
Machine Learning as a Mean to Uncover Latent
Knowledge from Source Code

Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

vorgelegt von

Ervina Çergani, M.Sc.

geboren in Tirana (Albania).

Referent: Prof. Dr.-Ing. Mira Mezini
Korreferent: Prof. Dr. Christoph Bockisch
Datum der Einreichung: 3. Juni 2019
Datum der mündlichen Prüfung: 12. Juli 2019

Erscheinungsjahr 2019

Darmstädter Dissertationen
D17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/323486574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Çergani, Ervina : Machine Learning as a Mean to Uncover Latent Knowledge from
Source Code
Darmstadt, Technische Universität Darmstadt

Jahr der Veröffentlichung der Dissertation auf TUprints: 2020
URN: urn:nbn:de:tuda-tuprints-116586
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11658

Tag der mündlichen Prüfung: 12.07.2019

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-116586
https://tuprints.ulb.tu-darmstadt.de/id/eprint/11658
https://creativecommons.org/licenses/

Preface

I tend to always question even minor things in life and try to find the answers from simple
facts. Maybe this is why I became interested into data analysis. The idea of finding
new facts and giving value to simple data really fascinates me. I happily accepted the
offer to join the Software Technology Group at TU Darmstadt as a PhD student, which
allowed me to expand my knowledge into the software engineering domain and provided
me with another kind of data worth exploring. What followed were years of continuous
learning, hard work, and many many ups and downs. However, these last years have
been a journey that I have not undertaken alone. In the following, I would like to express
my deep gratitude to all the people that accompanied me in this journey.

First of all, I want to say a big thank you to my supervisor Prof. Dr.-Ing. Mira
Mezini for offering me the opportunity to do my PhD thesis at her group and under her
supervision. Thank you for your support during my years of PhD and your research
guidance over this path. Thank you for your constructive feedback and for making this
thesis possible, even though the path has not always been straight.

Other people that helped me for designing the research path and that I am very
thankful for are Dr.-Ing. Sebastian Proksch with whom I collaborated very closely
during the first year of my PhD, and Prof. Dr. Sarah Nadi who joined our recommenders
subgroup as a postdoc. We shared many ups and downs during this time. I am deeply
grateful for your advices and your reliability, even after you had long left to pursue
your academic career at the University of Zurich and University of Alberta respectively.
Many thanks go also to Prof. Dr. Ulf Brefeld and Dr.-Ing. Sven Amann. Our meetings
provided me with ideas, confidence, and insights to tackle obstacles on the path to
a successful project, as well as this thesis. Thank you all for your patient and your
continues feedback and advices. Your guidance strongly influenced the way I think and
work. Furthermore, many thanks go also to Dr. rer. nat. Edlira Kuci for our many long
friendly conversations in the office and walkings in the park. Thanks for motivating me
every time when I felt the finish line of the PhD seemed too far.

Many special thanks goes for Gudrun Harris, for your understanding and making my
PhD life easier through the infinite journey of paper works. Thank you for being always
there for me, and solving the funding matter with the best means possible. Thank you
for encouraging me in the hardest time and helping me to see the light at the end of the
tunnel with your positive attitude. You were always available for a good chat and with
your humor ensured that I stay focused on my path.

I would like to thank all my other colleagues from the Software Technology Group that
I had the pleasure to get to know during my PhD journey: Prof. Dr. Guido Salvaneschi,
Dr. Andi Bejleri, Dr.-Ing. Ben Hermann, Dr. Ingo Maier, Dr. Johannes Lerch, Dr.-Ing.
Joscha Drechsler, Dr. rer. nat. Lars Baumgärtner, Dr.-Ing. Michael Eichberg, Dr.-Ing.

3

Mohamed Aly, Dr.-Ing. Oliver Bracevac, Dr. rer. nat. Sebastian Erdweg, Dr.-Ing. Sven
Amann, Dr.-Ing. Sylvia Grewe, Dr. Ralf Mitschke, Aditya Oak, Anna-Katharina Wick-
ert, Daniel Sokolowski, David Richter, Dominik Helm, Felix Weirich, Florian Kübler,
Jurgen van Ham, Leonid Glanz, Manuel Weiel, Matthias Eichholz, Michael Reif, Mirko
Köhler, Nafise Eskandani Masoule, Pascal Weisenburger, Patrick Müller, Ragnar Mogk,
and Sven Keidel. Thank you for all the diversity you brought over the years.

Finally and most importantly, I want to thank my family and my friends. First of all,
I thank my parents for their unconditional love and trust since the first day I was born,
and for supporting me throughout school and university despite of the difficulties life
brought in our path. Thanks to you I learned that the impossible becomes possible, if we
really want something and work hard for achieving it. I’m grateful that you endured it to
build the foundation of my education and that you kept supporting me until I managed
to stand on my own feet. A special thank you goes to my dearest grandparents, who
with care and love taught me as a child how important education is in someone’s life,
and how to put priorities in life. Unfortunately, you were not still physically around to
celebrate my graduation with me, but you certainly were in my heart. You have shown
me how important it is to care for each other as a family and I will always strive to be
the good hearted, honest, and generous person that you taught me to be. Many special
thanks go of course to my only and best sister. Whenever I need a hand or an honest
second opinion for a decision, I know that you will always be there for me. I like that
we do not always agree on everything, because in this way we perfectly complement
each other, and I’m very grateful for having you in my life. Thank you to all my family
for your unconditional love and support in every step I took. Thank you for being my
strength in the most difficult moments. Thank you for believing in me, for being patient
with me and for always being there for me despite of the geographical distance. Last
but not least, I would like to thank all my friends I got to know before and during the
PhD journey. I am deeply grateful to have known every single one of you, for excepting
me for who I am and for having shared so much with me. I know that they say good
friendships are the ones that last longer, and most of you have perfectly reflected it over
the years we have shared.

4

Abstract

Becoming increasingly complex, software development relies heavily on the reuse of exist-
ing libraries. Such libraries expose their functionality through Application Programming
Interfaces (APIs) for developers to interact with, as effective means for code reuse. How-
ever, developers using an API must be aware of how to efficiently and correctly use it
in their development tasks in order to deliver simple, clear, comprehensive and correct
software. To assist developers work with APIs more efficiently, a family of developer-
assistance tools known as Recommender Systems for Software Engineering (RSSEs) have
shown to be useful in increasing programmers’ productivity. Applications of RSSEs are
based on learning API usage patterns by analyzing source code. In reaction to this, many
approaches have been proposed for learning API usage patterns from code repositories.
However, a major challenge in these approaches is the discovery of latent knowledge in
source code. Current approaches heavily rely on program analyses that predefine the
learning process, and then use different algorithms to aggregate the detailed information
extracted from source code.

On this thesis, we aim to redirect the focus on using advanced machine learning tools
to uncover latent knowledge in source code. Machine learning algorithms are known to
use general input formats, are fully automated and work well across different domains.
Therefore, to investigate the advantages of machine learning approaches and their po-
tential in software engineering, we consider two different dimensions. First, we use the
same program analyses as used by a state of the art method call recommender [123], and
investigate if replacing the existing learning approach (canopy clustering) with a more
powerful machine learning algorithm (Boolean Matrix Factorization - BMF), discovers
additional knowledge that was not possible with the previous approach. We find that
BMF is indeed able to automatically discover the number of clusters to represent the
object usage space, and identifies corner cases (noise) in the data, while reducing model
size and improving inference speed without compromising prediction quality. Second,
we use an event stream mining algorithm that can automatically learn different code
representations (pattern types), without complex domain knowledge needed to encode
a-priori. We evaluate the quality of the learned patterns on the application context of
misuse detection, and compare its performance with five state of the art misuse detec-
tors. Our evaluation results show that the patterns learned perform better in terms of
precision by ranking true positives higher in the top findings, and in terms of recall by
being able to detect more misuses in the source code.

Our results show practical evidence of the positive impact that machine learning tools
can bring to the field of software engineering, in terms of automatically discover latent
knowledge in source code, and their comparability (or even better) performance with
respect to state of the art approaches.

5

Zusammenfassung

Die Softwareentwicklung wird immer komplexer und hängt stark von der Wiederver-
wendung vorhandener Softwarebibliotheken ab. Solche Bibliotheken stellen ihre Funk-
tionalität über APIs (Application Programming Interfaces) zur Verfügung, mit denen
Entwickler interagieren können, um Code effektiv wiederzuverwenden. Entwickler, die
eine API verwenden, müssen jedoch wissen, wie sie diese effizient und korrekt in ihren
Entwicklungsaufgaben verwenden können, um einfache, klare, umfassende und korrekte
Software bereitzustellen. Um Entwicklern die effizientere Arbeit mit APIs zu erleichtern,
hat sich eine Reihe von Tools zur Entwicklerunterstützung, die als Recommender Systems
for Software Engineering (RSSEs) bekannt sind, als nützlich erwiesen, um die Produk-
tivität von Programmierern zu steigern. Anwendungen von RSSEs basieren auf dem
Erlernen von API-Nutzungsmustern durch Analyse des Quellcode. Als Reaktion darauf
wurden viele Ansätze vorgeschlagen, um API-Verwendungsmuster aus Code Repositorys
zu lernen. Eine große Herausforderung bei diesen Ansätzen ist jedoch die Entdeckung
latenten Wissens im Quellcode. Gegenwärtige Ansätze stützen sich stark auf Programm-
analysen, die den Lernprozess vordefinieren und dann verschiedene Algorithmen verwen-
den, um die aus dem Quellcode extrahierten detaillierten Informationen zu aggregieren.

In dieser Arbeit wollen wir den Fokus auf die Verwendung fortschrittlicher maschineller
Lernwerkzeuge lenken, um latentes Wissen im Quellcode aufzudecken. Es ist bekannt,
dass Algorithmen für maschinelles Lernen allgemeine Eingabeformate verwenden,
vollständig automatisiert sind und in verschiedenen Bereichen gut funktionieren. Um die
Vorteile von Ansätzen des maschinellen Lernens und ihre Potenziale in der Softwareen-
twicklung zu untersuchen, betrachten wir daher zwei verschiedene Dimensionen. Zuerst
verwenden wir dieselben Programmanalysen wie ein letzte Stand der Technik Meth-
odenaufrufempfehlung [123] und untersuchen, ob der vorhandene Lernansatz (Canopy
Clustering) durch einen leistungsfähigeren Algorithmus für maschinelles Lernen (Boolean
Matrix Factorization - BMF) ersetzt wird, entdeckt zusätzliches Wissen, das mit dem
vorherigen Ansatz nicht möglich war. Wir stellen fest, dass BMF tatsächlich in der Lage
ist, die Anzahl der Cluster zur Darstellung des data Objekten automatisch zu ermitteln
und Eckfälle (Rauschen) in den Daten zu identifizieren, während die Modellgröße re-
duziert und die Inferenzgeschwindigkeit verbessert wird, ohne die Vorhersagequalität zu
beeinträchtigen. Zweitens verwenden wir einen Event-Stream-Mining-Algorithmus, der
automatisch verschiedene Codedarstellungen (Mustertypen) lernen kann, ohne dass kom-
plexe Domänenkenntnisse für die a-priori-Codierung erforderlich sind. Wir bewerten die
Qualität der erlernten Muster im Anwendungskontext der Missbrauchserkennung und
vergleichen ihre Leistung mit fünf letzte Stand der Technik Missbrauchsdetektoren. Un-
sere Bewertungsergebnisse zeigen, dass die erlernten Muster in Bezug auf die Präzision
besser abschneiden, indem echte Positive in den Top-Ergebnissen höher eingestuft wer-

7

den, und in Bezug auf den Rückruf, indem mehr Missbräuche im Quellcode erkannt
werden können.

Unsere Ergebnisse zeigen praktische Beweise für die positiven Auswirkungen, die Tools
für maschinelles Lernen auf das Gebiet der Softwareentwicklung haben können, indem sie
automatisch latentes Wissen im Quellcode entdecken und deren Vergleichbarkeit (oder
sogar bessere Leistung) in Bezug auf modernste Ansätze.

8

Contents

Preface 3

1 Introduction 13
1.1 Problem Statement . 15

1.1.1 Program Analyses . 15

1.1.2 Learning approaches . 16

1.1.3 Thesis Focus . 17

1.2 Contributions of this Thesis . 19

1.3 Publications . 21

1.4 Structure of this Thesis . 21

2 Background and State of the Art Survey 23
2.1 Terminology . 24

2.2 Sources of API Usages . 24

2.2.1 Source Code Repository . 25

2.2.2 API Documentation . 26

2.2.3 Interaction Data . 26

2.2.4 Online sites . 27

2.3 Code Elements in API Usage Patterns . 28

2.3.1 Object Types . 28

2.3.2 Method Calls . 28

2.3.3 Exception Handling . 29

2.3.4 Parameters . 30

2.3.5 Iteration . 30

2.4 Survey on API Usage Pattern Learning Approaches 30

2.4.1 Methodology . 32

2.4.2 Closely Related Learning Approaches 33

2.4.3 Other Learning Approaches . 45

2.4.4 Discussion . 47

3 Matrix Factorization to Improve Scalability in API Method Call Analytics 53
3.1 Background & Motivation . 54

3.1.1 PBN Pipeline . 55

3.1.2 Problem Statement . 58

3.1.3 Intuition Behind Using BMF . 60

3.2 Integrating BMF into PBN . 61

3.2.1 Boolean Matrix Factorization (BMF) 61

9

Contents

3.2.2 Using BMF to Generate Patterns 63

3.2.3 Calculating PBN . 64

3.3 Evaluations . 65

3.3.1 Data . 65

3.3.2 Recommender Evaluation . 65

3.3.3 Evaluation Results . 66

3.4 Threats to Validity . 68

3.4.1 Internal Validity . 68

3.4.2 External Validity . 69

3.5 Related Work . 69

3.5.1 Matrix Factorization . 69

3.5.2 Potential Applications in Code Recommenders 70

3.5.3 Potential Applications in Pattern Mining 70

3.5.4 Scalability in Code Recommenders 70

3.6 Discussion . 70

4 Investigating Order Information in API Usage Patterns 73
4.1 Related Work . 75

4.1.1 API Usage Representations . 75

4.1.2 Empirical Studies of API Usages 77

4.2 Conceptual Differences between Pattern Types 77

4.3 Episode Mining for API Patterns . 80

4.3.1 Episode Mining Algorithm . 80

4.3.2 Mining API Usage Patterns . 81

4.4 Evaluation Setup . 82

4.4.1 Dataset . 83

4.4.2 Threshold Analyses . 83

4.4.3 Metrics for Pattern Comparison 85

4.4.4 Limitations . 86

4.5 Pattern Types Benchmark (PTBench) . 86

4.5.1 Data Representation . 86

4.5.2 Benchmark Automation . 87

4.5.3 Reproducibility and Traceability 87

4.6 Evaluation Results . 87

4.6.1 Pattern Statistics . 87

4.6.2 Expressiveness . 88

4.6.3 Consistency . 90

4.6.4 Generalizability . 91

4.7 Implications . 92

4.8 Threats to Validity . 94

4.8.1 Internal Validity . 94

4.8.2 External Validity . 94

4.9 Discussion . 95

10

Contents

5 On the Impact of Order Information in API Method Call Misuses 97
5.1 Background and Motivation . 99
5.2 A New Detector . 100

5.2.1 Pattern Mining . 100
5.2.2 Detecting and Ranking API Misuses 100

5.3 Evaluation Setup . 102
5.3.1 Dataset . 102
5.3.2 Threshold Analyses . 102
5.3.3 Experimental Setup . 103

5.4 Evaluation Results . 104
5.4.1 Precision . 105
5.4.2 Recall . 105
5.4.3 Discussion . 106

5.5 Extension and Further Use . 107
5.5.1 Dataset Extensions . 107
5.5.2 New Metrics for Pattern Comperison 107
5.5.3 Comparison of Pattern Types based on Applications 107

5.6 Threats to Validity . 108
5.7 Related Work . 108

6 Conclusion and Outlook 111
6.1 Summary of Results . 112
6.2 Future Work . 114
6.3 Closing Discussion . 117

Contributed Implementations and Data 119

Bibliography 121

11

1 Introduction

Over the last few decades, software has become an essential part of our everyday life:
mobiles, TVs, computers, everything runs on software. Despite the continuous advance
in state of the art, software development remains a challenging and knowledge-intensive
activity, because software systems become increasingly complex. At the same time, de-
velopers are continuously introduced to new technologies, components and ideas. In
order to keep up with the market speed and the need for introducing new software,
the software development process is mainly based on reusing existing software compo-
nents [18, 141, 142], referred to as software libraries. Rather than implementing new
systems from scratch, developers look for, and try to integrate into their projects, li-
braries that provide functionalities of interest. Such libraries expose their functionality
through Application Programming Interfaces (APIs) for developers to interact with, as
effective means for code reuse. However, developers using an API must be aware of how
to efficiently and correctly use it in their development tasks in order to deliver simple,
clear, comprehensive and correct software.

A proactive approach to assist developers work with APIs more efficiently are a family
of developer-assistance tools, referred to as Recommender Systems for Software Engi-
neering (RSSEs) [131, 133]. The key idea behind RSSEs is to automatically obtain
information items estimated to be valuable for a software engineering task in a given
context and to provide them to developers, often directly in their Integrated Development
Environments (IDEs). RSSE tools have shown to be useful in assisting developers during
their development time as means to increase programmers’ productivity [131, 133].

Applications of RSSEs include: code completion [21, 123, 103], code search [178], and
bug or anomaly detection [158, 110, 91, 157]. Code completion can be divided into single
completion at a time (method completion, parameter completion etc.), and code snippets
completion. Single completion is heavily used by developers to decide which code element
to use next given the current context. While traditional code completion systems only
exploit the type system and propose an alphabetically sorted list of all possible code
elements in focus, intelligent code completion systems propose relevant code elements by
comparing the editor content to code patterns extracted by analyzing large repositories.
Code snippet completion on the other hand, assist developers by recommending complete
code snippets containing multiple code elements, while also comparing the editor content
with the learned code patterns. Code search engines search through different available
sources, such as Google Code1 and Stack Overflow2, to provide developers within the
IDE code examples that illustrate the use of code elements of interest. Misuse detectors
analyze the code editor written by the developer and if a violation is identified with

1https://code.google.com
2https://stackoverflow.com

13

1 Introduction

Code Completion

Code Search Bug Detection

Recommender Systems for Software Engineering

API Patterns

API Usages

Figure 1.1: RSSE applications based on API usages

respect to API specifications or some mined patterns, the code is marked as a potential
anomaly.

All the above mentioned RSSE tools, are based on API usages to provide recommen-
dations to developers within their IDE environment. The only difference is that while
code search tools propose to developers API usage examples as extracted from available
sources, code completion and anomaly detection tools first analyze the extracted API
usages in order to learn API patterns before outputting their final recommendations to
developers (Figure 1.1).

A source code snippet that combines one or more API elements in order to accomplish
some task, is referred to as an API usage. An API pattern encodes a set of API elements
that are frequently used together (similar API usages), optionally complemented by
constraints like the order in which those API elements must be called.

At the same time, the number of open-source projects committed in public version-
control systems (VCS), such as GitHub3 and BitBucket4, has tremendously increased
over last decades, making source code data easily accessible. Given the above facts,
learning API patterns is a topic of much interest. In reaction to this, researchers have
proposed many approaches to learn API usage patterns from code repositories [132].

The focus of this thesis are API usage pattern learning approaches based on source
code for the application domain of code recommenders in software engineering, as shown

3https://github.com
4https://bitbucket.org

14

1.1 Problem Statement

in Figure 1.1, within the context of code completion and misuse detection.

1.1 Problem Statement

As illustrated in Figure 1.1, API usages are the core information in many RSSE tools.
They define the source code representation that serves as input information to different
API pattern learning approaches within the application context of code completion and
misuse detection. However, a major challenge in these approaches is the discovery of
latent knowledge in source code. Current approaches heavily rely on specialized hand-
crafted domain knowledge to define the source code representation, which in most of the
cases also predefines the learning process. Moreover, the learning process is based on
algorithms that mainly aggregate the detailed information extracted from source code,
instead of uncovering new knowledge automatically. In such approaches, domain knowl-
edge represent program analyses performed by the researchers on code repositories, such
as domain knowledge feature extraction [123], or the encoding of data and control-flow
dependencies into the source code representation [13].

In this thesis, we discuss the limitations of such approaches and investigate the poten-
tial of advanced machine learning algorithms to automatically uncover latent knowledge
from code representations that encode less semantic knowledge. Our main focus are
code completion and misuse detection tools based on source code that use simultane-
ously program analyses and learning algorithms to generate their recommendations.

1.1.1 Program Analyses

Many program analysis efforts are invested in order to turn raw code into a sufficiently in-
terpreted format that can be further processed. For example, the source code has to be
parsed, commits have to be aggregated, and software has to be abstracted into depen-
dency graphs. In the following, we present some of the main program analyses used to
convert source code into interpretable formats and discuss their respective limitations:

Program slicing is a type of analysis intended to identify the parts of a program
that may affect, or be affected by, the values computed at some point of interest [151].
Although static slicing and its variants are conceptually appealing techniques, they suffer
from practical limitations. First, computing slices can be expensive [162], and pragmatic
considerations may require lower-precision data-flow analyses [152]. Second, because a
statement is often transitively dependent on many other statements, slices are often very
large [162].

Static analysis examine source code statically, as it is written in the code editor
before the program is run. Due to the complexity of code, static analysis can pro-
duce infeasible call sequences. For example by extracting call sequences from both if

and else-clauses [134, 143].
Dynamic analysis collect information as the program executes. Therefore, they

heavily depend on the availability and quality of test cases for an executable system. As
such, they cannot be applied to incomplete code or to code that cannot be executed [39,
166].

15

1 Introduction

Despite of their limitations, program analyses have many advantages and might reveal
information that is not clearly expressed in source code. However, such analyses also
comes with some costs when used exclusively to uncover latent knowledge directly from
source code:

• A human expert is required for designing such analyses. These analyses are usu-
ally developed iteratively: as the results of some analyses being examined, other
analyses need to be introduced to either broaden or limit the results that are al-
ready identified. Such iterative analyses are developed through manual inspection
or empirical analysis, introducing a human burden [133].

• Generalizing to other programing languages is much more difficult, as the analyses
need to be implemented differently for every language [150].

• In some cases, the designed analyses can only be used for one specialized task.
For example, given a known bug, a human expert is expected to develop program
analysis to find occurrences of similar bugs elsewhere in the project, or other
projects (i.e. FindBugs [53]).

1.1.2 Learning approaches

Over the years, a variety of approaches have been used by researchers to learn API
patterns from source code. In the following, we give a brief overview of these approaches.

Collaborative filtering operates on uncompressed versions of unit data. Such ex-
amples include nearest neighbors [21]. The fundamental idea is to recommend to users
code elements that have been used by similar users in similar contexts.

Content-based filtering calculates a set of elements that are most similar to other
elements already seen in the source code. These approaches compare the content of
already used elements (i.e. method calls), with new elements that can potentially be
recommended. Concrete applications include clustering which groups similar elements
together, and statistical-based methods that calculate a probability distribution of ele-
ments based on other elements already seen in the source code [123].

Data mining finds and summarizes patterns in some structure, and those patterns
represent how, in the past, users have explored that structure. Concrete algorithms
include subgraph mining [13] which uses graph representations, subsequence mining [178]
using a strict order representation, frequent item-set mining finds sets of elements that
are frequently called together [66], and Finite State Automata (FSA, [121]) calculates a
transition function between different states of a program.

The above mentioned approaches are mainly used in the literature to aggregate the
detailed information collected by program analyses, instead of automatically discovering
latent knowledge from source code. Instances of such program analyses information
include the set of features extracted from source code [21, 123], or a predefined code
structure which encodes data and control-flow dependencies [13].

At the same time, general purpose machine learning algorithms use simple input for-
mats that are natural, general, fully-automatic, and work well across different tasks and

16

1.1 Problem Statement

programming languages. We see the following advantages by using advanced machine
learning approaches:

• The human expert burden is significantly reduced, since machine learning offers
general purpose algorithms not bounded within a specific domain context.

• Generalizing to other programming languages might be as simple as replacing the
parser for the new language and using the same traversal algorithm.

• The focus is mainly in automatically discovering latent knowledge not obvious in
source code, instead of aggregating the detailed information extracted through
program analysis [123, 13].

Learning from large available datasets using advanced machine learning approaches
has transformed a number of areas such as natural language processing [60], computer
vision [135], and recommendation systems [61]. Prominent examples include, but are not
limited to automatic machine translation systems, such as Google Translate5 that learns
from existing documents to translate sentences from one natural language to another.
Accurate face detection services is another example of successful learning from a large
dataset of images. Given the overwhelming success of machine learning in a variety of
application domains, we want to bring the same benefits to software engineering. For this
purpose, in this thesis, we adapt existing machine learning approaches to the application
domain of RSSE, and empirically evaluate how they compare to existing approaches.

1.1.3 Thesis Focus

Figure 1.2 illustrates the general pipeline of code recommendation and misuse detection
approaches from the literature. In the first step, some program analyses (slicing, static,
dynamic) are applied on the source code to transform it into some representation (a set
of features, data and control-flow). As described in Section 1.1.1, usually this repre-
sentation includes some domain specific information extracted from source code which
require a domain expert knowledge. In the second step, learning algorithms are applied
on the code representation, which as described in Section 1.1.2, usually aggregate the
detailed information extracted in the previous step in some patterns representation. Fi-
nally, the learned patterns are inputted to the recommender engine to generate relevant
recommendations to the developer, or for detecting violations in source code.

The focus of this thesis lies on the second step of the pipeline in Figure 1.2, where we
aim to shift from approaches that simply aggregate the inputted (known) information
extracted through domain specific program analyses, into more sophisticated approaches
that are able to automatically discover latent (unknown) knowledge from source code.
The research question that we address therefore is:

5https://translate.google.com

17

1 Introduction

m1() - 90%
m2() - 56%
m3() - 27%

...
Method proposals

Analyze
Code

1
0
0
...

0
1
1
...

0
0
0
...

...

...

...

...

Data representation

Calculate
BN

Cluster
OUs

(1 ? 1 ? ? …)Query

Calculate
proposalsCode snippets

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

Patterns

ou1
ou2 ou3

…

ou5 P1
P2

PBN inference engine

PBN Pipeline Inferring Method Proposals

31 2 4
1

Program Analyses

Source Code

1 0 0 1 1 0 0
0 1 0 1 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 1
1 0 0 1 1 0 0

Code representation

2

Aggregation
…

ba

c

Patterns

3

Recommendations

RSSE

Figure 1.2: General pipeline of RSSE tools from the literature.

Can RSSE tools profit from machine learning in order to reduce the effort of human-
involved program analyses by automatically uncover latent knowledge from the available
source code datasets, and still be able to achieve similar or better results compared to the
state of the art approaches?

Addressing this question is challenging, because as opposed to other kinds of data,
source code represent complex structure and semantics that should be captured dur-
ing the learning process. Existing naive approaches based on traditional information
retrieval methods treat code as natural language text [51]. These approaches however
ignore important semantic information of source code and are too imprecise, leading to
limited practical applicability.

Therefore, in this thesis we investigate the advantages of machine learning in two
dimensions:

First, based on the same program analyses as defined in a state of the art approach
(PBN [123]), we investigate if by using a more sophisticated machine learning algorithm
we are able to find additional latent knowledge that was not possible to uncover before,
and if this knowledge contributes in improving the performance on the current system.
For this purpose, we use a Boolean Matrix Factorization (BMF) approach. We show that
BMF overcomes many of the drawbacks that come with simple clustering approaches,
such as automatically discovering the number of clusters to represent the object usage
space from source code, and identify corner cases (noise) in the data. To evaluate BMF
performance, we use the PBN recommender, which is designed as an extensible inference
engine for method completion. We replace the originally used canopy clustering with
BMF, and compare the performance of both approaches in terms of model size, prediction
quality and inference speed.

Second, we use an event stream mining algorithm (episode-mining) that automati-
cally learns different code representations (sequences, sets and partial-orders), with no
complex domain knowledge needed to encode a-priori. Designing a code representation
that enables effective learning is a critical task that is often done manually for each
programming language. The main idea behind episode mining is to represent source
code as a stream of events by traversing its abstract syntax tree (AST). This allows
a learning model to leverage the structured nature of code, while still considering AST
semantics. We use episode mining to learn different API usage pattern types from source
code, perform an empirical study to compare the different pattern types based on three
pre-defined metrics (Section 4.4.3), build an API misuse detector based on the learned

18

1.2 Contributions of this Thesis

patterns, and analyze how it compares to state of the art misuse detectors in terms of
precision and recall.

1.2 Contributions of this Thesis

This work contributes to the area of code recommenders. Our systematic survey of
existing API usage pattern mining literature provides an overview on the state of the
art in the field. We adapt the Boolean Matrix Factorization (BMF) approach in the
application domain of code completion to automatically learn the number of clusters
needed to represent an object usage space and identify noise in the data. Our empirical
evaluations show that BMF can successfully identify noisy data, which result in reduced
model size of the learned patterns and improved inference speed compared to a state
of the art recommender (PBN [123]). Furthermore, we introduce a new benchmark
(PtBench) which adapts an existing episode mining approach [1] to automatically
identify different representations (sequential, partial, and no-order patterns) from source
code, perform a qualitative and quantitative empirical comparison between the different
representations, and evaluate the mined patterns on the application domain of misuse
detection. Our empirical evaluations show that partial-order patterns are a good trade-
off for representing source code in the wild. Furthermore, in the application context of
misuse detection we get comparable results to state of the art approaches [13, 91, 158,
110, 157], heavily based on program analysis. We make PtBench6 publicly available to
other researchers for exploring additional properties of API patterns, and for building-up
other applications based on API usage patterns.

The State-of-the-Art in API-Usage Pattern Mining Approaches Our first contribu-
tion is a systematic literature review of existing work in API-usage pattern mining. In
order to push for more advanced machine learning approaches in API-usage pattern
learning, first we need to understand how existing approaches are built, and what their
current capabilities and limitations are. First, we introduce the large variety of re-
sources from where researchers extract different kind of code snippets. Then, we present
an overview of the different code elements analyzed in the pattern learning approaches
from the literature. At the end, we present existing approaches used to learn API pat-
terns within the application domain of code completion and misuse detection. We find
that most of the approaches are based on static and dynamic analysis, and aggregation
algorithms to learn patterns from source code.

Scalability in API Method Call Analytics In our second contribution, we apply BMF
approach within the context of intelligent method call completion. Our evaluation re-
sults reveal that BMF is an effective approach in reducing the model size of an existing
intelligent code completion engine based on canopy clustering, by automatically detect-
ing noise in source code. We extend the BMF approach with a heuristic to further
improve pattern detection within the application domain of method call completion. We

6http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

19

1 Introduction

perform a systematic empirical evaluation on the effect of BMF on the performance of
an intelligent method call completion engine based on three metrics: model size, infer-
ence speed and prediction quality. The evaluations show that BMF reduces model size
up to 80% and increases inference speed up to 78%, while not compromising prediction
quality. This improvement is due to the ability of the BMF approach to automatically
identify noise in the data, and remove that noise from the learned patterns.

A Systematic Comparison of API-Usage Pattern Types In our third contribution,
we provide a public benchmark (PtBench) that enables the comparison of different
pattern types. So far, we lack systematic studies of the tradeoffs between the different
types of patterns in representing source code in practice. Such a comparison with re-
gards to some predefined metrics is indeed challenging, because each approach in the
literature uses a different learning technique with configurations specific to its data, a
different representation for API usages and patterns, and might even be specifically tight
to a particular programing language or input form. For this purpose, we first adapt an
existing episode mining algorithm [1] that automatically identifies different code repre-
sentations (pattern types) by simply transforming source code into a stream of events.
Then, we define three metrics on which we base on the comparison of the identified pat-
tern types: expressiveness, consistency and generalizability. At the end, we perform an
empirical study that compares the pattern types based on the defined metrics. Some of
our main findings are: (1) the three pattern types don’t differ in terms of pattern size and
number of API types involved; (2) partial-order mining finds additional patterns missed
by sequence mining, which are used across repositories; (3) sequential and partial-order
mining encode important order information for representing correct co-occurrences of
code elements in real code. Our findings help in building better applications based on
API usages. Furthermore, our benchmark is publicly available to other researchers to
evaluate additional metrics on the different pattern types.

The Impact of Order Information in API Method Call Misuse Detection In our
fourth contribution, we present EmDetect, a new API-misuse detector as an extension
of PtBench. We build EmDetect based on the identified patterns by the episode
mining algorithm, and evaluate the quality of the learned patterns in the application
domain of misuse detection. Our results show that sequential-order patterns perform
better in terms of precision by ranking true positives higher in the top findings, while
partial-order patterns perform better in terms of recall by being able to find more misuses
in the source code. In general, EmDetect shows comparable results compared to other
state of the art approaches [13, 91, 158, 110, 157], in terms of both precision and recall.
Our benchmark (PtBench) provides support for two programming languages: C# and
Java.

20

1.3 Publications

1.3 Publications

Most of the content presented in this thesis have previously been published to software
engineering conferences or workshops. This section gives an overview over these publi-
cations and the respective parts of this thesis. Parts of the thesis may contain verbatim
content of the publications.

Addressing Scalability in API Method Call Analytics [29]. The SWAN’16 paper
presents the BMF approach as a mean to reduce the memory cost of an existing intelligent
method completion engine (PBN [123]) with no loss in prediction quality (Chapter 3).
BMF is evaluated using Eclipse SWT framework (including 44 API types and 190,000
object usages in total), and has shown to improve the inference speed by up to 78%
and reduce the model size by up to 80%, without significant changes to the prediction
quality, as presented in Section 3.3.3.

Investigating Order Information in API-Usage Patterns: A Benchmark and Em-
pirical Study [30]. The ICSOFT’18 paper presents an empirical investigation of the
trade-offs between three pattern types identified from the literature with respect to real
code (Chapter 4). Our approach consists of three steps (Section 4.3.2): the transforma-
tion of source code into an event stream, the adaptation of an existing general-purpose
episode mining algorithm to the special context of pattern mining for software engineer-
ing, and filtering the resulting patterns. We define three metrics on which we base the
comparison between the identified pattern types: expressiveness, consistency and gener-
alizability (Section 4.4.3). In Section 4.7, we present a set of Implications that we derive
from the evaluation results presented in Section 4.6.

EmDetect: On the Impact of Order Information in API Usage Patterns [27]. The
paper presents a new API-misuse detector (EmDetect), used as a baseline to empiri-
cally evaluate and compare the effect of order information in API patterns, within the
application context of misuse detection (Chapter 5). For the sake of completeness, the
paper also compares the performance of EmDetect with other state of the art misuse
detectors ([13, 91, 158, 110, 157]), in terms of precision and recall (Section 5.4).

1.4 Structure of this Thesis

This thesis is organized as follows. In Chapter 2, we present our survey on existing API
usage pattern mining approaches from the literature. Section 2.1 introduces the main
terminology used throughout this thesis. Section 2.2 presents the variety of resources
from where researchers extract examples of code snippets. In Section 2.3, we present an
overview of the different code elements analyzed in the pattern learning approaches from
the literature. In order to push for more advanced machine learning approaches in API-
usage pattern learning, first we need to understand how existing approaches are built,
and what their current capabilities and limitations are. For this, we present in Section 2.4

21

1 Introduction

a systematic literature survey to identify existing work on API-usage pattern learning,
and assess and compare the methodologies of respective approaches.

