep feature extraction

For practical scene recognition tasks, the limited availability of train-
ing images makes it difficult to fully train a new deep CNN model from
scratch. Besides, several studies have demonstrated that the deep fea-
tures of images rarely depend on the final application. Therefore, a pre-
trained CNN model can be employed as a feature extractor for any im-
age. In our work, we employ three representative CNN models to extract
three deep feature vectors.

GoogLeNet. In 2014, GoogLeNet won the first prize in the ImageNet
competition. It uses inception modules to obtain a deeper network and
avoid over-fitting. We extract the features of the fully connected layer
as scene representation, which results in a vector of 1024 dimensions.

VGGNet. VGGNet, who won the second prize in the same competition
as GoogLeNet, also became prominent in many real-world applications.
We select VGGNet-16 as feature extractor, which contains 13 convolu-
tional layers, 5 pooling layers, and 3 fully connected layers. We extract
the features of the first fully connected layer, which results in a vector
of 4096 dimensions.

ResNet. In 2015, ResNet won the first prize in the ImageNet com-
petition. It is characterized by the design of a block in the form of a
‘bottleneck’. Specifically, the model of ResNet-152 contains 50 building
blocks with each block consisting of 3 layers, and 1 fully connected layer
at the end. We extract the features of the fully connected layer and thus
obtain a vector of 2048 dimensions.

3.2. Problem formulation

Let 7 = {((x!.x2,....x!),1;) | i =1,...,n} represent the set of deep
features extracted from the training images, where x; e R% (v =
1,...,V) represents the v-th feature vector of the i-th training image

and /; € {1,2,...,C} (C is the number of classes of scene images) stands
for the associated label; d, denotes the dimensionality of the v-th fea-
ture vector and n is the total number of training images. To overcome
the intra-class diversity and inter-class similarity of scene images, we
try to learn a discriminative distance metric such that the distance be-
tween samples of the same class is as small as possible, while the dis-
tance between samples of different classes is as large as possible. Most
studies pay particular attention to the Mahalanobis distance metric be-
cause it is conveniently optimized [38]. For the v-th feature vector, let
M, € R9*% denote a symmetric positive semi-definite matrix, which is
used to parametrize the Mahalanobis distance metric. In order to fully
explore the discriminative information, we use each training sample
with the associated label and formulate the discriminative metric learn-
ing problem as

n n
. 2 2 )
RIDIDITACRIED Y A W
voi=l =l i=1 jil#;
where the distance between x] and X7 is computed as

dyy (7, x9) = (x) = %)M, (x! —x)). @

Since the matrix M, is positive semi-definite, it can be decomposed
as M, = WUWI (for the dimensions of W, see further on). Eq. (2) can
be rewritten as

2 U U\ — (U _ \T T (U _ U
dwv(xi,xj)—(xl. xj) W, W, (x; xj)

T T2
= [|W,x; —vajb.ll . 3)
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This implies that metric learning can be viewed as learning a linear
transformation, which transforms the deep feature vectors into a more
discriminative feature space.

A large number of works have demonstrated that multiple deep fea-
ture vectors can provide richer information than a single deep feature
vector. Different deep feature vectors characterize the scene image from
different points of view, thus these deep feature vectors are able to pro-
vide complementary information. However, how to explore and fuse the
complementary information from different deep feature vectors remains
a challenging problem. The adaptive fusion strategy [39] fuses different
feature vectors by learning the corresponding adaptive weights, thus
having the ability to exploit the complementary information of different
feature vectors. Taking advantage of the flexibility and generalization
ability of adaptive fusion, we fuse different deep feature vectors through
the following adaptive discriminative metric learning problem

14 n n
. Tov _ WTyt|2 _ Tyt — WTx?|2
Xl X X W -WiKIP -3 3 Wik - Wil
o= \i=1 =1 i=1j:#
14
2
+8 ) IW,II%
v=1
14
st. Y a,=1, 4,20, “)

v=1

where W = [WT,W'ZF, ...,WLIT is the transformation matrix, a=
[a), @y, ..., aplay] is the adaptive weight vector, and g is the regular-
ization parameter to prevent the entries in the matrices W, from being
too large. If the solution to problem (4) is « = [0, ... ,0, 1,0, ..., 0], only
one deep feature vector is kept, which deviates from the idea of feature
fusion. Motivated by [40], we modify «, to be af, where r > 1 guar-
antees that more than one deep feature vector is selected so that the
complementary information can be well employed. Then, the objective
function is rewritten as

