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Abstract

Gill disease of farmed Atlantic salmon (Salmo salar) in the marine environment

has emerged as a significant problem for the salmon aquaculture industry. Differ-

ent types of marine salmon gill disease reported include amoebic gill disease

(AGD), parasitic gill disease, viral gill disease, bacterial gill disease, zooplankton

(cnidarian nematocyst)-associated gill disease, harmful algal gill disease and

chemical/toxin-associated gill disease. The term ‘multifactorial gill disease’ is used

when multiple distinguishable types of disease (as opposed to an obvious single

primary type) are present. When gill disease is non-specific, it is referred to as

‘complex gill disease’ (CGD) or ‘complex gill disorder’. These two terms are often

used interchangeably and are overlapping. The significance of many infectious

and non-infectious agents that may be associated with CGD is often unclear. In

this review, we summarise aspects of the different types of gill disease that are rel-

evant to the epidemiology of gill disease and of CGD in particular. We also tabu-

late simultaneously occurring putative pathogens to explore the multifactorial

nature of gill disease.

Key words: Atlantic salmon, complex gill disease (CGD), marine gill disease, proliferative gill dis-

ease (PGD), proliferative gill inflammation (PGI).

Introduction

Gill disease of farmed Atlantic salmon (Salmo salar) refers

to conditions in which gill pathologies are observed.

Affected fish may display clinical signs of compromised res-

piratory function, and mortality rates may be increased

(Mitchell & Rodger 2011). In the European salmon-pro-

ducing countries like Norway, Scotland and Ireland, gill

disease of salmon in the marine environment has become

one of the most significant health challenges for the salmon

aquaculture industry (Rodger 2007; Matthews et al. 2013;

Hjeltnes et al. 2017; Scottish Government 2018b).

Marine gill disease in farmed salmon can be classified by

aetiology-based subtypes. There are currently seven distin-

guishable types that refer to infection by one principal cau-

sal agent or insult: (i) amoebic gill disease (AGD), (ii)

parasitic gill disease, (iii) viral gill disease, (iv) bacterial gill

disease, (v) zooplankton (cnidarian nematocyst)-associated

gill disease, (vi) harmful algal gill disease and (vii)

chemical/toxin-associated gill disease (Rodger 2007).

Amoebic gill disease has been categorised separately from

other parasitic gill disease because of its significance and

well described distinctive pathology. These types require

complete investigation for accurate diagnosis, to include

histopathology, clinical signs, history, gross gill observa-

tions, parasitology, water samples and molecular test

results.

When some, or all, of these seven types are observed

simultaneously and there is no obvious primary causal

agent, the subtype is referred to as ‘multifactorial gill dis-

ease, consisting of . . .. (the types of specific gill diseases)’.

When principal pathological changes are non-specific,

either in combination with, or in the absence of, one or

more of the seven distinctive types (including AGD), the

type of gill disease is referred to as ‘complex gill disease

or disorder (CGD)’ (Noguera et al. 2019). The terms

CGD and multifactorial gill disease are often used
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interchangeably and are overlapping. An example of CGD

can be found in Figure 1.

The epidemiology of CGD, particularly regarding the

influence of various pathogens, environmental contributors

and the role of some management practices, is not well

understood. This review is intended to provide an up-to-

date overview of infectious and non-infectious agents

involved with gill disease, with a particular focus on factors

relevant to the investigation of the epidemiology of gill dis-

ease in general, and CGD more specifically, in farmed

Atlantic salmon. We provide an overview of CGD, and sep-

arately the seven types of gill disease listed above to provide

as much distinction as possible, though these types may

often occur simultaneously in multifactorial or complex gill

disease cases. Where known, we have included descriptions

and nomenclature of pathogens/agents putatively associ-

ated with gill disease, the effects of the pathogens/agents,

information on the temporal and geographical distribution

of forms of gill disease, clinical signs of disease, risk factors

for disease, treatment options and a selection of additional

reviews for further information. We have also tabulated the

simultaneously occurring agents and pathogens to review

the multifactorial-aspect of gill disease.

Complex gill disease and related syndromes

Complex gill disease encompasses syndromes referred to as

‘proliferative gill inflammation’ (PGI) and ‘proliferative gill

disease’ (PGD; Herrero et al. 2018). PGI is a pathology-

based diagnosis first described in Norway, in which gills

present a combination of the following four histopathologi-

cal changes: lamellar vascular changes, inflammation, cell

death and epithelial cell hyperplasia (Kvellestad et al. 2005).

In addition to these histopathological changes, additional

signs include grossly pale gills, increased mucus and the

presence of epitheliocysts in gill tissue (Steinum et al. 2010;

Nylund et al. 2011). PGI has been present since at least the

1980s in Norway (Kvellestad et al. 2005).

In Scotland and Ireland, gill conditions similar to PGI

have been reported (Mitchell & Rodger 2011; Rodger &

Mitchell 2013) which have been called PGD in the past

(Matthews et al. 2013). PGD has been used as a non-speci-

fic term derived from examination of gross lesions in the

salmon gill in the field (Herrero et al. 2018), and also as a

general descriptive term for gill disorders that include pro-

liferative changes in the gill epithelium (Nylund et al.

2008). The term ‘proliferative gill disease’ is also used for

specific conditions in other species, for example, the lead-

ing parasitic disease for farm-raised channel catfish (Ictalu-

rus punctatus) in the United States of America (Bosworth

et al. 2003; Beecham et al. 2010). CGD is increasingly com-

monly diagnosed in Atlantic salmon where proliferative-

type gill disease is observed associated with exposure to one

or more agents. Because CGD encompasses PGI and PGD,

but is an emerging term, we have included information on

PGI and PGD in this ‘complex gill disease’ part of the

review where appropriate.

Proliferative-type gill disease in salmon can result in ele-

vated mortality rates, reduced growth rates, runting and

reduced food conversion efficiency (Kvellestad et al. 2005;

Rodger et al. 2011b). PGI affects farmed salmon during the

seawater production phase (Kvellestad et al. 2005; Steinum

et al. 2009). It remains to be conclusively shown whether

there is an association between gill disease in the marine

environment and prior experiences encountered by salmon

during the freshwater phase of production. Examples of

putative pathogens that are encountered in both environ-

ments are Candidatus Clavochlamydia salmonicola (Mitch-

ell et al. 2010), described in the bacterial gill disease section

and salmon gill pox virus (Gjessing et al. 2017), described

in the viral gill disease section.

The aetiology of CGD is unclear. The non-specific

pathology may be a chronic end-stage pathology following

insult(s) and challenge(s) or a cascade of such events

(Gjessing et al. 2017). A number of putative pathogens have

been detected in proliferative-type gill disease (Table 1).

The significance of many of the agents and insults remains

to be determined (Mitchell & Rodger 2011; Rodger et al.

2011a; Herrero et al. 2018), such as those associated with

the formation of epitheliocysts (Kvellestad et al. 2005; Stei-

num et al. 2008, 2009, 2010; Mitchell et al. 2013). Other

unidentified bacteria have also been detected in salmon

with gill disease (Steinum et al. 2009). Parasites detected in

cases of gill disease include Neoparamoeba perurans

(Nylund et al. 2008, 2011; Steinum et al. 2008; Gjessing

et al. 2019), Desmozoon lepeophtherii (Steinum et al. 2010;

Nylund et al. 2011; Matthews et al. 2013; Gjessing et al.

2019), Ichthyobodo spp. (Kvellestad et al. 2005; Nylund
Figure 1 An example of complex gill disease (CGD) lesions in Atlantic

salmon.
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et al. 2011), Trichodina (Kvellestad et al. 2005; Nylund et al.

2011; Mitchell et al. 2013), Parvicapsula pseudobranchicola

(Nylund et al. 2011) and others (Nylund et al. 2011).

Detected viruses include Atlantic salmon paramyxovirus

(ASPV) (Kvellestad et al. 2005; Steinum et al. 2010), sal-

mon gill poxvirus (SGPV) (Nylund et al. 2008, 2011; Gjess-

ing et al. 2017; Gjessing et al. 2019) and salmon alphavirus

(SAV) (Nylund et al. 2011). For reviews of infectious and

non-infectious agents that can affect salmonid gills, see

Mitchell and Rodger (2011) and Rodger et al. (2011a).