In Chapter 3, we adapt the BMF approach within the application context of recom-
mender systems, to tackle scalability in terms of model size in an existing intelligent
code completion engine. Section 3.1 presents the background on how PBN [123] pipeline
works, and the motivation behind using BMF. PBN is an extensible pipeline for intel-
ligent method call completion, which we use to compare the previous approach based
on canopy clustering with the newly proposed BMF approach. Section 3.2 describes the
integration of BMF into the existing PBN pipeline. Section 3.3, first presents the metrics
on which we base on the evaluations of the new recommender, and then describes our
empirical evaluation results in comparing BMF with canopy clustering. Threats to va-
lidity is discussed in Section 3.4, related work presented in Section 3.5, and we conclude
this part with a discussion in Section 3.6.

In Chapter 4, we introduce PtBench, our benchmark for learning and comparing
different pattern types: sequential, partial and no-order patterns. First, we present re-
lated work in mining different pattern types, and empirical studies performed on API
usages (Section 4.1). We then discuss how we adapt a general purpose episode min-
ing algorithm to the special context of mining API usage patterns (Section 4.3), then
we define the evaluation setup (Section 4.4) for the empirical comparison we perform
in Section 4.6. Through automating most of the evaluation process with PtBench, we
enable reproducible and comparable results (Section 4.5). To conclude, we derive a set of
implications from our empirical comparison that are useful to other researchers working
with API usages (Section 4.7). Section 4.8 treats threats to validity, and we conclude
this part with a discussion in Section 4.9.

In Chapter 5, we present EmDetect, our new API-misuse detector, used as a baseline
to compare the different pattern types within the application context of misuse detec-
tion. In Section 5.1, we explain our motivation for building EmDetect. In Section 5.2,
we present our detector’s violation-detection algorithm and its ranking strategy. Sub-
sequently, we describe the evaluation setup we use to assess EmDetect’s performance
(Section 5.3), evaluate the detector in terms of precision and recall, and compare it to
other detectors from the literature (Section 5.4). Section 5.5 demonstrates the potential
for future use of PtBench, where we explain how the benchmark can be further ex-
tended with new datasets, new metric definitions, and new applications. To conclude,
we discuss the threats to validity of PtBench (Section 5.6), and present an overview of
related work (Section 5.7).

In Chapter 6, we conclude this thesis (Section 6.1) and present an outlook to future
work (Section 6.2).

22

2 Background and State of the Art Survey

An API pattern encodes a set of code elements that are frequently used together, op-
tionally complemented by constraints like the order in which these code elements must
be called. An example of an usage constraint is having to call hasNext() before calling
next() on an Iterator.

Although using an API can be as simple as calling a function, in practice it is often
much more difficult since often interface structures must be accessed by combining in-
terface elements into usage patterns [132]. Murphy et. al [97] noted that developers
often have difficulties in using unfamiliar APIs during their development tasks. For
this reason, developers often search for code examples of API usages to help them com-
plete their tasks. Ideally, development environments should assist developers during
their development tasks. Existing development assistance tools have been approached
in various ways, e.g., through actively notifying developers about relevant API usage
constraints [36], or by recommending correct usages [52, 21, 123].

To make these tools more efficient, and practically usable in developers’ everyday
tasks, they need to be scalable and provide correct and meaningful, syntactic and se-
mantic code examples within a given context. On the same time, while developing such
tools, researchers should also consider that source code itself represent complex struc-
ture and semantics, which is not directly visible. For these reasons, the literature offers
a large variety of approaches for learning API patterns [132]. However, current tools
heavily rely on domain knowledge to extract detailed information from source code, and
on using learning algorithms that simply aggregate the detailed information extracted.
Even though domain knowledge has many advantages in learning correct patterns, it in-
troduces a huge human burden. In this thesis, we advocate on using advanced machine
learning approaches that are able to automatically discover new knowledge from source
code, instead of simple aggregation approaches that rely on detailed and specialized
domain knowledge encoded a-priori, which also tend to predefine the learning process.

In order to push for more advanced machine learning approaches in API pattern
learning, first we need to understand how existing approaches are built, and what their
current capabilities and limitations are. This would allow researchers to improve cur-
rent applications based on API usages, by enhancing the strengths and overcoming the
weaknesses of current approaches.

To address these needs, in this part of the thesis, we present a conceptual analysis
of the state of the art in API pattern learning approaches. In Section 2.1, we present
our main definitions used throughout this thesis. Then in Section 2.2, we introduce the
variety of resources from where researchers extract examples of API usages, like API
documentation, source code, user’s interaction data, and online sites. We find that most
of the approaches use published source code as their main data source.

23

2 Background and State of the Art Survey

In Section 2.3, we present an overview of the different code elements that are considered
in different pattern learning approaches. We find that all approaches consider method
calls, and in most of the approaches they are considered exclusively. Often, in the
literature, method calls are defined as the main block of communication with the APIs,
therefore they are attributed as more important by the researchers.

In Section 2.4, we present the results of a systematic literature review to identify
existing API pattern learning approaches within the application domain of code comple-
tion and misuse detection. We find that existing approaches are mainly based on static
and dynamic analyses, and aggregation algorithms to learn patterns from source code.
We qualitatively compare the descriptions of 32 existing approaches, and identify their
conceptual capabilities and shortcomings.

The terminology and the approaches presented in this part are helpful to understand
the contributions of this thesis. The conceptual analysis of the state of the art in API-
pattern learning approaches motivate our work presented in the following parts of the
thesis.

2.1 Terminology

Application Programming Interfaces (APIs) provide abstraction mechanism that enable
complex functionality to be used by client programs. However, such abstractions do not
come for free, because understanding how to use an API in practice can still be difficult.
Therefore, researchers have developed different approaches for learning API patterns to
provide to developers during their development time. An API pattern encodes a set
of basic code elements that are frequently used together, optionally complemented by
constraints like the order in which they must be called. We call such constraints API
usage constraints, and they are specific for a given API. For example, calling hasNext()

before calling next() on an Iterator, in order to avoid a NoSuchElementException

at runtime. Approaches that automatically identify patterns from a given codebase
are referred to as API-pattern learning approaches. Such approaches use as input an
abstract representation of source code responsible to accomplish some task, referred to
as an usage. A given usage that uses one or more API code elements is known as an API
usage. An API usage pattern is an API usage that contains all of the code elements from
a given pattern, satisfying the respective usage constraints enforced by the pattern.

2.2 Sources of API Usages

The quality of the input data is one of the main factors for building successful tools [5].
Therefore, deciding on the sources from where to get this data is one of the most im-
portant decisions while building RSSE tools. The decision should consider the main
purpose of the tool to be build, and what kind of support it is designed to offer.

API-pattern learning approaches extract API usages from a large variety of sources,
such as source code repositories, API documentations, user’s interaction data, and online

24

2.2 Sources of API Usages

sites. For every such data source, we present some of the main platforms that make them
accessible for researchers, and explain the corresponding usage scenarios.

2.2.1 Source Code Repository

Source code is publicly available in many repositories of open-source projects. After
decades of development, software repositories accumulate many source files that illus-
trate API usages. In recent years, it has been a hot research topic to mine specifications
from such source files, where a mined specification defines the legal sequences or the in-
variants (e.g., preconditions) for calling APIs. A source-code repository is a web hosting
facility where a large amount of source code for software is kept, either publicly or pri-
vately. They are often used by open-source software projects and other multi-developer
projects to handle various versions. Some of the main services hosting source code
of open-source projects include: Assembla1 hosting more than 100K client projects.
BitBucket hosting 900K teams and 5M developers on its platform. GitHub in June
2018 reports hosting over 57M repositories (including 28M public repositories) and 28M
users, making it the largest host of source code in the world. LaunchPad2 in June 2018
hosted more than 40K projects. SourceForge3 in March 2014 claimed to host more
than 430K projects and had more than 3.7M registered users.

Despite of the many other alternatives of available sources of API usages, source code
seems to be the most commonly used one for research on APIs. It represents the most
up-to-date artifact and therefore the most reliable data source. Source code provides
a rich and structured source of information upon which researchers can rely on for
training their models, and provide useful recommendations to software developers. Fur-
thermore, since programming lies at the heart of software development, it is no surprise
that recommendation systems based on source code analysis draw such an impact. Rec-
ommendation systems that rely on source code repositories as their input data, provide
support for tasks such as how to use a given API [22], provide hints on things missing
from the code [97], suggest how to reuse [80], [169] or correct an existing code.

Even though there are many RSSE tools that rely on source code as their main
input data source, they analyze code mainly based on static and dynamic analyses.
MAPO [178] statically analyze source files to extract API usages. Due to the com-
plexity of code, static approaches can produce infeasible call sequences, for example by
extracting call sequences from both if and else-clauses. However, it is easier for static
analysis to extract all the API usages from a piece of source code compared to other
types of analyses. Nguyen et al. [112] statically analyze byte-code to extract API usages.
It is simpler to analyze byte-code than source code, but analyzing byte code has its
unique challenges. For example, Meng and Miller [82] complain that byte code can have
non-code bytes, missing symbols, and overlapping instructions, which complicate the
analysis. Ammons et al. [14] execute source code with various input values to analyze
execution traces. Although the API usages extracted from execution traces are accu-

1www.assembla.com
2https://launchpad.net
3https://sourceforge.net

25

2 Background and State of the Art Survey

rate, it can lose some other API usages occurring in source code, due to the difficulty
to prepare sufficient test cases. Furthermore, scaling dynamic analyses techniques has
proven difficult in industrial programs, because they require perfect traces, and do not
work well in situations where only imperfect traces are available.

Each of the above mentioned types of code analyses come with their own advantages
and disadvantages, depending on the main purpose of the respective tools using them.
In the next chapters of this thesis, we use static analyses, since we are interested in
extracting static API usages as they are written in the IDE editor.

2.2.2 API Documentation

Traditional API documentation provide the most direct and intuitive reference in learn-
ing how to use APIs correctly. Documentation complements the API by providing
information not obvious from the API syntax. However, with the fast evolution of soft-
ware, many of such documentation get fast outdated and are not considered a trustful
resource anymore. Due to the limitation of development time and schedule, many of the
newly implemented API specifications are missing from proper documentation. More-
over, software developers would rather write code than documentation. For instance,
Saied et al. [139] carried out an observational study on API usage constraints and their
documentations. The results show that three out of four constraint types, from 79% to
88% usage constraints are not documented. On the other hand, Zhou et al. [182] found
that more than half (51.2%) of all specifications mined in the Java Class Library are
incorrectly documented.

However, API documentation are still considered an important source of information,
especially for newly created and unpopular APIs. Thummalapenta et al. [148] found
that even popular libraries have unpopular API classes. Their results do not indicate
that unpopular APIs are useless, since with the evolution of software, unpopular APIs
can become popular. For example, the latest API library can implement many new
APIs. Furthermore, Zong et al. [176] found that most of APIs do not have much client
code, so we have to learn their usages from other data sources. Newly released APIs,
typically cannot be found in client code, but later they can become popular. If many
APIs are unpopular or do not have sufficient client code, researchers usually consider
other sources such as their respective documentations (i.e., Doc2Spec [180]).

Furthermore, in the recent years many approaches have been developed that facilitate
the maintenance of API documentation, by automatically generating and maintaining
them (e.g., [146], [93], [25]). These approaches are useful in keeping API documentation
up-to-date, and therefore making them a good reference in learning APIs.

2.2.3 Interaction Data

Interaction data is considered the new source of information in software engineering. It
refers to the data that captures and describes the interactions (i.e., edits) of developers
with artifacts (i.e., source code entities) using tools (i.e., IDE). These actions are usually
performed within a context, for example a specific task. Interaction data is used to in-

26

2.2 Sources of API Usages

vestigate developers’ behaviors, their intentions, their information needs, and problems
encountered, providing new possibilities for precise recommendations. Interaction data
creates the possibility to get access to more fine-grained change information or to activ-
ities that describe the in-IDE development process. The idea is that single interactions
such as code changes, allow for a better understanding of a developer’s work and thus
for more fine-grained and precise recommendations.

Interaction data typically involves four types of data: (1) Interactions, are the actions
taken by a developer, for example changes to code entities. (2) Artifacts, are the entities
the developer is interacting with, for example source code entities, issue reports, or
email documents. (3) Tools, are software applications developers use during their work,
for example the IDE, the issue tracking system, or the email client. (4) Contexts, are
circumstances in which the developer is performing an interaction, for example tasks a
developer is working on or the issues being encountered.

However, very few datasets exist of interaction data. since collecting them is a lot
harder compared to other artifacts. Singh et al. [144] tracked activities of almost 200
developers, covering more than 30K hours of active development time. They make use
of developer activity logs to analyze sequences of developer actions, such as navigation
and edit actions. Dias et al. [37] propose the tool Epicea that tracks edit related
operations in the IDE. The tool also preserves source-code changes on a structural level
(e.g., method names), but ignores method bodies. Their data set was collected over four
months from seven participants.

Recently, many RSSE tools based on interaction data have been proposed. One ex-
ample is Mylyn [59], which tracks the selections and edits of source code artifacts to
filter most relevant artifacts for the current task. Other examples include Robbes et
al. [130] and Lee et al. [64] that use interaction data to suggest reusable pieces of code
and predict defects respectively.

2.2.4 Online sites

In the past, there have been many commercial and scientific attempts by researchers
(e.g., [74]) to provide web-based search engines for code. Examples include Google Code
Search, Koders, Krugle, Sourcerer, and Meobase. However, none of them ever reported
significant numbers of users comparable to mainstream search engines. In fact, shortly
after they all shut down their code search engine illustrating that developers need some
other form of support.

Recently, online sites such as StackOverflow and GitHub have shown to be com-
monly used among developers. They fill the gap between traditional API-documentation
and more example-based resources. Moreover, these online sites have also become an
important data source for empirical research on software engineering. While existing
research was mainly focused around the textual parts of the posts, programmers ask
many questions about a specific coding problem when they are stuck with their solu-
tion. Their questions often contain incomplete code snippets, which are completed or
rewritten by the community. The high heterogeneity of the posts makes it challenging
to use them though. Posts mix textual parts, source-code (which itself is often not

27

2 Background and State of the Art Survey

complete, invalid, or simply does not specify the programming language), and data in
formats like XML or JSON. Ponzanelli et al. [116] solve this with an island grammar [94]
that can be used to parse StackOverflow posts into heterogeneous AST (H-AST). The
grammar supports Java, XML, JSON, stack traces, and text fragments and can be used to
transform released StackOverflow data dumps. Tools like Baker [146] can then be
applied to recover typing information in these code snippets, making it possible to use
fully-qualified references for types and type elements in static analyses, without having
to compile the respective snippets.

2.3 Code Elements in API Usage Patterns

A code element refers to an instance that can be found in source code, such as: types,
methods, exception handling, parameters, iterations, fields, and conditions. To the best
of our knowledge, no work systematically defines the variety of code elements considered
in learning API usage patterns. This prevents us from assessing which aspects of source
code have been addressed or may have been neglected by existing approaches. To improve
on this situation, in this section, we present the variety of elements that can be found
in source code and how they are analyzed by existing learning approaches.

2.3.1 Object Types

An object type is a specific instance of an API type provided within a library. An API
type itself defines methods that represent operations that can be applied on its objects.

Very few approaches (CodeWeb [85]) learn patterns on how API types are reused
in practice. This is done by mining existing applications that use the library. Such
applications can use libraries in a way that takes into account inheritance relationships,
introducing the pattern practice to the developer. For example, application classes
that inherit from a particular library class often instantiate another class or one of its
descendants. More concretely, applications that inherit from a library class Widget()

tend to override its member function paint().

Traditionally, such knowledge is represented by examples in library tutorials and/or
toy programs. However, as mentioned in Section 2.2.2, not all programs come with
such representative examples of reuse. This is particularly true for libraries developed
by a company for internal use and libraries developed by the open source community.
Therefore, approaches that learn patterns of API types are particularly beneficial to
identify such characteristic usage of the library.

2.3.2 Method Calls

Developers frequently need to use method calls they are not familiar with or they do
not know how to use. However, method calls are the most prominent elements in source
code, as they are the primary means of communication between client code and the
API. Usually, developers need to know what are the typical invocation scenarios for a

28

2.3 Code Elements in API Usage Patterns

given method. To this aim helps the knowledge about the steps required to invoke this
method, such as, invoking other methods or manipulating the method’s parameters.

To learn about such methods, developers usually resort to sources such as API doc-
umentation (e.g., JavaDoc), developers online forums (e.g., Stack Overflow), or other
information sources. However, most of these sources provide generic explanation of the
method usage syntax, or focus on the method’s technical details. Furthermore, using
these kind of sources require the developers to frequently switch context between the
IDE and web browsers during development time, which might be confusing. In such
cases, developers could benefit from short code fragments presenting practical uses of
method calls directly in their IDE.

Therefore, it is reasonable for researchers to focus on approaches that automatically
learn patterns of method calls, since methods are more frequently called compared to
other types of code elements. In fact, from all the approaches that we review (Sec-
tion 2.4.2), 69% analyze exclusively usages of method calls.

2.3.3 Exception Handling

Exceptions serve as a mean for APIs to communicate errors to client code. Exception
handling allows an error detected in one part of the program to be handled elsewhere
depending on the context. For example, when a method does not have enough informa-
tion to handle ”exceptional” conditions, it ”throws” an exception to a parent method
up in the call stack, which contains sufficient context to properly handle the error.

The handling of different errors often depends on the specific API. For example, when
initializing a Cipher with an externally provided cryptographic key, one should handle
InvalidKeyException. Another example is resources that need to be closed before use
(by calling methods such as lock()), which also creates a case of an exception. Also
calling read() without a preceding open() causes an exception. Such guarantees are
often implemented by a finally block, but also using the try-with-resources construct
or even respective handling in multiple catch blocks.

Unfortunately, exceptions introduce an inter-procedural flow of control that can be
difficult to reason about either for human or automatic tools and analysis (e.g., [31, 33]).
Failure to correctly handle exceptions lead to security vulnerabilities, breaches of API
encapsulation, and any number of safety policy violations. Uncaught exceptions and
poor support for exception handling are reported as major obstacles for large-scale and
mission control systems (e.g., [9, 23, 26]). Often exceptions are caught trivially (i.e.,
no action is taken to resolve the underlying error [160]) or the mechanism is purposely
circumvented [134].

Buse et al. [25] proposes an automatic approach based on symbolic execution and
inter-procedural data flow analysis that alerts developers to the presence of ”leaked”
exceptions, as well as to the causes of those exceptions. The tool can also be used to
automatically generate documentation.

29

2 Background and State of the Art Survey

2.3.4 Parameters

In object-oriented programming, a parameter defines the input to a method call. Hence,
a parameter is a useful and critical element of the method, in performing a specific task.
Passing the right parameters in the specified order, is essential to ensure the correct
execution of a method.

Bruch et al. [21] and Pradel et al. [119] show that it is a non-trivial task to choose
the right parameter(s) for a method call in an API usage. Zhang et al. [172] show
that 64% of the method declarations in Eclipse 3.6.24 are parameterized, that is, the
methods are passed one or more parameters when being called. Besides slowing down the
development process, unfamiliarity with parameter usage may even harm the correctness
of programs [119]. For example, in statically-typed programming languages, the compiler
ensures that method arguments are passed in the expected order by checking the type
of each argument. However, calls to methods with multiple equally-typed parameters
slip through this check.

Recently, various approaches have been proposed for mining code examples (e.g., [66,
71]), or showing common API call sequences (e.g., [178, 14]). However, few approaches
focus specifically on recommending API parameters (e.g., Precise [172]). Precise
recommends the kinds of API parameters that are frequently used in practice, but mostly
overlooked by existing code completion systems. It is the first automatic technique
focusing on parameter recommendation.

2.3.5 Iteration

Iteration is another mean of interacting with APIs, used, in particular, with collections
and IO streams. It takes the form of loops and recursive methods. Loops are used often
in source code, and many simple tasks (e.g., count, compare pairs of elements, find the
maximum/minimum etc.) are implemented as loop structures. Note that respective
usage constraints are about (not) repeating (part of) a usage, rather than about the
condition that controls the execution.

To the best of our knowledge, Wang et al. [156] is the only work that analyzes loop
constructs exclusively. Wang et al. present an approach to automatically identify the
high-level actions of loops in Java methods by abstracting key features from loop code
fragments. The approach is focused on analyzing high-level actions implemented by
loops. Other approaches [24, 13] analyze loops in correlation with other code elements
as well, such as: method calls, conditions, exception handling etc.

2.4 Survey on API Usage Pattern Learning Approaches

We discussed in Section 2.2 that researchers have explored many sources for learning
API patterns, such as: source code, documentation, interaction data and online sites.
However, most commonly used and up-to-date source are considered source code reposi-
tories, where API-usage patterns may be learned through static analyses of source code

4https://www.eclipse.org

30

2.4 Survey on API Usage Pattern Learning Approaches

API Patterns

Manual
Automatic

(source code)

Program Analyses

Static
Dynamic
Hybrid

Learning Algorithms

Collaborative Filtering
Clustering

Data Mining
Neural Networks

Figure 2.1: API Patterns generation diagram

or binary code, and through dynamic analyses, i.e., runtime monitoring or analysis of
runtime data, such as execution traces (Section 2.2.1).

Figure 2.1 shows a general diagram on API patterns generation that can be found
in the literature. In some cases, API patterns have been crafted manually by experts
or inferred automatically by different learning approaches. However, manually crafting
and maintaining API patterns is costly. On the other hand, automatic specification
inference (or mining) of patterns usually includes two distinguished steps: (1) Program
analysis, which may, again, be approached both statically, e.g., based on source code,
code toy examples or documentation, and dynamically, e.g., based on traces or logs, or
interaction data extracted from the IDE. (2) Learning algorithms, that define the pattern
abstraction from the information collected in the first step.

Approaches that are based on automatic specification inference are called API-pattern
learning. In the literature, we find static pattern learning that statically mine spec-
ifications through static analysis, e.g., [158, 110, 92]; dynamic pattern learning that
dynamically mine specifications through dynamic analysis, e.g., [120, 73]; and hybrid
pattern learning that, for example, combine dynamic specification mining with static
analysis [121].

To abstract the quantity of collected data through either static or dynamic analysis,
researchers use a large variety of learning algorithms to define the learned patterns. In
the literature, we find: collaborative filtering [21], clustering [123], general data mining
algorithms based on data summarization [13], and neural networks [164] that learn a
parametrized model from source code.

In this section, we focus on understanding the capabilities and short-comings of exist-
ing pattern learning approaches. Therefore, we conduct a systematic literature review to
identify existing API-pattern learning and assess their underlying approach, their con-
ceptual capabilities, the type of analysis and algorithm used, and the evaluation setting
they were tested in. The focus of our review are approaches that automatically infer API
patterns by analyzing source code repositories, so basically learning approaches covered

31

2 Background and State of the Art Survey

on the right branch of Figure 2.1.

2.4.1 Methodology

We performed a systematic literature survey, starting from a survey of automated API-
property inference techniques by Robillard et al. [132], 2013 to 2019 proceedings of the
ICSE, and 2013 to 2018 proceedings of the FSE and ASE conferences (and their respec-
tive co-located events). In this survey we only considered technical track and journal
track papers, focusing in this way on fully published results instead of intermediate
results. The author of this thesis proceeded as follows:

(1) She manually filtered the proceedings for publications whose title contains one
of the keywords: automatic, specifications, inference, mining, learning,
detect, patterns, recommender, completion, bug, misuse, usage, reusable.

(2) She manually reviewed the title and abstract of filtered publications to identify
those that present automatic learning approaches based on source code artifacts.

(3) If a publication presents such an approach, she added all references to other pub-
lications that supposedly also present such an approach, to the list of publications
to check.

The publications reviewed in this process are classified in two main categories:

(1) Closely related approaches to the work presented in the following chapters of this
thesis. This category include approaches that:

• Automatically learn code patterns based on source code data.

• Simultaneously use program analyses for extracting code artifacts, and mining
algorithms for abstracting code patterns from the extracted artifacts.

• Find applications within the domain context of code recommendation and /
or misuse detection.

(2) Other approaches also based on automatic knowledge discovery from source code,
but that differ from the first category because:

• They are applied on a different application context, for example automatic
test generation [19], code synthesis [115], bug reports summary [181], software
artifacts classification [76], clone detection [153].

• Are not based on code patterns, but instead on API component searching and
browsing techniques, and code-example retrieval techniques.

We exclude from our survey: (1) approaches based on manually crafted specification
(templates) [62, 69], (2) approaches based on natural-language specifications extracted
from JavaDoc comments, since these approaches do not use source code as their data
input [113], (3) approaches based on some simple ranking strategies based on software
artifacts occurrences [175, 59, 77], (4) approaches based solely on program analyses [109,

32

2.4 Survey on API Usage Pattern Learning Approaches

177], and (5) approaches based on code migration [104] that are mainly based on the
same principals of language translation.

We reviewed a total of 65 different approaches from the literature, where 51 of them
fall in the closely related approaches category mentioned above and 14 in the others
category. We present a detailed description of the closely related learning approaches
identified in this survey process chronologically by their publication date in Section 2.4.2.
For this part, we use the published description and evaluation results of each approach to
identify their capabilities, and the program analysis and/or learning algorithm used. We
also describe the strategies used to evaluate each approach. In Section 2.4.3, we present
a short summary of the other approaches based on automatic knowledge discovery from
source code artifacts.

2.4.2 Closely Related Learning Approaches

In the following, we describe the reviewed approaches in this category with respect to
the following features: the programming languages they support (Target Language), the
algorithm used to learn patterns (Mining Algorithm), the target code elements ana-
lyzed to learn the API patterns (API Elements), the program analyses used to extract
source code artifacts (Analyses), the application context for evaluating the learned pat-
terns (Applications), and the pattern types learned (Pattern Type). For each of the
approaches reviewed, we denote with an x if the approach supports the respective fea-
ture. Although, there are some exceptions. For example, for the approach presented
by Gruska et al. [44], we have denoted with independent the Target Language, since
the approach uses a language independent parser for extracting code artifacts. Fur-
thermore, other approaches have no assignments for the feature API Elements. This is
the case when the respective approach either does not learn patterns of repetitive API
elements, for example Lee et al. [64] extract general metrics from source file; or when
an approach learns patterns that include any possible element from the source code,
for example NGSE [51] and White et al. [164] treat code as natural language tokens,
and Liu et al. [70] extract code elements as features that occur in source code. Also,
Wang et al. [156] has no assignments for the feature Pattern Type, because the proposed
approach does not learn code patterns, but is used instead to automatically generate
the high level action associated with loop structures in source code. In the following,
the analyzed approaches are presented in more details, and Table 2.1 puts together a
summary of this review.

CodeWeb [85] is applied in two C++ frameworks (ET++ and KDE). Items mined
by CodeWeb are aggregated at the class level. For example, if any function or method
defined in a class A calls a function f , the class as a whole is considered to call the
function. CodeWeb is based on association rule mining to learn library reuse patterns,
taking into account inheritance hierarchies. For example, application classes that inherit
from a particular library class often instantiate another class or one of its descendants.
CodeWeb contains the restriction to mine only patterns with one antecedent and one
consequent, the algorithm is reduced to mining co-occurring pairs of elements with a
given support and confidence. CodeWeb removes patterns stating, for example, that a

33

2 Background and State of the Art Survey

Table 2.1: API-Usage Pattern Learning Approaches.
Mining Algorithm API Elements Analyses Applications Pattern Type

Approach T
a
rg

et
L

an
gu

ag
e

C
lu

st
er

in
g

S
ta

ti
st

ic
al

F
S
A

It
em

-s
et

S
u
b
se

q
u
en

ce

S
u
b
gr

a
p
h

D
ee

p
L

ea
rn

in
g

M
et

h
o
d

C
al

ls

It
er

at
io

n
s

C
on

d
it

io
n
s

C
la

ss
es

P
ar

am
et

er
s

E
x
ce

p
ti

on
s

S
ta

ti
c

D
y
n
a
m

ic

R
ec

om
m

en
d
at

io
n

B
u
g

D
et

ec
ti

on

D
o
cu

m
en

ta
ti

on

U
n
or

d
er

ed

S
eq

u
en

ti
al

P
ar

ti
al

CodeWeb [85] C++ x x x x x x
Ammons et al. [14] C x x x x x
Whaley et al. [163] Java x x x x x x x
PR-Miner [66] C/C++ x x x x x
RASCAL [80] Java x x x x x
DynaMine [71] Java x x x x x
JIST [10] Java x x x x x
Scenariographer [140] Java x x x x x
Weimer et al. [161] Java x x x x x x
Perracotta [166] C x x x x x
Chronicler [126] C x x x x x
Jadet [158] Java x x x x x
Ramanathan et al. [127] C x x x x x x x x
ParseWeb [147] Java x x x x x x
Quante et al. [125] Java/C x x x x x x
Lo et al. [72] Java x x x x x
CBFA [173] Java/C x x x x x
BMN [21] Java x x x x x x
Acharya et al. [3] C x x x x x x
MAPO [178] Java x x x x x x
Alattin [149] Java x x x x x x
CAR-Miner [150] C++/Java x x x x x x
GROUMiner [110] Java x x x x x x x
DMMC [91] Java x x x x x x
OCD [40] Java x x x x x x
TAUTOKO [34] Java x x x x x
Gruska et al. [44] independent x x x x x
SpecCheck [101] Java x x x x x
Tikanga [157] Java x x x x x
Lee et al. [64] Java x x x x x
Pradel et al. [121] Java x x x x x x x
Precise [172] Java x x x x x
NGSE [51] Java x x x x
Buse et al. [24] Java x x x x x x x x
UP-Miner [154] Java x x x x x x x
SLANG [129] Java x x x x x
CodingTracker [100] Java x x x x x
JSMiner [107] JavaScript x x x x x x
PBN [123] Java x x x x x x
MLUP [137] Java x x x x x
Wang et al. [156] Java x x x x
White et al. [164] Java x x x x
DroidAssist [111] Java x x x x x
DeepAPI [46] Java x x x x x
ApiRec [102] Java x x x x x
HAPI [112] Java x x x x x
Salento [96] Java x x x x x
Liu et al. [70] Java x x x x x
ExampleCheck [174] Java x x x x x x
MuDetect [13] Java x x x x x x x x
Focus [108] Java x x x x x

class that calls a library function on type A must also instantiate this type. The learned
patterns are used for API documentation.

Ammons et al. [14] uses the k-tail algorithm [16] to learn automata from called

34

2.4 Survey on API Usage Pattern Learning Approaches

sequences of API methods. They first compute a probability FSA (PFSA), and then
convert it into a regular FSA by removing the probabilities from the edges while at
the same time deleting entirely such edges that are labeled with a probability below a
certain threshold. Ammons et al. point out that their underlying k-tail algorithm can
ignore some sequences that do not fit the learned automata. It is reasonable to ignore
some details, since such details are relevant to only specific implementation purposes.
Ammons et al. implement two different tracers for extracting execution traces interac-
tions with an API or ADT (abstract data type): one is a replacement for the C stdio

library that requires recompiling programs, and the other is a more general executable
editing tool that allows arbitrary tracing code. They infer specifications by observing
program executions and concisely summarizing the frequent interaction patterns as state
machines that capture both temporal and data dependencies. These state machines can
be examined by a programmer, to refine the specification and identify errors.

Whaley et al. [163] uses multiple finite state-machine (FSM) sub-models to model
the interface of a class. In their definition, a sub-model includes a subset of methods
that, for example, implement a Java interface. Each state-modifying method is repre-
sented as a state in the FSM, and transitions of the FSMs represent pairs of consecutive
methods. They use static analyses to deduce illegal call sequences in a program, dynamic
instrumentation techniques to extract models from execution runs, and a dynamic model
checker that ensures that the code conforms to the model. Extracted models can serve
as documentation, or as constraints to be enforced by a static checker. Their system has
been run on several large code bases, including the basic Java libraries, and the Java 2
Enterprise Edition library code.

PR-Miner [66] parses functions in C source code to store as items, representing
functions called, types used, and global variable accessed. It encodes usages as the set
of all function names called within the same function. PR-Miner uses inter-procedural
analysis to detect project-specific patterns, and employs closed frequent item set mining,
i.e., where there are no sub item sets that are subsumed by larger item sets with the
same support. Once identified, the patterns are used to find violations. PR-Miner is
evaluated on three C/C++ systems.

RASCAL [80] is a recommendation system that aims to predict the next method
that a developer could use, by analyzing Java classes similar to the one currently being
developed. RASCAL relies on the traditional recommender technique of collaborative
filtering, which is based on the assumption that users can be clustered into groups
according to their preferences for items. In RASCAL’s terminology ”users” refer to
classes, and ”items” refer to methods to be called. The similarity between different
classes is based on the methods they call.

DynaMine [71] mines software revision histories to mine common error patterns of
method calls for the purpose of bug detection. DynaMine infers usage patterns by min-
ing the change history of source code. The patterns learned by DynaMine are pairwise
association rules for methods found in a single source file revision. DynaMine translates
the usage pattern mining problem into an item-set mining problem by representing a
set of methods committed together into a single file as an item set. DynaMine mines
changes at the file level because it only considers files that were actually changed in a

35

2 Background and State of the Art Survey

given client within some time window. Mining at a finer granularity would likely result
in very few patterns. DynaMine uses a pattern filtering phase to ”greatly reduce the
running time of the mining algorithm and significantly reduce the amount of noise it
produces”. The experiments are performed on Eclipse and jEdit, two large, widely-used
open-source Java applications.

JIST [10] is an automatically approach for extracting temporal specifications of se-
quences of method calls for Java classes. Given a Java class, and a safety property such
as ”the exception E should not be raised”, the corresponding (dynamic) interface is the
most general way of invoking the methods in the class so that the safety property is not
violated. JIST first constructs a symbolic representation of the finite state-transition
system obtained from the class using predicate abstraction, and then uses algorithms for
learning finite state automata and symbolic model checking for branching-time logics.

Scenariographer [140] is an approach for generating class usage scenarios, for ex-
ample how method sequences of a class can be invoked, which are collected during the
execution of a software. The approach employs the notion of canonical sets to categorize
method sequences into groups of similar sequences. Scenariographer is evaluated on
Java open source programs.

Weimer et al. [161] mines temporal specification for bug detection. Their approach
is based on the observation that programs often make mistakes along exceptional control-
flow paths, even when they behave correctly on normal execution paths. The approach
is applied on existing Java programs, which are presented as a set of static or dynamic
traces. each of which is a sequence of events. Static traces are generated from the
program source code. Dynamic traces are produced by running the program against a
workload. Events are taken to be context-free function calls. Mined specifications are
finite state machines with events as edges.

Perracotta [166] mines temporal API rules from imperfect traces based on finite
state machines. Temporal properties constrain the order of occurrence of program events.
For example, acquiring a lock should eventually be followed by releasing the lock. Per-
racotta aggregates ordered pairs of API patterns into larger patterns. For instance,
from a→ b and b→ c one may infer that a→ b→ c. Perracotta is evaluated in three
scenarios, on inferring API rules for Daisy file system, Windows kernel, and JBoss core
components. The authors use the inferred properties to validate the program satisfies
those properties using static verifiers.

Chronicler [126] is a misuse detector for C. It mines frequent call-precedence
relations from an inter-procedural control-flow graph. Typically, these patterns are
sequences of method/function calls. Chronicler finds project-specific patterns of
method calls. The authors compare the identified protocols with the documented pro-
tocols for a given API.

Jadet [158] is a misuse detector for Java. It uses Colibri/ML [67], but instead of
only method names, it encodes method-call order and call receivers in usages. Therefore,
it first builds a directed graph of a finite state automata with anonymous states whose
nodes represent method calls on a given object and whose edges represent control flows.
From this graph, it then derives a pair of calls for each call-order relationship, e.g., m()
≺ n(). Each usage is represented by the set of these pairs. These sets of call pairs

36

2.4 Survey on API Usage Pattern Learning Approaches

form the input to the mining, which identifies patterns, i.e., sets of pairs. Jadet mines
sequential patterns that consist of an ordered pair of API elements (a, b), indicating that
the usage of element a should occur before b in a program’s execution. Jadet finds
project-specific patterns.