14 n n
. p Tyo T v 2 Tyv TV |12
min Yall 3 3 WX WP =Y 3 IW)x! - W]
S I = i=1jili#l;
14
2
+8 ) IW,II%
v=1
14
s.t. Zau =1, a,>0. (5)
v=1

It is worth noting that adaptive discriminative metric learning not
only fully exploits discriminative information from each deep feature
vector, but also adaptively fuses complementary information from dif-
ferent deep feature vectors.

While each transformation matrix W, in problem (5) exhibits en-
hanced discriminative power, different such matrices may not be con-
sistent with each other. Actually, different deep feature vectors char-
acterize the same scene image, and hence should be closely correlated
in the learned metric spaces. To this end, we attempt to map the dif-
ferent deep feature vectors into a common space. Considering that dif-
ferent deep feature vectors usually have a different dimensionality, we
use different transformation matrices W,, where W, € R%>m represents
the v-th transformation matrix and m denotes the mapped dimensional-
ity in the common space. After that, we can minimize the discrepancy
between two different deep feature vectors of the same image as

v
: 2 v ool
min /2’1 dyy w, (X)), ©)
v,l=
where
2 v ool Tol _ W\ T Wl _ W/
iy, 04 X)) = (WIx! = W) TWIx! — Wx)

= [Wlx¥ — Wixl|%. @)
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For the entire set of training images, we have

n |4
min 37 Y [Wix! — Wik @®)
i=1 v,l=1
In this way, the different deep feature vectors are consistent with
each other in the common space, thereby sufficiently exploring the con-
sistent information among the different deep feature vectors.
Finally, the objective function of DFF-ADML is formulated as

14 n

n
. r T U TyU 12 T U TyU 12
min * a; Z 2 W) x! - Wix| -2 2 IW)x! — Wix|
Fo=1 i=1 j:l=l; i=1j:l#l;

|4 n |4
2 T T2
+B Y IW, I3 +7 ), Y WX - Wi
v=1

i=1 v,l=1
Vv
StWIW, =Lo=1,....V, Y a,=1.0q,>0, ©)
v=1

where WI'W, =1 € R™" is set to avoid degenerate solutions [15]. I is
an m-dimensional identity matrix and # is a regularization parameter.

After solving optimization problem (9), we can obtain the corre-
sponding transformation matrix W, for each deep feature vector, which
has the ability to transform the pre-trained deep feature vectors into a
more discriminative feature space where the complementary and consis-
tent information is fully explored. Combining these discriminative fea-
ture vectors with corresponding weight coefficients «,, we can generate
the ultimate fused features for the i-th image as

14
X =) a,Wix’. (10)
v=1

3.3. Optimization procedure

Given the non-linear optimization problem in (9), solving for the
variables W and a simultaneously is intractable by directly applying
gradient descent. W changes along with «, and vice versa. We solve
this problem with an effective alternating iterative strategy, so that the
optimal transformation matrix W and the adaptive weight vector « can
be jointly learned. Before that, we derived a simplified expression

n n
T T 2 Ty v Ty v2
D X Wi - WP = 3 3 IWx — Wxs|

i=1 j:l,-=1j i=1 j:l,»:,/:l,»
n n n n
_ T v Tyv2Quw T v Tyv2gh
=) > Iwix - Wix!|’sy - > Iwix - Wixi|’s),
i=1 j=1 i=1 j=1

= 2tr(WIX LY (X)W, ) — 2tr(WTX LY (X*)TW,,)
=2tr(WIX°(L” - L")X")™W,)
=2tr(WIR,W,), (1n

where R, = X°(L* - L)X")T and X* = [x},x5, ..., x}]. 8 is defined as
8% =1,if/; =1;, and S, = 0 otherwise. Sl’?j is defined as Sf?j =1,if, #1,
and Sg. = 0 otherwise. Furthermore, L' = D — S* denotes the Laplacian
matrix of the label matrix $*, and D" is a diagonal matrix given by
Dy = Z;’:] S,"J L’ = D? — §* denotes the Laplacian matrix of the label
matrix S?, and D is a diagonal matrix given by Df’i = Z;;l Sf.’j.