Often, multiple putative pathogens occur simultaneously

in CGD cases, which are shown in Table 1. Variation in co-

infections makes histopathological diagnosis of CGD highly

complex (Gjessing et al. 2019). The relationship between

CGD and some of the associated pathogens has been

described as dose-dependent, but complex (Steinum et al.

2010; Mitchell et al. 2013; Gunnarsson et al. 2017; Downes

et al. 2018a). For example, epitheliocysts were inconsis-

tently observed in PGI-positive cases (Mitchell et al. 2013)

and were found in lesser quantities in non-PGI cases (Stei-

num et al. 2010), and there were signs of a dose-dependent

relation between severity of PGI cases and epitheliocysts

(Mitchell et al. 2013). This suggests that they are unlikely to

be the primary cause of PGI, but might contribute to the

severity of the condition, or be proliferating opportunisti-

cally as a secondary result of the effects of another patho-

genic agent.

In addition to the presence of putative pathogens, a

number of other potential risk factors for CGD have been

proposed. One major type of risk factor may be environ-

mental insult to the gills, such as exposure to harmful phy-

toplankton, gelatinous zooplankton species in the water

column or biofouling organisms dislodged into pens dur-

ing in situ net washing (Rodger et al. 2011a; Bloecher et al.

2018; Kintner & Brierley 2019). Bath treatments involving

the use of chemotherapeutants such as formalin (Speare

et al. 1997) or hydrogen peroxide (Kiemer & Black 1997;

Rodger et al. 2011a) can be directly damaging to gills or

may exacerbate existing gill conditions and may represent a

risk factor for the development of CGD. Infectious organ-

isms that cause gill pathology, such as the hyperplastic

response of the gill to the presence of N. perurans in AGD

(Adams et al. 2004), can be risk factors. Other factors that

have been suggested to affect incidence and severity of pro-

liferative-type gill disease include salmon genetic strain,

environmental conditions (such as water eutrophication

and pollution), nutritional deficits (reviewed by Rodger

et al. 2011a), concurrent health issues and husbandry prac-

tices, such as use of lice-skirts, frequency of handling and

the use of mechanical delousing systems.

The occurrence of CGD appears to have a seasonal pat-

tern, with signs occurring mainly at the end of summer to

early winter in Norway and Scotland (Kvellestad et al.

2005; Matthews et al. 2013), though there have been cases

in May reported from Norway (Nylund et al. 2011), sum-

mer in Ireland (Rodger et al. 2011b) and as early as March/

April in Scotland (Chris G.G. Matthews, pers. comm.,

2019). In Norway, proliferative-type gill disease mainly

occurs in western Norway (Nylund et al. 2011), which sug-

gests that geographic location may play a role. Within

specific regions, certain sites are perceived to be more

prone than other sites (Chris G.G. Matthews, pers. comm.,

2019).

Treatment strategies that have been used in cases with

CGD include supplemental oxygenation or aeration within

sea pens, treatment with freshwater baths, installation of

short tarpaulin skirts or booms (in an attempt to exclude

surface harmful algae or jellyfish blooms), provision of

functional feeds purported to boost immune function or

promote healing and in rare circumstances a course of oral

broad-spectrum antibiotics (Rodger et al. 2011b). It has

been suggested that vaccination might become a viable

treatment strategy if specific bacteria or viruses can be con-

firmed as playing critical roles in the aetiology of CGD in

farmed Atlantic salmon (Koppang et al. 2015).

Specific types of marine salmonid gill disease

Amoebic gill disease

Arguably, the most significant infectious agent contributing

to proliferative gill diseases of farmed Atlantic salmon glob-

ally is the marine amphizoic amoeba N. perurans, which is

associated with AGD (Crosbie et al. 2012). AGD has

emerged as a distinct and significant health challenge since

2011 in marine salmon farms in Europe. AGD can lead to

high mortalities, reportedly reaching up to 82% (Steinum

et al. 2008) and significant morbidity. Changes occurring in

the gill as a result of infection with N. perurans can lead to

compromised gas exchange and ion regulation across the

gills, potentially affecting appetite, growth and overall sur-

vival (Hvas et al. 2017). AGD has had a large impact on the

aquaculture industry in Tasmania since 1984 (Taylor et al.

2009). The disease has since been reported in Atlantic sal-

mon from all major producing countries (Oldham et al.

2016): Ireland in 1995 (Rodger & McArdle, 1996; Downes

et al. 2018b), Scotland and Norway in 2006 (Steinum et al.

2008; Young et al. 2008), Chile in 2007 (Bustos et al. 2011)

and western Canada in 2016 (ICES, 2016). Species other

than Atlantic salmon can be affected by AGD, such as coho

salmon (Oncorhynchus kisutch), rainbow trout (Oncor-

hynchus mykiss), chinook salmon (Oncorhynchus tsha-

wytscha), turbot (Scophthalmus maximus), ayu (Plecoglossus

altivelis) and halibut (Hippoglossus hippoglossus) (Jansson &

Vennerstrom 2014; Rodger 2019). AGD has also been

found in fish species used as biological parasite control in

farmed Atlantic salmon including lumpsucker (Cyclopterus
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lumpus) and wrasse (Labridae spp) (Oldham et al. 2016;

Haugland et al. 2017; Hellebø et al. 2017).

Neoparamoeba perurans is also referred to as Paramoeba

perurans (Young et al. 2008; Nowak & Archibald, 2018). It

has been suggested that Paramoeba and Neoparamoeba

should be merged into a single genus prioritising the name

Paramoeba (Feehan et al. 2013), but this has not been com-

monly accepted because taxonomic conclusions were based

on single-gene trees with low number of Paramoebidae

(Young et al. 2014; Volkova & Kudryavtsev, 2017). Other

amoeba, including P. branchiphila, P. pemaquidensis/

N. pemaquidensis and Nolandella spp., have been observed

from gills of fish with AGD using culture and PCR tech-

niques. In these studies, N. perurans appeared to be the pri-

mary pathogen, and the role of the other amoeba remained

unclear (Kent et al. 1988; Dykov�a & Novoa, 2001; Morrison

et al. 2005; Vincent et al. 2007; English et al. 2019a; English

et al. 2019b).

The first observed clinical signs of AGD are often a

reduction in appetite, lethargy and altered swimming beha-

viour such as fish swimming close to the surface. As disease

progresses, clinical signs observed can include respiratory

distress, progressing to death of affected individuals in sev-

ere cases. Gross gill appearance includes multifocal pale

lesions on the gill surface or raised white mucoid spots and

plaques (Adams et al. 2004), as shown in Figure 2.

Several systems have been developed to score AGD sever-

ity based on gross observations of gills of anaesthetised fish.

Adams et al. (2004) use a system with scores 0–3 based on

number of effected hemibranchs. Adams and Nowak

(2004) use the terms ‘clear’, ‘faint spots’, ‘spots’ and

‘patches’ based on translucent appearance and quantity of

spots. A system of scores 0–5 based on white patches or

scarring and percentage gill coverage, used by Taylor et al.

(2009), has been commonly adopted by industry in Norway

(Hellebø et al. 2017) and other European countries.

Presumptive diagnosis of AGD is based on clinical signs

and the microscopic observation of typical amoebae on wet

gill smears. The presence of N. perurans can be confirmed

using polymerase chain reaction (PCR), which does not

require the destruction of the fish host (Downes et al. 2017,

2018b), or destructively by histology, in which observed

abnormalities are epithelial hyperplasia, lamellar fusion,

inflammation, cell death, presence of interlamellar vesicles

and presence of amoeba (Adams et al. 2004; Mitchell &

Rodger, 2011).

Environmental risk factors for AGD are high salinity

(Clark & Nowak, 1999), proximity to an infected site and

elevated temperatures (Douglas-Helders et al. 2001).

Described husbandry risk factors include high stocking

density (Crosbie et al. 2010) and local crowding, which can

be five times the stocking density at times and might be

reduced by the use of lights (Wright et al. 2015, 2017).