Ramanathan et al. [127] is a misuse detector for C. It statically encodes usages
as sets of properties for each variable v. Properties are comparisons to literals, e.g.,
(6=, null), if v was checked to be not null, argument positions in function calls, e.g.,
(arg(2), f) if v was passed as the second argument to a function f, and assignments, e.g.,
(:=, res(f)) if the v was assigned the result of a call to f. They derive these properties
using an inter-procedural path-sensitive data-flow analysis that gathers predicates at
each program point. For each call, Ramanathan et al. creates a group of the property
sets of the call’s arguments. To all groups for a particular function, it applies sequence
mining to learn common sequences of control-flow properties and frequent-itemset mining
to identify all common sets of all other property types. This approach is designed to
detect project-specific patterns of method calls, conditions, parameters.

ParseWeb [147] shows users how to create an object of some target type given
an object of another type, by suggesting frequently used method-invocation sequences
that can serve as solutions to yield the destination object from the source object. The
approach performs static analyses over source code to extract required sequences, and
clusters similar sequences using a sequence post-processor. ParseWeb also sorts the
final set of sequences using several ranking heuristics. ParseWeb is implemented for
helping Java code reuse.

Quante et al. [125] present a dynamic protocol recovery technique based on ob-
ject process graphs, a finite representation of the sequences of operations for particular
objects extracted from source code or via dynamic analysis. These graphs contain in-
formation about loops and the context in which methods are being called. They use an
automaton-based approach to transform the extracted graphs to method call sequences.
Quante et al. evaluate their approach on several Java and C applications.

Lo et al. [72] present an approach that can mine patterns of arbitrary length for
the purpose of misuse detection in Java programs. It mines statistically significant
specifications of the form consequences ↪→ premises from program execution traces,
where both the premises and consequences are sets of method calls. It requires that the
respective traces contain only calls to methods of the relevant API(s).

CBFA [173] is an aspect mining approach, called Clustering-Based Fan-in Analysis
(CBFA), for recommending aspect candidates in the form of method clusters, instead of
single methods. The source code is first analyzed and parsed into a set of methods. Each
of the method analyzed is converted into a vector based on its signature. CBFA uses
a lexical based clustering approach to identify method clusters based on the similarity
of vectors, and rank the clusters using a ranking metric called cluster fan-in. CBFA is
evaluated on two different systems, C-based Linux, and Java system.

BMN [21] mines patterns of method calls from source code, for the purpose of code
completion. The key idea of the work is, given a client method in which a number of API
methods have been called on a variable, find other client methods where similar methods
have been called on a variable of the same type, and recommend method calls missing

37

2 Background and State of the Art Survey

within the query context, in order of popularity. BMN works on object-oriented source
code that produce item sets for variable contexts. The variable context aggregates all
methods called on an object-type variable within a client method. BMN uses k-Nearest
Neighbor (kNN) classification. The basic idea of kNN is to find the code snippets most
similar to the context for which recommendations are desired, and to generate recom-
mendations based on the item-sets found in these snippets. BMN evaluation involves
a systematic assessment of four different recommendation algorithms for autocomple-
tion using a cross-validation design on data for client of the SWT toolkit. Specifically,
the evaluation compares the recall and precision of recommendations produced with
the default Eclipse algorithm (alphabetical), the frequency algorithm (most popular),
association rule mining, and their own kNN-inspired algorithm. However, both the kNN-
inspired and association rule techniques are shown as much superior to either frequency
or alphabetical-based recommendations.

Acharya et al. [3] present a misuse detector for C. Their approach distinguishes
normal paths, i.e., execution paths from the beginning of the main function to its end,
from error paths, i.e., paths from the beginning of the main function to an exit or return
statement in an error-handling block. It uses push-down model checking to generate
such paths as sequences of method calls and applies frequent-subsequence mining to find
patterns. Acharya et al. find project-specific patterns of method calls and conditions.

MAPO [178] is an API usage mining framework based on sequential pattern min-
ing [7] for recommending code samples. A mined pattern describes that in a certain
usage scenario, some API methods are frequently called together and their usage fol-
low some sequential rules. For mining specifications, MAPO considers extracted call
sequences as their observations, and mine frequently called sequences of API methods.
MAPO was applied on 20 open source projects (141K lines of code in total, which use
Eclipse Graphical Editing Framework (GEF)), and acquired 93 patterns, which include
157 API method call sequences and cover the usages of 856 API methods.

Alattin [149] is a misuse detector for Java, specialized in alternative patterns for
condition checks. For each target method m, it queries the code-search engine Google
Code Search to find example usages. From each example, it extracts a set of rules
about pre- and post-condition checks on the receiver, the arguments, and the return value
of m, e.g., “boolean check on return of Iterator.hasNext before Iterator.next” or
“const check on return of ArrayList.size before Iterator.next.” It then applies
frequent item-set mining on the sets of these rules to obtain frequent patterns. For each
such pattern, it extracts the rule sets that do not adhere to the pattern and repeats
mining on these, to obtain infrequent patterns. Finally, it combines all frequent and
infrequent patterns for m by disjunction. Alattin mines sequential patterns that consist
of an ordered pair of API elements (a, b), indicating that the usage of element a should
occur before b in a program’s execution. Alattin learns cross-project patterns of
method calls and conditions.

CAR-Miner [150] is a misuse detector for C++ and Java. For each analyzed method
m in a given code corpus, it queries the code-search engine Google Code Search to
find example usages. From the examples, it builds an Exception Flow Graph (EFG),
i.e., a control-flow graph with additional edges for exceptional flow to and within catch

38

2.4 Survey on API Usage Pattern Learning Approaches

and finally blocks. From the EFG, it generates normal call sequences that lead to
the currently analyzed call and exception call sequences that lead from the call along
exceptional edges. Subsequently, it mines association rules between normal sequences
and exception sequences. CAR-Miner detects cross-project patterns of method calls
and exception-handling.

GrouMiner [110] is a misuse detector for Java. It creates a graph-based object-
usage representation (GROUM) for each target method. A GROUM is a directed
acyclic graph whose nodes represent method calls, branchings, and loops and whose
edges encode control and data flows. GROUM associates events in a directed acyclic
graph (DAG). This graph can handle special nodes to represent control structures, such
as loops and conditions. Furthermore, edges not only represent sequencing constraints,
but also data dependencies. GrouMiner uses an a-priori-based algorithm to detect
frequent-subgraphs [128] on sets of such GROUMs, to detect recurring usage patterns.
A-priori-based algorithms start from frequent single-node subgraphs and recursively ex-
tend known, frequent subgraphs by frequently adjacent neighbor nodes. GrouMiner
finds project-specific patterns.

DMMC [91] learns patterns of method calls for detecting missing method calls in
source code. DMMC collects statistics about type-usages. A type-usage is simply the
list of methods called on a variable of a given type in a given client method. DMMC
then uses this information to detect other client methods that may need to call the
missing method. DMMC works on object-oriented source code that produce item sets
for variable contexts. The variable context aggregates all methods called on an object-
type variable within a client method. For a given variable x of type T , DMMC generates
the entire collection of usages of type T in a given code corpus. From this collection,
it computes various metrics of similarity and dissimilarity between a type usage and
the rest of the collection. DMMC uses a statistical approach. DMMC detects missing
method calls in SWT clients. Inspection of the results provides the additional insight
that although the approach can recommend method calls with excellent performance,
it is much less obvious to know how exactly to use the recommended method in that
scenario: what arguments to pass in, what to do with the return value, etc.

OCD [40] is a misuse detector for Java. To mine and check temporal patterns,
OCD observes a sliding window-technique that considers a limited sequence of events
from the method-call traces and identifies pairs of subsequent calls to the same receiver
based on finite state machines. If no second call occurs within the window, it considers
the first call as isolated. OCD mines sequential patterns that consist of an ordered pair
of API elements (a, b), indicating that the usage of element a should occur before b in a
program’s execution. Both types of occurrences serve as evidence (or counter-evidence)
for temporal patterns. OCD uses multiple thresholds to decide—based on the collected
evidence and counter-evidence—whether a pattern should be enforced. OCD finds
project-specific patterns of method-calls and iterators.

TAUTOKO [34] uses automatic generation of test cases for mining specifications
based on execution traces. TAUTOKO generates test cases to cover all possible transi-
tions between all observed states. These transitions can either end in legal states, thus
indicating additional legal interactions, or they can raise an exception, thus indicating

39

2 Background and State of the Art Survey

illegal interaction. TAUTOKO makes use of finite state automaton to describe the tran-
sitions between object states. Automaton states represent different states of an object,
and transitions are labelled with method names. TAUTOKO is evaluated on a sample
of 800 defects seeded into six Java subjects.

Gruska et al. [44] present a lightweight, language-independent parser that is able
to perform analysis of programs written in languages such as C, C++, Java, PHP, and
others with a similar syntax for analyzing source code statically. Gruska et al. leverage
the Jadet approach to detect object usage anomalies, extending it to arbitrary languages
with function calls. Their approach mines sequential patterns that consist of an ordered
pair of API elements (a, b), indicating that the usage of element a should occur before b
in a program’s execution.

SpecCheck [101] is a misuse detector for Java. It uses the LM miner [38] to
obtain specifications of the form consequences ↪→ premises from method-call traces,
where both the premises and consequences are sets of method calls. To determine the
subset of significant specifications, SpecCheck removes the premise method calls from
the instances of the specification in the training codebase and executes the mutated
program. If this causes an exception at a consequence method call of a specification,
for at least one instance of the specification, SpecCheck consider this specification as
significant. Otherwise, it drops the specification. For specification with multiple premise
method calls, SpecCheck repeats this check with a leave-one-premise-out strategy
and drops premises whose omission does not indicate significance of the specification.
Finally, SpecCheck combines multiple specification with the same consequences by
conjunction. SpecCheck finds in this way project-specific patterns of method calls
with call order.

Tikanga [157] is a misuse detector for Java that builds on the same algorithm as
Jadet. It replaces Jadet’s simple call-order properties by general Computation Tree
Logic (CTL) formulae on object usages. Tikanga combines static analysis with model
checking to mine CTL formulas. Specifically, it uses formulae that require a certain call
to occur in a usage, formulae that require two calls in a certain order, and formulae
that require a certain call to happen after another. It uses model checking to determine
the subset of all those formulae. It then applies Formal Concept Analysis [41] to obtain
patterns. The learned patterns are sequences of method/function calls. Tikanga’s
capabilities are the same as Jadet’s. The evaluation by the authors of Tikanga applied
the detector to six projects individually, finding project-specific patterns.

Lee et al. [64] propose 56 micro interaction metrics (MIMs) that leverage developers’
interaction information stored in the Mylyn data. Mylyn is an Eclipse plug-in, which
captures developers’ interactions such as file editing and selection events with time spent.
First, files are collected as instances, and then post-defects are counted for each file. For
the regression model, the defect numbers are predicted. For classification, a file is la-
belled as buggy if it has any post-defect (post-defect number >= 1), or clean otherwise.
Finally, prediction models are trained using machine learning algorithms implemented in
Weka [49]. The trained prediction models classify instances as buggy or clean (classifica-
tion), and predict the post-defect numbers (regression). The build models are file-level
defect predictors. Since Mylyn contains interactions, the approach identifies common

40

2.4 Survey on API Usage Pattern Learning Approaches

patterns of sequential events.
Pradel et al. [121] present a misuse detector for Java, specialized on multi-object

method-call protocols. Is uses a dynamic specification miner [117, 118] to obtain multi-
object specifications from method-call traces. The resulting specifications are finite-state
automata (FSA), where transitions are method calls and states represent the respective
objects’ state. The mined FSA specifications are transformed into Fusion specifica-
tions [58], i.e., into triples of a set of relationships between the involved objects, a set of
call preconditions, and a set of call effects on relationships and object states. Fusion
performs a static inter-procedural analysis to verify the specifications on a given target
codebase. Their approach learns patterns of method calls and conditions.

Precise [172] is an automated technique in recommending API parameters. The
basic idea of Precise is to extract usage instances from existing programs and adaptively
recommend parameters based on these instances and the current context. Precise mines
existing code bases, uses an abstract usage instance representation for each API usage
example, and then builds a parameter usage database. Upon a request, Precise uses
k-nearest neighbor (k-NN) queries on the usage database for abstract usage instances
in similar contexts and generates parameter candidates by concretizing the instances
adaptively. Precise ranks its recommendations with respect to the similarity of context
and the frequency of usage, helping developers select the right parameters more easily.
Precise implementation is combined with Eclipse JDT.

NGSE [51] is a corpus based n-gram model suggestion engine for Java. The NGSE
uses a trigram model built from a project corpus. After each token, NGSE uses the
previous two tokens, already entered into the text buffer, and attempts to guess the
next token. currently based on a static corpus of source code. The language model
estimates the probability of a specific choice of next token; this probability can rank the
order of the likely next tokens.

Buse et al. [24] present an automatic technique for mining and synthesizing succinct
and representative human-readable documentation of interfaces from the Java SDK.
The proposed algorithm is based on a combination of path sensitive data-flow analysis,
clustering, and pattern abstraction. The approach models API uses as graphs describing
method call sequences, annotated with control flow information. Concrete uses are
then abstracted into high-level examples. Because a single data-type may have multiple
common use scenarios, clustering is used to discover and coalesce related usage patterns
before expressing them as documentation. It produces output in the form of well-typed
program snippets which document initialization, method calls, assignments, looping,
constructs, and exception handling.

UP-Miner [154] mines succinct and high-coverage usage patterns of API methods
from source code. UP-Miner includes an API parser to parse the source code files. The
API parser constructs AST trees for each source code file. After identifying API meth-
ods from their call sites in the source code files, API method sequences are collected.
UP-Miner is based on the BIDE [155] algorithm to mine frequent closed API-method
invocation sequences and include a two-step clustering strategy before and after BIDE to
identify usage patterns. UP-Miner mines the API usage patterns and presents the re-
sulting patterns as probabilistic graphs, which are ranked by the number of occurrences.

41

2 Background and State of the Art Survey

Given a user-specified API method, UP-Miner can automatically search for all usage
patterns of an API method and return associated code snippets as reuse candidates.
The approach is evaluated on a Microsoft code-base.

SLANG [129] is a code completion engine based on statistical language models.
Given a Java program with holes, SLANG synthesizes completion for holes with the
most likely sequences of method calls. They use a simple and scalable static analysis
that extracts sequences of method calls from a large codebase, and index these into a
statistical language model. Then, they employ a language model to find the highest
ranked sentences, and use them to synthesize a code completion. Their approach is able
to synthesize sequences of calls across multiple objects together with their arguments.
However, the developer is expected to know the positions in the code where missing
method calls need to be inserted when synthsizing SLANG.

CodingTracker [100] present an approach that identifies frequent code change pat-
terns from a fine-grained sequence of code changes. CodingTracker records the code
changes as soon as they are produced by developers. Consequently, the approach is the
most fine-grained representation of code evolution. CodingTracker records the de-
tailed code evolution data ranging from individual code edits up to the high-level events
like automated refactoring invocations. The collected raw data is then transformed into
code changes as add, delete and update operations on the underlying AST. Next, distinct
kind of code changes are represented as combinations of the operation and the type of
the affected AST node. The instances of code change kinds serve as input to a frequent
item-set pattern mining based algorithm. For each mined code change pattern, the algo-
rithm reports all occurrences of the pattern in the input sequence of code changes. For
evaluating the approach, CodingTracker was installed as an Eclipse IDE plug-in.

JSMiner [107] is a static graph-based mining approach for inter-procedural, data-
oriented JavaScript (JS) usage patterns. It is based on JSModel, which is a graph-
based representation of JS usages. JSModel contains function calls, field accesses,
control nodes, (un)named data nodes for variables, object literals, JS functions, and
HTML elements. The structure of an object is captured via (un)named data nodes and
edges that represent their containment relations. Edges are also used to model control
and data flow dependencies among nodes. The usefulness of the approach is evaluated
in two applications: detecting anti-patterns (buggy patterns) and documenting JS APIs
via pattern skeletons.

PBN [123] is an intelligent code completion system for recommending the next
method call, based on Bayesian networks. PBN learns typical usage pattens of frame-
works from data, which are extracted by statically analyzing Java source-code reposi-
tories. On the extracted usages, PBN applies clustering techniques to improve model
sizes of the learned patterns. The learned patterns are passed to the Bayesian network,
which uses context information to calculate the recommendations.

MLUP [137] is a technique for mining Multi-Level API Usage Patterns to exhibit
the co-usage relationships between methods of the API of interest across interfering
usage scenarios. A multi-level API usage pattern is defined as a group (cluster) of API
methods, that are frequently and uniformly used together across variable client programs,
and regardless of the usage context. The rational behind the multi-level distribution of

42

2.4 Survey on API Usage Pattern Learning Approaches

methods in a usage pattern is to identify the pattern’s core, which represent the pattern’s
methods that are ’always’ used together, and to reflect inferring usage scenarios of the
pattern’s core and the rest of the API methods. Hence, multi-level usage patterns add
a new dimension that can be used to enhance the API documentation with co-usage
relationships between methods of the API of interest. MLUP takes as input the source
code of the API of interest and multiple client programs making use of this API. First,
the API’s and client programs source code is statically analyzed to extract the references
between the methods of the client programs and the public methods of the API. Second,
a usage vector is computed for each API public method, which encodes information
about its client methods. Finally, cluster analysis are applied to group the API methods
that are most frequently co-used together by client methods. MLUP is evaluated on four
different APIs: HttpClient5, Java Security6, Swing7, and Awt8.

Wang et al. [156] present an automatic approach to identify the high level action
implemented by Java loops. Loops are characterized as feature vectors in terms of certain
data flow, structural, and linguistic features learned from a large corpus of open source
code. The source code representation of the loop is analyzed to extract its representative
feature vector. This enables clustering of various loop structures that perform the same
action, identifying in this way the high level actions implemented by loops. The approach
can automatically insert internal comments and provide additional higher level naming
for loop actions.

White et al. [164] combine deep learning with software language modeling in order
to improve the quality of the underlying abstractions, by providing new ways to mine
and analyze sequential data, e.g., streaming software tokens. They apply deep learning
models on Java projects source code files based on lexically analyzed source code written
in any programming language, and other types of artifacts. White et al. experiment
with two of the models’ hyper-parameters, which govern the capacity and the amount
of context used to inform predictions.

DroidAssist [111] is a misuse detector for Dalvik Bytecode (Android Java). It
generates method-call sequences from source code and learns a Hidden Markov Model
from them, using a modified version of the Baum-Welch algorithm, to compute the
likelihood of a particular call sequence. DroidAssist analyzes a given method sequence
in existing code report. If it is a suspicious API usage (i.e. is rarely used or unlikely to
be used), DroidAssist can offer fixes with more probable method sequences based on
their likelihoods of appearance in the existing code context.

DeepAPI [46] is the first approach to adapt deep learning to generate API method
call sequences. DeepAPI formulates the API learning problem as a machine translation
problem: given a natural language query, translate it into an API sequence. To anno-
tate the API sequences with natural language descriptions, DeepAPI extracts method-
level code summaries, specifically, the first sentence of a documentation comment for
a method. For each method, DeepAPI traverses its AST and extracts the JavaDoc

5http://hc.apache.org/httpclient-3.x/
6https://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html
7https://docs.oracle.com/javase/7/docs/technotes/guides/swing/
8https://docs.oracle.com/javase/7/docs/api/

43

2 Background and State of the Art Survey

comment part. DeepAPI learns the sequence of words in a query and the sequence
of associated APIs. DeepAPI adapts an neural language model named RNN Encode-
Decoder by considering the importance of individual APIs. DeepAPI is evaluated on
more than 7 million annotated Java code snippets collected from GitHub. However,
the authors accept that not all methods come with JavaDoc comments, and some of
methods contain even irregular comment annotations.

ApiRec [102] is based on statistical learning from fine-grained code changes and
from the context in which those changes were made, to recommend the next method
call. Grouping fine-grained changes by high-level intent allows ApiRec to cut through
the noise of unrelated tokens that may surround the recommendation point. The
changes that belong to higher-level intents will co-occur more frequently than non-related
changes. ApiRec works in three steps: (1) It builds a corpus of fine-grained code changes
from a training set, by iterating over commits and detecting the differences in Abstract
Syntax Trees (AST) nodes. (2) It statistically learns which fine-grained changes co-occur
in the same changed file. Additionally, the model operates on the code context of fine-
grained changes (e.g., preceding method calls) (3) It computes and then recommends a
new API call at a given location based on the current context and previous changes. If
it determines that an API method is indeed likely, then it returns a list of candidate
API calls ranked by the computed likelihood of being selected by a developer. ApiRec
is trained and tested on randomly selected Java projects from GitHub that have long
development histories.

HAPI [112] is an automatically statistical approach to learn patterns of method
calls from byte code of Android mobile apps. HAPI is trained based on method calls
sequences extracted from ARUS, a graph-based representation of API usage scenarios,
for the purpose of method call recommendations in code completion engines.

Salento [96] is a misuse detector for Dalvik Bytecode (Android Java). It uses
symbolic execution to identify objects of the APIs’ types and encodes each respective
usage as a bag of all method calls on such an object. For each method call, Salento
also encodes boolean predicates that capture constraints on call parameters, whether
the call throws an exception, or other properties. Salento assumes that each usage U

conforms to a specification Z, which is unknown. It further assumes that the method calls
XU appearing in U inform about Z. The uncertainty about Z is formalized as P (Z‖X = XU),
where Z is a random variable over specifications and X is a random variable over method
calls in usages. Moreover, Salento expresses the uncertainty regarding the behaviors Y
of U as PU(Y), where Y is a random variable over behaviors, and allows for a distribution
P (Y ‖Z = Z) over the behaviors of usages that implement a given specification Z. In this
framework, Salento learns a joint distribution P (X,Y, Z) from the usage examples in
the training code. Salento detects patterns of method calls.

Liu et al. [70] collect and track a large number of fixed and unfixed violations
across revisions of software, and conduct empirical analyses on identified violations and
fixed violations to investigate their recurrences, their code patterns, etc. They apply
heuristics in order to represent code as a set of abstract and concrete entities. The
approach encodes a fixing change into a vector space using Word2Vec [42], extracts
discriminating features using Convolution Neural Networks (CNNs) and regroups similar

44

2.4 Survey on API Usage Pattern Learning Approaches

changes into a cluster using X-means clustering algorithm. The identified patterns are
then applied to unfixed violations. The authors investigate violations and violation fixing
changes collected from 730 open source Java projects.

ExampleCheck [174] is an API usage mining framework that extracts patterns
from over 380K Java repositories on Github and subsequently reports potential API
usage violations in Stack OverFlow posts. The API usage violations reported are
caused by three main reasons - missing control constructs, missing or incorrect order
of API calls, and incorrect guard conditions. ExampleCheck uses program slicing to
remove statements that are not related to a given API, which improves accuracy in
the mining process. It combines frequent subsequence mining to retain important API
usage features, including the temporal ordering of related API calls, inclosing control
structures, and guard conditions that protect an API call. ExampleCheck targets 100
Java and Android APIs that are frequently discussed on Stack OverFlow.

MuDetect [13] is a misuse detector that automatically learns frequent API-usage
patterns from Java projects. MuDetect encodes API usages as API-Usage Graphs
(AUGs) that captures all usage properties based on data and control flow analyses.
AUG is a directed, connected multigraph with labelled nodes and edges. Node represent
data entities, such as variables, and actions, such as method calls, conditions, itera-
tors and exceptions; edges represent control and data flow between entities and actions
represented by nodes. MuDetect employs a code-semantic-aware, greedy frequent-
subgraph-mining algorithm to mine the patterns.

FOCUS [108] is a recommender system for mining API function calls and usage
patterns based on collaborative-filtering. Focus mines open-source project repositories
to recommend API method invocations and usage patterns by analyzing how APIs are
used in projects similar to the current project. This technique considers both project
and declaration similarities to recommend API function calls and usage patterns. The
code parser of Focus extracts method declarations or invocations from the source code
or byte of the projects. Focus is evaluated on a large number of Java projects extracted
from GitHub and Maven Central.

2.4.3 Other Learning Approaches

Above we describe the most closely related work to the work presented in this thesis.
However the literature include much more work in the area of knowledge discovery from
source code artifacts, which we present in the following.

API specifications: To mine specifications, many approaches have been proposed that
mainly rely on existing client code. However, as presented in Section 2.2.2, for specific
APIs, client code might not be available or is insufficient. As a consequence, for such
APIs, other approaches have been proposed that consider its documentation as the main
source for automatically inferring specifications.

Doc2Spec [180] uses a NLP technique to analyze natural language API documentation
to infer resource specifications. The inferred specifications are then used to detect bugs
in open-source projects. On the other hand, D2Spec [167] uses semi-structures online

45

2 Background and State of the Art Survey

API documentation (typically in form of HTML pages) for automatically extracting web
API specifications. Given a seed online documentation page of an API, D2Spec first
crawls all documentation pages on the API, and then uses a set of machine-learning
techniques to extract the base URL, path templates and HTTP methods - from API
documentation pages containing free-form text and arbitrary HTML structures. More
specifically, D2Spec uses classifiers and a hierarchical clustering algorithm to extract a
base URL and path templated for an API, and searches the context of a path template
to infer the HTTP method.

Bug reports: Bug reports published in bug repositories are usually composed of a mix-
ture of sentences in software language and natural language, and the domain-specific
predefined fields. For this reason, many approaches are proposed for automatically gen-
erating bug reports summaries, which are an effective way to reduce considerable time
in wading through numerous bug reports. BNER [181] is an approach for bug-specific
entity recognition based on Conditional Random Fields (CRF) model and word embed-
ding technique. DeepSum [65] is an unsupervised approach that integrate the bug-report
characteristics into a deep neural network for generating bug report summaries.

Clone detection: Deep Learning (DL) can effectively replace manual feature engineer-
ing for the task of clone detection. Source code can be represented at different levels
of abstractions: identifiers, abstract syntax trees, control flow graphs, and byte-code.
Tufano et al. [153] applies neural networks on the different representation of source code
to identify similarities (clone detection) in source code. They conjecture that each code
representation can provide a different, yet orthogonal view of the same code fragment,
thus, enabling a more reliable detection of similarities in code.

Code-example retrieval: Many other approaches do not synthesize different API usages
found in source code into patterns, but instead present to developers previously written
code snippets by searching through large-scale codebases based on a user-query. For
example, MUSE [95] is an approach that mines and ranks code examples to show concrete
usages for a specific API method. In this case, the user-query is represented by the API
method of interest. CODEnn [45] is based on deep neural networks for suggesting
relevant code snippets to developers to complete a task at hand. CODEnn jointly
embeds code snippets and natural language descriptions (in the form of commented
methods) into a high-dimensional vector space. In such a way, code snippets related to
a natural language query can be retrieved according to their vectors.

Code synthesis: Existing heuristics methods in pairing the title of a post with the code
in the accepted Stack OverFlow (SO) answers are limited both in their coverage and
the correctness of the NL-code pairs obtained. Yin et al. [170] propose a method to
mine high quality aligned data from SO using two sets of features: hand-crafted features
considering the structure of the extracted snippets, and correspondence features obtained
by training a probabilistic model to capture the correlation between NL and code using

46

2.4 Survey on API Usage Pattern Learning Approaches

neural networks. These features are fed into a classifier that determines the quality
of mined NL-code pairs. The method uses for training labelled examples. Reasonable
results are achieved even when training the classifier on one language and testing on
another (Java, Python), showing promise for scaling NL-code mining to a wide variety
of programming languages beyond those for which we are able to annotate data. At the
same time, Peddamail et al. [115] uses neural networks for the task of code summarization
to automatically generate a natural language summary for a given code snippets. It is
based on using a dataset of pairs < NL, code > for training their model. Hu et al. [55]
uses neural networks to automatically generate comments for method declarations.

Software artifacts classification: Software artifacts provide insights into how people
build software. Ma et al. [76] propose an automated approach based on machine learn-
ing techniques for automatic classification of these software artifacts into open-source
applications.

Test generation: Borges et al. [19] mine associations between UI elements and their
interactions from the most common applications. Once mined, the resulting UI inter-
action model can be easily applied to new apps and new test generators. For exam-
ple, AppFlow [54] is a system for synthesizing robust, reusable UI test. It leverages
machine learning to automatically recognize common screens and widgets, relieving de-
velopers from writing ad hoc, fragile logic to use them in tests. It enables developers to
write a library of modular tests for the main functionality of an app category. It can then
quickly test a new app in the same category by synthesizing full tests from the modular
ones in the library. By focusing on the main functionality, AppFlow provides ”smoke
testing” requiring little manual work. Optionally, developers can customize AppFlow
by adding app-specific tests for completeness.

Variable names generation: Jaffe et al. [57] present a machine translation approach
to generate meaningful variable names for decompiled code. They consider decompiler
output to be a noisy distortion of the original source code, where the original source
code is transformed into the decompiler output. Using this noisy channel model, they
apply standard statistical machine translation approaches to chose natural identifiers,
combining a translation model trained on a parallel corpus with a language model trained
on unmodified C code.

2.4.4 Discussion

Overall, we reviewed 65 approaches from the literature, 51 of which are closely related
(Section 2.4.2) to the work presented in this thesis, and the other 14 (Section 2.4.3) differ
slightly from the focus of this thesis, for example the application domain, or the type of
artifact used for training their models.

The approaches presented in Table 2.1 target either C, C++, Java or JavaScript projects
for learning their models. Only few approaches have been applied across multiple lan-
guages: (1) CarMiner analyzes C++ and Java code. (2) PRMiner analyzes C and C++

47

2 Background and State of the Art Survey

code. (3) Both CBFA [173] and Quante et al. [125] analyze Java and C code. (4) The
approach proposed by Gruska et al. [44] can be applied on different programming lan-
guages, since it uses a language-independent parser.

11 approaches use exclusively dynamic analyses, 37 approaches use exclusively static
analyses, and 3 other approaches use a mixture of both static and dynamic analyses:
(1) Whaley et al. [163] use static analysis to deduce illegal call sequences, and dynamic
analysis to extract models from execution runs. (2) Pradel et al. [121] use dynamic
analysis to extract multi-object specifications from method-call execution traces, and
static analysis to verify those specification on a given target codebase for the purpose
of bug detection. (3) Weimer et al. [161] uses dynamic execution traces from mining
specifications, and static analysis for detecting exceptional control-flow paths in source
code. All the analyzed approaches are based on the following assumptions for learning
API patterns: usages that occur frequently correspond to correct usages or, in other
words, that the majority of usages is correct. This implies, that frequent usages identify
correct specifications between code elements.

The analyzed approaches distinguish between three different goals: documentation
and understanding of usage patterns ([85, 163]), detection of violations to usage patterns
([66, 91, 13]), and recommendation of API elements ([164, 21, 102]). Approaches used in
the application domain of code recommendation, can be distinguished into: (1) recom-
mendation of a single API element at a time, based mainly in learning unordered usage
patterns ([21]), and (2) recommendation of complete code snippets ([178]).

Most of the approaches discussed in this thesis (34 approaches, 67%) fall into the
category of sequential pattern mining. This is not surprising: although unordered pat-
terns are useful and easy to implement, they are mostly limited to variants of frequent
item set mining. The most commonly stated goal for mining sequential API patterns
are bug detection (22 out of 34 approaches, or 69%). Robillard et al. [132] refer to
approaches learning sequential-order patterns simply specification mining techniques.
Initially, many sequential inference techniques were primarily developed for the general
goal of documentation and program understanding. Lately, techniques increasingly focus
on bug finding. However, unordered usage patterns can also be used to detect bugs. For
example, if an approach determines that API methods open and close should be called
within the same function, then the presence of an unmatched open method is evidence
of a potential bug. Mining sequential patterns require more sophisticated analyses than
for unordered patterns. The extension to sequential patterns introduces many new and
challenging research problems, such as how to store abstraction of sequences efficiently
and how to infer useful patterns given an observed sequence.

Program Analysis: Existing API-usage pattern learning approaches (see Table 2.1)
extract information from source code using either static or dynamic analysis. Most of the
surveyed approaches infer patterns that represent constraints on a single API element,
typically a single reference type. There are some constraints, however, that span multiple
types in combination. For instance, one may be interested in inferring that a socket’s
streams should only be used as long as the socket itself has not been closed. We find that

48

2.4 Survey on API Usage Pattern Learning Approaches

only 5 of the reviewed approached infer ”multi-object type properties”. The reason for
this is probably that single-object approaches are much easier to design and implement.
Static multi-object approaches not only have to solve the aliasing problem for individual
objects but also need to relate multiple objects with each other [17, 99]. Dynamic
approaches must use expensive mappings to associate state with multiple combinations
of objects [63].

Static Analysis: All approaches based on static analysis use code (snippets) as input
for learning the patterns. Some require the code in a compiled format, such as Java Byte
code [111], while others directly work on source code ([21, 110, 178]). They typically
represent usages as sets, sequences, or graphs and mine patterns through frequent item-
set/subsequence/subgraph mining, according to their usage representation. A strength
of approaches based on static analysis is that they represent quite naturally different
usage elements and their relations, since they encode usages as abstractions from how
they appear in code. Another strength of static analysis based approaches is that they
can train on code examples from various sources, such as documentation, code-search
engines, or online sites, even if these are not compilable or executable. This makes it
easier to obtain sufficiently many usage example for different APIs and enables cross-
comparison of examples from different sources, which might help to mitigate biases.
However, none of the approaches from the literature makes use of more than one source
of usage examples, except of MuDetect that uses different sources for building its
ground truth MuBench. Static approaches work directly on the artifacts related to the
API of interest. Robillard et al. [132] distinguish static approaches between the type of
artifacts they target. A popular strategy is to analyze source code that uses the API
(Client Code). This source code does not necessarily need to be executable. Whaley et
al. [163] infer finite-state specifications through static code analysis by inferring possible
call sequences from program code. Another strategy, employed by JRF [179], is to derive
rules by analyzing the code of the API itself, instead of client applications that use an
API.

Dynamic analysis: Approaches based on dynamic analysis use execution traces to
learn their models. They learn either association rules between (sets of) API elements or
finite-state automata representing object states. A major limiting factor is that current
dynamic approaches can only learn patterns of a predefined set of APIs. This set may
be defined explicitly [120] or implicitly, e.g., as all APIs from a certain package [121]
or library [40, 72, 101]. They need this, in order to decide whether a method call
m() should itself become an event in the call trace or whether the execution of m()

should be tracked to potentially add transitive calls to the trace. Therefore, dynamic
detectors usually focus on learning patterns of widely used APIs, e.g., from the Java
Class Library, and neglect less-commonly-used and project-specific APIs. Dynamic
approaches work on data collected from a running program. A tool can read the trace
online (while the program is executing) or offline by first recording a trace as the program
runs and then reading the trace after the execution has terminated. Some techniques are
not only online; they actually have to run the source code because they heavily interact
with the running program (i.e., it is not sufficient to have pre-collected traces). A typical
example in this category is OCD [40]. Furthermore, some of the dynamic approaches

49

2 Background and State of the Art Survey

are not fully automatic and require additional input from a human expert [14].

Mining Algorithms: All approaches listed in Table 2.1 mainly use mining algorithms
that aggregate the information extracted through static or dynamic analyses.

Clustering algorithms group similar code instances extracted through program
analyses into clusters based on some similarity metrics: RASCAL [80] extracts informa-
tion about the methods called within each analyzed class, and uses this information to
group similar classes together based on the methods they call. BMN [21] and PBN [123]
use respectively k−nearest neighbor and canopy clustering to group similar instances of
an API type based on the API methods they instantiate. Precise [172] use static anal-
ysis to built a usage database that stores the information which parameters are used for
an API in a specific context. Precise uses k−nearest neighbor to cluster usages based
on similarity of their context information. Focus [108] uses collaborative-filtering for
recommending snippets of method calls within a given context.