Updating W. Given the initial a, we compute W. The objective func-
tion in (9) can be rewritten as

14 14
min )" atr(W;R,W, ) + 4 3 tr(W;W,)

v=1 v=1
wl

w
+n ) | WL W), W XLX]| 72

n

i=1
WV

st WW, =Lo=1,...,V. (12)
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Here X; = diag(x!,x?,...,x!") and L is a Laplacian matrix defined as
L=D-1,,,,where D is a diagonal matrix given by D;; = Z;’ZI Q)i
and 1y, isa V x V matrix with all ones.

Since W = [WT,W; ,W?,]T, the problem (12) can be further
rewritten as

. T
min tr(W'R + L+ nQ)W)
st AWTW =1, 13)
Vv

where R =diag(a'R;,&R,.....a},Ry) and Q=37 XX . Conse-
quently, the solution W to problem (9) can be obtained by solving the
following eigen-decomposition problem

V(R + I+ 7QW = AW, (14)

where A is a Lagrangian multiplier. Thus W consists of the eigenvec-
tors corresponding to the first m smallest eigenvalues of the matrix
VR + I+ Q).

Updating a. With fixed W, we update a. The objective function in
(9) leads to the following optimization problem

14
min )" atr(W/R,W,)
v=1
14
s.t. Zav= I, a, 2 0. as)
v=1

Following the Lagrange multiplier method, the Lagrange function is
constructed as

14 14
L@, A) =) altr(W/R,W,) — /1( @ - 1), (16)
v=1 v=1
where 4 is a Lagrange multiplier. Setting % =0and % =0, we
get ‘
ra/~tr(WIR,W,) — A =0
v an
D1 @y —1=0.
Thus, we can obtain «a,, as
1/(r=1)
1/tr(WIR, W,
o (VaWIRW,)) .

¥V, (1/t(WR,W,))

We iterate the above procedure until the algorithm converges. A
simplified pseudo-code implementation of DFF-ADML is summarized in
Algorithm 1.

3.4. Kernelized version

Linear metric learning can work well under the linearity assumption,
whereas it is not powerful enough for more complex problems [41]. To
overcome this limitation, we extend DFF-ADML to a kernelized version
by using the kernel trick, and propose deep feature fusion through adap-
tive kernel discriminative metric learning (DFF-AKDML).

We first map the v-th feature vector into a reproducing kernel Hilbert
space (RKHS) H via a feature map ¢, with corresponding kernel function
Ko(x?, x;:’) = (p,(x)), ¢U(x;:’))H [42]. After that, the feature vector in H is
mapped into R™ by a linear transformation P,: H — R™. Because the lin-
ear transformation P, should lie in the span of ¢U(x‘1’ ), ¢U(x;), s @y (XD,
there exists a transformation matrix A, such that P, = ® A , where
D, = [¢, (X)), (X)), ..., p,(X})]. Let K’ = @I‘DL,, then the distance be-
tween the v-th feature vector of two different images can be reformu-
lated as

dj (@), $, (X)) = 1Py, (X)) — Py, (X))
TaT ) TapT N2
= AL D¢, (x)) — Al @, (X))
2
= IATK, - ATK 1%, 19
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Algorithm 1 DFF-ADML.
Input:
The set of deep features F = {((x},x?,
training images;
The mapped dimensionality m;
The tuning parameters f#, # and r.

LxU) L) li=1, ..., n) for

Output:
The transformation matrix W, adaptive weight vector a and fused
feature matrix X' = [x}, %}, ..., X ].