Biofouling, which are the diverse assemblage of flora and

fauna formed by successive growth of organisms on solid

surfaces exposed to the marine environment (Tan et al.

2002) may be a risk factor for AGD, (Tan et al. 2002).

However in another study, biofouling did not affect AGD

prevalence, but fewer net changes, which could mean more

growth of biofouling on nets, was a risk factor (Clark &

Nowak 1999). Microbial dysbiosis, which is disturbance or

imbalance of the microbiome, may also contribute to AGD

(Nowak & Archibald 2018).

The genetics of fish stocks can also affect AGD. Hybrid

fish such as Atlantic salmon x brown trout (Salmo trutta)

have been shown to be more resistant to AGD. Further-

more, genetic selection can reduce the number of AGD

treatments needed (Taylor et al. 2014; Maynard et al.

2016).

Cleaner fish (i.e. fish of other species cohabited with sal-

mon to remove sea lice) of the species Cyclopterus lumpus

and Labrus bergylta (or ballan wrasse) can develop AGD

from N. perurans (Karlsbakk et al. 2013; H. Rodger in Old-

ham et al. (2016)). It was suggested that cleaner fish are

more tolerant to N. perurans with a slower developing

pathology compared with Atlantic salmon and may there-

fore act as a carriers, transmitting the amoeba to salmon

(Haugland et al. 2017).

Freshwater bathing is the main treatment of choice

against AGD. It has to be repeatedly applied, because it alle-

viates but does not eliminate AGD (Parsons et al. 2001;

Clark et al. 2003), at least in part due to the continued pres-

ence of amoebae in the environment. Disadvantages of this

method include its labour intensity and its expense. The

treatment has been reported to remove 86% of live amoeba

(Clark et al. 2003), but can be variable, which might be

due, for example, to hardness and chemical composition of

the freshwater used (Powell et al. 2015). Other treatments,

such as the use of hydrogen peroxide, are being applied or

developed (Powell et al. 2015). There is some evidence of

resistance of Atlantic salmon against repeated infestations

by N. perurans (Vincent et al. 2006; Taylor et al. 2009), but

an effective vaccine has not been developed (Valdenegro-

Vega et al. 2015). Restricting or minimising movement of

fish and overall good hygienic standards have been recom-

mended as preventive measures.

Amoebic gill disease has been detected in CGD, PGD

and PGI cases (Nylund et al. 2008, 2011; Steinum et al.

2008; Gjessing et al. 2019). It has been detected simultane-

ously with the parasites D. lepeophtherii (Steinum et al.

2015; Downes et al. 2018a; Gjessing et al. 2019), and Tri-

chodina sp. (Rodger & McArdle 1996; Rodger et al. 2011b)

and Scuticociliatia (Dykov�a et al. 2010). It has also been

found alongside salmon gill pox virus (SGPV; Nylund et al.

2008; Gjessing et al. 2015, 2017, 2019; Hvas et al. 2017;

Downes et al. 2018a) and damage due to the jellyfish
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Pelagia noctiluca (Marcos-Lopez et al. 2016). It has been

observed simultaneously with epitheliocysts (Gjessing et al.

2017) and the associated bacteria Ca. Piscichlamydia sal-

monis (Steinum et al. 2015; Gjessing et al. 2019), Ca. Bran-

chiomonas cysticola (Steinum et al. 2015; Gjessing et al.

2017, 2019; Downes et al. 2018a) and Ca. Sygnamidia sal-

monis (Nylund et al. 2018). AGD has been detected simul-

taneously with Yersina ruckeri (Valdenegro-Vega et al.

2014) and Tenacibaculum maritimum (Powell et al. 2005;

Rodger et al. 2011b; Downes et al. 2018a). However, in an

experimental trial involving AGD-affected fish which were

subsequently infected with T. maritimum, no evidence of

interaction (e.g. predisposal) was observed (Powell et al.

2005). AGD has also been detected simultaneous to other

or non-specified bacteria species (Adams et al. 2004). See

Table 1 for an overview.

Reviews that focus on AGD include Mitchell and Rodger

(2011) and Oldham et al. (2016).

Other forms of parasitic gill disease

Apart from amoeba, many other parasite species have been

identified in marine salmon gills diagnosed with CGD or

proliferative-type gill disease, as shown in Table 1. The par-

asites described here are putative pathogens sometimes

associated with CGD.

Desmozoon lepeophtherii (syn. Paranucleospora theridion)

Desmozoon lepeophtherii, less frequently referred to as

Paranucleospora theridion (Freeman & Sommerville, 2011),

is a microsporidian that was discovered in sea lice in Scot-

land in 2000 (Freeman 2002). It has since been reported

from Norway (Nylund et al. 2010), Ireland (Ruane et al.

2013) and the Pacific coast of North America (Jones et al.

2012). Desmozoon lepeophtherii may have been present for

much longer in these populations: it has recently been iden-

tified, for example, in samples collected in 1995 in Ireland

(Downes et al. 2018b). In salmon, the parasite infects dif-

ferent cell types such as gill and skin epithelial cells, blood

vessel endothelial cells, polymorphonuclear leucocytes and

macrophage-like cells (Nylund et al. 2010; Weli et al. 2017).

The transmission route of the parasite has not been fully

elucidated, but it has been suggested that the microsporid-

ian spores possibly infect the salmon gills first and then

spreads to other tissues and organs (Nylund et al. 2010;

Sveen et al. 2012). It is likely that the sea lice would ingest

the parasite spores whilst feeding on the epithelial cells of

the skin of infected salmon (Sveen et al. 2012). The sea lice

may not be essential for infection of salmon (Sveen et al.

2012).

Desmozoon lepeophtherii occurs in apparently healthy

fish, but is reportedly more abundant in diseased or com-

promised fish, such as fish diagnosed with PGI (Steinum

et al. 2010) and fish with a low condition factor (Gun-

narsson et al. 2017). Reports about associations between

disease and D. lepeophtherii are scarce. Matthews et al.

(2013) showed that D. lepeophtherii appeared to be acting

as a causative agent associated with distinct pathology, but

it could not be definitively concluded that D. lepeophtherii

was the true primary pathogen. A dose dependency with

disease was described by Steinum et al. (2010), in which

study higher D. lepeophtherii densities were associated with

PGI fish compared with non-PGI fish. Weli et al. (2017)

describe the progression of D. lepeophtherii disease in a

farm in Norway with severe gill disease, poor growth and

mortalities. It has not been established whether the abun-

dant presence of D. lepeophtherii is causative to pathology.

Histopathological changes observed in gills and attribu-

ted to D. lepeophtherii include hyperplasia and hypertrophy

associated with presence of developmental stages or the

degeneration of D. lepeophtherii (Nylund et al. 2011). An

initial acute pathology in gills is necrosis and can be a direct

result of D. lepeophtherii, but the chronic proliferative and

inflammatory stage might be a result of a fish host response

(Weli et al. 2017). Fish with high levels of D. lepeophtherii

have also been reported with non-specific histopathological

changes in kidney, spleen, gut, exocrine pancreas, somatic

muscle and heart (Freeman 2002; Nylund et al. 2010,

2011), but it is unknown if those changes are associated

with or due to the presence of D. lepeophtherii. In addition

to histopathology, molecular methods are also used to

detect D. lepeophtherii (Nylund et al. 2010).

Desmozoon lepeophtherii was detected in PGD and PGI

cases (Nylund et al. 2011; Matthews et al. 2013; Steinum

et al. 2015; Gjessing et al. 2019), and in combination with

other pathogens, such as epitheliocysts (Weli et al. 2017)

and associated bacteria (Nylund et al. 2011; Steinum et al.

2015; Downes et al. 2018a; Gjessing et al. 2019). Also,Figure 2 Severe amoebic gill disease (AGD) lesions.
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T. maritimum (Downes et al. 2018a) and other non-speci-

fied bacteria (Weli et al. 2017) were found alongside

D. lepeophtherii. Others are N. perurans (Steinum et al.

2015; Downes et al. 2018a; Gjessing et al. 2019), Trichodina

spp. (Weli et al. 2017) salmonid alphavirus (SAV; Nylund

et al. 2011; Gunnarsson et al. 2017) and salmonid gill pox-

virus (SGPV; Nylund et al. 2011; Downes et al. 2018a;

Gjessing et al. 2019). See Table 1.