Statistical models calculate a probability distribution over a set of observations
extracted from a training corpus. DMMC [91] and PBN [123] calculate the probability
that an instance of an API type instantiate a given method call within a given context.
SLANG [129] and DroidAssist [111] extract sequences of method calls through static
analysis, and generate respectively a statistical language model and a Hidden Markov
Model to calculate a likelihood probability of their occurrences within a given code
context. Salento [96] learns a joint distribution P (X,Y, Z) from the usage examples
in the training code, where X is a random variable over method calls, Y is a random
variable over behaviors, and Z is a random variable over specifications.

Finite State Automata (FSA) represents code as a set of state (e.g. the program
state) and a transition function between the states (e.g. the instantiation of a method
call, or control flow). Approaches based on FSA, usually are based on dynamic analyzes
to extract program execution traces and summarize frequent interaction patterns as
FSAs states and transitions [14, 40, 101, 121, 163, 166]. Jadet [158] on the other
hand, uses static analyzes to build a directed graph of finite state automata whose nodes
represent method calls on a given object and whose edges represent control flow.

Frequent item-set mining learns patterns of API element that frequently co-occur
in the training code corpus. Most of the approaches based on frequent item-set mining
use static analysis to extract API element occurrences from source code, and based on
some thresholds output frequent sets of such co-occurrences as patterns [21, 66, 71, 149].
Some approaches use associate rule mining to output patterns of frequent set pairs
in the form of antecendent → consequent [72], or frequent pairs of method call se-
quences [150]. CodeWeb [85] mines pairs of method calls containing only one an-
tecedent and one consequent. Alattin [149] generate association rules about condi-
tions that must occur before or after a specific API call. Jadet [158] collects sets of
API temporal properties observed in client methods, e.g., hasNext→ next, get→ set
from object-specific intra-procedural control-flow graphs and provides those temporal
properties to a frequent item set miner.

Sequence mining extracts sequences of API elements from source code using either

50

2.4 Survey on API Usage Pattern Learning Approaches

static [126, 178] or dynamic analysis [3], and based on some pre-defined thresholds, learn
patterns as frequent occurrences of such sequences.

Subgraph mining converts source code into a graph representation and based on
some pre-defined thresholds, learn patterns as frequent subgraph occurrences from such
graphs. GrouMiner [110] and MuDetect [13] convert each target method into a graph-
based representation, where nodes represent method calls, conditions and iterations, and
edges represent control and data flow. Then, they apply an a-prior-based algorithm on
the generated graphs to identify frequent subgraph occurrences from such graphs in
source code.

Deep learning is based on neural networks which are usually composed of multiple
computational layers between the input and output layer. The neural network identi-
fies a mathematical manipulation to turn the input into the output by calculating the
probability of an output through each layer. Although training these models requires
substantial regularization and their memory capacity is somewhat limited in practice.
Learning the mapping between natural language (NL) and programming language, such
as retrieving and generating code snippets based on NL queries and annotating code
snippets using NL has been explored by lot of research works [8, 55, 56]. At the core
of these works are machine learning and deep learning models, which usually demand
for large datasets of < NL, code > pairs for training (i.e. [168]). DeepAPI [46] adopts
a supervised version of deep learning by using as input pairs of annotated API se-
quences with natural language description, information which is not always available.
CODEnn [45] use deep learning for extracting relevant code snippets based on code
search. DeepCode [115] automatically generates a natural language summary for a
given code snippet. Deep learning methods are useful for high-dimensional data and are
becoming widely used in many areas of software engineering. However, deep learners
utilize extensive computational power and can take a long time to train - making it
difficult to widely validate, repeat and improve their results. Furthermore, they are not
the best solution in all domains. Menzies et al. [83] show that other classifiers perform
as good as slower deep learning methods, and at the same time are at the range of 500
times faster than deep learning-base approaches.

Applications The learned patterns from each approach listed in Table 2.1 are evaluated
on one of the three application domains: code recommendation, bug detection and API
documentation generation. Most of the approaches (29 or 57%) are used for the purpose
of bug detection in source code, using mainly precision [66, 149, 158], or both precision
and recall [13] as evaluation metrics. Approaches that learn patterns for the application
domain of code recommendation (17 or 33%) usually are evaluated using recall by re-
moving some of the API elements from a code snippet, and checking if the tool is able
to return the expected recommendation [21, 123]. In the meantime, very few approaches
(8 or 16%) learn patterns for the purpose of automatic API documentation generation,
which requires mainly a manual evaluation of the learned patterns [85]. In fact, two of
these approaches are also used in the application domain of bug detection [163], and
code recommendation [22].

51

2 Background and State of the Art Survey

Approaches used for the purpose of code recommendation, are based on static analysis
of source code, since also the recommendations they produce should represent code
snippets as they are written by developers in their code editors. On the other hand,
approaches focused on bug detection use both static and dynamic analyses, since they
are also interested to extract information about execution traces that might cause an
exception or an invalid execution of the source code [3].

Depending on the specific application domain, some approaches apply domain knowl-
edge filtering heuristics on the learned patterns, to further improve the quality of the
results [85, 22].

Conclusions: Most of the learning algorithms used in current software engineering ap-
proaches (37%) are frequency-based, where the main intend is the aggregation of the
artifacts collected through program analyses into some representative patterns. How-
ever, even though not widely used in API pattern learning approaches, NLP techniques
and machine learning algorithms find applicability in other domains of software engineer-
ing. For example, AppFLow [54] adapts machine learning for the purpose of common
screens and widgets recognition, Jaffe et al. [57] employs a machine translation approach
for the purpose of variable names generation, in clone detection NLP and neural net-
works have successfully replaced manual feature engineering [153], end so on. Braiek et
al. [20] examine the relationship between software development and modern Machine
Learning (ML), and actually found that ML is in between the stages of early adoption
and early majority. As a matter of fact, all the approaches presented in this review rely
on program analyses to either represent source code in some predefined structure that
guide the learning process, or to extract certain code artifact features. As a second step,
different learning algorithms are applied on the extracted code artifacts to aggregate the
collected information into some meaningful formats, relying mainly on simple frequency
occurrences (FSA, subsequence, subgraphs, statistical methods), or similarity metrics
(clustering). More advanced learning approaches are adapted in the recent years, such
as neural networks, which rely on annotated (natural language, source code) pairs for
training their models and generating new predictions. However, the code annotation is
not always available and correct, which makes it practically difficult to build data corpus
for training such models.

Since source code represent complex structure and semantics that should be captured
during the learning process, program analysis are important in order to capture the right
semantic of source code. In these circumstances, finding and applying the right learning
algorithms that might require the least program analyses effort to extract such code
semantics and at the same time be able to uncover latent knowledge from source code is
in fact the main challenge. Fortunately, the machine learning community has developed
many general-purpose algorithms that can automatically discover latent knowledge from
data. Such algorithms we explore in Chapter 3 and Chapter 4, and evaluate if the latent
knowledge they are actually able to discover is also relevant in software engineering
applications.

52

3 Matrix Factorization to Improve
Scalability in API Method Call Analytics

Software repositories, such as code repositories and bug-tracking repositories, have
shifted from becoming archival entities to sources of valuable, actionable information
that can be used to automatically guide development and maintenance activities [50].
Such repositories usually contain vast amounts of data that need to be processed and
reason about in order to come up with useful recommendations to developers. Examples
of such recommendations include which method to call next, which file is more likely to
contain bugs, or a fix for some code the developer has written.

As a consequence, many automated software development and maintenance support
tools have been developed over the years, which rely on analyzing large amount of data
from code repositories (e.g. code recommenders). Code recommender systems inside of
IDEs greatly aid programmers in writing code. It is common for such recommender sys-
tems to rely on pattern detection from the gathered data through clustering approaches
to build the underlying models [172, 173]. These systems suggest method calls that are
relevant to the current editing context, as shown by [21, 123, 130]. This is possible by
comparing the editor content to the learned code patterns. The proposals are based
on methods that other developers have used within a similar context and are sorted
according to their relevance.

To be accurate, and thus useful, intelligent code completion systems need to mine
large numbers of code repositories to increase the probability that the detected patterns
are indeed relevant for developers. Furthermore, to increase the quality of the predicted
method calls, more features such as contextual data have been considered. However,
these extra features and the vast amount of data available in code repositories can lead
to memory bloat, slowing down the query time and affecting the scalability of the system
in general. Large model sizes require more main memory to be loaded and slow down
querying time, limiting the usefulness of recommender systems in practice. Therefore,
the trade-off between quality and efficiency is important, as a very slow recommender
system would hinder development.

In this chapter, we investigate Boolean Matrix Factorization (BMF) as an alterna-
tive clustering technique to handle large amounts of data, by automatically removing
noise data and finding the optimal patterns to represent the data space. BMF is a
well-known machine learning approach used to represent big data sets through smaller
dimensions, while at the same time removing noise [89]. BMF addresses the scalability
issue mentioned above by breaking large matrices into smaller factor matrices. Matrix
Factorization (MF) has already been shown to perform well for recommender systems
used by Amazon and Netflix [61]. We want to bring the same benefits to recommender

53

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

systems for software engineering to deal with increasing amounts of data. Specifically, we
investigate if BMF can be used to improve analytics of code repositories in the context
of intelligent method call completion.

To evaluate the effect of using BMF, we adapt the Mdl4Bmf algorithm developed
by Miettinen et al. [89], which automatically calculates the factorization rank (number
of clusters in clustering terminology) by using the Minimum Description Length (MDL)
principle. To fully adapt BMF to code completion context, we implement a heuristic
on top of the existing BMF algorithm: the multiple assignment heuristic (i.e., API us-
ages that might get assigned to more than one pattern). More details can be found
in Section 3.2.2.

We evaluate our approach on the SWT framework APIs in the code of 3,186 plug-ins
obtained from the Eclipse Kepler update site. We compare prediction quality, model size,
and inference speed of BMF to those of a previous intelligent method call completion
recommender that uses canopy clustering [123]. Our evaluations show that BMF greatly
reduces the model size by up to 80% and improves inference speed by up to 78%, with
no significant effect on prediction quality. Based on these results, we conclude that
BMF is promising in the context of intelligent method call completion and speculate
that other software engineering applications (i.e., artifact co-changes [171]) that rely on
large amounts of input data, may also benefit from such an approach.

3.1 Background & Motivation

In this chapter of the thesis, we focus on method call completion. In other words,
the developer knows the object type (s)he needs but has to decide which method has
to call next. Previous work that focus on improving method call completion often
used only parts of the context information available such as the type of the receiver
object, the set of already performed calls on the receiver, and the inclosing method
definition [21, 52, 130]. Proksch et. al. [123] showed that using additional context
information such as definition sites, parameter call sites, and class context does improve
the prediction quality (i.e., the F1-measure). While introduced Pattern-based Bayesian
Networks (PBN) and used canopy clustering to allow a better handle of the increased
amount of input data, the authors found that using the additional contextual information
nearly doubled the model size forcing them to consider the trade-offs between adding
more useful contextual information and the increase in model size. They advocate for
more intelligent machine learning algorithms that can further reduce the model size to
allow using more context information.

Furthermore, pattern learning approaches often report numerous spurious patterns.
Spurious patterns represent co-occurrence of instances to API elements that are found in
the data but that do not correspond to sensible or useful usage patterns. The standard
strategy to reduce the noise in detected usage patterns is to hand-craft filtering heuristics
based on knowledge about the approach or the domain.

This part of the thesis proposes using Boolean Matrix Factorization (BMF) as a mean
of building smaller models. We build BMF on top of PBN pipeline, shown in Figure 3.1,

54

3.1 Background & Motivation

m1() - 90%
m2() - 56%
m3() - 27%

...
Method proposals

Analyze
Code

1
0
0
...

0
1
1
...

0
0
0
...

...

...

...

...

Data representation

Calculate
BN

Cluster
OUs

(1 ? 1 ? ? …)Query

Calculate
proposalsCode snippets

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
 @Override
 void n(T ou3) {
 ou3.m2();
 ou3.m3();
 }
}

class A implements I {
 @Override
 void m(T ou1) {
 ou1.m1();
 ou1.m2();
 }
}

class B implements J {
 @Override
 void m(T ou2) {
 ou2.m1();
 ou2.m2();
 ou2.m4();
 }
}

class D implements K {
 @Override
 void o(T ou4) {
 ou4.m4;
 }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE

in
:

I.m

in
:

J.
n

in
:

K
.o

ca
ll:

m
1

ca
ll:

m
2

ca
ll:

m
3

ca
ll:

m
4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
false ...

P3
Call: m2

0
P2P1

true 10
false ...

P3
Call: m3

1
P2P1

true 00.33
false ...

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

Patterns

ou1
ou2 ou3

…

ou5 P1
P2

PBN inference engine

PBN Pipeline Inferring Method Proposals

31 2 4

Figure 3.1: Pattern-based Bayesian Network Pipeline, where clustering (dashed frame)
is exchanged with BMF

where we replace the dash framed part with BMF (see Section 3.2). We start with
describing the general PBN pipeline in Section 3.1.1. Next we state the problems with
the current PBN recommender system in Section 3.1.2. Finally, we motivate the use of
BMF by explaining how it can overcome several drawbacks of canopy clustering used in
PBN in Section 3.1.3.

3.1.1 PBN Pipeline

The Pattern-based Bayesian Network (PBN) is an extensible inference engine for in-
telligent method call completion. It is structured as a four step pipeline as shown
in Figure 3.1: (1) Analyze code repositories to extract object usages - example usages
of APIs of frameworks or libraries, (2) cluster object usages to detect patterns in the
data, (3) calculate the Bayesian network (inference engine) based on the detected pat-
terns, (4) query the PBN for method proposals by providing incomplete object usages
as queries. The engine returns method proposal tuples of the form (method, probability),
ordered by probability.

In the following, we elaborate more on each step. Step 3 (framed in Figure 3.1)
is the extension point of PBN as the clustering approach can be exchanged. In our
work, we replace this step by Boolean Matrix Factorization (BMF) as will be explained
in Section 3.2.

Analyze Code repositories The input data for PBN is generated by statically analyzing
code repositories for object usages. An object usage is an abstract representation of an
example usage of a specific instance of an API type. It contains different features that
describe the specific usage, such as the method calls invoked on the instance at hand,
the enclosing class and the method context, the definition site, and all parameter call
sites.

Figure 3.2 shows five code snippets that we use as a running example. They are
analyzed to collect information for the object type T. The pipeline is executed separately
for each object type in the API for which a recommender is built. The first object usage
ou1 has a method context I.m and two receiver call sites m1 and m2. Thus, these three
features can describe ou1. Note that the method context always points to the type in
the hierarchy in which the method signature is defined first. Therefore it is I.m and not

55

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

Figure 3.2: Code snippet examples from code repositories

Table 3.1: Object Usages represented in the feature space

in
:

I.
m

in
:

J
.n

in
:

K
.o

ca
ll

:
m

1

ca
ll

:
m

2

ca
ll

:
m

3

ca
ll

:
m

4

ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A.m. This is a generalization that may lead to replications of the same object usage. For
example, ou5 of type T is observed in class A2 that implements I. It contains the same
combination of method invocations as ou1, and will thus have the same binary vector
as ou1. Similar information is gathered for the other snippets.

Based on such analysis, code snippets are transformed into the processable format
shown in Table 3.1, where columns represent the set of all features that appear in the
code (the feature space). While all feature kinds (method calls, method context, class
context, definition site, and receiver call site) are considered, the examples in this part
are reduced to method calls and method context for easier illustration. Each row in
the table represents a single object usage from the examples. The table may contain
duplicate rows because of the context abstraction. In contrast to previous work where
these are kept as separate rows in the table (such as in Table 3.1), we merge duplicates
and introduce a frequency vector as will be discussed in Section 3.2.

The transformation is performed in two steps. First, all features are collected in a fea-
ture set that spam the available feature space in which all usages can be represented. Sec-
ond, each object usage is transformed into a binary vector in the feature space. The
dimension of each feature contained in the object usage is set to 1, all other dimensions
are set to 0.

Identify Patterns The matrix generated in the previous step is passed to the clustering
component in the PBN pipeline that looks for similar vectors (object usages) that can
be grouped into patterns (see Figure 3.1). The clustering component is exchangeable
and represents the extension point that we address in this part of the thesis. The output
of the clustering step is a list of patterns. The original pipeline uses canopy clustering,
which identifies three patterns from the example in Table 3.1: P1 contains ou1, ou2 and
ou5 ; P2 contains ou3 ; and P3 contains ou4.

56

3.1 Background & Motivation

A pattern itself has a probability between 0 and 1, and every feature in the feature
space also has a probability within this pattern. For example, the object usages ou1, ou2
and ou5 are similar so they end up in the same cluster. The resulting pattern p1 has
the probability 0.6, because it contains 3 out of the 5 object usages. Formally, the
probability of a pattern P is calculated as follows:

p(P) =
np

ntotal
(3.1)

where np is the number of object usages in P, and ntotal is the total number of object
usages being analyzed for the given API type.

The probability of each feature in a pattern is determined by the fraction of object
usages that posses this feature over the total number of object usages within the pattern
being analyzed, e.g., 2

3 of the usages were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature space of pattern p1
is (0.67,0.33,0,1,1,0,0.33). Formally, the probability of a feature f in a given
pattern P, where nf is the number of object usages in P that contain f is:

p(f |P) =
nf

np
(3.2)

To detect these patterns, PBN [123] uses a variant of canopy clustering that follows
a simple algorithms:

1. Randomly select an object usage.
2. Calculate the distance to all remaining object usages.
3. Select all object usages closer than a specified threshold.
4. Merge these into a centroid that represent the cluster.
5. Remove all selected object usages.
6. Repeat steps 1-5 until no object usages are left.

The result of canopy clustering is a list of centroids together with their probabilities,
calculated by relating the number of object usages that are assigned to the corresponding
cluster to the total number of available object usages. In our example, three patterns
(P1, P2, and P3) are identified: P1 contains ou1, ou2 and ou5; P2 contains ou3; and P3

contains ou4.
The output of the clustering step is a list of patterns. It is necessary that each pattern

assigns probabilities to all dimensions of feature space. Additionally a pattern has a
probability of occurrence itself.

Calculate Bayesian Network (BN) The patterns created in the clustering step are
used to create the Bayesian network that is used to infer method proposals. Figure 3.3
shows the PBN corresponding to our running example. The root node contains all
the identified patterns (three in our case) with the corresponding probabilities. The
other nodes contain the different features with the corresponding probabilities within
each pattern. Recall that we only show the method context and method calls here for

57

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

P1
P2

0.6
0.2

P3 0.2

Patterns

0
P2P1

true 01
1false 0 1

P3
Call: m1

0
P2P1

true 11
0false 0 1

P3
Call: m2

0
P2P1

true 10
0false 1 1

P3
Call: m3

1
P2P1

true 00.33
1false 0.67 0

P3
Call: m4

K.o 100

0
P2P1

I.m 00.67
1J.n 0.33 0

P3
Context

Figure 3.3: Bayesian network in the PBN inference engine

simplicity. However, the actual network would contain additional nodes for the class
context, definition site, and parameter call site. Also note that all call nodes have two
states (i.e., true and false), which denote the probability of a method to (not) be called.

Query the BN When a query is provided to the recommender (top right of Figure 3.1),
the constructed Bayesian network is used to infer method proposals. A query is itself an
object usage that was extracted from the source code under edit. All observed informa-
tion is set as evidence in the network, which enables the calculation of the probability
for all remaining methods (i.e., the unobserved features represented by question marks).
The output of PBN is a list of method calls with an assigned probability. Only methods
with a probability higher than 30% are proposed to the (hypothetical) user. While this
threshold can be configured, we follow previous work [123] and select the same threshold
for comparability.

3.1.2 Problem Statement

We selected the top five frameworks (according to the number of object usages) in the
Eclipse plug-in dataset. Figure 3.4 shows the model sizes obtained by PBN for all API
types in the selected frameworks. As the number of object usages available for a type
increases, the model size linearly increases. With the increasing number of available code
repositories that can be mined, a single API type can have more than 100,000 usages. A
quick search for org.eclipse.swt.widgets.Composite (a framework-specific type) and
java.util.ArrayList (a core Java library type) on Github returns over 220,000 and
750,000 files, respectively. If we assume each of these files contains only one object usage
of the respective type and extrapolate on the shown graph, the model size for a single
type would reach 75MB. A recommender system should be able to support hundreds of
types. If only 100 API types would be loaded simultaneously, the model size would sum
up to 7.5 GB.

58

3.1 Background & Motivation

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

0	 5,000	 10,000	 15,000	 20,000	 25,000	 30,000	 35,000	 40,000	 45,000	 50,000	

M
od

el
	S
iz
e	
(M

B)
	

Number	of	Object	Usages	

SWT	 JFACE	 Papyrus	 UI	 EMF	

Figure 3.4: Scalability of model size in existing PBN

One problem with such large model sizes is that bloated models can greatly slow
down the querying time. Additionally, models need to be loaded from hard drive and
deserialized, before they can be used in the IDE. This startup delay can be avoided by
caching loaded models. Note that a recommender may need to load multiple models
in-memory to instantly support different API types that developers may use in the IDE.
Smaller models consume less main memory such that it is possible to load more models
at the same time, preventing unnecessary delays.

Problem 1: As more contextual information is used to describe the code in the models
and as the number of input object usages increases, model sizes become increasingly
big.

As more code repositories are being mined and additional context information is being
used, more noise (erroneous data) is likely to appear in the models, If the clustering
technique being used does not effectively filter out noise, then accurate models cannot
be produced.

Problem 2: More input data may result in more noise that should be filtered to
provide accurate recommendations.

Therefore, clustering has some problems that makes it less optimal. The typical
clustering methods partition the object space, meaning that a single object cannot be
assigned to multiple clusters. Further, all objects must be associated with some clusters

59

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

and the algorithm cannot ignore even the most obvious outliers. Both of these restrictions
are unnatural to the task, and removing them should improve the quality of the results.
Another problem with clustering is the selection of the optimal number of clusters needed
to represent the data. With popular clustering algorithms, such as k-means, the number
of clusters must be specified a priori. The canopy clustering algorithm however, does
not require setting the number of clusters, but with it, the user typically has to define
two thresholds in order to determine the distance between the data points that will be
clustered.

We propose to use the matrix factorization methods instead of clustering. In particu-
lar, we propose the use of the Boolean Matrix Factorization (BMF). Matrix factorization
can be considered a relaxation of the canopy-clustering, where the strict partition re-
quirement is relaxed to group similar objects together creating clusters that do not have
to be disjoint or contain all of the objects. The BMF returns the possibly overlapping
clusters directly, but requires all involved matrices to be binary. With BMF we can
also use the Minimum Description Length (MDL) principle to automatically decide the
number of clusters without any need for parameters. Hence, BMF overcomes the is-
sues associated with clustering, and in our empirical evaluation, it typically outperforms
canopy clustering.

3.1.3 Intuition Behind Using BMF

Given the above two problems, we need to find a way to reduce the size of the model with-
out loosing important information. The pipeline in Figure 3.1 shows that the clustering
technique used in Section 3.1.1 (dashed frame) affects the number of patterns detected,
which in turn affects the size of the calculated Bayesian Network. Therefore, by using
advanced clustering techniques, we can reduce the resulting model size. Matrix Factor-
ization techniques provide an alternative clustering technique [28]. Previous work shows
that BMF performs better with binary data compared to other MF methods [145]. Since
the matrix used to represent object usages is already binary, BMF is well-suited in this
context. We expect BMF to produce smaller model sizes with accurate recommendation
than the currently used canopy clustering because of its following characteristics:

Identifies outliers and removes them from the data set. Canopy clustering requires
that all the data points must be assigned to clusters. This means that canopy clustering
cannot handle erroneous data points (outliers). However, big code repositories and
high dimensional data usually contain lots of noise that might significantly affect the
quality of the code recommenders. This issue can be resolved by BMF which is able to
automatically remove noisy data during the factorization process.

Avoids user-defined parameters to cluster the data. In the background, canopy clus-
tering uses two user-specified parameters t1 and t2 in order to determine the distance
between the data points that will be clustered. In practice, the user has two choices. The
first is to specify global values for t1 and t2 without taking into consideration that differ-
ent API types would require different values (as is implemented in PBN [123], where t1

60

3.2 Integrating BMF into PBN

and t2 have very similar values). The second would be to perform extensive analyses for
each API type individually in order to achieve better results. This of course introduces
a human-involvement bottleneck and scalability issues. Miettinen et al. [89] propose
to solve this problem by using the Minimum Description Length (MDL) principle [43]
for Boolean Matrix factorization. By using MDL (explained in Section 3.2.1), we can
automatically calculate the optimal number of patterns needed to represent every API
type in the code repositories specific to the given data set.

3.2 Integrating BMF into PBN

In this section, we present our new recommender system that uses a Boolean Matrix
Factorization (BMF) algorithm for generating patterns of object usages. In Section 3.2.1,
we give a brief description of BMF, formalize its problem definition and show how
it works. Next we describe how we integrate BMF into the code completion context
in Section 3.2.2 and Section 3.2.3.

3.2.1 Boolean Matrix Factorization (BMF)

Now that we have explained the intuition behind using BMF, we discuss how BMF
actually works and how we can use it to detect patterns in a given data set.

Problem Definition. Given a Boolean matrix A of size m× n and an integer k repre-
senting the expected factorization rank, find a factorization of A into a Boolean matrix
B of size m× k and a Boolean matrix C of size k×n such that the error introduced by
the factorization is minimized:

E = min(|A⊕ (B ◦C)|) (3.3)

where matrices B and C are factor matrices of A and the pair (B, C) is the (ap-
proximate) Boolean factorization of A. The factorization rank is the inner dimension of
the factor matrices, in our case the k− value from the previous definition. It represents
the number of clusters in the clustering terminology. In BMF, since the data matrix
A, factor matrices B and C, and the resulting product matrix are all Boolean, and xor
operation (represented as ⊕) is used to calculate the factorization error between the
original matrix A and the Boolean product of the two factor matrices B and C.

The Boolean matrix product is defined as (B ◦ C)(i, j) =
∨

k B(i, k)C(k, j); that is
the normal matrix product with the addition defined as 1 + 1 = 1. The goal of BMF is
to minimize the Hamming distance between A and B ◦C, where the number of columns
in B and rows in C is predefined (k). BMF requires all involved matrices to be binary.
We set A(i, j) = 1 if object i calls method j.

To provide the input matrix A for BMF, we use the same representation for object us-
ages as shown in Table 3.1, which is shown again in Figure 3.5 (differences to Table 3.1
are explained in Section 3.2.2). The rows of the data matrix A represent the object
usages, and the columns represent the features. Given such an input matrix, it will be

61

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

1 0 0 1 1 0 0
0 1 0 1 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

2
1
1
1

!

"

#
#
#
#

$

%

&
&
&
&

Frequency	
vector	

ou1	

ou2	

ou3	

ou4	

f1			f2			f3			f4			f5			f6			f7	

Matrix	A	

≈
0 1
1 1
1 0
0 0

!

"

#
#
#
#

$

%

&
&
&
&

1 1 0 0 1 0 1
1 0 0 1 1 0 0

⎡

⎣
⎢

⎤

⎦
⎥

!

P1		P2	

Factor	matrix	B	

P1	
P2	

Factor	matrix	C	

Figure 3.5: An approximation of the Boolean matrix A by the Boolean product of the
two factor matrices B and C. The frequency vector shows the number of
occurrence for the object usages.

factored into two factor matrices, B and C, shown on the right of the figure. One factor-
ization rank (a column in factor matrix B and its corresponding row in factor matrix C)
in matrix factorization has the same meaning as a cluster in the clustering approaches.
The object usages within a cluster are defined by the factor matrix B where B(i, j) = 1
means that object usage i is in pattern j. For illustration, matrix B in Figure 3.5
indicates that ou2 and ou3 belong to pattern P1.

As in clustering approaches, similar (different) data points need to be assigned to the
same (different) rank. This is ensured through matrix product algebra. Every element
in row r of matrix A is equal to the sum of the products of row r in matrix B and its
corresponding column in matrix C.

A(r, 1) =
∑

B(r, :) ◦ C(:, 1)
A(r, 2) =

∑
B(r, :) ◦ C(:, 2)

..
A(r,m) =

∑
B(r, :) ◦ C(:,m)

In this way, if there are two (or more) similar object usages in the data set, then they
will have similar rows in input matrix A. Following the above explanation, they will
also have similar rows in factor matrix B as well. Consequently, they will be assigned
to the same factorization rank in factor matrix B. While the factor matrix B returns
a set of patterns (clusters) to represent the object usages, factor matrix C returns the
feature occurrences per pattern.

The biggest challenge with any matrix factorization or clustering approach is how
to find the minimum number of patterns needed to represent a given data set. In the
following paragraph, we explain how this problem is solved in the BMF context and how
the factor matrices are generated. Section 3.2.2 shows how patterns are generated using
BMF, and Section 3.2.3 presents the incorporation of BMF into PBN.

Generating optimal factor matrices. For generating the factor matrices, we use
Mdl4Bmf, introduced by Miettinen et al. [90]. It is the first method that automatically
selects the Boolean factorization rank for BMF without requiring any user-predefined

62

3.2 Integrating BMF into PBN

value. Mdl4Bmf uses the Minimum Description Length (MDL) principle [43] for auto-
matically selecting the optimal factorization rank, in combination with the Asso algo-
rithm [86] for generating the factor matrices B and C.

Asso generates the factor matrices hierarchically, which means that the first column
of factor matrix B and the first row of factor matrix C are generated first. It then
continues to generate the second column and row, followed by the third column and row,
and so forth until the user pre-defined parameter for the factorization rank is reached. In
every round, it covers as much as possible from the uncovered 1s in the initial Boolean
matrix A, and it never backtracks to previous rounds. The fact that Asso continues
this process until a user pre-defined parameter is reached, means that Asso alone has
the same problem as any other matrix factorization or clustering approaches in selecting
the factorization rank (number of patterns needed to represent a given data set).

To solve this problem, Miettinen et al. [90] propose using the Minimum Description
Length (MDL) principle [43] in combination with Asso. The MDL principle selects
the model that requires the minimum number of bits (model length) to encode the
information in a Boolean matrix A with minimal loss. The model length for a Boolean
matrix A and its approximate Boolean factorization H = (B,C) is defined as:

L(A,H) = L(H) + L(E) (3.4)

where E represents the factorization error (error matrix) shown in Equation 3.5. The
total model length of the factorization, as shown in Equation 3.4, is defined as the sum
of the factorization length and the error length.

E = A⊕ (B ◦ C) (3.5)

The Mdl4Bmf algorithm makes use of the hierarchical property of Asso. In each
round of the Asso algorithm for generating a particular column and row of the factor
matrices, it calculates the total model length of the respective round. According to
the MDL principle, the best factorization rank is the one that minimizes Equation 3.4.
In this way, when the last s steps have not improved the model length, the algorithm
stops and the minimal factorization rank is returned. The parameter s represents the
maximum number of larger values for factorization rank that the algorithm will try after
the last decrease in model length. The user specifies the value of s. We use a value
s = 30, which is quite a large value given the maximum number of patterns we get from
our data set (around 60 patterns for the largest API type). This means that, if after 30
iterations, the model length does not decrease further, then Asso stops and returns the
minimal factorization rank with the corresponding model length.

A more detailed description of the Asso algorithm and how the model factorization
length and rank is calculated can be found in the work by Miettinen et al. [90].

3.2.2 Using BMF to Generate Patterns

We replace canopy-clustering with Boolean Matrix Factorization (BMF) to generate the
patterns. Replacing canopy-clustering with BMF is relatively straight forward.

63

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

0 1 0 1 1 0 1
0 1 0 0 1 1 0

!

"
#

$

%
&P1

(≈0.4)
1
1
!

"
#
$

%
&

0.0 1.0 0.0 0.5 1.0 0.5 0.5!
"

#
$

1 0 0 1 1 0 0!
"

#
$

P2
(≈0.4) 2[]

1.0 0.0 0.0 1.0 1.0 0.0 0.0!
"

#
$

 f1 f2 f3 f4 f5 f6 f7 f1 f2 f3 f4 f5 f6 f7

Figure 3.6: Patterns generated from BMF

In this section, we explain how we integrate BMF into the PBN pipeline and how
results might differ from canopy clustering. For this, we use the same working example
from Figure 3.2. The corresponding matrix from Table 3.1 is shown on the left of Fig-
ure 3.5. The input matrix contains exactly the same input data as Table 3.1. However,
instead of repeating duplicates rows (i.e., ou1 and ou5), BMF introduces a frequency
vector that stores the number of times a specific object usage is observed in the code
repository. Thus, the input data matrix A is reduced to four rows, but a frequency
vector is introduced that preserves count information.

Given the data matrix A, BMF would produce the factor matrices B and C shown
on the right of Figure 3.5. Note that for BMF, a given object usage may be assigned to
one or more patterns or to none of them (outliers). Even though canopy clustering is
considered a soft clustering algorithm, the variant used in the PBN pipeline reduces it
to a hard clustering algorithm because of the way distance values are configured. Each
data point is assigned to exactly one cluster

To ensure that patterns closely represent their contained object usages and to be
comparable with the canopy clustering configuration, we introduce a heuristic to handle
corner cases where the same usage is assigned to multiple patterns. The heuristic assigns
each object usage to one pattern that it is most similar to based on the Hamming distance
between the feature vector of the object usage in question and the patterns it belongs to.
The object usage is then removed from the other pattern(s) by changing its corresponding
value to 0 in factor matrix B. The object usage will only be assigned to multiple patterns
if they share the smallest Hamming distance. For example, in Figure 3.5, ou2 has been
assigned to both patterns P1 and P2. Since the Hamming distance to pattern P1 is 2
and to P2 is 3, we would remove it from P2 and assign it only to P1.

3.2.3 Calculating PBN

After the patterns are detected, we need to calculate the probabilities of the patterns and
of the features within a pattern. Such probabilities are calculated using Equation 3.1
and Equation 3.2, respectively. Note that the counts are taken from the introduced
frequency vector.

In canopy clustering, the probabilities of all the patterns sum up to 1, but this is not
the case for BMF since there are object usages assigned to multiple patterns or to none
of them (outlier). This is internally handled by the BN implementation, which does a
normalization of the pattern probabilities to sum up to 1.

64

3.3 Evaluations

BMF can be used in Step 2 of Figure 3.1. Its generated patterns from our example
(Figure 3.6) have the same format as those generated using canopy clustering and can
directly be used to calculate the BN in Step 3. After that, the inference engine can be
used to infer method proposals (Step 4).

3.3 Evaluations

We use the PBN pipeline from Figure 3.1 to compare the performance of the two clus-
tering approaches that have been discussed in this part of the thesis: canopy clustering
and BMF.

3.3.1 Data

For comparability, we reuse the publicly available dataset that was previously used to
evaluate PBN [123]. The dataset was obtained from the Eclipse Kepler update site, which
is the main source of plug-ins for all Eclipse developers. We focus our evaluations on the
SWT framework1, the open source UI toolkit used in the Eclipse development environment.
The static analyses identified 44 different API types used in our evaluation, with a total
of 190,000 object usages. We use 10-fold cross-validation to evaluate each extracted API
type. The object usages are disjointly assigned to 10 folds where the union of 9 folds
(training set) is used to learn the models, and the remaining one (validation set) is used
for querying the learned models. To avoid intra-project comparisons that may introduce
a positive bias to prediction quality, we ensure that object usages generated from the
same project are assigned in the same fold.