1: Initialize @ = [1/V,1/V,...,1/V];
2: CalculateR,, v=1,2,...,V;
n
3: Calculate Q = Y X,LXT;
i=1
4: while no convergence do
Calculate R = diag(aiRl, ang, sy Ry);
Solve the eigen-decomposition problem in Eq. (14) and obtain
W=[WL W Wl
Update a using Eq. (18);
8: end while
v
9: Get the fused features x| = 3, o, WIx%, i = 1,2,...,1;

v=1
10: return W, @, X/;

where K7, is the i-th column of the kernel matrix K*. Similarly, the dis-
tance between two different feature vectors of the same image can be
reformulated as

dy a @) (X)) = IAJK, - ATK |17 20)

Based on the linear DFF-ADML, we can reformulate problem (9) in
a kernelized version

n

Vv n
: £ Tyev Tyev 12 Tyev Tyv 12
HI;QZQU > D IATK, -ATKRYIP - D ATKY - ATKY |
=1 i=1j:l;=l; i=1j:l#l;

14 n 14
] 2 T Tyl 112
+0° Y IAN+ 1Y, Y IATKY - AT |
v=1 i=1 vl=1

14
stAJA, =Lo=1,...V, Y af =15 >0, @
v=1

where A= [AT,A'ZF, ...,ATI" is the transformation matrix, a* =
[aT, a;, ,a*V] is the adaptive weight vector, and g* and »* are two reg-
ularization parameters. AEAU =1 e R"™"™ is set to avoid degenerate so-
lutions.

Intuitively, it can be seen that the form of DFF-AKDML is consistent
with that of linear DFF-ADML. Therefore, the optimization procedure
of the transformation matrix A and adaptive weight vector a* is sim-
ilar to that for linear DFF-ADML. To be more specific, the solution A
to optimization problem (21) consists of the eigenvectors correspond-
ing to the first m smallest eigenvalues of the matrix V' (R* + *I + n*Q*),
where R* = diag(aT’RT, a;’R’z‘, . al*,’RT,), R} = K’(LY - LYYXKY)T, Q* =
Y KIK] and K, = diag(K',. K3, ....K"). Similarly, the weight coeffi-

(1/tr(ATRzA,)) /7D
B, (1/er(aTR;A,)

cients are calculated as «; =

3.5. Complexity and convergence analysis

Since DFF-ADML and DFF-AKDML apply a similar optimization pro-
cedure, we only analyze the computational complexity of DFF-ADML.
According to Algorithm 1, the computational complexity can be calcu-
lated from three steps. First, the computational complexity of R and
Q is O(dn® + d*n) and O(Vd?n), respectively, where d = ELIdU. Sec-
ond, the computational complexity for eigen-decomposition problem
(14) is O(d®). Third, the computational cost for updating a is about
0O(md?). Thus, the entire computational complexity of DFF-ADML is
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O(max(n, Vd)dn + Td?), where T is the number of training iterations.
It is worth noting that usually a low value of T (say at most 5) suffices,
which will be demonstrated in the experiments section.

We show that the optimization procedure in Algorithm 1 monoton-
ically reduces the objective function value. For simplicity, we denote
the objective function (9) as O(W, a). According to the updating rules,
with at fixed, we have O(W™*!, a') < O(W', a’). If W*! is fixed, we get
OW™, g1y < O(W'!, a'). Thus, we have O(W'F! a™*) < O(W', a'). It
is easy to conclude that the objective function monotonically decreases
and the corresponding iterative algorithm will converge to a local opti-
mum.

4. Experiments

To evaluate the effectiveness of DFF-ADML and DFF-AKDML for
scene recognition, we conduct experiments on both natural scene and
remote sensing scene datasets. First, we introduce the datasets and ex-
perimental setup. Second, we conduct a parameter analysis to evaluate
the impact of each parameter in the proposed method. Third, we com-
pare our methods with different fusion methods as well as the state-of-
the-art scene recognition methods. Finally, we conduct a convergence
study to verify the efficiency of the proposed algorithm.

4.1. Datasets and experimental setup

Scene-15 [30]. This dataset includes 4485 images from 15 outdoor
and indoor scene classes, with the number of images in each class rang-
ing from 200 to 400. Sample images of each class are shown in Fig. 2.
The average resolution of these images is 300 x 250 pixels. Based on the
standard setting, we use 100 images per class as training images, and
the remaining images per class as testing images.

MIT-67 [43]. This dataset contains 15,620 images of 67 indoor
classes. The number of images varies, with at least 100 images per class.
Sample images are shown in Fig. 3. Each image has a minimum resolu-
tion of 200 pixels on the smallest axis. We followed the standard evalua-
tion protocol, randomly selecting 80 images from each class for training
and 20 images for testing.