There is a paucity of described risk factors for presence

of D. lepeophtherii in salmon gills. As for other

microsporidians, a temperature of about 10°C or higher

may be essential for propagation and the subsequent pro-

duction of spores, in order to establish a systemic infection

(Sveen et al. 2012). Probably due to the effect of tempera-

ture, infection appears to be seasonal. In a study by Gun-

narsson et al. (2017), D. lepeophtherii densities were higher

in salmon sampled in autumn of the first year at sea, com-

pared with other seasons of the first year at sea, and in a

study by Sveen et al. (2012), D. lepeophtherii infections

were similar, but different for fish transferred when the

water temperature was already low as these fish did not

develop systemic infections in their first winter. Another

effect of temperature could be the geographic region, as

D. lepeophtherii infections were more intense and abundant

in Western Norway compared with Northern Norway

(Nylund et al. 2011).

Viral gill disease

Whilst there are a number of viruses that may be detected

in gills, such as salmonid alphavirus (SAV), two viruses in

particular have been associated with marine salmonid gill

disease: Atlantic salmon paramyxovirus (ASPV) and sal-

mon gill pox virus (SGPV).

Atlantic salmon paramyxovirus

Atlantic salmon paramyxovirus (ASPV) was first identified

and described in Norway in 2003 (Kvellestad et al. 2003). It

has been suggested that ASPV might be a contributor for

PGI in conjunction with other pathogens and that the slow

in vitro replication rate of ASPV may explain the long dura-

tion of the PGI outbreaks on fish farms (Kvellestad et al.

2005). However, challenge experiments did not result in

any mortality or pathology (Fridell 2003 in (Nylund et al.

2008)). Another suggested association between ASPV and

disease is that it may cause disease if fish are weakened or

stressed (Fridell 2003), but recent studies have shown an

inconsistent association between the virus and PGI out-

breaks (Steinum et al. 2010; Nylund et al. 2011).

Atlantic salmon paramyxovirus was detected in PGI cases

(Kvellestad et al. 2005; Steinum et al. 2010), and simultane-

ous to epitheliocysts (Kvellestad et al. 2003; Fridell 2003;

Kvellestad et al. 2005), but correlation between ASPV and

epitheliocysts was not expected because none, one, or both

were detected in the same fish (Kvellestad et al. 2005). See

Table 1.

Salmon gill pox virus

Salmon gill pox virus (SGPV) was first reported in Atlantic

salmon at a freshwater site in Norway (Nylund et al. 2006

(in Norwegian) in Nylund et al. (2008)) and has since been

reported from Canada (ICES 2016), Faroe Islands (Nolsøe

et al. (2015) in Gjessing et al. (2016)), Scotland (Rodger,

pers. comm. in Gjessing et al. (2016)) and Ireland using

samples from as early as 1995 (Downes et al. 2018b), in

fresh and salt water. SGPV has also been detected in wild

salmonids (Garseth et al. 2018).

Salmon gill pox virus has been associated with high levels

of acute mortality during the freshwater phase of salmon

growth. Impact of SGPV is reportedly most pronounced

during smoltification (Gjessing et al. 2017) and in fry stages

(Chris G.G. Matthews, pers. comm., 2019). The virus may

be involved with disease during the entire seawater cycle as

well, as it was found 67 weeks after seawater transfer (Dow-

nes et al. 2018a).

A typical histopathological sign of SGPV is apoptosis of

gill epithelial cells, but because this is not always observed.

a molecular test for SGPV is considered essential to reliably

indicate its presence (Gjessing et al. 2017). Some fish that

tested positive by histology and PCR for SGPV had abnor-

malities in spleen, liver, heart and pyloric ceca (Gjessing

et al. 2015). At present, recommendations around control

of SGPV focus on maintaining best practice husbandry and

biosecurity procedures. The effects of an outbreak can be

minimised through cessation of feeding, increasing dis-

solved oxygen levels and avoidance of stress (Gjessing et al.

2016).

Molecular techniques have revealed that SGPV is

widely distributed and occurs often in combination with

other agents, which may mean that it forms part of the

multifactorial pathology of CGD (Gjessing et al. 2017).

However, SGPV has been inconsistently observed in fish

with gill disease (Nylund et al. 2011) and has been

detected from apparently healthy fish (Gjessing et al.

2017). SGPV disrupts the epithelial barrier and compro-

mises innate immunity. In a multifactorial pathology

such as suggested for CGD, SGPV may aid opportunistic

infections by other organisms by facilitating insult, and

it may precede and exacerbate the development of AGD

(Gjessing et al. 2017).

Salmon gill pox virus has been found in fish with CGD,

PGD and PGI (Nylund et al. 2008, 2011; Gjessing et al.

2017; Gjessing et al. 2019). It has also been detected simul-

taneously with epitheliocysts and epitheliocyst-forming

bacteria (Nylund et al. 2008; Gjessing et al. 2017, 2019;

Garseth et al. 2018; Downes et al. 2018a), T. maritimum
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(Downes et al. 2018a) and other unspecified bacteria

(Gjessing et al. 2017; Garseth et al. 2018). Parasites and

fungi detected simultaneously with SGPV include N. peru-

rans (Nylund et al. 2008; Gjessing et al. 2015, 2017, 2019;

Hvas et al. 2017; Downes et al. 2018a), D. lepeophtherii

(Nylund et al. 2011; Downes et al. 2018a; Gjessing et al.

2019), Ichthyobodo spp. (Gjessing et al. 2017; Garseth et al.

2018), Trichodina sp. (Garseth et al. 2018), Saprolegnia sp.

(Gjessing et al. 2017; Garseth et al. 2018), among others

(Garseth et al. 2018). See Table 1.

For a review of fish poxviruses see Gjessing et al. (2016).

Bacterial gill disease

The bacteria described here are associated with prolifera-

tive-type gill diseases in marine salmon. They are generally

considered to be secondary invaders or opportunists.

Epitheliocysts

Epitheliocystis, that is disease due to epitheliocysts, is a

condition in which fish gills, and less commonly skin

epithelial cells, present with cytoplasmic membrane-bound

inclusions (epitheliocysts) which contain bacteria, many of

which remain to be characterised (Mitchell et al. 2013).

The bacteria can be observed late in the infection when

they have formed their characteristic cysts (Kvellestad et al.

2005). Epitheliocystis has been described in over 50 fish

species around the globe, in fresh and salt water (Fryer &

Lannan 1994; Nowak & LaPatra 2006). The discussion

here will be restricted to salmonids and with respect to

CGD.

Epitheliocystis in salmonid gills has been detected in Ire-

land (Downes et al. 2018b), Norway (Draghi et al. 2004;

Mitchell et al. 2013), Scotland (Rodger & Mitchell 2013)

and Tasmania (Nowak & LaPatra 2006). The presence of

epitheliocysts often is not associated with clinical disease in

farmed salmon, as it has been observed in apparently

healthy fish (Mitchell et al. 2010). However, epitheliocysts

have been suspected to play a role in some cases of CGD

where mortality rates reached up to 100% (Nylund et al.

1998). If associated with disease or mortality, the condition

is also referred to as a hyper infection (Nowak & LaPatra

2006). Epitheliocysts are not present in all CGD cases

(Mitchell & Rodger 2011; Matthews et al. 2013).

To date, at least four agents have been identified that lead

to epitheliocystis in Atlantic salmon in Norway and Ireland

in a marine environment: Candidatus Piscichlamydia

salmonis, Ca. Branchiomonas cysticola, Ca. Sygnamidia

salmonis and Ca. Clavochlamydia salmonicola. Sometimes

several of these agents may be detected simultaneously,

for example Ca. Piscichlamydia salmonis and Ca.

Branchiomonas cysticola (Mitchell et al. 2013; Steinum

et al. 2015).