3.3.2 Recommender Evaluation

We focus our evaluation on three properties: prediction quality, model size and inference
speed.

Prediction Quality Any new clustering approach should not have a big negative effect
on the prediction quality. A big negative effect might outweigh any reduction in model
size or gain in inference speed. We therefore analyze the prediction quality first. For each
API type, the object usages in the validation set are used to query the model (learned
from the training set). Multiple queries are constructed by randomly removing about half
of the call sites from the original object usage (e.g., given an object usage with 3 calls, it
is possible to create 3 queries with 1 call). We build queries that mimic both sequential
(coding from up to bottom, or from bottom to up) and random (randomly adding
snippets of code in the program) coding styles. The code completion engine is called
on these incomplete object usages and the prediction quality is measured by calculating
the F1-measure between the ranked (list of) proposals and the removed method calls.
Proposal ranking is used to filter out proposals with a probability lower than 30%. In

1http://www.eclipse.org/swt/

65

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

Table 3.2: F1-measure of different recommenders

App. PBNBMF PBNBMF+ PBN15 PBN40 PBN60

F1 0.455 0.470 0.517 0.488 0.367

a last step, the different results of all queries generated from a single object usage are
averaged.

Model Size We report the total model size for both approaches (canopy clustering and
BMF) in Bytes. This is calculated by multiplying the number of stored float values in
the Bayesian Network, representing confidence levels, by the number of Bytes needed to
store float values on disk. Since each approach produces a different number of patterns,
the resulting model sizes differ. Specially, more patterns result in more values to be
stored in the network.

Inference Speed The inference speed measures the time needed for the code completion
engine to predict the relevant method calls for a given query. Inference speed is directly
related to model size. A smaller model size means that less time is needed to read the
models and calculate the proposals, and vice versa. We measure this time in milliseconds
and report an average inference speed for each API type (total computation time divided
by the total number of queries). For each type are selected at most 3,000 queries.

3.3.3 Evaluation Results

In the following, we present the evaluation results and compare the performance of both
clustering algorithms (canopy clustering and BMF) based on the three properties defined
in Section 3.3.2: prediction quality, model size and inference speed.

Prediction Quality We compare PBNBMF with and without the heuristic mentioned
in Section 3.2.2, to the three clustered configurations of canopy clustering originally
used on PBN [123]: PBN15, PBN40 and PBN60. The indices represent different dis-
tance threshold values used for canopy clustering, where smaller indices mean ”stricter”
clustering (more patterns).

Table 3.2 shows the F1-measure averaged over all the analyzed API types. The table
shows that our heuristic (PBNBMF+) does have a positive impact on prediction quality
compared to PBNBMF. This impact is more noticeable for specific APIs.

When compared to PBN15, PBNBMF+ compromises the prediction quality (-0.047).
This is expected since PBN15 is an almost unclustered model. PBNBMF+ is, however,
comparable to PBN40. The difference (-0.018) in prediction quality is not statistically
significant (p-value = 0.1257). according to the Mann-Whitney U-Test [98]. Note that
PBNBMF+ reaches a higher prediction quality than PBN60 (+0.103). Thus, to have a
fair comparison, we only compare PBNBMF+ with PBN40 in the remaining experiments.

66

3.3 Evaluations

0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	
5.5	
6.0	

F 1
-M

ea
su

re

M
od

el
Si

ze
 (M

B)

Button
(47,000)

Composite
(26,000)

Text
(24,000)

Label
(16,000)

Display
(10,000)

Table
(10,000)

Combo
(10,000)

Control
(8,600)

Shell
(7,400)

Tree
(4,700)

Group
(2,900)

TableColum
(2,400)

List
(2,000)

PBNBMF+ F1 PBN40 F1

PBNBMF+ Memory PBN40 Memory

Figure 3.7: F1-measure and model size for API types with more than 2,000 object usages.
Number of object usages used for each type shown in parenthesis.

Model Size After verifying that prediction quality is not compromised, we analyze the
effect of BMF on the model size. To do so, we compare the model sizes of PBNBMF+

versus those of PBN40. The model size depends on the number of available object
usages for a type since more object usages might result in more patterns and vice versa.
Therefore, we show the reduction of model size separately for each API type that has
more than 2,000 object usages. We skip API types with less than 2,000 object usages
since their model sizes are already small.

In addition to model size, we also show the difference in prediction quality for each of
the analyzed types in order to have a fair comparison between the difference in model size
and the corresponding impact on prediction quality. Figure 3.7 shows this comparison
for each analyzed type, where model size is shown on the left-lower part of the y-axis and
prediction quality is shown on the right-upper part of the y-axis. The plot shows that
for almost all analyzed types, PBNBMF+’s prediction quality is comparable to PBN40,
but the model sizes obtained by BMF are much smaller. This is especially obvious for
types with e bigger number of object usages (more to the left), showing that PBNBMF+

performs better for a larger number of object usages.
The reduction in model size ranges from 30% (Button) up to 80% (Table). The model

size is proportional to the number of patterns created by each of the approaches. For
Table, the model of PBN40 contains 176 patterns on average over all folds, while the
model of PBNBMF+ contains only 36 patterns after an average of 270 outliers over all
folds has been detected during factorization. In our dataset, Table is the type for which
BMF detects the highest number of outliers. This suggests that the object usages in
Table differ a lot. While canopy clustering creates separate patterns for these varying
object usages, BMF is able to detect the ones that differ significantly from the other
object usages and treat them as outliers. A closer inspection of the data shows that the
object usages of Table are declared in very different contexts, with a rough estimation
75% of all the extracted features are related to context information. Thus, the differences
between the object usages of type Table is related to the fact that they are declared
in very different method contexts. Additionally, we see that the difference between the

67

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

F1-measure of PBNBMF+ and PBN40 for type Table is only 0.03. This shows that BMF
is indeed removing outliers from the object usage space.

On the other hand for Button, BMF only detects 80 outliers averaged over all folds,
even though it has almost five times more object usages compared to Table. However,
the context information roughly accounts for only 40% of the extracted features while
almost all the remaining features are definition sites. Definition sites indicate how an
object becomes available in the source code but not how it is used.

For the call sites features, on average, two method calls are invoked on object usages
of Button and Table. While method calls in Button accounts for only 0.7% of the total
number of features, they account for 6% in Table. This suggests that even though the
object usages from both types call on average the same number of methods, the total
number of methods available in Table is almost ten times higher compared to Button.
This means that more object usages from Button will be similar (have a lot of common
context information and call almost the same methods), which is why fewer patterns
are identified. This is true for both BMF and canopy clustering and explains why BMF
results in a smaller reduction in model size here.

Inference Speed After showing that BMF reduces the model size with no significant
loss in prediction quality, we expect a speed up in inference speed since a smaller Bayesian
network should be faster to query. When compared to PBN40, PBNBMF+ does indeed
result up to 78% faster in inference speed (from 3 ms to 0.6 ms), and 46% faster (from
3.2 ms to 1.7 ms) when averaged across all API types.

Limitations Even though the reported numbers in terms of model size (6 MB) and
inference speed (3.2 ms) are not a scalability issue for current recommender systems, we
use the same dataset as in previous work [123] for comparability. Note that this work
is the first step in using BMF as a means to create smaller models within the context
of intelligent method call completion, and our results show that BMF is a promising
approach in this direction.

3.4 Threats to Validity

3.4.1 Internal Validity

Mdl4Bmf is a general machine learning algorithm, not bound to a specific application
domain. We experimented with different values of the factorization rank for various
API types to ensure that the factorization rank calculated by the algorithm is indeed
optimal in our intelligent method call completion context. Our results showed that
the factorization rank automatically calculated by Mdl4Bmf does indeed provide the
best tradeoff between model size and prediction quality. This gives us confidence that
the algorithm correctly calculates the optimal factorization rank and suggests that it is
independent from the nature of input data.

68

3.5 Related Work

3.4.2 External Validity

We test the use of BMF for one dataset within the context of one method call recom-
mender. Different datasets and recommenders might exhibit different behaviors in terms
of model size and prediction quality. Additionally, different heuristics might be required
for different datasets or recommenders. For example, we analyzed the effects of the
following heuristic to ensure that object usages are assigned to patterns they are most
similar with: Object usages are assigned to patterns they are most similar with based on
the Hamming distance between the feature vector of the object usage in question and the
patterns it belongs to. In other datasets, the effect of this heuristic might be different.
We do not generalize our results to other datasets but only point out potential applica-
tions in related work. Our work here is a first step to illustrate the use of BMF, and the
PBN pipeline allowed us a fair comparison since we have all implementation details.

3.5 Related Work

Since our main goal is to address scalability and not to propose a new recommender, we
do not focus on other intelligent method call completion techniques. Instead, we discuss
the following four categories of related work.

3.5.1 Matrix Factorization

Matrix factorization (MF) methods are currently used in data mining to separate noise
from global structure in the data [90]. They find applications in many domains such
as relation extraction [28], text mining [114], recommender systems [32], data com-
pression [90], computer vision [47], and computer networks [136]. In general, matrix
factorization methods are used to represent big data through smaller dimensions while
minimizing the information loss, such that the data can be reconstructed with minimal
error.

The BMF approach has been recently introduced to data mining as a generalization
of frequent item-set mining and database tiling [88]. Previous work shows that BMF
performs better with binary data in comparison to other MF methods [145]. BMF has
the requirement that all the involved matrices need to be binary (i.e. contain Boolean
values). This holds for both, the initial data matrix that we want to factorize A, as well
as for the resulting factor matrices B and C.

Non-Negative Matrix Factorization (NMF) [15] represents a non-negative data matrix
using two factor matrices, given a pre-defined factorization rank. In comparison to BMF,
NMF requires that the input data matrix and the factor matrices have non-negative
values. The algorithm is shown to scale well for large data ranges [68] and is widely
used in text mining and data-clustering [165]. One drawback is that we cannot use the
MDL principle with NMF to calculate the optimal factorization rank for a given data
set. Instead, we need to input the factorization rank as a parameter.

Furthermore, NMF creates a new problem: the rounding of the factor matrices. To
obtain the final candidate clusters, we round the factor matrix B to be binary and

69

3 Matrix Factorization to Improve Scalability in API Method Call Analytics

interpret it so that if B(i, j) = 1, then object i is assigned to cluster (pattern) j.

We tried NMF with our data by using the same factorization rank calculated by the
BMF approach and the results were not significantly better compared to BMF. For a
broader overview on different Matrix Factorization methods and their computational
complexity, we refer the reader to Miettinen’s work [87].

3.5.2 Potential Applications in Code Recommenders

Precise [172] is an approach to recommend parameters for method calls, and the work by
Zhang et. al [173] recommends combination of method calls. They both use binary rep-
resentation of the data and clustering algorithms respectively for parameter and method
recommendations respectively. Since the data is already represented in Boolean format,
their work might potentially benefit from BMF to construct clusters without requiring
a user-specified threshold needed by their approaches.

3.5.3 Potential Applications in Pattern Mining

Frequent item-set mining is a common technique for detecting patterns in datasets.
DynaMine [71], PR-Miner [66] and the work by Michail et. al. [85] are few examples in
this direction. Some of these approaches [71, 85] make use of the Apriori algorithm to
detect frequent item sets in the data. whose runtime is exponential with respect to the
number of items. It is worth investigating whether it is possible to mine patterns using
BMF instead. This requires the data to be represented as Boolean matrices in the form
methods (or other code elements) by items (object, type etc.).

3.5.4 Scalability in Code Recommenders

Weimer et. al. [159] applied Maximum Margin Matrix Factorization to code recom-
menders. Their technique builds a single model for a complete framework, rather than
a model for each API type. The authors point out the scalability issues they face due to
the complexity of the optimization problem of the underlying factorization algorithm.
This forced them to limit the size of the input data they provide to the algorithm.

Recommender techniques that treat code as plain text [51] or as some form of struc-
tured sentences with underlying statistical language models [129], naturally scale to
large repositories. On the other hand, GraLan [105] needs a large number of trees/-
graphs to capture the context information of the code under editing. Therefore, it uses
two thresholds to limit the number and size of the generated trees/graphs. However,
such techniques don’t consider some of the structural information of the code, which is
important to make more accurate code predictions.

3.6 Discussion

Intelligent code completion systems learn models by analyzing a large number of code
repositories to increase the probability of detecting relevant patterns for developers.

70

3.6 Discussion

With the vast increase of available data in such repositories, scalability becomes an issue
especially with respect to the learned model sizes. Another factor that influences model
sizes is the use of additional contextual information to improve prediction quality. In
this part of the thesis, we investigate Boolean Matrix Factorization (BMF) as a means
to create smaller models by adapting a previously developed Pattern-based Bayesian
Network (PBN) framework [123], and replacing the originally used canopy clustering
with BMF. Matrix factorizations are more robust than clustering approaches as they do
not require partitioning. Furthermore, using the MDL principle together with the BMF
allows automatic selection of the correct number of clusters.

We compare both approaches on the SWT framework, and show that we obtain model
sizes that are up to 80% smaller, which in return reduced the inference speed by up to
78%, all while not compromising prediction quality (F1-measure). In the experimental
evaluation, BMF seems to be the best all-round performer, but this quality comes with
a cost in running times. As each type is dealt independently, however, the work can
be trivially distributed in the cloud, alleviating the problem. It is of interest to study
whether we can use the specific knowledge of the domain to improve the BMF’s running
time (e.g. by the sparsity of the matrices, or using the Buckshot-type approach used by
SONEX [84]).

However, our experimental results suggest that BMF is promising in the context of
intelligent method call completion, and we speculate that other software engineering
applications should benefit from it.

71

4 Investigating Order Information in API
Usage Patterns

Application Programming Interfaces (APIs) provide means for effective code reuse. How-
ever, for the reuse to succeed, developers need to know the API and apply it correctly,
i.e., according to the API usage pattern intended by the creators. An API usage pattern
encodes a set of API elements that are frequently used together, optionally complemented
by constraints like the order in which elements must be used. Researchers have proposed
several learning approaches that are able to find API usage patterns by analyzing code
repositories. These approaches commonly analyze API usages, i.e., code snippets that
use a given API. They mine usage patterns, i.e., equivalent API usages that occur fre-
quently. The proposed approaches are then used as the basis for various applications
such as API documentation generation [4, 93], automated code completions [102, 123],
bug or anomaly detection [91, 158], and code search [45, 74]. However, a major chal-
lenge when learning from programs is how to represent programs in a way that facilitate
effective learning. All the above mentioned approaches learn indeed different pattern
representations.

Our survey presented in Section 2.4.2, shows that previous learning techniques learn
three different types of pattern representation:

(1) No-order patterns are unordered sets of frequently used code elements (e.g., [100,
102]). Such patterns encode that calls of methods, say a, b, and c, frequently
co-occur in code, but do not feature any information about the order of calls.

(2) Sequential-order patterns (e.g., [117, 129]) additionally encode facts such as that a
has to be called before b, and b before c.

(3) Partial-order patterns (e.g., [106]) are usually represented as graphs or FSMs.
these patterns encode that, for example, a must be called first, but how b or c are
called afterwards is irrelevant.

Approaches from each of the above categories justify their choice of the respective
pattern representation, apply their patterns to solve a specific recommendation task, and
eventually compare their results with approaches within the same category in terms of
precision and recall. However, so far, we lack systematic studies of the tradeoffs between
the different types of patterns in representing source code in practice. For instance, an
empirical study could explore whether the increased computation complexity required
to mine partial-order patterns is justified when compared to mining unordered sets.

Furthermore, previous approaches predefine the code structure (pattern type) they
want to learn a-priori, by designing specific program analysis and input formats that
guide the learning process. This makes it hard to judge the impact of research that ad-
dresses API usage pattern learning. A comparison of different pattern types with regards

73

4 Investigating Order Information in API Usage Patterns

to some predefined metrics is challenging, because each approach in the literature uses
a different learning technique with configurations specific to its data set (e.g., frequency
threshold), a different representation for usage examples and patterns, and might even
be specifically tied to a particular programming language or input form (e.g., source code
vs. byte-code vs. execution traces). Moreover, the different approaches are evaluated on
different sets of target projects, such that the respective results are hardly comparable.
In many cases the exact versions of the projects are not reported or became unavailable,
which makes it impossible to reproduce results and to evaluate other approaches on the
same project versions. Ideally, we would need a unified learning technique that can
provide the three different patterns representations discussed above. Applying such a
learning technique to the same data set and with the same settings would provide a fair
comparison between API pattern types.

In this part of the thesis, we address this challenge and present, to the best of our
knowledge, the first empirical comparison of API pattern types and investigate their
effectiveness in representing API usages in the wild. The different pattern types we
compare, consider constraints of different nature between method calls, and thus un-
derstanding what exactly they are able to mine in a concrete setting constitutes an
interesting and relevant subject in many software engineering applications (e.g. code
recommendation or misuse detection). To provide a fair setting, we use a common data
set of 360 open-source Github C# repositories with over 68M lines of code [122], and
adopt an established mining algorithm that can be customized to mine all three types
of patterns, episode mining [1]. Episode mining is a well known machine learning tech-
nique used to discover partially ordered sets of events from a stream, called episodes
(patterns in our terminology). In our setting, events are method declarations or invo-
cations (cf. 4.3.2). Episode mining has already been used in several domains such as
neuroscience [1], text mining [2], and positional data [48]. We can mine all three pattern
types discussed above by adjusting certain parameters of the episode mining algorithm.
With this experimental setup in place, we can produce sequential, partial and no-order
patterns using the same mining algorithm and same data set. Our experimental setup
is publicly available as a benchmark (PtBench1), and can be used by other researchers
to perform similar empirical studies.

In this first study, we compare pattern types in terms of three metrics (defined in Sec-
tion 4.4.3):

Expressiveness quantifies the richness of the language corresponding to a pattern type
whose grammar rules are the mined patterns. We measure expressiveness as the number
of words (i.e., derived sequences of method calls) in the language. This measure indicates
how well the mined patterns abstract over the variety of concrete API usages observed in
source code. Conceptually, one would expect that less structure patterns encode a richer
language. The question is, though, to what extent do the differences in expressiveness
between pattern types materialize in the wild.

Consistency quantifies the extent to which the words in the language defined by the

1http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

74

4.1 Related Work

mined patterns are actually found in the code. This is to judge how truthful the mined
API usage patterns represent actual API usage constraints implicitly encoded in source
code. From a practical perspective, this metric gives us insights about the relevance of
the order information encoded in sequential and partial-order patterns.

Generalizability measures whether the usages a pattern encodes are specific to a single
code context or if they generalize to multiple contexts. In language terminology, this
metric indicates whether the learned model is applicable across domains/projects or
whether we learn domain-specific languages (models). This is important to understand
the applicability of the information encoded in the learned patterns.

We also present some statistics in terms of the pattern size that refer to the number of
events within the learned patterns, and in terms of API types that investigates whether
the learned patterns encode interactions between method calls of the same or multiple
API type. Results obtained on the empirical comparison of the three pattern types, on
an existing dataset of 360 C# code repositories highlight interesting evidences in terms
of expressiveness, consistency, generalizability, patterns size and number of API types.

The remainder of this chapter is organized as follows: In Section 4.1, we provide an
overview over related work on different API usage representations and empirical studies
based on API usages. Section 4.2 introduces some conceptual differences between dif-
ferent pattern type representations. The adaptation of the general episode mining algo-
rithm within the domain context of pattern mining for software engineering is presented
in Section 4.3. In Section 4.4 we continue with the evaluation setup, and Section 4.5
presents the complete PtBench pipeline. In Section 4.6, we use PtBench to empiri-
cally evaluate and compare the three different pattern types that we analyze. From our
empirical evaluation, we derive a set of implications that might be considered useful to
other researchers working with code patterns. The derived implications are presented
in Section 4.7, followed by the discussion of threats to validity in Section 4.8. At the
end, we conclude our discussion in Section 4.9.

4.1 Related Work

To summarize the state of the art and motivate the work presented in this chapter, we
look into two different directions of related work. The first is with regards to how order
information is treated in existing API usage mining techniques and representations, and
the second are empirical studies that have investigates API usages in practice.

4.1.1 API Usage Representations

We found in Section 2.4.2 that API usage representations can be divided into three
types: no-order, sequential-order and partial-order.

No-Order Patterns The simplest form of learning API usage patterns is to look at
frequent co-occurrences of code elements, while ignoring the order these code elements

75

4 Investigating Order Information in API Usage Patterns

occur in. Frequent item-set mining is a typical example in this category and variations
of it have been commonly used in existing code recommender systems [85, 100, 102]. For
example, Saied et al. [139] present a hierarchical clustering approach for mining multi-
level API usage patterns independently from their usage context, in order to enrich the
API’s documentation.

Sequential-Order Patterns To take code semantics into account, many API usage rep-
resentations consider order information. For example, calling the constructor of an API
type must happen before calling any of its methods. The patterns mined by sequence
mining encode strict sequential order between code elements in a pattern. Existing
approaches are based on, but not limited to, using information from the API’s source
code [3, 158], API documentation [180], program control-flow structure [126], and pro-
gram execution traces [39, 117]. Statistical models have also been used to predict the
next code element (e.g. method call), given a current context (e.g., sequences of already
seen method calls). Examples include n-gram language models [129] or statistical gen-
erative models [112]. Additionally after identifying sequences, some techniques rely on
clustering to build pattern abstractions [24, 154, 178].

Raychev et al. [129] use n-gram language models for learning sequences of method
calls across multiple objects together with their arguments. Hapi [112] is a statistical
generative model for learning API usages from byte code of Android mobile apps. Ap-
proaches based on code search extract relevant usage examples from code repositories
and other sources of information. Then, clustering algorithms are usually applied on the
extracted examples to cluster similar code sequences in order to build pattern abstrac-
tions. For example UP-Miner [154] and MAPO [178] mine API usage patterns from
source code using a combination of both subsequence mining and clustering approaches.
ApiMiner [93] and Buse et al. [24] use a clustering approach based on static-slicing and
path-sensitive data-flow analyses respectively.

Partial-Order Patterns To allow more flexibility in representing code seman-
tics, partial-order mining techniques have been considered. In this scenario, code el-
ements b and c must occur after code element a, but the order in which they occur
(b before or after c) is not relevant. Graph-based techniques like GraLan [105], Gra-
Pacc [103], and JSMiner [107] represent source code in a graph to identify frequent sub-
graph patterns. Automata-based techniques or Finite State Machine (FSM) represent
code as a set of states (e.g. method calls) and a transition function between the states.
The framework presented by Acharya et al. [4] extract API usage patterns directly from
client code. This framework is based on FSMs for generating execution traces along
different program paths. In their terminology, partial-order expresses choices between
alternative code elements. In our terminology, a partial-order pattern includes strict
and/or unordered pairs of code elements.

76

4.2 Conceptual Differences between Pattern Types

4.1.2 Empirical Studies of API Usages

Researchers have extracted API usages through mining software repositories and studied
the characteristics of these usages or used them in various applications. Usage patterns
are explored in [75], from the Java Standard API with an early version of the Qualitas
Corpus which contains 39 open source Java applications. A study on a larger corpus
(5,000 projects) on usages of both core Java and third-party API libraries is performed
in [124]. The diversity of API usages in object-oriented software is empirically ana-
lyzed in [81]. In their context, diversity is defined as the different statically observable
combinations of method calls on the same project. Multiple dimensions of API usages
are explored in [35], such as the scope of projects and APIs, the metrics of API usages
(e.g., number of project classes extending API classes), the API’s metadata, and project
versus API-centric views. CoupMiner [138] combines client-based (client programs)
and library-based (library-code) usage pattern mining. This approach tries to bring to-
gether the advantages of both worlds: the precision of the client-based techniques and
the generalizability of library-based techniques, in the mined code patterns.

Previous work often focused on comparing one learning technique with other learning
techniques within the same pattern type [4, 24, 105]. For example, Pradel et al. [117]
present a framework for evaluating different specification miners. They use the frame-
work to evaluate three mining approaches that learn sequences of API method calls.
Our work instead, focuses on understanding the trade-offs between different code pat-
tern types (sequential, partial and no-order patterns). The empirical study on API
usages presented in [176] focuses on how different types of APIs are used. Our work is
mainly concerned with API patterns instead of single usages. The work in [132] provides
a more comprehensive survey on API property inference and discusses over 60 techniques
developed for mining frequent API usage patterns.

Overall, existing studies focus on different aspects of API usages, but do not analyze
the differences between API usage pattern types. Our work fills this gap by conducting
an empirical study to investigate the impact of order information on API usage pat-
terns mined from large repositories, and their trade-offs with respect to three metrics:
expressiveness, consistency, and generalizability.

4.2 Conceptual Differences between Pattern Types

Our presentation of related work has shown that existing representations of API usage
patterns treat order information differently. In order to reason about the individual ad-
vantages and disadvantages, it is necessary to first understand the conceptual differences
between the three pattern types.

We use the code snippets in Figure 4.1 as a running example. The two code snippets
implement the same task and have the same semantics, but slightly different syntax.
In both cases, an object of type T is created first, and depending on a condition, m1()
or m2() is invoked. Figure 4.2 shows the order in which the different code elements
occur in each case. Due to the different conditions, the order information between both
examples differs.

77

4 Investigating Order Information in API Usage Patterns

1 var var1 = new T();

2 if (condition) {

3 var1.m1();

4 } else {

5 var1.m2();

6 }

7 var1.m3();

(a) Validating the condition

1 var var2 = new T();

2 if (!condition) {

3 var2.m2();

4 } else {

5 var2.m1();

6 }

7 var2.m3();

(b) Negating the condition

Figure 4.1: Different code variants with same semantics

new T()

var1.m1()

var1.m2()

var1.m3()

(a) Events from code snippet in Figure 4.1a

new T()

var2.m2()

var2.m1()

var2.m3()

(b) Events from code snippet in Figure 4.1b

Figure 4.2: Order of code elements from Figure 4.1 extracted for pattern mining

Let’s assume that the code snippet in Figure 4.1a occurs 10 times in the data set,
while the one in Figure 4.1b occurs 8 times. A no-order pattern would present the
methods as a set, as shown in Figure 4.3c. Two sequential-order patterns are required
to represent the code examples in Figure 4.1, as shown in Figure 4.3a. On the other
hand, a partial-order pattern would represent both code snippets in a single abstract
pattern with an occurrence value equal to 18, as shown in Figure 4.3b. Note that there
is a partial-order between T.m1() and T.m2(), because it is irrelevant which one of them
comes after T.ctor() and before T.m3().

The different pattern representations show that partial-order and no-order patterns
have higher occurrence values since they combine different code sequences, compared
to sequential-order patterns that represent each sequence as a separate pattern. Fur-
thermore, partial-order patterns are able to learn important order information between
method calls, information that is missed by no-order patterns. At the same time, partial-
order mining avoid redundant to represent single sequences as in sequence mining.

Partial-order is especially relevant in APIs that allow to compose different elements
that provide many configuration options, which do not depend on each-other, or that
overload methods to provide alternatives to the developer using the API. A prominent
example of such APIs are components of Graphical User Interfaces (GUIs) like Swing

or SWT. Using UI components implies that the constructor is called first, but in most of
the cases the order in which the elements are added to the UI component or how they
are configured, is irrelevant. Consider, for example, the variety of elements that can be
added to a Form, or how different applications may add these elements in completely
different orders. As a result, a miner will find large amounts of code examples for UI s
in code repositories, but with a very high variation between the examples.

Sequential-order patterns will represent each of these variations as a separate pattern,
each of them with a very low occurrence value. In contrast, partial-order will represent

78

4.2 Conceptual Differences between Pattern Types

T.ctor()

T.m1()

T.m2()

T.m3()

T.ctor()

T.m1()

T.m2()

T.m3()

(a) Sequential-order

T.ctor()

T.m1() T.m2()

T.m3()

(b) Partial-order

T.ctor()

T.m1()

T.m2()

T.m3()

(c) No-order

Figure 4.3: Pattern representations for different types

them by a single abstract pattern that defines that the UI element constructor should
be called strictly before adding any feature to the newly created UI element, but that
the order in which features are added is irrelevant. Obviously, a no-order pattern could
manage this abstraction as well. However, the drawback is that it may over-generalize
by not differentiating cases in which the order occurrence might make a difference in
how an API is used. For example, JFrame.pack() is a method from the Java Swing

library that is used to reduce a frame element to its optimal size by considering the
layouts and the preferred sizes of all contained elements. Calling this method for the
frame before adding all the intended UI elements to the frame, would cause the frame
to look differently than intended.

The discussion above shows the benefits in using partial-order patterns for representing
different source code variants into high-level abstract patterns, compared to sequential-
order and no-order patterns. Following the same logic, partial-order patterns show an
advantage compared to sequential-order patterns in cases when the training data does
not contain enough API usages. Coming back to our running example, in case the mining
algorithm uses a threshold frequency of 9, the sequence miner would miss learning the
second sequence shown in Figure 4.1b (containing an occurrence value of 8), even though
it is a valid sequence. On the other hand, the partial-order miner would combine both
sequences, which increases their combined occurrence value and results in meeting this
threshold.

However, there is currently no empirical evidence to support these benefits. To fill this
gap, our empirical evaluations in Section 4.6 investigates whether generalizable partial-
order patterns can be learned from large code repositories, and how they compare to the
sequential and no-order patterns that would be learned from the same code repositories.

79

4 Investigating Order Information in API Usage Patterns

4.3 Episode Mining for API Patterns

We briefly overview the episode mining algorithm and then explain how we use it to
mine patterns from open source C# Github repositories, in three steps: (a) generate
an event stream by transforming source-code into a stream of events, (b) apply episode
mining algorithm to mine API usage patterns, and (c) filter the resulting partial-order
patterns.

4.3.1 Episode Mining Algorithm

To support the detection of sequential-order, partial-order, and no-order patterns in
source code, we use the episode mining algorithm by Achar et. al. [1] for the following
reasons. First, it facilitates the comparison of different pattern types, since it provides
one configuration parameter for each type. The other option would be to use differ-
ent learning algorithms, one per pattern type. In this case, ensuring the same baseline
for the empirical comparisons will be difficult, since each algorithm might use differ-
ent configurations and input formats. Second, it is a general purpose machine learning
algorithm, which has performed well in other applications: text mining [2], positional
data [48], multi-neuronal spike data [1]. Third, the implementation of the episode mining
algorithm [1] is publicly available.

The term episode is used to describe a partially ordered set of events. Frequent episodes
can be found in an event stream through an a-priori like algorithm [6]. Such an algorithm
exploits principles of dynamic programming to combine already frequent episodes into
larger ones [78]. The algorithm alternates episode candidates generation and counting
phases so that infrequent episodes are discarded due to the downward closure lemma [1].
The counting phase tracks the occurrence of episodes in the event stream using Finite
State Automaton (FSA). More specifically, at the k-th iteration, the algorithm generates
all possible episodes with k events by self-joining frequent episodes from the previous
iteration consisting of k − 1 events each. The resulting episodes are episode candidates
that need to be verified in the subsequent counting phase. A given episode is frequent if
it occurs often enough in the event stream. A user-defined frequency threshold defines
the minimum number of occurrences for an episode to be frequent. An entropy threshold
determines whether there is sufficient evidence that two events occur in either order or
not. All frequent episodes that fulfill the minimum frequency and entropy threshold
are outputted by the algorithm in a given iteration k, and all infrequent episodes are
simply discarded. The next iteration begins with generating episodes of size k + 1.
The entropy threshold is specific to partial-order patterns. It has a value between 0.0
and 1.0, inclusive. A value of 0.0 means that no order will be mined, resulting in no-order
patterns. A value of 1.0 means a strict ordering of events, resulting in sequential-order
patterns. Values between 0.0 and 1.0 result in partial-order patterns, with varying levels
of strictness. We mine the three pattern types by adjusting the configuration parameter
of the episode mining algorithm: NOC for No-Order Configuration, SOC for Sequential-
Order Configuration, and POC for Partial-Order Configuration. More details about the
algorithm can be found in the work by Achar et. al. [1].

80

4.3 Episode Mining for API Patterns

4.3.2 Mining API Usage Patterns

Event Stream Generation In our context, an event is any method declaration or
method invocation. To transform a repository of source code into the stream repre-
sentation expected by the episode mining algorithm, we iterate over all source files and
traverse each Abstract Syntax Tree (AST) depth-first. Whenever we encounter a method
declaration or method invocation node in the AST, we emit a corresponding event to
a stream. We use a fully-qualified naming scheme for methods to avoid ambiguous ref-
erences. The following is how we deal with the two types of nodes we are interested
in:

• Method invocation is the fundamental information that represents an API usage,
for which we want to learn patterns. While a resolved AST might point to a
concrete method declaration, we generalize this reference to the method that has
originally introduced the signature of the referenced method, i.e., a method that
was originally declared in an interface or an abstract base class. The reason is that
the original declaration defines the contract that all derived classes should adhere
to, according to Liskov’s substitution principle [79]. Assuming that this principle
is universally followed, we can reduce noise in the dataset by storing the original
reference.

• Method declarations represent the start of an enclosing method context that groups
the contained method calls. We emit two different kind of events for the encoun-
tered method declaration. Super Context: If a method overrides another one, we
include a reference to the overridden method, i.e., the encountered method over-
rides a method in an abstract base class. This serves as context information that
might be important for the meaning of a pattern. First Context: Following the
same reasoning as for super context, we include a reference to the method that was
declared in an interface that originally introduced the current method signature,
which could be further up the type hierarchy of the current class.

In both cases, method declaration or invocation, the generated events have the following
format: [RT:QT] [T].M([PT] [PT] ...), where RT is the return type, M is the method
name, QT is the fully qualified name of it’s declaring type and T is it’s simple type name.
For constructor calls, we use the label of the form ctor as method name. We use the
declaring type in the event signature to abstract over the different static receiver types.
The PT label stands for parameter types, in order to distinguish overloaded methods by
their parameter entities.

We apply heuristics to optimize the event stream generation. (1) We filter duplicated
source code, e.g., projects that include the same source files in multiple solutions or
that add their references through nested submodules in the version control system. (2)
We ignore auto-generated source code (e.g., UI classes generated from XML templates),
since they do not reflect human written code. (3) We ignore references in the data set
that point to unresolved types or type elements. These cases indicate transformation
errors of the original dataset, that were caused by -for example- an incomplete class

81

4 Investigating Order Information in API Usage Patterns

path. (4) We do not process empty methods, nor include their method declarations in
the event stream.

In addition to the heuristics mentioned above, we also ignore methods of project-
specific APIs (i.e., declared within the same project) to avoid learning project-specific
patterns. The reason for this is because in this part of the thesis, the goal is to learn
general patterns that have the potential to be re-used across contexts. Later on, in Chap-
ter 5 we mine patterns and detect misuses on a per project basis in order to also be able
to detect misuses that come from project-specific APIs.

Learning API Usage Patterns We feed the generated event stream to the episode
mining algorithm after fixing the threshold values: frequency and entropy (as evaluated
in Section 4.4.2). An episode, outputted by the mining algorithm, represents a partially
ordered set of events as a graph with labelled nodes and directed edges. Nodes represent
a method declaration or a method invocation, and the directed edges represent the order
in which they are called in the source code.

Figure 4.3 shows episode representations for the different pattern types. A no-order
pattern would present the method calls as a set, as shown in Figure 4.3.(c). Two
sequential-order patterns would be needed to present the two valid sequences presented
by the partial-order pattern, respectively shown in Figure 4.3.(a) and Figure 4.3.(b).
Note that methods m2() and m3() can occur in either order as defined by the partial-
order pattern.