UCM-21 [44]. This dataset contains 2100 images from 21 high-
resolution remote sensing classes, each class containing 100 images.
Sample images are shown in Fig. 4. The resolution of these high-
resolution images is 256 x 256 pixels. For fair comparison, we use 80
images per class as training images, and the remaining 20 images per
class as testing images.

According to previous experience, for the Scene-15 and MIT-67
datasets, we use three deep models pre-trained on the scene-centric
Place dataset [9] to extract three deep feature vectors, while for the
UCM-21 dataset, we use those deep models pre-trained on the object-
centric ImageNet dataset [45] to extract three deep feature vectors.
To improve the computational efficiency of our proposed methods, the
dimensionality of each feature vector is first reduced by PCA to pre-
serve 99% energy. The resulting dimensionalities are denoted by dj,
i=1,...,V. Once these reduced feature vectors are obtained, we can
train DFF-ADML to generate the corresponding fused features, which are
directly fed into an extreme learning machine (ELM), a classifier with
a good recognition performance and a low computational cost. From
here on, when we talk about the performance of DFF-ADML and DFF-
AKDML, we tacitly refer to the performance of ELM trained on the basis
of the fused features generated by these methods. The experiments are
repeated 10 times with the training data and testing data of each class
randomly selected, and the average recognition accuracies are taken
as the final recognition accuracies. As for the kernel function in DFF-
AKDML, the Gaussian kernel is adopted. To achieve the optimal recog-
nition performance, the kernel parameter o is selected from {0.1, 0.2,
0.4,0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2}.
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4.2. Parameter analysis

For the sake of simplicity, we only analyze the parameters of DFF-
ADML on the three scene datasets, since DFF-AKDML can be analyzed
similarly. In order to apply DFF-ADML, essentially four parameters need
to be set: the mapped dimensionality m, the regularization parameter f,
the parameter 7 allowing to balance the complementary and consistent
information and the parameter r allowing to make sure more than one
deep feature vector is selected. Since tuning four parameters is quite
challenging, we have adopted a pragmatic approach. Extensive explo-
rative experiments have indicated that the recognition accuracy is not
very sensitive to the two parameters f and r; this will be illustrated
further on. We therefore decided to first fix these two parameters at
f =1 and r =5, and then tune the other two parameters m and 7 al-
ternately until convergence. We noticed that the optimal value of m
was always situated around the smallest of the dimensionalities of the
PCA-reduced feature vectors involved, and we thus systematically set
m = min(d|,d,, ..., d},). For the parameter 5, we obtained as optimal val-
ues 1 = 500, n = 1000 and = 100 for the Scene-15, MIT-67 and UCM-21
datasets, respectively.

For the sake of analyzing the impact of each parameter in DFF-ADML,
we fix three of the four parameters as the above optimal values and re-
port the recognition accuracy by varying a single parameter only [46].
First, we evaluate the effect of different values of the mapped dimension-
ality m. As shown in Fig. 5 (a) and (c), for the Scene-15 and UCM-21
datasets, the recognition accuracies of DFF-ADML rise gradually with
an increase in the number of dimensions and up to a relative saturation
point. In Fig. 5 (b), for the MIT-67 dataset, DFF-ADML achieves an op-
timal recognition accuracy when the mapped dimensionality is around
600. The results support our choice m = min(d|,d), ..., d},). One plausi-
ble explanation is that the consistent information among the different
deep feature vectors can be well preserved with lower dimensionality.

Next, we evaluate the effect of the other three tuning parameters f,
n and r. More specifically, the value of § is varied in the set {0.001,

0.01, 0.1, 1, 10, 100, 1000} and the recognition results are displayed
in Fig. 6 (a). As announced earlier, the recognition accuracy of DFF-
ADML is not sensitive to this parameter, indicating that DFF-ADML can
obtain a robust recognition performance for a wide range of values of g.
Furthermore, we vary 7 in the set {50, 100, 200, 500, 1000, 2000, 5000}
and report the experimental results in Fig. 6 (b). As can be seen, the
performance of DFF-ADML initially increases and then starts to decrease
when 7 becomes too large, i.e. the value of » should not be too large
or too small because it controls the consistent information among the
different deep feature vectors. Hence, we can conclude that exploring
consistent information is beneficial to improve the performance of scene
recognition. Finally, the value of r is varied in the set {2, 3, 4, 5, 6, 7,
8, 9} and the recognition accuracies are presented in Fig. 6 (c). The
recognition accuracy on the MIT-67 dataset is more sensitive than that
on the other two datasets, as the result of more complex spatial layouts
present in the MIT-67 dataset [7]. This confirms the selection of the
consensus value r = 5.