Candidatus Piscichlamydia salmonis, a bacterium identi-

fied from salt- and freshwater, was proposed to have been

responsible for epitheliocystis in marine farmed Atlantic

salmon in Norway and Ireland in 1999 and 2000 (Draghi

et al. 2004). No direct correlation could be found, however,

between the pathogen and gill disease (Steinum et al. 2010;

Mitchell & Rodger 2011). Furthermore, chlamydia-like

organisms might be opportunistic rather than primary

pathogens (Horn 2008), indicating there may be other pri-

mary pathogen(s) or agent(s) involved.

One such possible primary pathogen is the betapro-

teobacterium Ca. Branchiomonas cysticola (Toenshoff

et al. 2012). It has been detected in a wide range of samples

from Norway and Ireland and is considered common in

European salmon aquaculture (Mitchell et al. 2013). The

presence of this organism, which like Ca. Piscichlamydia

salmonis is found in salt- and freshwater salmon (Mitchell

et al. 2013; Wiik-Nielsen et al. 2017), has been shown to be

quantitatively correlated with pathological changes consis-

tent with CGD, but it has also been frequently found in fish

without apparent gill pathology. During freshwater infec-

tion trials, in which the water of infected fish was used as a

source of waterborne infection for a population of na€ıve

juvenile Atlantic salmon, Ca. B. cysticola infections were

associated with gill epithelial cell proliferation and subep-

ithelial inflammation (Wiik-Nielsen et al. 2017). In a study

looking at the histopathology of co-infections in Atlantic

salmon obtained from salt water, necrosis in hyperplastic

lesions, pustules and necrosis of subepithelial cells were

specific changes that appeared to be associated with Ca. B.

cysticola infection (Gjessing et al. 2019). Both these find-

ings suggest that histological lesions other than only the

formation of cysts in the epithelial cells may occur in gills

infected by the bacteria. Unfortunately, the high prevalence

of Ca. B. cysticola in healthy fish has hindered understand-

ing its role in CGD.

A third reported bacterial agent is Ca. Sygnamidia

salmonis. This is another member of the Chlamydiae,

which has been isolated from a farm with fish diagnosed

with gill disease and elevated mortality rates (Nylund et al.

2015). Correlation with the severity of pathology was not

reported, and it is unknown if this organism causes epithe-

liocystis in apparently healthy fish, since only diseased fish

were used in the study. It has been shown capable of repli-

cating in N. perurans (Nylund et al. 2018).

The fourth reported agent is Ca. Clavochlamydia

salmonicola (Karlsen et al. 2008). This is a Chlamydiae

associated with freshwater epitheliocystis. It has not been

shown to be associated with pathological changes such as

epithelial hyperplasia in most fish. A study of the occur-

rence of Ca. Clavochlamydia salmonicola reported that the

agent could no longer be observed 4–6 weeks after fish

were transferred to marine pens (Mitchell et al. 2013).
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Depending on severity of infection, histopathological

changes of gills of fish with epitheliocystis can be consistent

with CGD: these include a proliferative hyperplasia with

hypertrophy, inflammation and necrosis (Nowak & Clark,

1999). Additionally, gills have characteristic cysts, which

can be observed macroscopically in some instances as white

to yellow cysts. Molecular tests have been developed for all

mentioned agents: Ca. P. salmonis (Ruane et al. 2013), Ca.

B. cysticola (Toenshoff et al. 2012; Mitchell et al. 2013), Ca.

S. salmonis (Nylund et al. 2015) and Ca. C. salmonicola

(Mitchell et al. 2010).

Other bacteria that have been detected simultaneously

with epitheliocystis are T. maritimum (Rodger et al.

2011b; Downes et al. 2018a), and unidentified bacteria

(Steinum et al. 2009; Garseth et al. 2018). Co-occurring

parasites include Icthyobodo spp. (Gjessing et al. 2017),

N. perurans (Steinum et al. 2015; Gjessing et al. 2017,

2019; Nylund et al. 2018; Downes et al. 2018a),

D. lepeoptherii (Nylund et al. 2011; Steinum et al. 2015;

Weli et al. 2017; Downes et al. 2018a; Gjessing et al.

2019) and Trichodina spp. (Garseth et al. 2018). Viruses

that have been simultaneously detected with epitheliocys-

tis include ASPV (Kvellestad et al. 2003; Fridell 2003;

Kvellestad et al. 2005), though there was no correlation

observed (Kvellestad et al. 2005); and SGPV (Nylund

et al. 2008; Gjessing et al. 2017, 2019; Garseth et al.

2018; Downes et al. 2018a). See Table 1.

Little is known about risk factors for epitheliocystis. High

stocking densities and high nutrient levels in the water may

affect presence (Woo & Bruno 2014). It has been suggested

that the season might be important, but neither water salin-

ity nor age of the fish appear to be risk factors (Nowak &

Clark 1999). Cleaner fish of the species Centrolabrus exole-

tus, Ctenolabrus rupestris, Labrus bergylta, L. mixtus and

Symphodus melops from the west coast of Norway have

been found with epitheliocyst-forming Chlamydia on the

gills, which could mean they act as vectors or reservoir

hosts (Steigen et al. 2018). However, the Chlamydiae

observed from the cleaner fish were not detected in salmo-

nids, and it has been suggested that they might not affect

salmon (Steigen et al. 2018).

Tenacibaculosis/flexibacteriosis

This salt water ulcerative disease has been given many dif-

ferent names, such as ‘salt water columnaris disease’, ‘glid-

ing bacterial disease of sea fish’, ‘bacterial stomatitis’,

‘eroded mouth syndrome’ and ‘black patch necrosis’ (re-

viewed by Avenda~no-Herrera et al. (2006b)). This Gram-

negative filamentous bacterium responsible for the disease

is currently known as Tenacibaculum maritimum, after hav-

ing previously been described as Flexibacter marinus, Flex-

ibacter maritimus and Cytophaga marina (reviewed by

Suzuki et al. (2001) and Avenda~no-Herrera et al. (2006b)).

T. maritimum is an opportunistic bacterium that is com-

monly found on gill tissue of both healthy and diseased fish

(Fringuelli et al. 2012). Though high levels were associated

with gill disease (Ruane et al. 2013), it is unknown whether

this association implies causality of T. maritimum for gill

disease, the other way around, or an entirely different type

of association. Gills might not be the most important route

for infection of this opportunistic pathogen as it also affects

other organs (Avenda~no-Herrera et al. 2006b). The patho-

gen has been reported in many different fish species in

Japan, Europe, Australia, USA, Chile and Canada, and for

reviews see Toranzo et al. (2005), Avenda~no-Herrera et al.

(2006b) and Frisch et al. (2017). Other Tenacibaculum spp.

have been identified as salmonid pathogens that cause simi-

lar disease symptoms, including as T. finnmarkense (Sm�age

et al. 2016a, 2017) and T. dicentrarchi (Avenda~no-Herrera

et al. 2016). It has been suggested multiple Tenacibaculum

spp. colonise the surface of Atlantic salmon (Karlsen et al.

2017).

Fish infected with T. maritimum may be lethargic, anor-

exic (Handlinger et al. 1997) and have an increased respira-

tory rate. They can have erosions and haemorrhages within

and around the oral cavity, scale loss, ulcerative skin

lesions, frayed fins and tail rot. A typical yellow margin

might be present around these lesions (Sm�age et al. 2017),

see Figure 3, which can be the portal of entry for other bac-

terial or parasitic agents (Toranzo et al. 2005). Lesions in

the gills, which are not always present, can consist of focal

areas of necrosis, and erosion in connective tissue associ-

ated with filamentous bacterial mats on lamellae, which

looks like ‘gill rot’. Free ends of one to several primary

lamellae can be eroded. Gills may have increased mucus, or

an acute inflammation, which could indicate another

insult, such as jellyfish exposure (Handlinger et al. 1997;

Mitchell & Rodger 2011). Tenacibaculum may also be

involved in the pathogenesis of ‘winter ulcers’, a condition

of which Moritella viscosa is considered an important factor

(Olsen et al. 2011).