Filtering Partial Order Patterns While SOC and NOC generate episode candidates
that are either sequences or sets of events respectively, POC might generate episode
candidates from all three representations, since it contains the sequential and no-order
types as special cases. In case all the episode candidates in POC are considered frequent
episodes during the counting phase, then all of them are outputted by the algorithm.
This implies that in every iteration (i.e, pattern size), POC might output redundant
patterns containing the same set of events but differ in the order information. For
illustration, assume that POC generates episode candidates in iteration 3 by combing
the following patterns from iteration 2: a → b and a → c. The episode candidates
in iteration 3 will be: a → b → c and a → c → b as sequences, and a → (b, c)
as partial-order, all possible orderings between the two newly connected events b and
c. The partial-order episode a → (b, c) represents both a → b → c and a → c →
b. However, if all three episode candidates turn out to be frequent in the subsequent
counting phase, the two other sequences will also be carried over to the next iteration.
These redundant patterns are meaningless for source code representation though and we
filter them out in each iteration.

4.4 Evaluation Setup

This chapter describes the data set we use, presents the analyses of the frequency and
entropy thresholds used with the episode mining algorithm, and defines the metrics for

82

4.4 Evaluation Setup

patterns comparison.

4.4.1 Dataset

We use an established dataset that consists of a curated collection of 2, 857 C# solutions
extracted from 360 GitHub repositories [122] with a total of 68M lines of source code
covering a wide range of applications and project sizes that provide many examples for
API usages. The data set uses a specialized AST-like representation of source code
with fully-qualified type references and elements. This relieves us from the burden of
compiling it to get resolved typing information and makes it easier to transform the
source code into the event stream.2

We find 138K type declarations in the dataset that extend a base class or implement an
interface. These type declarations contain 610K method declarations. Out of these, 50K
(first context plus super context) override or implement a method declaration introduced
in a dependency. The same dependency can be used in other projects, so focusing on
these reusable methods provides valuable context information for the API usage. We
find 2M method invocations across all method bodies of the data set.

4.4.2 Threshold Analyses

The episode mining algorithm uses two thresholds: frequency and entropy. The threshold
values directly impact the number of patterns learned: higher threshold values means
stronger evidence in the source code that a given pattern occurs. In this section, we
empirically evaluate the effects of the threshold values on the number of patterns learned
by the three configurations (NOC, SOC, POC), and select the ones to use for the
empirical evaluations presented in Section 4.6.

Entropy Threshold Since this threshold is specific to POC, we first focus on analyzing
the number of patterns learned by POC for different entropy and frequency thresh-
olds. Our analyses reveal an increasing number of patterns learned for different entropy
thresholds at every frequency level. This is expected, since for entropy values near to 0.0,
the algorithm learns mainly unordered sets of events that abstract over several usages.
On the other hand, for entropy values near to 1.0 the algorithm learns mainly sequences
of events, one for each frequent sequence. For simplicity, Figure 4.4(a) shows only a few
frequency levels, but similar curves are produced in other frequency levels as well. We
observe that for every examined frequency level, POC learns a fairly stable number of
patterns in the entropy segment of [0.55, 0.75]. A stable number of patterns for different
threshold values, means that the patterns are not much affected by small fluctuations
of the threshold values, making them more preferable compared to an unstable set of
patterns that are easily affected by small changes in the threshold values. Our data
analyses within this segment reveals that the minimal variation in number of patterns
occur for values of 0.71− 0.72. Hence, we use the entropy threshold of 0.72 in our next
analysis for the frequency threshold and in our empirical evaluations in Section 4.6.

2We use the visitors in the dataset for the transformation.

83

4 Investigating Order Information in API Usage Patterns

2,500

3,000

3,500

4,000

4,500

5,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f P
at

te
rn

s

Entropy Thresholds

Frequency = 200
Frequency = 210
Frequency = 220
Frequency = 230
Frequency = 240

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

150 650 1,150 1,650 2,150

N
um

be
r o

f P
at

te
rn

s

Frequency Thresholds

SOC(entropy = 1.0)

NOC(entropy = 0.0)

POC(entropy = 0.72)

Figure 4.4: Frequency and entropy threshold analyses

Frequency Threshold Our analyses in Figure 4.4(b) show that SOC and POC learn
comparable number of patterns for different frequency values, while NOC learns less
patterns in every frequency level compared to the two others. This is due to the order
information: while SOC and POC may learn multiple patterns for the same set of
events, NOC simplifies to a single pattern. We select a frequency value that gives

84

4.4 Evaluation Setup

a good trade-off between the total number of patterns learned per configuration and
comparable number of patterns learned across configurations. Our analyses reveal that
this is achieved at the frequency threshold of 345, which we use in the rest of our
evaluations. A comparable number of patterns across configurations avoids bias towards
one configuration.

4.4.3 Metrics for Pattern Comparison

We define the following metrics to quantify different properties of the mined patterns in
our experiments.

Expressiveness Using a formal language terminology, an API usage pattern can be
seen as a grammar rule of a language over an alphabet of method declaration/invocation
(events). The more words the sub-language it defines has, the more expressive a pattern
is. A sequential-order pattern (a → b → c) when seen as a grammar rule defines
a language with a single word {abc}. A partial-order pattern (a → (b, c)) defines a
language with two words, {abc, acb}. A no-oder pattern (a, b, c) defines a language
with six words {abc, acb, bac, bca, cab, cba}. The expressiveness of a pattern type is
determined by the number of patterns (grammar rules) it defines, and how well these
patterns abstract over the variety of concrete API usages observed in source code.

To investigate how the three configurations (SOC, POC, and NOC) compare to each
other in terms of expressiveness, we calculate three metrics for each configuration pair
(c1, c2): (a) exact(c1,c2) is the number of patterns that are exactly the same in c1

and c2; (b) subsumed(c1,c2) = (x,y) is a pair that represents the number of patterns
x learned by c1 that subsume y patterns learned by c2. We say that a pattern p1
subsumes a pattern p2 iff they relate the same set of events and all words defined by p2
are also defined by p1, e.g. the grammar rule of a no-order pattern (a, b, c) subsumes
both the grammar rules (a → (b, c)) and (a → b → c) from the partial and sequential-
order patterns respectively; (c) new(c1,c2) is the number of patterns learned by c1 that
include events for which c2 does not learn any pattern.

Consistency The three pattern types differ in the extent to which they preserve code
structure. While no-order patterns cannot represent any structure, sequential-order
patterns can encode an absolute order of events, and partial-order patterns can even
represent complex control flow that is imposed by control structures like if. We establish
the consistency metric as a way to quantify how important the order information encoded
by sequential-order and partial-order patterns is in practice. The metric takes values in
]0.0, 1.0], and for a given pattern p is defined as:

consistency(p) =
Occs(p)

OccsSet(p)
(4.1)

where Occs(p) is the number of occurrences of p, and OccsSet(p) is the number of
co-occurrence of events in p regardless of their order. A high consistency emphasizes

85

4 Investigating Order Information in API Usage Patterns

the importance of the encoded order. A low consistency means that in most cases, the
respective code elements occur in an order different to the one encoded in the pattern,
suggesting that the structural information encoded by the pattern is irrelevant.

Generalizability Finding instances of a pattern in multiple contexts indicates that the
pattern represents an abstraction over a set of similar API usages, e.g., used by mul-
tiple developers. On the other hand, a very local pattern might suggest that it does
not generalize beyond a specific context, e.g., it might only be used by a specific de-
veloper. To quantify the generalizability of a pattern, we count the number of contexts
in which we can observe it at two different levels of granularity that complement each
other: (a) The method declaration level measures whether instances of a pattern are
found within a single method declaration (the latter refers to the highest declaration in
the type hierarchy that originally introduced the current method signature) or across
method declarations (method-specific versus cross-method pattern). (b) The code repos-
itory level measures whether instances of a pattern are found in one or in multiple
repositories (repository-specific versus cross-repository pattern). Knowledge about the
generalizability of patterns is important for judging the versatility of the pattern in later
applications.

4.4.4 Limitations

The concrete patterns we learn from our dataset may not be representative for all API
usage instances responsible to complete a specific task. For example, a certain API usage
might often be distributed over multiple methods, while our benchmark learns pattern
occurrences contained within a single method declaration.

4.5 Pattern Types Benchmark (PTBench)

Following the idea of automated benchmarks, we facilitate the task of learning and com-
paring different pattern types on our dataset, with an automated experiment pipeline.
We call this pipeline PtBench. The goal of PtBench is (1) to automate as much
as possible of the experimental setup presented in Section 4.4, (2) to automatically
compare different pattern type representations, by supporting the addition of different
metrics definitions. (3) to make benchmarking experiments reproducible and extensi-
ble. The pipeline also enables benchmarking with different or extended datasets, in the
future. We make PtBench publicly available for future studies.

4.5.1 Data Representation

For each project, the dataset records the project name, the project website, and the
project repository. We use the repository to uniquely identify a project, because this
allows us to uniquely identify project versions using their respective revision ID. For
each project version, the dataset records the revision ID, the relative path to the source
files and class files.

86

4.6 Evaluation Results

For each pattern, we store the enclosing method declaration in the source code that
we identified it from. We use this information to uniquely identify a pattern.

4.5.2 Benchmark Automation

PtBench automates many of our evaluation steps including: (1) the transformation
of source code into a stream of events, (2) the patterns’ threshold values calculation,
(3) running the episode mining algorithm to identify patterns, (4) filtering partial-order
patterns, and (5) evaluating the learned patterns according to the three metrics defined
in Section 4.4.3. These describe the main pipeline steps of PtBench we implemented
to facilitate our evaluations and to enable easy replication of our experiments.

4.5.3 Reproducibility and Traceability

We publish PtBench3 and encourage others to use the automated pipeline and con-
tribute by experimenting with additional datasets and new evaluation metrics definitions,
to conduct and repeat experiments and to extend the benchmark itself.

For legal reasons, we do not include source code or binaries of target projects in the
benchmark itself, but instead provide links to the respective version-control systems
and tooling that automates the retrieval of respective checkouts and their compilation.
This minimizes the effort to collect the dataset and ensures access to the exact same
versions of the projects. The results of checkout and compilation are stored locally, such
that the respective data remains available for subsequent use. To make this as easy as
possible, we build our benchmarking pipeline agnostic to the concrete dataset, such that
the benchmarking experiments automatically consider new additions to the dataset.

Furthermore, we provide access to the patterns learned using PtBench, and address
their target code.

4.6 Evaluation Results

This section presents the results of our experiments from the empirical comparison of
the different pattern types. All experiments are performed with a frequency threshold of
345, and an entropy threshold of 0.72 (cf. Section 4.4.2). First, we present some statis-
tics about the learned patterns, and then study them along the dimensions presented
in Section 4.4.3.

4.6.1 Pattern Statistics

Here we analyze the learned patterns in terms of their size and number of API types
they encode.

3http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

87

4 Investigating Order Information in API Usage Patterns

Table 4.1: Expressiveness results per configuration pair

(POC, SOC) (NOC, POC) (NOC, SOC)

exact 858 248 0
subsumed (260;346) (716;986) (853;1204)
new 116 17 128

Total (1,234;1,204) (981; 1,234) (981;1,204)

Pattern Size refers to the number of events in a pattern. Our approach learns patterns
with up to 7 events in each configuration. The number of patterns learned decreases for
larger pattern sizes with the same ratio in each configuration. Almost all mined patterns
(97%) involve 5 events or less. The result matches the intuition that it is less probable
that many developers write large code snippets in exactly the same way.

API types within a pattern reflects the number of API types a pattern encodes inter-
actions for. In all the patterns learned, 75% involve interactions between events from
multiple API types (across configurations). Only 28% of the patterns with 2− 4 events
involve interactions between events from a single API type. All patterns with 5 or more
events involve multiple API types. The maximum number of API types involved within
a pattern is 5 types, where patterns involving two API types make the majority (40%).

4.6.2 Expressiveness

Expressiveness quantifies the richness of the language corresponding to a pattern type,
whose grammar rules are the mined patterns. Table 4.1 shows the expressiveness metric
results. For each configuration pair (c1,c2), Total shows the total number of patterns
learned by (c1,c2) respectively.

POC vs. SOC These configurations learn 858 equal patterns, which implies that out
of 1, 234 patterns learned by POC, 70% are sequences and only 30% of them include
partial-order between events.

Observation1: Most of the API usage patterns define in the wild strict-order between
events (70%), while the other 30% abstract over different API usage variants.

Furthermore, subsumed(POC, SOC) is (260;346), i.e., 260 partial-order patterns
learned by POC subsume 346 sequences learned by SOC. The 260 partial-order patterns
encode 572 different sequences, i.e., the 346 sequences mined by SOC plus 226 others.
Recall that multiple sequential-order patterns can be represented by a single partial-
order pattern.

Finally, new(POC, SOC) is 116, meaning that for the events included in 116 partial-
order patterns, there are no sequences learned by SOC. The 116 partial-order patterns
encode 308 sequences of events that individually do not occur often enough in source

88

4.6 Evaluation Results

code. For this reason, SOC does not mine them. On the other hand, POC represents dif-
ferent variants of sequences for the same set of events in a single pattern, which increases
the partial-order pattern occurrence and makes it match the frequency threshold.

From these results, we can conclude that all patterns learned by POC represent a
superset of the patterns learned by SOC.

Observation2: The API usage specifications encoded by partial-order patterns fully
represent the specifications encoded by sequential-order patterns. Furthermore, they
learn 116 additional patterns of events for which sequence mining cannot learn any
sequence.

NOC vs. POC As shown in Table 4.1, exact(NOC, POC) = 248, which means that
20% of the patterns learned by POC are exactly the same as the ones learned by NOC.
Recall that no-order patterns are mined in POC when the involved events occur often
enough in either order.

Observation3: In 20% of the cases, partial-order patterns encode events that occur
in either order in the wild.

Furthermore, subsumed(NOC, POC) is (716; 986), i.e., 716 no-order patterns
learned by NOC subsume 986 patterns learned by POC. Note that one no-order pattern
simplifies several partial-order patterns by removing order information.

Finally, new(NOC, POC) is 17, i.e., 17 patterns learned by NOC include events for
which POC does not learn any pattern. These patterns are missed by POC because
either: (a) none of the sequences between the events occur frequently enough, recall that
sequences are a special case of partial-order patterns, and/or (b) there is not enough
evidence in the source code that events occur frequently enough in either order (specified
by entropy threshold).

From these results we can conclude that no-order patterns represent a superset of
partial-order patterns.

NOC vs, SOC Table 4.1 shows that NOC and SOC learn 0 equal patterns, which is
obviously the case, since NOC learns only set of events and SOC learns only sequences
of events, i.e., there cannot be any overlap between the patterns learned by these two
configurations. We find that subsumed(NOC, SOC) is (853; 1,204). In other words, all
sequential-order patterns can be subsumed by 853 no-order patterns. Note that multiple
sequential-order patterns can be simplified into a single no-order pattern by removing
order constraints.

Finally, new(NOC, SOC) is 128, i.e., for 128 patterns learned by NOC there are no
sequences mined by SOC. None of the sequences between these events occur frequently
enough in the source code.

Observation4: No-order patterns represent all sequential-order patterns; further-
more, the no-order configuration learns 128 additional patterns for which sequential-
order configuration could not learn any sequences.

89

4 Investigating Order Information in API Usage Patterns

Analyses of the Results To recap, sequence mining misses sequences of events which
are captured by partial and no-order patterns. To understand what code structures they
represent, we explored mined patterns and found examples that explain this phenomenon
in the source code of Graphical User Interfaces (GUI). Using a GUI component typically
requires to call its constructor first, but the order in which properties like color or size
are configured is irrelevant. A miner thus finds many UI code examples with high
variation and low support of each individual example. This reveals two disadvantages of
the sequential-order miners. First, if the individual support for each variant of the GUI
component usage is high enough, then redundant patterns will be identified, one sequence
for each variant. Second, if the target threshold is not met by one or more sequence
variants, the corresponding sequence pattern will be missed. In the same situation, each
variant would count as support for patterns with more abstract representation such as
partial and no-order, which thus may pass the threshold more easily. When compared
with each other, partial-order patterns can preserve order information, which is missed
by no-order patterns.

4.6.3 Consistency

Based on the results in Section 4.6.2, one may conclude that no-order patterns define a
richer language compared to the other two types. The question raises: Why should one
use expensive mining approaches (sequence or partial mining), if we can learn a richer
language from source code using less computationally expensive mining approaches such
as frequent item-set mining? However, this would be a valid conclusion, only if the words
in the language mined by NOC are valid, i.e., the order between events in a pattern
does not really matter. To analyze this, we investigate the consistency of the mined
sequential and partial-order patterns with co-occurrences of events in code.

The consistency metric is a ratio that ranges in]0.0, 1.0], as defined in Equation 4.1.
The higher the consistency ratio, more important is the order information defined in p
to the correct co-occurrence of events. If p has this value close to 1.0, it means that
almost every time the events in p co-occur, they co-occur with the specific order defined
in p, implying that the order information is very crucial for p. If p has this value close
to 0.0, means that in very few cases the events in p co-occur in the order as defined
in p, implying that the order information is not really important and p can be easily
represented by a no-order pattern.

Our results reveal high consistency in sequential (avg. 0.9) and partial-order pat-
terns (avg. 0.96). This suggests that order information encoded in both sequential and
partial-order patterns is crucial for the correct co-occurrences of events in the wild, and
simplifying them into no-order patterns will result in losing important order information
between events.

Observation5: Partial and sequential-order mining learn important order information
regarding co-occurrences of events in the wild.

90

4.6 Evaluation Results

Table 4.2: Code repository generalizability level for different configurations and pattern
sizes

Patterns 2 events 3 events 4 events 5 events 6+ events

Config Total General Total General Total General Total General Total General Total General

POC 1,234 594 (48%) 573 472 (82%) 283 106 (38%) 212 15 (7%) 122 1 (1%) 44 0 (0%)
SOC 1,204 561 (47%) 562 458 (82%) 270 92 (34%) 206 10 (5%) 122 1 (1%) 44 0 (0%)
NOC 981 572 (58%) 531 445 (84%) 226 108 (48%) 132 17 (13%) 70 2 (3%) 25 0 (0%)

4.6.4 Generalizability

In this section, we present the generalizability metric results on two granularity levels
as explained in Section 4.4.3: method declaration and repository level.

Method Declaration Our results empirically show that most of the patterns learned
(98%) by each configuration, are used across method declarations. This means that
the patterns learned generalizes to different implementation tasks, and are not tied to a
specific task or context.

Observation6: Most of the patterns learned find applicability to a large variety of
implementation tasks.

Next we analyze if the patterns learned are used by multiple developers, or if they
represent specific coding styles for a given repository and its developers.

Code Repository Table 4.2 shows our results for different configurations and pattern
sizes. The column Patterns shows the total number of patterns, and the absolute number
and percentage of general patterns learned by each configuration. The next columns show
the same information as Patterns, but for different pattern sizes, where the last column
(6+ events) shows the information for patterns with 6 and 7 events.

Our results show that the patterns learned by POC and SOC have almost the same
percentage of generalizability (48% vs. 47%), regardless of their size. This means that
more than half the patterns mined by each configuration are learned from API usages
from the same repository. While such repository-specific patterns are useful to the
developers of that particular repository, they may reflect a very specific way of using
certain API types, which may not be useful to a general set of developers.

As the table shows, NOC learns slightly more general patterns (58%). However, recall
that these more general patterns come at the cost of missing order information between
events.

Observation7: No-order patterns tend to be more generalizable (58%) compared to
sequential and partial-order patterns (47% and 48%), which tend to be over-specified
due to the order constraints they encode.

We analyzed the patterns learned exclusively by POC (recall Table 4.1) and found
that 114 out of 116 patterns are general patterns used across repositories. To find out

91

4 Investigating Order Information in API Usage Patterns

why most of the patterns learned exclusively by POC are general patterns, we check
if there is any relation between generalizability and pattern-order. We find that strict-
order patterns (exact(POC, SOC)) are less generalizable (37%) compared to patterns
that contain partial-order between events (subsumed - 62%, and new - 98%). This
confirms our hypothesis that there is a relation between generalizability and pattern-
order. Furthermore, most of the patterns (90%) learned exclusively by POC include
method calls only from the standard library, which further explains their re-usability
across repositories.

Table 4.2 shows that across configurations, the percentage of general patterns learned
is higher for smaller patterns, and significantly decreases for larger patterns. Further-
more, for patterns with 6 and 7-events, we learn only repository-specific patterns. Specif-
ically, around 70% of general patterns (independent of the configuration) are 2 and
3-event patterns. Most of the patterns with 4-events or more are repository-specific
patterns. This makes sense since the probability that multiple developers with different
coding styles and different application domains writing a similar and long piece of code
is very low.

Observation8: Small code patterns of 2 and 3 events are more generalizable compared
to larger code patterns of 4 or more events that mainly encode constraints of API usages
from a single repository.

We further analyzed the repository-specific patterns and found that 93% of them
are learned from testing code, and they include API types that refer to an old version
of a common assembly that is used in no other repository. Filtering out testing code
may help mining algorithms learn only general patterns. An empirical validation of this
hypothesis, however, needs to be performed in the future.

Remark: For the sake of completeness, we experimented with other threshold values
(frequency and entropy), and analyzed the generalizability of the patterns across repos-
itories. The results we received did not show higher generalizability ratios in neither of
the configurations, compared to the ones presented above. This confirms the correctness
of the threshold values selected as presented in Section 4.4.2.

4.7 Implications

Based on the evaluations results in Section 4.6, we derive the following implications:

Implication 1 (derived from Section 4.6.1): Mining techniques based on frequency
occurrence of source code in code bases are unlikely to learn large code patterns (more
than 7 method calls using our concrete parameters), since it is less probable that de-
velopers write large code snippets exactly in the same way. If the main goal is to learn
large code patterns, then other techniques need to be considered.

92

4.7 Implications

Implication 2 (derived from Section 4.6.1): Code analyses techniques should consider
interactions between objects of different API types, while extracting facts from source
code. Even though these analyses are expensive since data-flow dependencies need to be
considered, they are important in mining relevant patterns from source code.

Implication 3 (derived from Observation1 and Observation5): While covering a good
amount of usages seen in source code, sequential-order mining may lead to false positives
in applications such as misuse detection. For example, if the pattern is a → (b, c),
but a strict-order pattern has only learned a → b → c and the code written by the
developer is a → c → b. On the other hand, while no-order mining might seem to
learn a larger variety of API usages in source code, it might result in false negatives
in such applications. Following the same example, the developer might have written
b→ a→ c, and a no-order pattern cannot detect that b and c should occur strictly after
a. We can conclude that, partial-order mining learns better API usage patterns for such
applications.

Implication 4 (derived from Observation2): Partial-order mining might be more ap-
propriate for learning API usage patterns in applications such as code recommendation
since multiple sequences can be represented by a single partial-order pattern, decreasing
the total number of patterns that need to be part of the model. In sequence mining,
multiple patterns need to be recommended to the developer for the same set of events
and might even risk missing valid sequences if they do not occur frequently enough in
the training source code.

Implication 5 (derived from Observation5): Before deciding which mining approach
to use in a specific application, developers need to know their trade-offs in terms of
order information and computation complexity. Sequential and partial-order mining are
computationally expensive approaches but learn important order information about the
co-occurrence of events in a pattern, while no-order mining approaches do not require
expensive computations but on the other hand do not learn any order information about
the co-occurrence of events in a pattern.

Implication 6 (derived from Observation8): If the main goal is to learn large code
patterns (4− 7 events), then recommenders should focus on a repository-specific mining
approach and produce catered recommendations to the repository’s developers. However,
if the goal is to learn general patterns that can be used by many developers, then
researchers should know that they might end up mining small patterns (2 to 3 events).

93

4 Investigating Order Information in API Usage Patterns

4.8 Threats to Validity

4.8.1 Internal Validity

We generate the event stream based on static analyses, not on dynamic execution traces.
Even though this may not represent valid execution traces, it does represent how the
code is written by developers. In this part of the thesis, we focus on learning code
patterns to represent source code as it is written in code editors. Also, our event stream
considers only intra-procedural analysis since we are interested to learn patterns that
occur within methods. Using inter-procedural analysis might affect our results.

The episode mining algorithm learns only injective episodes, where all events
are distinct, i.e., the algorithm does not handle multiple occurrences of the same
event in a pattern. For example, method invocations: IEnumerator.MoveNext()

or StringBuilder.Append() are usually called multiple times in the code. The pat-
terns we learn contain a single instance of such events. While this is a limitation, it is
also an advantage in terms of pattern generalizability. Specifically, the mined pattern
would not have a strict number of occurrences that would lead to mismatches between
it and another valid code snippet that has a different number of occurrences.

The algorithm relies on user-defined parameters: frequency and entropy-thresholds.
While the configuration parameter depends on the type of patterns one is interested in,
deciding on adequate frequency and entropy thresholds is not an easy task, and which
significantly affect the results. We mitigate this threat by empirically evaluating the
thresholds and choosing the best combination of frequency and entropy thresholds for
the given data set (cf. Section 4.4.2).

The episode mining algorithm is available only in a sequential (non-parallelized) im-
plementation, hence is inefficient. However, this thesis does not work towards improving
the performance of episode mining algorithm per se, but rather uses it as a baseline for
comparing the different configurations by automatically learning different code structures
from code repositories. This limitation can be improved by parallelizing the algorithm’s
implementation.

4.8.2 External Validity

In this part of the thesis, we do not learn patterns for project-specific API types. Ex-
tracting code patterns for project-specific API types can still be achieved using the
episode-mining algorithm as we do. Comparing project-specific patterns between differ-
ent types of projects is an interesting task for future work.

We learn code patterns only for method declarations and invocations, excluding all
other code structures such as loops, conditions, exceptions etc. This is because the focus
on this part of the thesis is on automatically learning different code representations
(sequential, partial, and no-order), instead of specifically learning complex patterns that
include all code structures. Since learning code patterns while considering other code
structures is important for supporting certain development tasks, we plan to enrich
the code patterns that we learn with additional code structures in future work. This

94

4.9 Discussion

requires modifying our event stream generation, which is an engineering task rather than
a conceptual limitation.

Finally, we analyze the trade-offs between different pattern types using the same set
of code repositories written in the same programming language. We also use a single
learning algorithm that we configure to produce different pattern types. We use an
established data set of 360 repositories that have over 68M lines of source code to
ensure that we analyze large amounts of code and different coding styles. However, we
cannot generalize our results beyond our current dataset and learning algorithm.

The evaluations provided can be a good starting point for further investigations and
a practical baseline for developers dealing with API usages. Additionally, the available
benchmark could be a useful baseline for researchers exploring properties of API pat-
terns. However, even if promising, this is the first empirical attempt to compare API
pattern types in terms of effectiveness in representing API usages in the wild, and further
investigations would be necessary before declaring the outcomes as generic conclusions.

4.9 Discussion

In this part of the thesis, we present the first benchmark for analyzing the trade-offs
between three pattern types (sequential, partial and no-order) with respect to real code.
Our approach consists of three steps: the transformation of source-code into a stream
of events, the adaptation of an event mining algorithm to the special context of pattern
mining for software engineering, and filtering of the resulting patterns.

Our empirical investigation shows that there are different types of patterns learned in
code repositories. While there are tradeoffs between pattern types in terms of expres-
siveness, consistency and generalizability, they are comparable in terms of the patterns
size and number of API types. Our results empirically show that the sweet spot are
partial-order patterns, which are a superset of sequential-order patterns, without los-
ing valuable information like no-order patterns. Partial-order mining finds additional
patterns that are not identified by sequence mining, and which are used by a larger
number of developers across different code repositories. Compared to no-order mining,
partial-order learns a smaller percentage of cross-repository patterns (58% vs. 48%),
due to the order constraints between events within a pattern. Evaluation results show
that all three configurations end-up learning only repository-specific patterns for pattern
sizes with 6-events or more. Furthermore, our results empirically show the consistency
of order information in sequential and partial-order patterns: on average 90% and 96%
respectively. This means that even though no-order patterns represent the most gen-
eralizable type, they cannot substitute sequential and partial-order patterns due to the
loss of order information.

Our findings are useful indications for researchers who work with code patterns in
applications such as code recommendation and misuse detection.

95

5 On the Impact of Order Information in
API Method Call Misuses

In Chapter 4, we presented the first empirical comparison of API pattern types in rep-
resenting source code in the wild. In this study, we identified several implications, that
help researchers to build better applications based on API usages, such as:

• Code analyses techniques should consider interactions between objects of different
API types, while extracting facts from source code. Even though these analyses are
expensive since data-flow dependencies need to be considered, they are important
in mining relevant patterns from source code.

• While covering a good amount of usages seen in source code, sequential-order min-
ing may lead to false positives in applications such as misuse detection. Sequence
mining might miss learning valid sequences of method calls because of their low
occurrences. As a result if two method calls can occur in either order and one
of these sequences is missed during the mining process, then its usages in source
code might be identified as misuses (false positives). At the same time, no-order
patterns might result in false negatives in such applications due to missing order
information, for example when two method calls occur in the wrong order in source
code.

• Before deciding which mining approach to use in a specific application, develop-
ers need to know their trade-offs in terms of order information and computation
complexity. Sequential and partial-order mining are computationally expensive ap-
proaches but learn important order information about the co-occurrence of events
in a pattern, while no-order mining approaches do not require expensive com-
putations but on the other hand do not learn any order information about the
co-occurrence of events in a pattern.

• If the main goal is to learn large code patterns (4 - 7 events), then recommenders
should focus on a repository-specific mining approach and produce catered recom-
mendations to the repository’s developers. However, if the goal is to learn general
patterns that can be used by many developers, then researchers should know that
they might end up mining small patterns (2 and 3 events).

Our empirical evaluation results (presented in Section 4.6.4) showed that even though
we applied the episode mining algorithm in a cross-repository setting, most of the learned
patterns were repository-specific. Therefore, in this part of the thesis, we go one step

97

5 On the Impact of Order Information in API Method Call Misuses

further and use the episode mining algorithm to mine patterns directly in a per-project
setting, and analyze the effectiveness of the different pattern types in the concrete ap-
plication domain of misuse detection. One hypothesis is that individual projects contain
too few usage examples to mine good patterns [13]. This needs to be properly addressed
in this part of the thesis by optimizing the threshold values on a per-project setting, as
presented in Section 5.3.2. Incorrect usages of an API, or API misuses, are violations
of usage constraints of the API. API misuses lead often to software crashes, bugs, and
vulnerabilities in the source code.

To provide a fair setting, we extend the benchmark presented in Chapter 4 with the
following components:

• A second data set, Java data set (MuBench [11]) by providing support for yet
another programming language. The Java data set is used as the ground-truth
to compare the different pattern types within the application context of misuse
detection. To the best of our knowledge, there does not exist an equivalent data set
for C#, which motivated us to provide support for another programming language
in our benchmark (PtBench).

• A misuse detector (EmDetect) in order to evaluate the effectiveness of the dif-
ferent pattern types and the validity of the above implications derived from the
comparison of pattern types, within a real application context. We compare the
pattern types in terms of both, precision and recall.

In Section 5.1, we discuss these problems in more detail and sketch how we address
them with the new API-misuse detector that we introduce in this part of the thesis.
In Section 5.2, we present our misuse detector EmDetect. EmDetect encodes API
usages as episodes. EmDetect employs episode mining algorithm to mine patterns and
a specialized graph-matching strategy to identify (violating) occurrences of patterns.
Both components consider code semantics of API usages to improve the overall detec-
tion capabilities. On top, EmDetect uses an empirically optimized ranking strategy
to effectively report true positives among its top-ranked findings. We assess and com-
pare the performance of EmDetect and four other state-of-the-art detectors on this
extended benchmark. In Section 5.3, we present the evaluation setup by describing:
the Java data set, analysis of the threshold values used by the mining algorithm, and
the experiments performed to evaluate our misuse detector. In Section 5.4, we present
the results of our evaluations, by comparing the performance of the different patterns
types within the special context of a misuse detection. In Section 5.5, we discuss the
extensibility and reusability of PtBench. The benchmark eases the extension with
other datasets (programming languages), the integration of new metric definitions and
of further application contexts, to increase generalizability of experiment results and
encourage cross-pattern types comparison. In Section 5.6, we discuss the threats to the
validity of our results and in Section 5.7, to conclude this part, we provide an overview
over related work on API-misuse detection.

98

5.1 Background and Motivation

5.1 Background and Motivation

Monperrus et al. [92] report that issues related to missing method calls are prevalent in
bug trackers, forums, newsgroups, commit messages, and source-code comments. Wa-
sylkowski et al. [158] investigate problems where methods are called in the wrong order.
These facts show the high interest in developing approaches that can automatically
detect such method call misuses during development time, and offer the right fixes (rec-
ommendations) to developers.

The main goal of this chapter, is to present a new misuse detector based on the
episode mining algorithm (EmDetect), which is able to automatically discover different
code representations from source code, in contrast to other state of the art approaches
that are based on program analyses that pre-define the code representation and simple
aggregation algorithms for learning the patterns (Table 2.1). We evaluate the quality
of the learned patterns within the application context of misuse detection, and compare
their performance with respect to other state of the art approaches. EmDetect employs
the same matching and ranking strategy as the ones used by MuDetect [13]. This
allows for a direct comparison of the performance of two detectors that differ only on
the static analyses and learning algorithm used: one based on detailed static analyses and
pre-defined code representation (MuDetect), and the other based on a simple stream of
events extraction and automatic learning of different code representations (EmDetect).
For the sake of completeness, we also compare EmDetect with the other detectors used
in MuDetect evaluations: GrouMiner, Jadet, Tikanga, and DMMC in terms of
both precision and recall. We introduce these detectors in the following.

MuDetect [13] encodes API usages as API-Usage Graphs (AUGs) that captures
all usage properties based on data and control flow analyses. Node represent data en-
tities, such as variables and actions, for example method calls, conditions, iterators
and exceptions; edges represent control and data flow between the entities and actions
represented by nodes. MuDetect employs a code-semantic-aware, greedy frequent-
subgraph-mining algorithm to mine the patterns.

GrouMiner [110] represents usages as directed acyclic graphs that encode method
calls, field accesses, and control structures as nodes and control-flow and data-flow de-
pendencies among them as unlabeled edges. GrouMiner uses sub-graph mining to find
patterns and then detects violations of these patterns as missing nodes. It detects miss-
ing method calls, as well as missing conditions on the granularity of a missing branching
or loop node.

Jadet [158] encodes the transitive closure of the call-order relation in each usage as
pairs of the form m()≺ n(). It uses Formal Concept Analysis [41] to identify violations,
i.e., rarely missing call order pairs. Tikanga [157] builds on the same algorithm as Ja-
det , but encodes usages using temporal properties (CTL). Both detectors detect missing
calls. However, Jadet cannot detect violations of patterns with only two calls, because
it works on multiple call pairs, since this would be a usage with a single call, which
cannot be encoded using call pairs. Tikanga can detect such violations.

DMMC [92] encodes usages as sets of methods called on the same receiver type.
It identifies violations by computing, for every usage, the ratio between the number of

99

5 On the Impact of Order Information in API Method Call Misuses

equal usages and the number of usages with exactly one additional call. Intuitively, a
violation should have only few exactly-similar usages, but many almost-similar usages.
DMMC detects misuses with exactly one missing method call.

These four detectors reveal several problems that result in low recall and precision. In
the following, we give a brief description of these problems and how we mitigate them.

5.2 A New Detector

In this section we explain how we use the learned API usage patterns for detecting
potential API misuses in source code. For this purpose, we build a new API-misuse
detector, EmDetect as follows:

(1) We use the episode mining algorithms introduced in Section 4.3, for learning the
different pattern types. Episode mining takes as input a stream of events (extracted
from source code), and outputs episodes (patterns) as partial order set of the
extracted events.

(2) Given the graph representation of the patterns we learned (Figure 4.3), we adapt
the algorithm used by MuDetect for detecting and ranking potential API mis-
uses found in source code. This allows us to fairly compare the subgraph mining
approach used by MuDetect which transforms source code into a detailed graph
representation using data and control flow analyses, with the episode mining ap-
proach which transforms source code into a simple stream of events.