4.3. Comparison and analysis of results

Comparison with different fusion strategies. We first investigate
DFF-ADML and DFF-AKDML for two deep feature vectors and com-
pare their recognition performance. From Tables 1 and 2, we draw
the following conclusions. (1) DFF-ADML (GoogleNet + ResNet)
and DFF-AKDML (GoogleNet + ResNet) consistently perform bet-

Table 1

Recognition accuracies (%) of DFF-ADML for two deep feature vectors.
Method Scene-15 MIT-67 UCM-21
DFF-ADML (GoogleNet+VGGNet) 94.54 84.57 97.14
DFF-ADML (GoogleNet+ResNet) 95.42 85.62 97.86
DFF-ADML (VGGNet+ResNet) 95.91 86.78 98.31
DFF-ADML 96.39 88.43 99.14
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Table 2

Recognition accuracies (%) of DFF-AKDML for two deep feature vectors.
Method Scene-15 MIT-67 UCM-21
DFF-AKDML (GoogleNet+VGGNet) 94.59 83.34 97.06
DFF-AKDML (GoogleNet+ResNet) 95.04 85.23 97.45
DFF-AKDML (VGGNet+ResNet) 95.47 86.19 98.02
DFF-AKDML 96.12 87.07 98.93

Table 3

Recognition accuracies (%) of DFF-AKDML with different ker-
nel functions.

Method Scene-15 MIT-67 UCM-21

DFF-AKDML (Linear) 95.28 86.45 98.33

DFF-AKDML (Polynomial)  96.07 86.93 99.12

DFF-AKDML 96.12 87.07 98.93
Table 4

Recognition accuracies (%) of DFF-ADML with
two classical fusion methods.

Method Scene-15 MIT-67 UCM-21
CDFF-DML 95.52 86.96 98.07
PDFF-DML 94.21 85.11 97.61
DFF-ADML  96.39 88.43 99.14

ter than DFF-ADML (GoogleNet + VGGNet) and DFF-AKDML
(GoogleNet + VGGNet), respectively. This is because ResNet extracts a
more meaningful representation than VGGNet [36]. (2) DFF-ADML (VG-
GNet + ResNet) and DFF-AKDML (VGGNet + ResNet) outperform DFF-
ADML (GoogleNet + ResNet) and DFF-AKDML (GoogleNet + ResNet),
respectively, as the result of more deep scene information generated
from VGGNet [35]. (3) Both DFF-ADML and DFF-AKDML achieve the
best recognition performance by fusing three deep feature vectors. The
results confirm that the proposed methods can effectively exploit those
different deep feature vectors, thus having the ability to improve the
recognition performance to some extent. (4) The performance of DFF-
AKDML is inferior to that of DFF-ADML, since we only apply a Gaus-
sian kernel to generate the fused features. For fair comparison, we com-
pare the performance of DFF-AKDML versus different kernel functions
on the three scene datasets. The experimental results are summarized
in Table 3. DFF-AKDML with the linear kernel performs slightly worse
than that with the polynomial kernel and the Gaussian kernel, while
DFF-AKDML with the polynomial kernel achieves competitive recogni-
tion result than that with the Gaussian kernel, especially for the UCM-
21 dataset. However, the polynomial kernel requires more parameters,
which results in a higher computational cost.

Next, we compare the DFF-ADML method with two classical fusion
strategies for three deep feature vectors:

e Concatenated deep feature fusion through discriminative metric
learning (CDFF-DML): we concatenate three deep feature vectors
into a long feature vector, and then use discriminative metric learn-
ing (see Eq. (4), where only one feature vector is kept) to obtain
corresponding discriminative feature vectors as the fused features.
Parallel deep feature fusion through discriminative metric learning
(PDFF-DML): we use discriminative metric learning (see Eq. (4),
where only one feature vector is kept) to obtain corresponding dis-
criminative feature vectors for each deep feature vector, and then
combine these feature vectors with equal weights to generate the
fused features.