Risk factors for tenacibaculosis are high water tempera-

tures, usually over 15°C (Toranzo et al. 2005; Downes et al.

2018a), but possibly lower, depending on the bacterial

strain (Frisch et al. 2017). The bacteria often colonise

epithelia secondary to other insults, such as infection with

D. lepeophtherii (Weli et al. 2017) or injuries caused by

harmful zooplankton and jellyfish (Rodger et al. 2011a).

Younger fish are at greater risk (Toranzo et al. 2005). T.

maritimum is usually outcompeted in seawater by other

bacterial species and might need to remain attached to a

substrate or animal surface (Avenda~no-Herrera et al.

2006a). Such a substrate might be a host or vector for this

bacteria, such as the jellyfish species Phialella quadrata

(Ferguson et al. 2010), P. noctiluca (Delannoy et al. 2011)

andMuggiaea atlantica (Fringuelli et al. 2012), the sea louse
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Lepeophtheirus salmonis (Barker et al. 2009), and the cleaner

fish Cyclopterus lumpus L (Sm�age et al. 2016b). Other risk

factors include high salinities, stress, elevated ammonia and

physical or toxic insults (Mitchell & Rodger 2011). In a

study in Norway, recently transferred smolts were more

affected by tenacibaculosis than smolts that had been in the

salt water longer (Sm�age et al. 2017). This may be because

smolts that have just transferred to salt water have reduced

resilience due to changes in their microbiota as a result of

the change in conditions (Lokesh & Kiron 2016), pressure

on osmoregulatory control and elevated stress levels as a

result of the transfer process (Iversen et al. 2005).

Definitive diagnosis can be based on microbiological

methods (Toranzo et al. 2005), and on PCR (Avenda~no-

Herrera et al. 2006b; Fringuelli et al. 2012). Treatment

is through antibiotics (Morrison & Saksida 2013),

improved environment or removal of the primary stressor

or insult.

The presence of T. maritimum could not be statistically

associated with increased gill scores (Fringuelli et al. 2012).

It has been observed simultaneously with epitheliocysts

(Rodger et al. 2011b; Downes et al. 2018a), the parasites

Ichthyobodo spp, Trichodina, D. lepeophtherii (Rodger et al.

2011b; Downes et al. 2018a), the virus SGPV (Downes et al.

2018a) and jellyfish (Ferguson et al. 2010; Delannoy et al.

2011; Rodger et al. 2011b; Ruane et al. 2013; Marcos-Lopez

et al. 2016). T. maritimum was observed simultaneously

with N. perurans (Powell et al. 2005; Rodger et al. 2011b;

Downes et al. 2018a), but there was no evidence of interac-

tions between them (Powell et al. 2005). See Table 1.

For a review, see Avenda~no-Herrera et al. (2006b).

Zooplankton (cnidarian nematocyst)-associated gill

disease

Gelatinous zooplankton (referred to hereafter as jellyfish)

occur in oceans worldwide and can be associated with high

mortality rates in open-pen salmonid aquaculture. Exam-

ples include a study in Ireland in which 70% of mortality of

all fish was due to occasional bloom events (Ruane et al.

2013; Marcos-Lopez et al. 2016), and a study in Scotland

which found that around 60% of all fish mortalities due to

plankton between 1999 and 2005 were associated with jelly-

fish (Scottish Government 2018a). Jellyfish abundance has

been correlated to daily mortality rates with a lag of one to

seven days (Baxter et al. 2011a), and blooms can lead to

increased operational cost and insurance fees (Lucas et al.

2014).

Most zooplankton-associated gill disease is due to stings

of free-living jellyfish. Cnidarian jellyfish have stinging cells

which contain nematocysts that can cause mechanical and

toxic insults to the fish gills and epithelia (Marcos-Lopez

et al. 2016). In open net pens such as used in salmon aqua-

culture, small and transparent cnidarian jellyfish enter the

fish pens intact, whereas larger jellyfish are broken up

against the net mesh (Marcos-Lopez et al. 2016). Both of

these cases can lead to nematocyst damage. Additionally,

avoidance behaviour of the fish, such as excessive jumping,

may result in more mechanical damage (B�amstedt et al.

1998). It has been proposed that jellyfish may serve as reser-

voirs or vectors for pathogens such as Tenacibaculum spp.

(Ferguson et al. 2010; Fringuelli et al. 2012; Sm�age et al.

2017), which can cause disease in the fish.

Sessile jellyfish, hydrozoans, can foul aquaculture struc-

tures so that water flow and quality is reduced. To counter

this, nets can be cleaned using pressure washers, but fish in

cages have been observed to exhibit avoidance behaviour

from the dense clouds of debris that come off the nets dur-

ing the cleaning process. Experimental challenges showed

that this debris can cause pathological changes in the gills,

such as epithelial sloughing, necrosis and haemorrhaging

(Baxter et al. 2012; Bloecher et al. 2018).

Clinical signs associated with presence of or damage

caused by jellyfish include lethargic behaviour, fish swim-

ming high in the water column close to the water surface

and increased jumping behaviour (Marcos-Lopez et al.

2016). Sometimes zooplankton can still be seen in the gills

both macroscopically and microscopically. Macroscopic

signs include skin erosions, scale loss, swollen or haemor-

rhagic lesions on the skin with ulcers, see Figure 3. Micro-

scopically, the gill damage observed can consist of

hyperplasia, lamellar fusion, occasional presence of giant

cells and bullae-like formations at the edges of filaments in

chronic lesions with necrosis, haemorrhages, congestion,

Figure 3 Zooplankton damage from Muggiaea atlantica with erosion

of gill rakers and Tenacibaculum sp. colonisation of damaged tissue

obvious as yellowish colouration on damaged tissue.
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infiltration, oedema, lamellar epithelium sloughing and loss

of tissue inflammation (Baxter et al. 2011a, 2011b; Ruane

et al. 2013; Marcos-Lopez et al. 2016). Microscopic and/or

macroscopic signs are not always observed during a jellyfish

bloom (Sm�age et al. 2017). A yellow-brown colour associ-

ated with skin and gill lesions from jellyfish could indicate

aggregations of Tenacibaculum sp. (Rodger et al. 2011a;

Marcos-Lopez et al. 2016).

Risk factors for jellyfish blooms are warm weather (Mar-

cos-Lopez et al. 2016), and there is some evidence that pro-

cesses like overfishing, eutrophication, climate change,

translocations and habitat modification may lead to more

jellyfish blooms (Richardson et al. 2009). Fish have been

treated with antibiotic, such as oxytretracycline in some

cases in the past, after a jellyfish encounter to reduce the

impact of secondary bacterial infections (Marcos-Lopez

et al. 2016).

Jellyfish damage has been observed simultaneously with

T. maritimum (Ferguson et al. 2010; Delannoy et al. 2011;

Rodger et al. 2011b; Ruane et al. 2013; Marcos-Lopez et al.

2016) and T. finmarkense (Sm�age et al. 2017). See Table 1.

For a review on this topic, see Purcell et al. (2013).

Harmful algal gill disease

Many species of phytoplankton occur in fresh and salt

water. Any phytoplankton species that may have a dele-

terious effect on other aquatic species or humans (in-

cluding economic damage) is referred to as harmful

(Kralberg et al. 2010). Harmful algae blooms (HABs)

have been responsible for gill damage and salmon mor-

tality around the world (Rodger et al. 2011a). Several

mechanisms can lead to gill damage and mortality. Clog-

ging and abrasion of gill structures can lead to excessive

mucus production, which can lead to oxygen deprivation

and thus suffocation of the fish (Bruno et al. 1989; Kent

et al. 1995). Photosynthesis and respiration of phyto-

plankton populations associated with HABs can lead to

both oxygen depletion and oxygen supersaturation dur-

ing a major bloom event (Jones & Rhodes 1994; Hishida

et al. 1998). Toxins produced by algae can cause damage

to gills or other organs and cause morbidity and mortal-

ity (Chang et al. 1990). Lastly, phytoplankton may attach

to benthic substrate and cause increased biofouling

(Kaatvedt et al. 1991). Clinical signs of HABs are

decreased feeding rate, avoidance behaviour such as

maintaining a particular position in the water column

and respiratory distress behaviour such as gasping at the

surface, increased ventilatory effort and respiration rate

and gathering in areas of higher oxygen like facing into

the incoming current (Treasurer et al. 2003; Rodger

et al. 2011a). Furthermore, irritation of the gills due to

HABs can lead to bleeding gills, petechiae on gills and

increased mucus production on the gills (Rodger et al.