We subsequently introduce EmDetect’s components, one at a time.

5.2.1 Pattern Mining

The mining algorithm and pattern generation steps are the same as described in Sec-
tion 4.3.2. In order to optimize the patterns outputted by the episode mining algorithm
to the special context of misuse detection, in addition to the pattern filtering step in-
troduced in Section 4.3.2, we apply also the following filter: We ignore sub-patterns,
e.g., patterns that are part of some other larger patterns. Given that pattern mining
is an a-priori-based algorithm, a sub-pattern (a → b) might be part of another pattern
(a → b → c), if the later occurs frequently enough according to the frequency and en-
tropy thresholds. The (a→ b) constraint is a redundant constraint already included into
the (a → b → c) constraint, which is not required for the purpose of misuse detection
and that’s why we filter it out.

5.2.2 Detecting and Ranking API Misuses

Given the graph representation of the patterns we learn, we use the same algorithm
as MuDetect for detecting and ranking potential API misuses found in source code.
The detection algorithm takes as input the set of learned patterns, the target source

100

5.2 A New Detector

code that we want to analyze for potential API misuses, and outputs a ranked list of
potential misuses. In a nutshell, the algorithm works as follows.

(1) The detection algorithm checks and discovers for each pair of a pattern and target
source code, full occurrences (instances) and partial occurrences (potential mis-
uses).

(2) Potential misuses that are subgraphs of instances of another pattern are filtered
out, since they represent alternative correct usages of the same API. Hence they
don’t represent an API misuse.

(3) After identifying all potential misuses in the target source code, the detection algo-
rithm ranks the findings using different ranking strategies. Some of these ranking
strategies come from the literature [66, 92, 110, 149, 150, 157, 158], and others are
generated as combinations of the individual ranking factors by multiplication. The
following ranking factors are considered: pattern support, number of pattern vio-
lations, the pattern uniqueness factor, violation support and the violation overlap.
Since it is unclear which of these strategies is useful, they are evaluated empirically.

(4) To avoid reporting duplicate misuses (i.e. usages that violate alternative correct
usages of the same API), the algorithm filters out misuses involving a method call
that is part of another misuse listed with a higher rank.

More details about the detection algorithm can be found in the work by Amann et.
al. [13].

As mentioned before, the main contribution in this part of the thesis is not to build a
better misuse detector, but to show instead that by using (1) a simple AST parser and
(2) an advance machine learning algorithm that is able to automatically discover latent
knowledge (different pattern representations) from source code, we are able to obtain
comparable results compared to state of the art based mainly on (1) detailed program
analyses for extracting domain knowledge code artifacts and (2) simple aggregation
algorithms for abstracting these information. For this reason, to make the comparability
with the state of the art as close as possible, as explained above, EmDetect adopts
the same detection and ranking algorithms as MuDetect. MuDetect is based on
AUGs, which are acyclic connected graphs, while EmDetect is based on episodes that
in the partial and no-order configurations output disconnected graphs. For this reason,
before applying MuDetect detection algorithm, we need to convert the learned patterns
by EmDetect into connected graphs representation (AUGs). How the conversion is
handled in the different configurations of EmDetect is explained in the following:

• Sequential-order configuration is straightforward, since sequences are by definition
connected.

• Partial-order configuration: (a) for disconnected 2-event patterns, we generate
both possible sequences and remove the disconnected version. (b) For disconnected
larger patterns, containing more than 2-events, slightly adapt the filtering step

101

5 On the Impact of Order Information in API Method Call Misuses

explained in Section 4.3.2, by maintaining the most abstract connected patterns,
so that from the set of patterns representing the same events, all the kept patterns
are connected and represent all the other (filtered) patterns.

• No-order configuration, we skip this configuration for the evaluations in this chap-
ter of the thesis, because of what we found in Observation5.

5.3 Evaluation Setup

This section describes the data set we use, presents the analyses of the frequency and
entropy thresholds for the episode mining algorithm, and presents the setup we use to
assess EmDetect ability to detect API misuses in the different mining configurations.
Our main goal is to evaluate EmDetect’s precision and recall, especially compared
to existing detectors, in order to understand whether either a simple representation
of source code, such as a stream of events, is effective in practice when using more
sophisticated machine learning approaches.

5.3.1 Dataset

For evaluating EmDetect in terms of both precision and recall, we need an annotated
data set of correct and incorrect API usages. To the best of our knowledge, such a
data set does not exist for C# code, that’s why we need to extend our benchmark
(PtBench [30]) to support yet another programming language for which there exists
a ground-truth of known API misuses. We chose to use MuBench [11] as our ground-
truth, which contains API method call misuses with examples of correct usages, derived
from the fix of the corresponding misuse. The API method call misuses come from real-
world Java projects. Furthermore, MUBench comes with MuBenchPipe [12], a public
automated benchmarking pipeline built on top of MUBench. MUBenchPipe reveals
us from the burden of preparing the target projects and executing the detector, since
everything is already integrated into the automated, publicly available pipeline.

In this chapter, we compare EmDetect against the five detectors: MuDetect,
Jadet, GROUMiner, Tikanga, and DMMC. As the ground-truth for the experi-
ments, we use MuBench, a dataset of 191 API misuses. For simplicity, we refer to this
dataset as MuBench throughout this chapter of the thesis.

5.3.2 Threshold Analyses

The episode mining algorithm uses two thresholds: frequency and entropy. The threshold
values directly impact the number of patterns learned (higher threshold values means
stronger evidence in the source code that a given pattern occurs), and as a consequence
also the performance of the misuse detector (according to the patterns learned, the
detector may or may not identify misuses in the source code).

In the application context of misuse detection, we empirically evaluate the effect of
frequency and entropy thresholds on the performance of EmDetect in terms of: (1) The

102

5.3 Evaluation Setup

number of misuses detected, based on the ground truth of known method call misuses
that we have on the Java projects. (2) The performance of the ranking algorithm
(presented in Section 5.2.2) on ranking true positives on top of the list of findings.

Initial Analyses Given that we have to analyze the findings of the detector manually,
we perform our analyzes for the frequency and entropy thresholds on one Java project
from MuBench. For this we chose the one with the highest number of the method
call misuses. After fixing the Java project (initial) on which we perform our threshold
analyzes on, we choose an arbitrary value for the frequency threshold, and analyze the
effect of different entropy thresholds on the performance of the detector. After defining
the optimal entropy threshold, we repeat our analyzes to study the effect of the different
frequency values. Our analyzes reveal an optimal frequency threshold of 20, and entropy
threshold of 0.4 for the initial project we perform our analyzes on.

Automating for different projects Since different projects have different sizes (number
of events), the frequency threshold highly influences the number of patterns learned in
each project. For this reason, we decided to automate the calculation of the frequency
threshold according to the project sizes. For this we considered the total number of
events, the number of unique events, and the average occurrences of events in each of
the projects. According to our analyzes, the best function for this calculation resulted
the one that compares a target project with the initial project, on the average occurrence
of events. The function used for calculating frequency threshold in every project is the
following:

frequency =

(
1 +

avg.Target

avg.Initial

)
∗ InitialFreq (5.1)

, where avg.Target and avg.Initial is the average occurrence of events in the target
and initial project respectively, and InitialFreq is the frequency threshold used in the
initial project. The output of this function we round up to the 5th closest integer, for
example if the function outputs either 22.2 or 24.8 they are both rounded up to 25.

5.3.3 Experimental Setup

We evaluate EmDetect performance on both precision and recall. For the evaluations,
we use an entropy threshold of e = 0.4, and varying frequency threshold according to
project sizes as presented in Section 5.3.2. We run the experiments using MuBench-
Pipe [12], a public automated benchmarking pipeline built on top of MuBench [11],
containing the ground-truth data set. MuBenchPipe facilitates preparing the target
projects from MuBench. Executing the detectors on them, and collecting result statis-
tics about the detectors’ performance we manually reviewed the detectors’ findings.
Since the patterns mined by the episode mining configurations consist only of events
that correspond to method declarations and invocations, we run EmDetect on a sub-
set of projects from MuBench that contain API method call misuses, letting it mine
patterns and detect violations on a per-project basis. Since we compare the performance

103

5 On the Impact of Order Information in API Method Call Misuses

of EmDetect with state of the art detectors presented in Section 5.7, we apply a second
filter on the projects to select the ones that are also used by Amann et. al. in [12]. This
left us with a total of four Java projects.

To evaluate the precision and recall of EmDetect, we conduct two experiments,
namely P to measure precision, and R to measure recall. For the other detectors, we
use the best configurations as reported in the respective publications. We introduce the
experiments in more detail in the following paragraphs.

Precision We run the detector on the four projects from MuBench, to mine patterns
and detect violations on a per-project basis, and on the different mining configura-
tions. Since EmDetect reports several hundreds of violations, reviewing all violations
of all mining configurations and on four projects is practically infeasible. Therefore,
we reviewed the top− 20 findings per configuration on each of the selected projects, as
determined by the ranking algorithm to identify true and false positives. The new true
positives found that are not part of the ground-truth, are candidates to be included
in MuBench.

Recall We run EmDetect on four projects from MuBench (containing API method
call misuses and used in [12]), and on the different mining configurations. Following the
same evaluation logic as in [12], we detect violations on a per-project basis. Then, we
manually reviewed all potential hits, i.e., all findings in the same method as a known mis-
use. As the ground truth, we use the known API method call misuses from MuBench.
We report the number of misuses identified by each of our mining configurations. This
gives us the recall of the detector with respect to known misuses and, at the same time,
crosscheck which of the mining configurations’ findings are also identified by the other
configurations and/or by the state of the art detectors.

5.4 Evaluation Results

In this section, we present the results of our experiments in comparing sequential and
partial-order patterns within the application context of API method call misuse detec-
tion. We use our misuse detector (EmDetect) to compare the pattern types in terms
of both precision and recall. The experiments in this section are performed on the Java
data set, using MuBench [11] as a ground-truth of correct and in-correct API usages
for evaluating the detectors’ performance. For the sake of completeness, we compare the
performance of EmDetect also with the other 4 misuse detectors studied by Amann et.
al. [12]. For evaluating the detectors, we consider the same set of projects as used in [12]
and select the ones that contain API method call misuses. This let us with a total of 4
Java projects to perform our evaluations on: bcel, chensum, jigsaw and testing. All
experiments ran on a MacBook Pro with an Intel Xeon @ 3.00GHz and 32GB of RAM.

104

5.4 Evaluation Results

Table 5.1: Precision of the Detectors in Their Top-20 Findings.

Precision Recall F1

Detector True Positives % Hits % %

EMDetectPOC 3 3.8 8 42.1 7
EMDetectSOC 12 15 5 26.3 19.1

MuDetect 12 15 14 51.8 23.3
DMMC 2 3.3 3 15.8 5.5
Jadet 4 7.7 8 42.1 13
GROUMiner 3 3.3 7 36.8 6.1
Tikanga 2 5 2 10.5 6.8

5.4.1 Precision

The first part of Table 5.1 summarizes the results of measuring the detectors’ precision
in their top− 20 findings.

Observation 7.1: EMDetectPOC reports 80 violations in the top− 20 findings in four
projects. Among these violations, we find three true positives, two of which were pre-
viously unknown. This results in precision of 3.8%, which exceeds the precision of 2 of
the detectors from the literature.

Observation 7.2: EMDetectSOC report 80 violations in the top − 20 findings in
four projects. Among these violations, we find 12 true positives, 9 of which were
previously unknown. This results in precision of 15%, which is the same as the precision
for MuDetect and exceeds the precision of all the other detectors from the literature.

The two observations above show that EMDetectSOC performs better in terms
of precision compared to EMDetectPOC , by ranking more true positives in the top− 20
findings. This comes due to: (1) higher number of patterns learned by POC compared
to SOC as we found in Observation2, and (2) missing of the order information
between some of the events in partial-order patterns. The higher number of patterns
means that more false positives are ranked in the top − 20 findings, while the missing
of the order information impacts the matching algorithm, which is based on nodes
(method calls) and edges (order information).

5.4.2 Recall

For measuring the detectors’ recall, we use 19 publicly available method call misuses
from the four filtered projects from MuBench. The right part of Table 5.1 summarizes
the results.

Observation 7.3: EMDetectPOC identifies 8 out of the 19 known misuses, which results
in recall of 42.1%. This result exceeds the recall of three out of five detectors from the

105

5 On the Impact of Order Information in API Method Call Misuses

literature, except for Jadet with which it performs the same and MuDetect which
shows a better recall (51.8%).

Observation 7.4: EMDetectSOC identifies 5 out of the 19 known misuses, which
results in recall of 26.3%. This result exceeds the recall of two out of five detectors from
the literature.

The two observations above show that EMDetectPOC performs better in terms
of recall compared to EMDetectSOC , by finding more known misuses from our
ground-truth data set. This comes due to the fact that POC abstracts over several
usages in the source code, which increases the patterns support. On the other hand
SOC learns only sequences of method calls and, when a given sequence does not occur
often enough, it is missed by the learning algorithm.

EMDetectPOC correctly identifies three misuses that EMDetectSOC does not iden-
tify, and one misuse that none of the detectors from the literature nor EMDetectSOC

identifies. EMDetectPOC misses 8 misuses that one of the detectors from the litera-
ture finds. Three of these misuses are missed, because the projects contain few usage
examples compared to the frequency threshold used by EmDetect for the pattern min-
ing algorithm. Four of these misuses are missed because they contain a missing call in
case an exception occurs. Since EmDetect does not handle exception conditions (it
only identifies if a method is missing or not in the target code), it fails in identifying
such cases. One of these misuses is missed due to the matching algorithm. Overall, the
detectors identified 34 unique previously unknown misuses in experiment P.

While EmDetect has higher recall than the other detectors, its recall is still low
in absolute terms. We find that EmDetect has on average 227.6 usages examples
(median = 105) for APIs whose misuses it identifies, but only 38.6 examples (median =
11) for those it misses. There is a moderate correlation (Pearson’s r = 0.52) between
the number of examples and detecting a misuse. This supports the hypothesis that the
target projects contain too few usage examples for some APIs.

5.4.3 Discussion

Our evaluation results in the application context of misuse detection show that
EmDetectSOC performs better in term of precision by ranking true positives higher
in the top − 20 findings, while EmDetectPOC outperforms EmDetectSOC in terms
of recall, since it is able to abstract over several API usages with low occurrence, mak-
ing SOC fail in learning such patterns.

Compared to the other detectors from the literature, we can conclude that
EmDetectSOC outperforms all of them in terms of precision by at least 2 times, and
EmDetectPOC performs better (DMMC, GROUMiner and Tikanga) or the same
(Jadet) and worse when compared to MuDetect in terms of recall. Depending on
whether we give higher priority to either precision or recall, we can decide on the mining
configuration to use, either POC or SOC. Our results also show that it is possible to

106

5.5 Extension and Further Use

outperform other detectors in the literature with a general purpose machine learning
approach (episode mining) that does not require much domain-specific tuning.

EmDetect is able to identify wrong call order and missing method calls, but fails in
identifying superfluous method calls. The false negatives caused by superfluous method
calls cannot be detected by misuse detectors that search for missing elements. From the
literature, DroidAssist [112] uses a probabilistic approach that might find superfluous
method call, but the approach has never been evaluated.

5.5 Extension and Further Use

We design PtBench as an extensible automated benchmark, to facilitate not only our
own study of API-pattern detectors presented in Chapter 4, but also future work. As
the most important extension points we consider (1) extensions to the benchmarking
dataset, to increase our confidence in the generalizability of the benchmarking results
also to other programming languages, (2) integrating additional metrics for evaluating
pattern types, and (3) integrating additional applications, to move further towards a
comprehensive comparison of the pattern types.

5.5.1 Dataset Extensions

The dataset forms the basis for the experiments. Though ideally a benchmark dataset is
a minimal representative sample, to the best of our knowledge, it is unclear how such a
sample may be determined. Therefore, the best way to approximate representativeness is
to extend the dataset by other projects, and/or source code of projects developed in other
programming languages, to make the comparison of the pattern types as representative
as possible within and across programming languages. For further technical details on
how to extend PtBench with projects from other programming languages, we refer to
the project website.1

5.5.2 New Metrics for Pattern Comperison

In Chapter 4 we presented three metrics on which we base on the comparison between the
different pattern types we learn, namely: expressiveness, consistency and generalizabil-
ity. PtBench is extensible in the meaning that other researchers are encouraged to add
additional metrics definition on it for evaluating the learned patterns, and investigate
differences between the pattern types considering the new dimensions.

5.5.3 Comparison of Pattern Types based on Applications

To achieve a broad empirical comparison of the different pattern types, it is crucial that
we empirically evaluate their performance in other software engineering applications (i.e.
code recommendation), in addition to misuse detection which is already covered here.

1http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

107

5 On the Impact of Order Information in API Method Call Misuses

For technical details on how to integrate new applications into PtBench, we refer to
the project website.

5.6 Threats to Validity

Internal Validity The episode mining algorithm learns only injective episodes, where
all events are distinct, i.e., the algorithm does not handle multiple occurrences of the
same event in a pattern. For example, method invocations: IEnumerator.MoveNext()
or StringBuilder.Append() are usually called multiple times in the code. The patterns
we learn contain a single instance of such events. While this is a limitation, it is also
an advantage in terms of pattern generalizability. Specifically, the mined pattern would
not have a strict number of occurrences that would lead to mismatches because of the
difference in the number of occurrences. However, this is not the case for the other
detectors from the literature that we compare EmDetect with. MuDetect stores
information even for the exact code line where a known misuse occur. These differences
have a positive impact on respectively the precision and recall of the other detectors
compared to EmDetect.

The algorithm relies on user-defined parameters: frequency and entropy thresholds.
While the configuration parameter depends on the type of patterns one is interested
in, deciding on adequate frequency and entropy thresholds is not an easy task, which
affect the results. We mitigate this threat by empirically evaluating the thresholds and
automize the frequency threshold per project size (cf. Section 5.3.2).

We adapt the same violation detection and ranking algorithm developed for Mu-
Detect. While the implementation details for these algorithms might be optimized
for MuDetect, it might not define the best performance for the patterns mined
by EmDetect. However, the goal here is not to build a perfect detector, but rather com-
paring the performance of a mining approach based on program analyses for encoding
code semantics into a graph representation (MuDetect), with a more general mining
approach that simply converts source code into a stream of events and automatically
learns different code representations without a predefined format.

We reviewed the EMDetect’ findings ourselves. For the other detectors, we used the
results as presented in [13].

External Validity The study is subject to the limitations of MuBench dataset. We
cannot generalize our results for other datasets, or the performance evaluations with
regard to other misuse detectors, except of the ones included here.

5.7 Related Work

Helping developers identify API misuses has received much attention. As a matter of
facts, most of the approaches (57%) presented in Table 2.1 are developed for the pur-
pose of misuse detection. Some of these approaches learn API patterns across different
projects and use the learned patterns for detecting misuses in the project of interest,

108

5.7 Related Work

and others learn project-specific API patterns and use them to detect potential misuses
within the same projects.

Per-project API-Misuse Detectors In this chapter, we presented a compari-
son of our detector (EmDetect), to the other detectors that target Java: Mu-
Detect, GrouMiner, DMMC, Jadet and Tikanga. MuDetect and GrouMiner
are both based on a graph-based representation of API usages (GROUMs and AUGs),
and use subgraph mining for learning the patterns. AUGs, in contrast to GROUMs,
are directed acyclic multi-graphs that capture method calls, field accesses, null checks,
and data entities as nodes and control/data dependencies among them as labeled edges.
Control structures are encoded by control edges between the nodes representing the
conditions and the nodes representing the controlled actions. The difference between
these two representations is that while GrouMiner can detect a missing if, MuDe-
tect can also tell what should be checked in the if condition. Additionally, AUGs
encode exceptional, synchronized, and iterative control flow, and distinguish receivers
from parameters, to differentiate between correct usages and misuses.

Jadet uses as well a directed graph-based representation of source code, where nodes
represent method calls on a given object and edges represent control flows. From the
graph representation, it derives a pair of calls for each call-order relationship. Object
usages are then represented as a set of such pairs, which form the input to the miner for
learning the patterns. The encoding of call-order relation, allows Jadet to detect missing
method calls. It may also detect missing loops as a missing call-order relation from a
method call in the loop header. However, it cannot detect violations of patterns that
consist of only two calls, since such a patterns would be represented by only a single pair
of method calls. Tikanga builds on the same algorithm as Jadet. It replaces Jadet
call-order properties by general Computation Tree Logic formulae on object usages. It
applies Formal Concept Analyses [41] to obtain patterns and detect violations at the
same time. In difference to Jadet, Tikanga is able to also detect violations of patterns
with only two method calls. DMMC is also specialized in detecting missing method
calls, but instead of mining patterns, it rather computes a likelihood for every usage to
be a potential misuse. DMMC is able to only detect misuses with exactly one missing
method call.

Misuse detectors using frequency-based approaches for learning the API patterns, are
unable to detect redundant methods calls as misuses, redundant invocations of method
calls in the source code that are not required. Redundant method calls are also usually
known as code smells. For the approaches presented in Table 2.1, only three of them
are able to detect redundant method calls: PJAG12 [121], DroidAssist [111] and
Salento [96]. In all three cases, this ability comes from patterns modeling object states,
using method calls to signal state transitions. However, it is unclear whether and how
the above three mentioned approaches can be extended to also cover misuses of other
code elements, such as conditions, exception handlings and transitions.

Except of Java, many other misuse detector are developed for detecting misuses in
other programming languages as well, such as [3, 66, 67, 126, 127].

109

5 On the Impact of Order Information in API Method Call Misuses

Cross-project API misuse detectors Gruska et al. [44] evaluated Jadet in a multi-
project setting, where it simultaneously mined patterns and detected violations in
a combined set of all usages from 6,000 projects. Jadet mines any pattern with
high support, even within a single project. From the reviewed violations, Gruska et
al. published only 8% of them as true positives. Instead of mining patterns across-
projects, CarMiner [150] and Alattin [149] mine target-specific patterns from exam-
ples retrieved via a code-search engine. This presents an alternative to the cross-project
mining. In contrast to other approaches, where they usually mine most commonly used
patterns first and then find deviations from them, Ammons et al. [14] learns the patterns
iteratively from each client program. For learning the patterns, they analyze execution
traces of API method calls sequences on pre-defined APIs. Given a client program, they
randomly select an execution trace and mine a specification from it. An expert examines
the specification and judges if it is correct or not. In case of correct specifications, they
add it to the set of patterns already learn, otherwise they mark it as a buggy trace and
randomly select a new execution trace till they find a correct one. The same procedure
is followed for each client program. The approach proposed by Ammons et al. uses the
set of already learned patterns to identify potential misuses to new client programs.

110

6 Conclusion and Outlook

In this thesis we investigate the advantages of machine learning in two dimensions. First,
by using the same program analyses as defined in a state of the art approach (PBN [123]),
and investigating if an approach that uses machine learning can find additional latent
knowledge that was not possible to uncover before. For this purpose, we use a Boolean
Matrix Factorization (BMF) approach. We show that BMF overcomes many of the
drawbacks that come with simple clustering approaches, such as automatically discov-
ering the number of clusters to represent the object usage space from source code, and
identify corner cases (noise) in the data. To evaluate BMF performance, we use the
PBN recommender, which is designed as an extensible inference engine for method com-
pletion. We replace the originally used canopy clustering with BMF, and compare the
performance of both approaches in terms of model size, prediction quality and inference
speed.

Second, we use an event stream mining algorithm that automatically learns differ-
ent code representations (sequences, sets and partial-orders), without complex domain
knowledge needed to encode a-priori. Designing a code representation that enables ef-
fective learning is a critical task that is often done manually for each programming
language. The main idea behind episode mining is to represent source code as a stream
of events by traversing its abstract syntax tree (AST). This allows a learning model to
leverage the structured nature of code, while still considering AST semantics. We use
episode mining to learn different API usage pattern types from source code, perform
an empirical study to compare the different pattern types based on three pre-defined
metrics (Section 4.4.3), build an API misuse detector based on the learned patterns, and
compare how it performs with a state of the art misuse detector (MuDetect [13]), in
terms of precision and recall. We make our work publicly available through PtBench
benchmark, which consist of the following components: (1) Two data sets providing
support for two different programming languages, C# and Java. (2) An adaptation of
an event mining algorithm to the special context of pattern mining for software engineer-
ing. (3) Three well defined metrics, on which we base the empirical comparison between
the different pattern types. (4) EmDetect to evaluate the effectiveness of the different
pattern types within the application context of misuse detection.

Our empirical investigation shows that there are different types of patterns learned in
code repositories. While there are tradeoffs between pattern types in terms of expres-
siveness, consistency and generalizability, they are comparable in terms of the patterns
size and number of API types. Our results empirically show that the sweet spot in
representing source code are partial-order patterns, which are a superset of sequential-
order patterns, without losing valuable information like no-order patterns. Partial-order
mining learns additional patterns compared to sequence mining, which generalize across

111

6 Conclusion and Outlook

repositories. In the application context of misuses detection, this results in better per-
formance of partial-order patterns (EMDetectPOC) in terms of recall, but very low
precision compared to sequential-order patterns (EMDetectSOC). Compared to other
detectors from the literature, (EMDetectSOC) outperforms all of them in terms of preci-
sion, and (EMDetectPOC) performs the same (compared to Jadet) or better (compared
to three others) in terms of recall in the typical per-project setting. .

Our findings are useful indications for researchers who work with code patterns in
applications of code recommendation and misuse detection.

In this chapter, we present a brief overview over the findings from this thesis. We start
with a review of the results and contributions of this thesis and follow with a closing
discussion.

6.1 Summary of Results

This thesis contributes to the area of code recommender systems. We provide a holistic
view on the problem space and the state of the art in existing learning approaches from
source code. We adapt matrix factorization and episode mining, two general-purpose
machine learning algorithms within the application domains of code recommendation
and misuse detection respectively, and compare their results with the latest state of
the art approaches, PBN [123] and MuDetect [13]. Finally, we present evidence for
possible directions towards further improvement, as a stepping stone for future work.

Survey of State-of-the-art Pattern Mining Approaches We present a systematic lit-
erature review of 65 existing learning approaches from source code, based on both static
and dynamic program analyses. From the findings of our literature review, we learn:
(1) that approaches analyze a small subset of code elements, mostly neglecting elements
other than method calls. (2) that 90% of the approaches are language dependent, be-
cause on relying on specific static and/or dynamic analysis. (3) that learning algorithms
used to generate knowledge from source code are either based on simple frequency oc-
currences of code elements extracted, or require domain specific knowledge for feature
extraction or natural language annotated code snippets. This shows the potential of
using more sophisticated machine learning algorithms that can at the same time rely on
code artifacts extracted using less complex program analyses, and automatically discover
latent knowledge from source code which was not possible from existing approaches.

Improving scalability in existing code recommenders We adapted Boolean Matrix
Factorization (BMF) within an existing code recommender pipeline based on canopy
clustering. The reasons for using BMF over simple clustering algorithms are: (1) BMF
can automatically calculate the number of clusters needed to represent a given object
space, instead of inputing it as a user-defined parameter. (2) BMF is able to automat-
ically identify noise from the data, while clustering algorithms partition any usage into
some cluster. We compare BMF with canopy clustering and show that by maintaining
the same recommendations quality, BMF is able to significantly improve model size and

112

6.1 Summary of Results

inference speed by up to 80%. In the experimental evaluation, BMF shows to be the
best all-round performer, but this quality comes with a cost in running times. How-
ever, as each type is dealt independently, the work can be trivially distributed in the
cloud, alleviating in this way the problem. Our results suggest that BMF is promising
in the context of intelligent method call completion, and speculate that other software
applications may also benefit from it.

Automated Benchmark for API-Usage Pattern Types We build PtBench, which to
the best of our knowledge, is the first-ever automated empirical benchmark for com-
paring different API-pattern types (sequential, partial and no-order) with respect to
real code. PtBench enables systematic, comparable, and reproducible experiments. It
automates large parts of the evaluation process, including the transformation of source
code into a simple stream of events (method declarations and invocations), the auto-
matic calculation of frequency and entropy thresholds for the episode mining algorithm
depending on the project size, the incorporation of an existing episode-mining algorithm
for learning different source code representations, and comparison of the different pattern
types according to three pre-defined metrics. Furthermore, PtBench is easily extensible
by new data sets (programming languages), new metrics definitions, and additional SE
application contexts for further experiments.

Our investigation shows that while there are tradeoffs between pattern types in terms
of expressiveness, consistency and generalizability, they are comparable in terms of the
patterns size and number of API types. Our empirical comparison showed practical
evidence that partial-order patterns are a good trade-off for representing concrete code
usages in the wild: they learn a high coverage of API usage patterns that are used
across different repositories when compared to sequential-order patterns while ensuring
that different variations of the same pattern are not redundantly stored, and at the same
time maintain important order information when compared to no-order patterns. Eval-
uation results show that all three configurations end-up learning only repository-specific
patterns for pattern sizes with 6 − events or more. Furthermore, our experimental
results proved the importance of order information in sequential and partial-order pat-
terns for representing source code in the wild. Our findings are useful indications for
researchers working with code patterns/snippets/examples in applications such as code
recommendation, misuse detection, code search etc.

The importance of order information in misuse detection We use PtBench for a
systematic evaluation and comparison of sequential and partial-order patterns for the
purpose of misuse detection in Java projects. For this, we developed EmDetect, a new
API method call misuse detector. EmDetect employs a pattern-mining and a violation-
detection algorithm that efficiently and effectively identifies usage patterns and misuses
based on episodes.

We find that both pattern types may successfully identify many misuses but suffer from
extremely low precision (below 15%) and recall (below 42.1%) in a practical setting.
However, our empirical evaluations show that even though EmDetect is based on a

113

6 Conclusion and Outlook

simple AST parser for extracting code artifacts, the results are still comparable in terms
of both precision and recall, when compared to other state of the art approaches that
heavily rely on detailed domain knowledge program analyses.

6.2 Future Work

In this section, we present our ideas for future work, with respect to advancing the state
of the art in discovering latent knowledge from source code. For some of these ideas we
present preliminary results, and others we identify as interesting challenges.

Data Sampling Is more data better, or can we achieve the same results by sampling a
small portion of relevant data instead? To increase the generalizability of their results,
many current approaches aim to experiment with very large amount of data. This
usually results in scalability issues in current systems, and lots of noise in the data used
during the training process. Data sampling is used over decades by statisticians, in
cases when analyzing all the possible available data is practically impossible. Future
work might investigate techniques for the retrieval of high-quality representative usage
examples instead, and compare their results with existing work. Given the tremendous
increase of the availability of source code data, future work should develop approaches
that combine data from multiple sources to increase generalizability of the results, and
at the same time incorporate sampling techniques to maintain the SE systems scalable.

Data preprocessing Agrawal et al. [5] showed that better data have a dominant impact
in improving the obtained results. To obtain better data, preprocessing steps are required
in order to improve the quality of the data used in training the models. Our BMF ap-
proach presented in Chapter 3, automatically discovered a high quantity of outliers in
the data (API type Table), and episode mining suffered from low rates of generaliz-
ability in the learned patterns because of including testing code (Section 4.6.4) while
training the models. Furthermore, the code surrounding an API usage may introduce
noise. Detailed program analyses generate a high amount of data, but the question is
which of this data is actually important for a task at hand, and how can they be used to
distinguish between high quality API usage examples and noise in the analyzed source
code? Is any data source relevant, or should we be careful when choosing the training
source based on some specific parameters? What kind of filters do we need to apply on
the increased amount of available code data on the different sources? These are some
of the questions that need to be considered before generating the training data set in
current systems. While measuring code quality remains generally an open question, us-
ing simple indicators like project maturity, code churn, or number of tests might already
improve the results. Future work should investigate respective possibilities and their
impact on current software engineering applications.

Automatic feature selection/pruning Feature selection have significantly improved
results in other fields, especially towards reducing the size of the trained models and

114

6.2 Future Work

improving scalability of systems in general. Also, feature selection techniques allow to
analyze the impact of different artifacts in the quality of the results obtained in general.
Many current software engineering approaches are based on extracting a large amount
of features from source code, such as in code recommendation [123], bug detection [66],
code synthesis [170] etc. Applying feature pruning techniques on these approaches, might
results in improved scalability and performance.

The support of API patterns The most common way to determine the support of API
patterns is by counting the number of usages that adhere to the pattern in the source
code. It follows the intuition that a pattern that holds more frequently is more likely
to be a valid pattern and that is used across repositories and developers. But this is
not always the case, as shown in Section 4.6.4 only half of the patterns we mine are
generalizable. A possible alternative is the method support, which counts the number of
methods that contain at least one usage following the pattern. If we interpret methods
as code units implementing a particular task, the method support can be interpreted as
the number of tasks using a certain API according to the mined pattern. The method
support is smaller than or equal to the occurrence support, as it ignores additional
usages following the same pattern within the implementation of the same task. Also,
multiple usages within the same task are likely written under the same conception of the
APIs pattern, thus not contributing with additional information to the training data.
We hypothesize that this might improve the generalizability of the mined API patterns
across different tasks and developers.

Another alternative is the project support, which counts the number of projects that
contain at least one usage following the pattern. If we interpret projects as the work
of different development teams, the project support can be interpreted as a measure of
how many teams believe this pattern to be correct. We hypothesize that this might
be an even better indicator for correctness than occurrence or method support, since it
shows the popularity of the mined pattern across different developer teams. Our results
in Section 4.6.4 support this hypothesis since 98% of the patterns learned finds usability
across methods, but less than 50% of them generalize across repositories (development
teams).

Future work should investigate and compare the impact of these (and possible other)
ways to calculate the support of patterns on their quality and generalizability. Moreover,
future work may investigate ways to combine different support metrics.

Frequency threshold for pattern mining Most of the existing approaches in pattern
mining are based on absolute thresholds to mine API patterns. This follows the intuition
that a pattern that holds at least a certain number of times, is likely to be correct.
However, larger projects tend to have a higher number of training examples compared
to smaller projects, which usually results in learning more API patterns from the larger
projects while many code examples from smaller projects do not reach this threshold and
are hence ignored. We mitigate this point in Section 5.3.2, where we generate relative
thresholds according to the project size (number of method declarations and invocations).

115

6 Conclusion and Outlook

This follows the intuition that a correct specification should hold more often in a larger
training dataset, while also considering other (correct) usages from smaller projects.

However, our statistics in Table 4.2 shows that the number of patterns learned de-
creases significantly while increasing the pattern size. This implies that larger patterns
require smaller thresholds, since their occurrence in source code is much lower. Future
work might consider several different thresholds at once, considering as well the pat-
tern size. For example, Saied et al. [137] first mine specifications with a high absolute
threshold and then successively mine extensions to these specifications using ever lower
thresholds. This follows the observation that there is often a strict core specification
that all usages of an API must adhere to, and several alternative extensions to it.

To the best of our knowledge, no previous work systematically compared alternative
ways to determine frequency thresholds. Future work should investigate how they im-
pact the quality of the learned patterns within specific software engineering application
contexts.

The Impact of API Usages Throughout the Development Process Developers strug-
gle with API usages at development time, and these usages might be different from the
patterns we identify. However, we know little about the actual impact of API usages
at different stages of the development process and the potentially distinctive properties
of usages at any particular stage. To find out more, future work could mine intermedi-
ate commits, or conduct surveys and field studies to learn more about which problems
developers face at different stages. This would enable a systematic comparison to re-
veal whether there are indeed differences and how these impact research on API-pattern
learning. Furthermore, such findings would contribute in building better recommender
systems to assist developers throughout different development stages.