Table 4 reports the comparison results for three different fusion
strategies. The following conclusions can be drawn. (1) For the three
datasets, DFF-ADML performs better than CDFF-DML, which means that
learning discriminative information from each deep feature vector is
beneficial to improve the recognition performance. (2) The performance

Information Fusion 63 (2020) 1-12

Table 5
Recognition accuracies (%) of DFF-ADML with three
widely used classifiers.

Method Scene-15 MIT-67 UCM-21

DFF-ADML (KNN)  95.25 85.34 98.03

DFF-ADML (RF) 95.44 86.79 97.38

DFF-ADML (SVM)  96.38 87.68 98.57

DFF-ADML 96.39 88.43 99.14
Table 6

Performance comparison with the state-of-
the-art methods on the Scene-15 dataset.

Method Scene-15 (%)
ScSPM 3] 80.28
Object Bank [47] 80.90
ISPM [48] 83.30
ImageNet-AlexNet [9] 84.05
DDSFL [49] 84.42
ImageNet-GoogLeNet [9] 84.95
ImageNet-VGGNet [9] 86.28
Places365-AlexNet [9] 89.25
URDL [10] 91.15
Places365-GoogLeNet [9]  91.25
Places365-VGGNet [9] 91.97
DSFL+CNN [50] 92.81
G-MS2F [6] 92.90
FTOTLM [37] 94.01
Khan et al. [21] 94.50
SDO+fc features [5] 95.88
DFF-ADML 96.39

of DFF-ADML is superior to that of PDFF-DML. In particular, DFF-ADML
gains a 3.3% improvement over PDFF-DML for the MIT-67 dataset, in-
dicating that the parallel fusion method fails to explore the comple-
mentary and consistent information for scene recognition. (3) On the
whole, DFF-ADML achieves the best recognition performance. The re-
sults demonstrate that our method not only helps to exploit discrimi-
native information from each deep feature vector, but also adaptively
fuses complementary information from different deep feature vectors.

Comparison with different classifiers. To further evaluate the effec-
tiveness of the proposed deep feature fusion method, we compare the
performance of DFF-ADML with that of different classifiers for scene
recognition. Apart from the ELM classifier, three widely used classifiers
are employed, i.e., k-nearest neighbors (KNN), random forest (RF) and
support vector machine (SVM). Table 5 reports the comparison results
for the four classifiers, from which we can draw the following conclu-
sions. (1) The performance of the SVM and ELM classifiers is superior to
that of the KNN and RF classifiers. The main reason lies in the fact that
SVM and ELM have trained more elaborate classification models based
on the learned low-dimensional discriminative features, thus achieving a
better recognition performance. (2) SVM achieves an almost comparable
recognition performance as ELM, while ELM has a lower computational
cost. (3) On the three scene datasets, we can see that DFF-ADML is able
to suit different classifiers well, which demonstrates the robustness and
effectiveness of the proposed deep feature fusion method. In particu-
lar, ELM always outperforms KNN, RF and SVM in terms of recognition
accuracy.

Comparison with scene recognition methods. We compare DFF-
ADML with a number of state-of-the-art scene recognition methods. The
experimental results are summarized in Tables 6, 7 and 8 for the Scene-
15, MIT-67, and UCM-21 datasets, respectively. From these tables, we
can draw the following conclusions. (1) Methods based on high-level
deep features are always superior to methods based on low-level and
mid-level features. For example, AlexNet gains a higher recognition ac-
curacy than OTC +HOG and DDSFL for the MIT-67 dataset. The results
prove that deep CNN models have the ability to generate more semanti-
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Table 7
Performance comparison with the state-of-
the-art methods on the MIT-67 dataset.

Information Fusion 63 (2020) 1-12

Table 8
Performance comparison with the state-of-
the-art methods on the UCM-21 dataset.