2011a).

Associated pathology in gills depends on the type of

interaction between the different algae species and gill tis-

sue. It includes severe necrosis and sloughing with separa-

tion of secondary gill lamellae and hyperplasia (Bruno et al.

1989). There can also be oedema at the base of the sec-

ondary lamellae, inflammation (Kent et al. 1995) and vas-

cular changes (Chang et al. 1990). Other organs, such as

the liver, can also be affected (Treasurer et al. 2003; Mitch-

ell & Rodger 2007).

Mitigation methods against HABs have been reviewed by

Rensel and Whyte (2004) and include adjusting feeding

and other husbandry practices during the bloom, airlift

pumping of deep water into the cages, oxygenation and

aeration, moving or submerging cages, using alternatives to

seawater cages such as onshore tanks, treating the water

(e.g. through adding clay), using live cage bioassays nearby

a production site as early indicators and to test virulence of

HABs, early harvest and using freshwater to lower salinity

and reduce energy costs of osmoregulation.

For reviews, see Rensel and Whyte (2004) and Rodger

et al. (2011a).

Chemical/toxin-associated gill disease

Eutrophication around coastal areas can lead to an increase

of harmful compounds in the water, for example (waste)

products of forestry, agriculture, industry or sewage sys-

tems (Rodger et al. 2011a). Very little is known about the

effect of such compounds on fish gills in salt water, which

may be different to the effects on gills of fish in fresh water

(Mallatt 1985). Also chemicals from treatments, such as

hydrogen peroxide, may affect gills (Kiemer & Black 1997;

Adams et al. 2012). The effects that water quality in fresh-

water has on the marine survival of salmon remains to be

determined for many parameters, metals and chemicals

such as pH, carbon dioxide and formalin (Kroglund et al.

2007).

Discussion and Conclusions

An increase in prevalence of marine gill disease and associ-

ated financial losses led to an increase in research on puta-

tive aetiological factors of CGD over the last decade. This

resulted in an increase in monitoring, mapping and our

understanding of marine gill diseases, but has not led to a

full understanding of the role of the different putative com-

ponents of the aetiology of CGD.

Complex gill disease is frequently associated with multi-

ple putative pathogens. Table 1 lists pairs of putative patho-

gens that occurred simultaneously, and more often than

not more than two pathogens occur in one sample. In
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addition, perhaps the aetiology of CGD involves more than

these putative pathogens and is similar to other multifacto-

rial diseases where disease response is not only determined

by infectious agents, but also by synergic effects between

infectious agents, environment, management and the

immune status of the animals (Lorenz et al. 2011; Herrero

et al. 2018). An example of a possible complex association

between CGD and management is the employment of clea-

ner fish to control sea lice, which requires a smaller mesh

size (Kent 1992), which may in turn affect abundance, spe-

cies richness, and species composition of biofouling organ-

isms (Bloecher et al. 2018), which in turn may affect gill

health. In future studies of CGD, it is therefore important

to not only investigate the relation between CGD and puta-

tive aetiological agents, but also between CGD and other

factors such as management strategies and interactions

between the different putative components of the aetiology

of CGD.

Areas for continued study

Studying the transmission of putative pathogens between

fish and the effect of interactions between pathogens is a

challenge. This review and accompanying tables show that

many different pathogens may be involved with CGD, and

they occur in many different combinations. Although some

pathogens listed may not be primary pathogens, they may

exacerbate CGD. Controlled laboratory trials with these

putative pathogens are currently not possible, because most

of the pathogens have not been cultured successfully. An

uncontrolled laboratory trial, such as described in a study

by Wiik-Nielsen et al. (2017) in which freshwater salmon

that were naturally infected with putative pathogens for

CGD in the field and were imported into the laboratory

and used in cohabitation experiments may currently be the

only way to study transmission of putative pathogens.

However, this method cannot be standardised as there is

no control over infection levels and types of putative patho-

gens in the infected fish imported from a field situation. It

may therefore on the one hand be important to identify key

players in the aetiology of CGD and develop systems that

allow for controlled trials, but on the other hand consider-

ing the system as a black box and focusing on mitigation of

risk factors in farm management systems.

One of the key challenges in any study of CGD is the

need for a clear case definition. The different terms that

have been used to describe marine gill disease have led to

confusion and make it difficult to compare between studies

and areas. CGD as currently used, includes most other

pathologies (Herrero et al. 2018; Noguera et al. 2019), but

its boundaries are not well defined. A clear case definition

would allow for a systematic estimation of prevalences

across the salmon industry in different areas and countries

and could aid epidemiological studies such as risk-factor

analyses.

There is a need for comprehensive epidemiological stud-

ies that take into account the different putative components

of CGD. Research regarding individual components, such

as putative pathogens and environmental factors, has pro-

vided increased knowledge and understand of their associa-

tions with marine gill disease. With this knowledge came

awareness and increased surveillance for putative compo-

nents for CGD. As a result of this knowledge and increased

monitoring, a next step may be to attempt understanding

the possibly complex interactions between such compo-

nents. Two such studies were launched in 2018, when sal-

mon producers in Scotland and Norway engaged in

industry wide, inclusive epidemiological projects on marine

gill health in farmed salmon (FHF 2019; SAIC 2019).

It is unclear why CGD has emerged as a significant health

problem, as many of the putative pathogens associated with

CGD have been shown to be present for years retrospec-

tively. The answer may lay in other components that may

be part of a multifactorial aetiology for CGD, which have

changed over the last decade. For example, the industry

saw many changes in management strategies stimulated by

the need to be sustainable and profitable, such as further

intensification, changes in diet ingredients, changes in

genetic factors (Ellis et al. 2016) and technological advances

(Føre et al. 2018). Also, natural processes, such as the cli-

mate, have not remained constant, and temperatures have

been rising. As a result of changes occurring simultaneously

in the different putative components for CGD, it is chal-

lenging to retrospectively pinpoint why CGD has emerged

as a significant fish health problem.

Looking to the future, it may not be possible to eliminate

CGD entirely, similar to the current state of sea lice and

AGD. Mitigation efforts may need to focus on control of

CGD to proportions that are acceptable from both an ani-

mal welfare and animal production standpoint. Current

research efforts are improving our knowledge and may help

to better understand CGD.

Acknowledgements

This work was partly supported by the Scottish Aquacul-

ture Innovation Centre grant SL_2017_07.

References

Adams MB, Nowak BF (2004) Sequential pathology after initial

freshwater bath treatment for amoebic gill disease in cultured

Atlantic salmon, Salmo salar L. Journal of Fish Diseases 27(3):

163–173.
Adams MB, Ellard K, Nowak BF (2004) Gross pathology and its

relationship with histopathology of amoebic gill disease

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd14

A. S. Boerlage et al.



(AGD) in farmed Atlantic salmon, Salmo salar L. Journal of

Fish Diseases 27: 151–161.
Adams MB, Crosbie PB, Nowak BF (2012) Preliminary success

using hydrogen peroxide to treat Atlantic salmon, Salmo salar

L., affected with experimentally induced amoebic gill disease

(AGD). Journal of Fish Diseases 35: 839–848.
Avenda~no-Herrera R, Irgang R, Magari~nos B, Romalde JL, Tor-

anzo AE (2006a) Use of microcosms to determine the survival

of the fish pathogen Tenacibaculum maritimum in seawater.