Learning from additional code elements We learn code patterns only for method dec-
larations and invocations, excluding all other code elements such as loops, conditions,
exceptions etc. This is because the focus of this thesis is to investigate the impact of more
sophisticated machine learning algorithms in automatically discovering latent knowledge
from source code, instead of specifically learning complex patterns that include all code
elements. Since learning code patterns while considering other code elements is impor-
tant for supporting certain development tasks and identifying other types of misuses, we
address this as future work. This requires modifying our event stream generation, which
is an engineering task rather than a conceptual limitation. However, the new results
might bring some very interesting facts which are worth investigating.

Parallelizing machine learning algorithms Both BMF and episode mining algorithms
used in this thesis are available only in a sequential (non-parallelized) implementation,
hence they are inefficient. However they do not impact the scalability of the recommender
systems based on them, since the models are trained only once and then used for either
listing recommendations or detecting misuses. Future work should consider parallelizing
such general purpose machine learning algorithms’ implementation in order to make

116

6.3 Closing Discussion

them applicable also in cases when the training data is continuously updated, and as a
consequence the models need to be regenerated multiple times.

Experimenting on Further Applications Based on API-Usages Our work is limited
to two application contexts: code recommendation and misuse detection. Our survey
in Section 2.4.3 identifies at least eight other software engineering applications, which
realize quite distinctive ideas. We believe it is important to incorporate other applica-
tions, in order to get a more complete picture on the impact of general-purpose machine
learning algorithms within the software engineering context, and identify the respective
strengths and weaknesses. As the work presented in this thesis shows, such system-
atic assessment can reveal opportunities for significant improvements. However, future
work needs to systematically investigate the effects and counter-effects of individual
techniques, to see whether we can balance them out.

6.3 Closing Discussion

Reuse of existing software components is an integral ingredient to efficient software
development. Software developers use such components through their APIs. Thereby,
they must consider the usage constraints that come with these APIs.

Researchers have dedicated much work to the automated learning of API patterns.
This thesis consolidates over a decade of research for a qualitative and quantitative as-
sessment of the state of the art. We find that existing approaches conceptually cover only
a small subset of all types of API elements. Moreover, we find that existing approaches
often rely on language-dependent program analyses to extract domain-knowledge code
artifacts from software, and then apply simple mining algorithms to aggregate the ex-
tracted information.

In this thesis, we employ two state of the art general purpose machine learning algo-
rithms in order to automatically extract latent knowledge from source code that was not
possible with previous approaches: (1) Boolean Matrix Factorization (BMF) automati-
cally calculates the number of clusters needed to represent a given object space, and at
the same time identifies noise in the data. (2) Episode mining uses a simple representa-
tion of source code (stream of events) to automatically identify different code structures
(pattern types): sequential, partial, and no-order. Furthermore, we design a new static
API-misuse detector (EmDetect) to be able to compare how the different pattern types
generated from the episode mining algorithm, compare within the application domain of
misuse detection. EmDetect achieves a precision up to 15% and a recall up to 42.1%,
which is comparable to other existing approaches from the literature.

The work presented in this thesis shows that there is potential for further improvement
in existing software engineering applications, for automatically discovering valuable la-
tent knowledge from source code. For this purpose, the community needs to adapt more
sophisticated general-purpose machine learning algorithms, while developing software
engineering applications. We present several challenges that future work should address,
in order to reach this goal.

117

6 Conclusion and Outlook

First, current approaches employ rather simple learning algorithms, that are mainly
frequency-based, i.e., they assume that frequent usages are correct and infrequent us-
ages, consequently, incorrect. These learning algorithms focus on simply aggregating the
extracted code artifacts instead of new information discovery. We should search for al-
ternative learning algorithms to replace pure frequency, and develop (adapt) techniques
that are able to generate latent knowledge from the available data.

Second, our experiments show that current general purpose machine learning algo-
rithms are severely limited in scalability. Both approaches used in this thesis, BMF
and episode mining, do not scale to larger training data sets, widely used in software
engineering approaches. Parallelizing such algorithms will significantly improve their
scalability and applicability in software engineering and other domains. At the same
time, we should also investigate the quality of the training examples we use in such
approaches.

118

Contributed Implementations and Data

In the course of the projects presented in this thesis, research prototypes have been im-
plemented and data has been collected. We provide these implementations and datasets
to enable other researchers to validate our work and to build new research upon them.
We believe this to be good scientific practice and encourage other researchers to do the
same.

Boolean Matrix Factorization (BMF)

For the work presented in Chapter 3, we provide in the following link the corresponding
artifact page, containing information regarding the data set used to perform the exper-
iments, the BMF algorithm implementation used for mining the patterns, the complete
pipeline source code implementation, and other useful information for replicating the
experiments:

http://www.st.informatik.tu-darmstadt.de/artifacts/bmf4cr/

The BMF algorithm used is fully integrated into our implementation pipeline in Java
(Bmf4Cr), to allow continuous execution in the context of the respective experiments.
Our Bmf4Cr project uses Apache Maven for its build in configuration, to allow
system- and IDE-independent builds.

Pattern Types Benchmark (PTBench)

PTBench is the benchmarking pipeline introduced in Chapter 4 for comparing differ-
ent pattern types based on three predefined metrics, and it’s performance is evaluated
within the application context of misuse detection presented in Chapter 5 where we
introduce EmDetect. We provide the implementation of EmDetect presented in Sec-
tion 4.3, which is fully integrated into PtBench to avoid interruption in executing the
respective experiments. We make publicly available the data set, the entire source code
implementation, the mined patterns and other useful information for replicating the
experiments on the following artifact page:

http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

The EmDetect project uses Apache Maven for its build configuration, to allow
system- and IDE-independent builds. The detector can be built using the mvn package

command, which creates standalone bundles called EmDetect.jar for the detector in the

119

http://www.st.informatik.tu-darmstadt.de/artifacts/bmf4cr/
http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

Contributed Implementations and Data

target folder. The README files of the GitHub repository present further details on the
organization of the project and its code.

On the artifact page, we provide as well the review results and additional data artifacts
for the evaluations presented in Section 5.4. The full experiment data may be downloaded
from the review sites in CSV format or viewed online.

120

Bibliography

[1] A. Achar, S. Laxman, R. Viswanathan, and P. S. Sastry. Discovering injective
episodes with general partial orders. Data Mining and Knowledge Discovery,
25(1):67–108, Jul 2012.

[2] A. Achar and P. Sastry. Statistical significance of episodes with general partial
orders. Information Sciences, 296:175–200, 2015.

[3] M. Acharya and T. Xie. Mining api error-handling specifications from source code.
In International Conference on Fundamental Approaches to Software Engineering,
pages 370–384. Springer, 2009.

[4] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns as partial orders
from source code: from usage scenarios to specifications. In Proceedings of the the
6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages 25–34,
2007.

[5] A. Agrawal and T. Menzies. Is better data better than better data miners?: on
the benefits of tuning smote for defect prediction. In Proceedings of the 40th
International Conference on Software Engineering, pages 1050–1061. ACM, 2018.

[6] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pages 207–216, 1993.

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the
eleventh international conference on data engineering, pages 3–14. IEEE, 1995.

[8] M. Allamanis, H. Peng, and C. Sutton. A convolutional attention network for
extreme summarization of source code. In International Conference on Machine
Learning, pages 2091–2100, 2016.

[9] G. Alonso, C. Hagen, D. Agrawal, A. El Abbadi, and C. Mohan. Enhancing the
fault tolerance of workflow management systems. IEEE Concurrency, 8(3):74–81,
2000.

[10] R. Alur, P. Černỳ, P. Madhusudan, and W. Nam. Synthesis of interface speci-
fications for java classes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 98–109, 2005.

121

Bibliography

[11] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini. MUBench: A
benchmark for API-misuse detectors. In Proceedings of the 13th Working Confer-
ence on Mining Software Repositories, MSR ’16. ACM Press, 2016.

[12] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini. A system-
atic evaluation of static API-misuse detectors. IEEE Transactions on Software
Engineering, 2018.

[13] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini. Investigat-
ing next-steps in static api-misuse detection. In Mining Software Repositories,
Montreal, Canada, 2019.

[14] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM.

[15] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons.
Algorithms and applications for approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis, 52:155–173, 2007.

[16] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE transactions on Computers, 100(6):592–597,
1972.

[17] E. Bodden, P. Lam, and L. Hendren. Partially evaluating finite-state runtime mon-
itors ahead of time. ACM Transactions on Programming Languages and Systems
(TOPLAS), 34(2):7, 2012.

[18] B. Boehm. Managing software productivity and reuse. Computer, 32(9):111–113,
1999.

[19] N. P. Borges, M. Gómez, and A. Zeller. Guiding app testing with mined interaction
models. In 2018 IEEE/ACM 5th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pages 133–143. IEEE, 2018.

[20] H. B. Braiek, F. Khomh, and B. Adams. The open-closed principle of modern
machine learning frameworks. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pages 353–363. IEEE, 2018.

[21] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve
code completion systems. In Proceedings of the 7th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering, pages 213–222, 2009.

[22] M. Bruch, T. Schäfer, and M. Mezini. Fruit: Ide support for framework under-
standing. In Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology
eXchange, eclipse ’06, pages 55–59, New York, NY, USA, 2006. ACM.

122

Bibliography

[23] M. Bruntink, A. Van Deursen, and T. Tourwé. Discovering faults in idiom-based
exception handling. In Proceedings of the 28th international conference on Software
engineering, pages 242–251. ACM, 2006.

[24] R. P. L. Buse and W. Weimer. Synthesizing api usage examples. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages
782–792, Piscataway, NJ, USA, 2012. IEEE Press.

[25] R. P. L. Buse and W. R. Weimer. Automatic documentation inference for ex-
ceptions. In Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA’08. ACM Press, 2008.

[26] T. Cargill. Exception handling: A false sense of security. In C++ gems, pages
423–431. SIGS Publications, Inc., 1996.

[27] E. Çergani and M. Mezini. On the impact of order information in api usage
patterns. In International Conference on Software Technologies, pages 79–103.
Springer, 2018.

[28] E. Cergani and P. Miettinen. Discovering relations using matrix factorization
methods. In Proceedings of the 22Nd ACM International Conference on Infor-
mation & Knowledge Management, CIKM ’13, pages 1549–1552, New York, NY,
USA, 2013. ACM.

[29] E. Cergani, S. Proksch, S. Nadi, and M. Mezini. Addressing scalability in api
method call analytics. In Proceedings of the 2Nd International Workshop on Soft-
ware Analytics, SWAN 2016, pages 1–7, New York, NY, USA, 2016. ACM.

[30] E. Cergani, S. Proksch, S. Nadi, and M. Mezini. Investigating order information in
api-usage patterns: A benchmark and empirical study. In ICSOFT, pages 91–102,
2018.

[31] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of points-to analysis of
java in the presence of exceptions. IEEE Transactions on Software Engineering,
27(6):481–512, 2001.

[32] C. Cheng, H. Yang, I. King, and M. R. Lyu. Fused matrix factorization with
geographical and social influence in location-based social networks. In Twenty-
Sixth AAAI Conference on Artificial Intelligence, 2012.

[33] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of
exceptions for the analysis of java programs. In ACM SIGSOFT Software Engi-
neering Notes, volume 24, pages 21–31. ACM, 1999.

[34] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test cases
for specification mining. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 85–96. ACM Press, 2010.

123

Bibliography

[35] C. De Roover, R. Lammel, and E. Pek. Multi-dimensional exploration of api usage.
In Program Comprehension (ICPC), 2013 IEEE 21st International Conference on,
pages 152–161. IEEE, 2013.

[36] U. Dekel and J. D. Herbsleb. Improving API documentation usability with knowl-
edge pushing. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 320–330. IEEE Computer Society Press, 2009.

[37] M. Dias, D. Cassou, and S. Ducasse. Representing code history with development
environment events. arXiv preprint arXiv:1309.4334, 2013.

[38] T.-A. Doan, D. Lo, S. Maoz, and S.-C. Khoo. LM: A miner for scenario-based
specifications. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, volume 2 of ICSE ’10, pages 319–320. ACM Press, 2010.

[39] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal properties
from dynamic traces. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 339–349, 2008.

[40] M. Gabel and Z. Su. Online inference and enforcement of temporal properties. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE ’10, pages 15–24. ACM Press, 2010.

[41] B. Ganter and R. Wille. Formal concept analysis: mathematical foundations.
Springer Science & Business Media, 2012.

[42] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[43] P. D. Grünwald and A. Grunwald. The minimum description length principle.
MIT press, 2007.

[44] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000 projects. In
Proceedings of the 19th International Symposium on Software Testing and Analysis,
ISTA ’10, pages 119–129. ACM Press, 2010.

[45] X. Gu, H. Zhang, and S. Kim. Deep code search. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 933–944. IEEE,
2018.

[46] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 631–642. ACM, 2016.

[47] D. Guillamet and J. Vitria. Non-negative matrix factorization for face recognition.
In Catalonian Conference on Artificial Intelligence, pages 336–344. Springer, 2002.

[48] J. Haase and U. Brefeld. Mining positional data streams. In International workshop
on new frontiers in mining complex patterns, pages 102–116. Springer, 2014.

124

Bibliography

[49] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18, 2009.

[50] A. E. Hassan. The road ahead for mining software repositories. In 2008 Frontiers
of Software Maintenance, pages 48–57. IEEE, 2008.

[51] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of
software. In 2012 34th International Conference on Software Engineering (ICSE
2012)(ICSE), pages 837–847, June 2012.

[52] R. Holmes and G. C. Murphy. Using structural context to recommend source
code examples. In Proceedings of the 27th International Conference on Software
Engineering, pages 117–125. IEEE Computer Society Press, 2005.

[53] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notices,
39(12):92–106, 2004.

[54] G. Hu, L. Zhu, and J. Yang. Appflow: using machine learning to synthesize robust,
reusable ui tests. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 269–282, 2018.

[55] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. Deep code comment generation. In
Proceedings of the 26th Conference on Program Comprehension, pages 200–210.
ACM, 2018.

[56] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source code
using a neural attention model. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
2073–2083, 2016.

[57] A. Jaffe, J. Lacomis, E. J. Schwartz, C. L. Goues, and B. Vasilescu. Meaningful
variable names for decompiled code: A machine translation approach. In Proceed-
ings of the 26th Conference on Program Comprehension, pages 20–30, 2018.

[58] C. Jaspan and J. Aldrich. Checking framework interactions with relationships.
In European Conference on Object-Oriented Programming, pages 27–51. Springer,
2009.

[59] M. Kersten and G. C. Murphy. Mylar: A degree-of-interest model for ides. In
Proceedings of the 4th International Conference on Aspect-oriented Software De-
velopment, AOSD ’05, pages 159–168, New York, NY, USA, 2005. ACM.

[60] P. Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Con-
ference Proceedings: the tenth Machine Translation Summit, pages 79–86, Phuket,
Thailand, 2005. AAMT, AAMT.

125

Bibliography

[61] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[62] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. Crysl: An extensible
approach to validating the correct usage of cryptographic apis. IEEE Transactions
on Software Engineering, 2019.

[63] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In Proceedings of
the 33rd International Conference on Software Engineering, pages 591–600. ACM,
2011.

[64] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction metrics for defect
prediction. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 311–321, 2011.

[65] X. Li, H. Jiang, D. Liu, Z. Ren, and G. Li. Unsupervised deep bug report summa-
rization. In Proceedings of the 26th Conference on Program Comprehension, pages
144–155. ACM, 2018.

[66] Z. Li and Y. Zhou. Pr-miner: automatically extracting implicit programming
rules and detecting violations in large software code. ACM SIGSOFT Software
Engineering Notes, 30(5):306–315, 2005.

[67] C. Lindig. Mining patterns and violations using concept analysis. In The Art and
Science of Analyzing Software Data, pages 17–38. Elsevier, 2015.

[68] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative
matrix factorization for web-scale dyadic data analysis on mapreduce. In Pro-
ceedings of the 19th international conference on World wide web, pages 681–690,
2010.

[69] C. Liu, E. Ye, and D. J. Richardson. Software library usage pattern extraction
using asoftware model checker. International Journal of Computers and Applica-
tions, 31(4):247–259, 2009.

[70] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon. Mining fix patterns
for findbugs violations. IEEE Transactions on Software Engineering, 2018.

[71] B. Livshits and T. Zimmermann. Dynamine: finding common error patterns by
mining software revision histories. ACM SIGSOFT Software Engineering Notes,
30(5):296–305, 2005.

[72] D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules for software mainte-
nance. Journal of Software Maintenance and Evolution: Research and Practice,
20(4):227–247, 2008.

[73] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă, and G. Rosu.
RV-Monitor: Efficient parametric runtime verification with simultaneous proper-
ties. In Runtime Verification, pages 285–300. Springer-Verlag GmbH, 2014.

126

Bibliography

[74] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow: Effective
code search based on api understanding and extended boolean model (e). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 260–270. IEEE, 2015.

[75] H. Ma, R. Amor, and E. D. Tempero. Usage patterns of the java standard api. 2006
13th Asia Pacific Software Engineering Conference (APSEC’06), pages 342–352,
2006.

[76] Y. Ma, S. Fakhoury, M. Christensen, V. Arnaoudova, W. Zogaan, and M. Mi-
rakhorli. Automatic classification of software artifacts in open-source applications.
In 2018 IEEE/ACM 15th International Conference on Mining Software Reposito-
ries (MSR), pages 414–425. IEEE, 2018.

[77] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining: helping to
navigate the api jungle. In ACM Sigplan Notices, volume 40, pages 48–61. ACM,
2005.

[78] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, pages 259–289, 1997.

[79] R. C. Martin. Agile software development: principles, patterns, and practices.
Prentice Hall PTR, 2003.

[80] F. Mccarey, M. Ó. Cinnéide, and N. Kushmerick. Rascal: A recommender agent
for agile reuse. Artificial Intelligence Review, 24(3-4):253–276, 2005.

[81] D. Mendez, B. Baudry, and M. Monperrus. Empirical evidence of large-scale
diversity in API usage of object-oriented software. In Source Code Analysis and
Manipulation, pages 43–52, 2013.

[82] X. Meng and B. P. Miller. Binary code is not easy. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, pages
24–35, New York, NY, USA, 2016. ACM.

[83] T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu. 500+ times faster
than deep learning:(a case study exploring faster methods for text mining stack-
overflow). In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 554–563. IEEE, 2018.

[84] Y. Merhav, F. Mesquita, D. Barbosa, W. G. Yee, and O. Frieder. Extracting
information networks from the blogosphere. ACM Trans. Web, 6(3):11:1–11:33,
Oct. 2012.

[85] A. Michail. Data mining library reuse patterns using generalized association rules.
In Proceedings of the 22Nd International Conference on Software Engineering,
ICSE ’00, pages 167–176, New York, NY, USA, 2000. ACM.

127

Bibliography

[86] P. Miettinen. On the positive–negative partial set cover problem. Information
Processing Letters, 108(4):219–221, 2008.

[87] P. Miettinen. Matrix decomposition methods for data mining: Computational com-
plexity and algorithms. PhD thesis, Helsingin yliopisto, 2009.

[88] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis
problem. IEEE transactions on knowledge and data engineering, 20(10):1348–1362,
2008.

[89] P. Miettinen and J. Vreeken. Model order selection for boolean matrix factor-
ization. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 51–59, 2011.

[90] P. Miettinen and J. Vreeken. Mdl4bmf: Minimum description length for boolean
matrix factorization. ACM Trans. Knowl. Discov. Data, 8(4):18:1–18:31, Oct.
2014.

[91] M. Monperrus, M. Bruch, and M. Mezini. Detecting missing method calls in object-
oriented software. In Proceedings of the 24th European Conference on Object-
oriented Programming, ECOOP ’10, pages 2–25. Springer-Verlag GmbH, 2010.

[92] M. Monperrus and M. Mezini. Detecting missing method calls as violations of
the majority rule. ACM Transactions on Software Engineering and Methodology,
22:1–25, 2013.

[93] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente. Documenting apis with
examples: Lessons learned with the apiminer platform. In WCRE, pages 401–408.
IEEE Computer Society, 2013.

[94] L. Moonen. Generating robust parsers using island grammars. In Proceedings of
the Eighth Working Conference on Reverse Engineering (WCRE’01), WCRE ’01,
pages 13–, Washington, DC, USA, 2001. IEEE Computer Society.

[95] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus. How can i use
this method? In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 880–890, Piscataway, NJ, USA, 2015.
IEEE Press.

[96] V. Murali, S. Chaudhuri, and C. Jermaine. Bayesian specification learning for find-
ing api usage errors. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pages 151–162, 2017.

[97] G. C. Murphy, R. J. Walker, and R. Holmes. Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on
Software Engineering, 32:952–970, 2006.

128

Bibliography

[98] N. Nachar. The mann-whitney u: A test for assessing whether two independent
samples come from the same distribution. Tutorials in Quantitative Methods for
Psychology, 4(1):13–20, mar 2008.

[99] N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects.
ACM Sigplan Notices, 43(10):347–366, 2008.

[100] S. Negara, M. Codoban, D. Dig, and R. E. Johnson. Mining fine-grained code
changes to detect unknown change patterns. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 803–813, 2014.

[101] A. C. Nguyen and S.-C. Khoo. Extracting significant specifications from mining
through mutation testing. In Formal Methods and Software Engineering, pages
472–488. Springer-Verlag GmbH, 2011.

[102] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher,
T. N. Nguyen, and D. Dig. Api code recommendation using statistical learning
from fine-grained changes. In Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, pages 511–522,
2016.

[103] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Grapacc: a graph-
based pattern-oriented, context-sensitive code completion tool. In 2012 34th In-
ternational Conference on Software Engineering (ICSE), pages 1407–1410. IEEE,
2012.

[104] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical learning
approach for mining api usage mappings for code migration. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering,
pages 457–468, 2014.

[105] A. T. Nguyen and T. N. Nguyen. Graph-based statistical language model for
code. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1, ICSE ’15, pages 858–868. IEEE Computer Society Press, 2015.

[106] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-
Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-sensitive source
code completion. In 2012 34th International Conference on Software Engineering
(ICSE), pages 69–79. IEEE, 2012.

[107] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen. Mining interpro-
cedural, data-oriented usage patterns in javascript web applications. In Proceed-
ings of the 36th International Conference on Software Engineering, pages 791–802,
2014.

[108] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule, and M. Di Penta.
Focus: A recommender system for mining api function calls and usage patterns. In

129

Bibliography

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 1050–1060. IEEE, 2019.

[109] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen. Recur-
ring bug fixes in object-oriented programs. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 315–324, 2010.

[110] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In Proceedings of the 7th
joint meeting of the European Software Engineering Conference and the ACM SIG-
SOFT symposium on the Foundations of Software Engineering, pages 383–392,
2009.

[111] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen. Recommending api
usages for mobile apps with hidden markov model. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 795–
800. IEEE, 2015.

[112] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen. Learning API usages
from bytecode : A statistical approach. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16. ACM Press, 2016.

[113] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar. Inferring method
specifications from natural language api descriptions. In 2012 34th International
Conference on Software Engineering (ICSE), pages 815–825. IEEE, 2012.

[114] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons. Text mining using
non-negative matrix factorizations. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 452–456. SIAM, 2004.

[115] J. R. Peddamail, Z. Yao, Z. Wang, and H. Sun. A comprehensive study of staqc for
deep code summarization. In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2018.

[116] L. Ponzanelli, A. Mocci, and M. Lanza. Stormed: Stack overflow ready made data.
In Proceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15, pages 474–477, Piscataway, NJ, USA, 2015. IEEE Press.

[117] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation of specifica-
tion miners based on finite state machines. In 2010 IEEE International Conference
on Software Maintenance, pages 1–10. IEEE, 2010.

[118] M. Pradel and T. R. Gross. Automatic generation of object usage specifications
from large method traces. In 2009 IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 371–382. IEEE, 2009.

[119] M. Pradel and T. R. Gross. Detecting anomalies in the order of equally-typed
method arguments. In Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, pages 232–242. ACM, 2011.

130

Bibliography

[120] M. Pradel and T. R. Gross. Leveraging test generation and specification mining
for automated bug detection without false positives. In 2012 34th International
Conference on Software Engineering (ICSE), pages 288–298. IEEE, 2012.

[121] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking api protocol
conformance with mined multi-object specifications. In 2012 34th International
Conference on Software Engineering (ICSE), pages 925–935. IEEE, 2012.

[122] S. Proksch, S. Amann, S. Nadi, and M. Mezini. A dataset of simplified syntax trees
for c#. In Proceedings of the 13th International Conference on Mining Software
Repositories, pages 476–479, 2016.

[123] S. Proksch, J. Lerch, and M. Mezini. Intelligent code completion with Bayesian net-
works. ACM Transactions on Software Engineering and Methodology (TOSEM),
25:1–31, 2015.

[124] D. Qiu, B. Li, and H. Leung. Understanding the api usage in java. Information
and software technology, 73:81–100, 2016.

[125] J. Quante and R. Koschke. Dynamic protocol recovery. In 14th Working Confer-
ence on Reverse Engineering (WCRE 2007), pages 219–228. IEEE, 2007.

[126] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference
of function precedence protocols. In 29th International Conference on Software
Engineering (ICSE’07), pages 240–250. IEEE, 2007.

[127] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference
using predicate mining. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, pages 123–134.
ACM Press, 2007.

[128] T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms – a survey.
Procedia Computer Science, 47:197–204, 2015.

[129] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language
models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 419–428, 2014.

[130] R. Robbes and M. Lanza. Improving code completion with program history. Au-
tomated Software Engineering, 17(2):181–212, 2010.

[131] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems for
software engineering. IEEE software, 27(4):80–86, 2009.

[132] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Auto-
mated API property inference techniques. IEEE Transactions on Software Engi-
neering, 39:613–637, 2013.

131

Bibliography

[133] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, editors. Recom-
mendation Systems in Software Engineering. Springer-Verlag GmbH, 2014.

[134] M. P. Robillard and G. C. Murphy. Static analysis to support the evolution of
exception structure in object-oriented systems. ACM Transactions on Software
Engineering and Methodology (TOSEM), 12(2):191–221, 2003.

[135] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A
database and web-based tool for image annotation. International Journal of Com-
puter Vision, 77(1):157–173, May 2008.

[136] I. Saenko and I. V. Kotenko. Design of virtual local area network scheme based
on genetic optimization and visual analysis. JoWUA, 5(4):86–102, 2014.

[137] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-level api
usage patterns. In 2015 IEEE 22nd international conference on software analysis,
evolution, and reengineering (SANER), pages 23–32. IEEE, 2015.

[138] M. A. Saied and H. Sahraoui. A cooperative approach for combining client-based
and library-based api usage pattern mining. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pages 1–10. IEEE, 2016.

[139] M. A. Saied, H. Sahraoui, and B. Dufour. An observational study on api usage
constraints and their documentation. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 33–42. IEEE,
2015.

[140] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and F. I. Vokolos. Sce-
nariographer: A tool for reverse engineering class usage scenarios from method
invocation sequences. In 21st IEEE International Conference on Software Main-
tenance (ICSM’05), pages 155–164. IEEE, 2005.

[141] K. Schmid. Top productivity through software reuse. In 12th International Con-
ference on Software Reuse, Lecture Notes in Computer Science, ICSR, Springer,
volume 6727. Springer, 2011.

[142] W. Schwittek and S. Eicker. A study on third party component reuse in java
enterprise open source software. In Proceedings of the 16th International ACM
Sigsoft symposium on Component-based software engineering, pages 75–80, 2013.

[143] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining
using automata-based abstractions. IEEE Transactions on Software Engineering,
34(5):651–666, 2008.

[144] V. Singh, L. L. Pollock, W. Snipes, and N. A. Kraft. A case study of program com-
prehension effort and technical debt estimations. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pages 1–9. IEEE, 2016.

132

Bibliography

[145] V. Snael, P. Kromer, J. Platos, and D. Husek. On the implementation of boolean
matrix factorization. In Proceedings - International Workshop on Database and
Expert Systems Applications, DEXA, pages 554 – 558, 10 2008.

[146] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api documentation. In
Proceedings of the 36th International Conference on Software Engineering, ICSE
2014, pages 643–652, New York, NY, USA, 2014. ACM.

[147] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for reusing
open source code on the web. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 204–213, 2007.

[148] S. Thummalapenta and T. Xie. Spotweb: Detecting framework hotspots and
coldspots via mining open source code on the web. In 2008 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering, pages 327–336. IEEE,
2008.

[149] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns for detecting
neglected conditions. In 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 283–294. IEEE, 2009.

[150] S. Thummalapenta and T. Xie. Mining exception-handling rules as sequence as-
sociation rules. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 496–506. IEEE Computer Society Press, 2009.

[151] F. Tip. A survey of program slicing techniques. Centrum voor Wiskunde en
Informatica Amsterdam, 1994.

[152] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Variable precision reaching
definitions analysis for software maintenance. In Proceedings. First Euromicro
Conference on Software Maintenance and Reengineering, pages 60–67. IEEE, 1997.

[153] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk. Deep learning similarities from different representations of source code.
In 2018 IEEE/ACM 15th International Conference on Mining Software Reposito-
ries (MSR), pages 542–553. IEEE, 2018.

[154] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct
and high-coverage api usage patterns from source code. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 319–328. IEEE, 2013.

[155] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In
Proceedings. 20th international conference on data engineering, pages 79–90. IEEE,
2004.

[156] X. Wang, L. Pollock, and K. Vijay-Shanker. Developing a model of loop actions by
mining loop characteristics from a large code corpus. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 51–60. IEEE,
2015.

133

Bibliography

[157] A. Wasylkowski and A. Zeller. Mining temporal specifications from object usage.
Automated Software Engineering, 18(3-4):263–292, 2011.

[158] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies.
In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 35–44, 2007.

[159] M. Weimer, A. Karatzoglou, and M. Bruch. Maximum margin matrix factoriza-
tion for code recommendation. In Proceedings of the third ACM conference on
Recommender systems, pages 309–312, 2009.

[160] W. Weimer and G. C. Necula. Finding and preventing run-time error handling
mistakes. In Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 419–431, 2004.

[161] W. Weimer and G. C. Necula. Mining temporal specifications for error detection.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 461–476. Springer, 2005.

[162] M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981.

[163] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented
component interfaces. In ACM SIGSOFT Software Engineering Notes, volume 27,
pages 218–228. ACM, 2002.

[164] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk. Toward deep
learning software repositories. In Proceedings of the 12th Working Conference on
Mining Software Repositories, pages 334–345. IEEE Press, 2015.

[165] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative ma-
trix factorization. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 267–273,
2003.

[166] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining
temporal api rules from imperfect traces. In Proceedings of the 28th international
conference on Software engineering, pages 282–291. ACM, 2006.

[167] J. Yang, E. Wittern, A. T. Ying, J. Dolby, and L. Tan. Towards extracting web
api specifications from documentation. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pages 454–464. IEEE, 2018.

[168] Z. Yao, D. S. Weld, W.-P. Chen, and H. Sun. Staqc: A systematically mined
question-code dataset from stack overflow. In Proceedings of the 2018 World Wide
Web Conference, pages 1693–1703, 2018.

134

Bibliography

[169] Y. Ye and G. Fischer. Reuse-conducive development environments. Automated
Software Engineering, 12(2):199–235, 2005.

[170] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig. Learning to mine aligned
code and natural language pairs from stack overflow. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), pages 476–486.
IEEE, 2018.

[171] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer. Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empirical Software Engineering, 16(3):325–
364, 2011.

[172] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou. Automatic
parameter recommendation for practical api usage. In 2012 34th International
Conference on Software Engineering (ICSE), pages 826–836. IEEE, 2012.

[173] D. Zhang, Y. Guo, and X. Chen. Automated aspect recommendation through
clustering-based fan-in analysis. In 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 278–287. IEEE, 2008.

[174] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim. Are code examples
on an online q&a forum reliable?: a study of api misuse on stack overflow. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages
886–896. IEEE, 2018.

[175] Y. Zhang, D. Lo, X. Xia, J. Jiang, and J. Sun. Recommending frequently encoun-
tered bugs. In International Conference on Program Comprehension, Gothenburg,
Sweden, 2018.

[176] H. Zhong and H. Mei. An empirical study on api usages. IEEE Transactions on
Software Engineering, 45(4):319–334, 2017.

[177] H. Zhong and Z. Su. Detecting API documentation errors. In Proceedings of the
International Conference on Object-oriented Programming, Systems, Languages &
Applications, volume 48, pages 803–816. ACM Press, 2013.

[178] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and recommending
api usage patterns. In S. Drossopoulou, editor, ECOOP 2009 – Object-Oriented
Programming, pages 318–343, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[179] H. Zhong, L. Zhang, and H. Mei. Inferring specifications of object oriented apis
from api source code. In 2008 15th Asia-Pacific Software Engineering Conference,
pages 221–228. IEEE, 2008.

[180] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications from nat-
ural language api documentation. In 2009 IEEE/ACM International Conference
on Automated Software Engineering, pages 307–318. IEEE, 2009.

135

Bibliography

[181] C. Zhou, B. Li, X. Sun, and H. Guo. Recognizing software bug-specific named
entity in software bug repository. In Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, pages 108–119. ACM, 2018.

[182] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall. Analyzing apis
documentation and code to detect directive defects. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 27–37. IEEE,
2017.

136

	Preface
	Introduction
	Problem Statement
	Program Analyses
	Learning approaches
	Thesis Focus

	Contributions of this Thesis
	Publications
	Structure of this Thesis

	Background and State of the Art Survey
	Terminology
	Sources of API Usages
	Source Code Repository
	API Documentation
	Interaction Data
	Online sites

	Code Elements in API Usage Patterns
	Object Types
	Method Calls
	Exception Handling
	Parameters
	Iteration

	Survey on API Usage Pattern Learning Approaches
	Methodology
	Closely Related Learning Approaches
	Other Learning Approaches
	Discussion

	Matrix Factorization to Improve Scalability in API Method Call Analytics
	Background & Motivation
	PBN Pipeline
	Problem Statement
	Intuition Behind Using BMF

	Integrating BMF into PBN
	Boolean Matrix Factorization (BMF)
	Using BMF to Generate Patterns
	Calculating PBN

	Evaluations
	Data
	Recommender Evaluation
	Evaluation Results

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Matrix Factorization
	Potential Applications in Code Recommenders
	Potential Applications in Pattern Mining
	Scalability in Code Recommenders

	Discussion

	Investigating Order Information in API Usage Patterns
	Related Work
	API Usage Representations
	Empirical Studies of API Usages

	Conceptual Differences between Pattern Types
	Episode Mining for API Patterns
	Episode Mining Algorithm
	Mining API Usage Patterns

	Evaluation Setup
	Dataset
	Threshold Analyses
	Metrics for Pattern Comparison
	Limitations

	Pattern Types Benchmark (PTBench)
	Data Representation
	Benchmark Automation
	Reproducibility and Traceability

	Evaluation Results
	Pattern Statistics
	Expressiveness
	Consistency
	Generalizability

	Implications
	Threats to Validity
	Internal Validity
	External Validity

	Discussion

	On the Impact of Order Information in API Method Call Misuses
	Background and Motivation
	A New Detector
	Pattern Mining
	Detecting and Ranking API Misuses

	Evaluation Setup
	Dataset
	Threshold Analyses
	Experimental Setup

	Evaluation Results
	Precision
	Recall
	Discussion

	Extension and Further Use
	Dataset Extensions
	New Metrics for Pattern Comperison
	Comparison of Pattern Types based on Applications

	Threats to Validity
	Related Work

	Conclusion and Outlook
	Summary of Results
	Future Work
	Closing Discussion

	Contributed Implementations and Data
	Bibliography