Method UCM-21 (%)
LBP [53] 36.29
GIST [53] 46.90
BOVW(LBP) [53] 77.12
IFK(CH) [53] 83.79
GoogleNet [53] 94.31
VGGNet [53] 95.21
LGF [4] 95.48
ResNet+GMM [54] 96.67
Yu and Liu [25] 98.02
PMS [24] 98.81
DFF-ADML 99.14

Method MIT-67 (%)
OTC+HOG [51] 47.33
DDSFL [49] 52.26
ImageNet-AlexNet [9] 56.79
ImageNet-GoogLeNet [9] 59.48
IFV+BOP [52] 63.10
ImageNet-VGGNet [9] 64.87
Places205-AlexNet [9] 68.24
Hybrid-CNN [8] 70.80
URDL [10] 71.90
FTOTLM [37] 74.63
DSFL+CNN [50] 76.23
Places205-GoogLeNet [9] 75.14
G-MS2F [6] 79.63
Places205-VGGNet [9] 79.76
Xie et al. [11] 82.24
Guo et al. [23] 83.75
Wang et al. [7] 86.70
SDO+fc features [5] 86.76
DFF-ADML 88.43

cally meaningful scene information. (2) The performance of DFF-ADML
is superior to that of the other baseline deep CNN models, so it is effec-
tive to learn more informative deep features by discriminative metric
learning, which therefore improves the performance of scene recogni-
tion. (3) DFF-ADML outperforms other fusion methods. Concretely, for
the Scene-15 dataset, DFF-ADML yields a 3.5% higher accuracy than
G-MS2F. For the MIT-67 dataset, DFF-ADML gains a 8.8% improve-
ment over G-MS2F and an almost 1.7% improvement over SDO + fc fea-
tures. For the UCM-21 dataset, DFF-ADML yields an almost 3.7% higher
accuracy than LGF. The results demonstrate that our method actually
makes a great contribution to adaptively fuse complementary informa-
tion, while it has the potential to preserve the consistent information.
(4) On both natural scene and remote sensing scene datasets, DFF-ADML
achieves superior recognition accuracies, which also confirms that the
proposed deep feature fusion method is more effective and robust.
Additionally, in order to detail the recognition accuracies for each
class, Figs. 7, 8 and 9 show the confusion matrices of DFF-ADML on

the Scene-15, MIT-67 and UCM-21 datasets, respectively. As shown in
Fig. 7, some of the images in the class ‘open country’ are more eas-
ily classified into the class ‘mountain’. The main reason is that part of
the image information in the class ‘open country’ is similar to that of
the class ‘mountain’. In Fig. 8, it can be seen that the diagonal values
for the classes ‘deil’ and ‘museum’ are relatively low, but the diagonal
values for several other classes are extremely high, such as ‘cloister’,
‘inside bus’, and ‘meeting room’. In Fig. 9, given the diagonal elements,
most of the scene categories achieve satisfactory recognition results, ex-
cept for some of the images in the class ‘buildings’ misclassified into the
class ‘dense residential’ or ‘storage tanks’. To sum up, the recognition
results demonstrate that DFF-ADML holds great potential to learn com-
plementary and consistent information among the different deep feature
vectors, and hence improve the performance of scene recognition.

4.4. Convergence study

To verify the efficiency of DFF-ADML, we also investigate the recog-
nition accuracy in terms of the number of iterations on the Scene-15,
MIT-67, and UCM-21 datasets. Fig. 10 (a)-(c) show the recognition per-
formance of DFF-ADML over 20 iterations. We can see that the perfor-
mance of DFF-ADML converges very quickly, usually within 5 iterations.
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Fig. 7. Confusion matrix of DFF-ADML on the Scene-15
dataset.
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5. Conclusion

In this paper, from the viewpoint of metric learning, we have pro-
posed a novel deep feature fusion method for scene recognition. We have
formulated an adaptive discriminative metric learning problem, which
simultaneously exploits discriminative information from each deep fea-
ture vector and adaptively fuses complementary information from dif-
ferent deep feature vectors. Besides, we have mapped different deep

10

feature vectors of the same image into a common space by different
linear transformations, such that the consistent information can be pre-
served as much as possible. Extensive experiments on three benchmark
scene datasets have demonstrated the superiority and robustness of the
proposed deep feature fusion method. However, the performance of our
kernelized version is not that impressive. In future work, we will ex-
plore more suitable kernel functions to further improve the recognition
performance of the proposed method.
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