Environmental Microbiology 8: 921–928.
Avenda~no-Herrera R, Toranzo AE, Magari~nos B (2006b)

Tenacibaculosis infection in marine fish caused by Tenacibac-

ulum maritimum: a review. Diseases of Aquatic Organisms 71

(3): 255–266.
Avenda~no-Herrera R, Irgang R, Sandoval C, Moreno-Lira P,

Houel A, Duchaud E et al. (2016) Isolation, characterization

and virulence potential of Tenacibaculum dicentrarchi in

salmonid cultures in Chile. Transboundary and Emerging

Diseases 63(2): 121–126.
B�amstedt U, Foss�a JH, Martinussen MB, Fosshagen A (1998)

Mass occurrence of the physonect siphonophore Apolemia

uvaria (Lesueur) in Norwegian waters. Sarsia 83: 79–85.
Barker DE, Braden LM, Coombs MP, Boyce B (2009) Prelimi-

nary studies on the isolation of bacteria from sea lice,

Lepeophtheirus salmonis, infecting farmed salmon in British

Columbia, Canada. Parasitology Research 105: 1173–1177.
Baxter EJ, Rodger HD, McAllen R, Doyle TK (2011a) Gill disor-

ders in marine-farmed salmon: Investigating the role of

hydrozoan jellyfish. Aquaculture Environment Interactions 1:

245–257.
Baxter EJ, Sturt MM, Ruane NM, Doyle TK, McAllen R, Har-

man L et al. (2011b) Gill damage to Atlantic Salmon (Salmo

salar) caused by the common jellyfish (Aurelia aurita) under

experimental challenge. PLoS ONE 6: 4–9.
Baxter EJ, Sturt MM, Ruane NM, Doyle K, McAllen R, Rodger

HD (2012) Biofouling of the hydroid Ectopleura larynx on

aquaculture nets in Ireland: implications for finfish health.

Fish Veterinary Journal 13: 17–29.
Beecham RV, Griffin MJ, LaBarre SB, Wise D, Mauel MJ, Pote

LMW et al. (2010) The effects of proliferative gill disease on

the blood physiology of channel catfish, blue catfish, and

channel catfish x blue catfish hybrid fingerlings. North Ameri-

can Journal of Aquaculture 72: 213–218.
Bloecher N, Powell M, Hytterød S, Gjessing M, Wiik-Nielsen J,

Mohammad SN et al. (2018) Effects of cnidarian biofouling

on salmon gill health and development of amoebic gill dis-

ease. PLoS ONE 13: 1–18.
Bosworth BG, Wise DJ, Terhune JS, Wolters WR (2003) Family

and genetic group effects for resistance to proliferative gill

disease in channel catfish, blue catfish and channel catfish 9

blue catfish backcross hybrids. Aquaculture Research 34:

569–573.
Bruno DW, Dear G, Seaton DD (1989) Mortality associated with

phytoplankton blooms among farmed Atlantic salmon, Salmo

salar L., in Scotland. Aquaculture 78: 217–222.

Bustos PA, Young ND, Rozas MA, Bohle HM, Ildefonso RS,

Morrison RN et al. (2011) Amoebic gill disease (AGD) in

Atlantic salmon (Salmo salar) farmed in Chile. Aquaculture

310: 281–288.
Chang FH, Anderson C, Boustead NC (1990) First record of a

Heterosigma (Raphidophyceae) bloom with associated mortal-

ity of cage-reared salmon in Big Glory Bay, New Zealand.

New Zealand Journal of Marine and Freshwater Research 24:

461–469.
Clark A, Nowak BF (1999) Field investigations of amoebic gill

disease in Atlantic salmon, Salmo salar L., in Tasmania. Jour-

nal of Fish Diseases 22: 433–443.
Clark G, Powell M, Nowak B (2003) Effects of commercial fresh-

water bathing on reinfection of Atlantic salmon, Salmo salar,

with Amoebic Gill Disease. Aquaculture 219: 135–142.
Crosbie PBB, Bridle AR, Leef MJ, Nowak BF (2010) Effects of

different batches of Neoparamoeba perurans and fish stocking

densities on the severity of amoebic gill disease in experimen-

tal infection of Atlantic salmon, Salmo salar L. Aquaculture

Research 41: e505–e516.
Crosbie PBB, Bridle AR, Cadoret K, Nowak BF (2012) In vitro

cultured Neoparamoeba perurans causes amoebic gill disease

in Atlantic salmon and fulfils Koch’s postulates. International

Journal for Parasitology 42: 511–515.
Delannoy CMJ, Houghton JDR, Fleming NEC, Ferguson HW

(2011) Mauve stingers (Pelagia noctiluca) as carriers of the

bacterial fish pathogen Tenacibaculum maritimum. Aquacul-

ture 311: 255–257.
Douglas-Helders M, Saksida S, Nowak B (2001) Temperature as

a risk factor for outbreaks of amoebic gill disease in farmed

Atlantic salmon (Salmo salar). Bulletin of the European Associ-

ation of Fish Pathologists 21: 114–116.
Downes JK, Rigby ML, Taylor RS, Maynard BT, MacCarthy E,

O’Connor I et al. (2017) Evaluation of non-destructive molec-

ular diagnostics for the detection of Neoparamoeba perurans.

Frontiers in Marine Science 4: 1–6.
Downes JK, Yatabe T, Marcos-Lopez M, Rodger HD, MacCarthy

E, O’Connor I et al. (2018a) Investigation of co-infections

with pathogens associated with gill disease in Atlantic salmon

during an amoebic gill disease outbreak. Journal of Fish Dis-

eases 41: 1217–1227.
Downes JK, Collins EM, Morrissey T, Hickey C, O’Connor I,

Rodger HD et al. (2018b) Confirmation of Neoparamoeba

perurans on the gills of Atlantic salmon during the earliest

outbreaks of amoebic gill disease in Ireland. Bulletin of the

European Association of Fish Pathologists 38: 42–48.
Draghi A, Popov VL, Kahl MM, Stanton JB, Brown CC, Tsonga-

lis GJ et al. (2004) Characterization of “Candidatus Piscich-

lamydia salmonis” (Order Chlamydiales), a chlamydia-like

bacterium associated with epitheliocystis in farmed Atlantic

salmon (Salmo salar). Journal of Clinical Microbiology 42:

5286–5297.
Dykov�a I, Novoa B (2001) Comments on diagnosis of amoebic

gill disease (AGD) in turbot, Scophthalmus maximus. Bulletin

of the European Association of Fish Pathologists 21: 40–44.

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd 15

Marine gill diseases in Atlantic salmon



Dykov�a I, Tyml T, KostkaM, Peckov�a H (2010) Strains ofUronema

marinum (scuticociliatia) co-isolated with amoebae of the genus

Neoparamoeba.Diseases of Aquatic Organisms 89: 71–77.
Ellis T, Turnbull JF, Knowles TG, Lines JA, Auchterlonie NA

(2016) Trends during development of Scottish salmon farm-

ing: an example of sustainable intensification? Aquaculture

458: 82–99.
English CJ, Swords F, Downes JK, Ruane NM, Botwright NA,

Taylor RS et al. (2019a) Prevalence of six amoeba species

colonising the gills of farmed Atlantic salmon with amoebic

gill disease (AGD) using qPCR. Aquaculture Environment

Interactions 11: 405–415.
English CJ, Tyml T, Botwright NA, Barnes AC, Wynne JW, Lima

PC et al. (2019b) A diversity of amoebae colonise the gills of

farmed Atlantic salmon (Salmo salar) with amoebic gill dis-

ease (AGD). European Journal of Protistology 67: 27–45.
Feehan CJ, Johnson-Mackinnon J, Scheibling RE, Lauzon-Guay

JS, Simpson AGB (2013) Validating the identity of Paramoeba

invadens, the causative agent of recurrent mass mortality of

sea urchins in Nova Scotia, Canada. Diseases of Aquatic

Organisms 103: 209–227.
Ferguson HW, Delannoy CMJ, Hay S, Nicolson J, Sutherland D,

Crumlish M (2010) Jellyfish as vectors of bacterial disease for

farmed salmon (Salmo salar). Journal of Veterinary Diagnostic

Investigation 22: 376–82.
FHF (2019) Risikofaktorer, indikatorer og strategisk h�andtering

av gjellelidelser hos atlantisk laks (GILLRISK). [Cited 4 Octo-

ber 2019.] Available from URL: www.fhf.no/prosjekter/prosje

ktbasen/901515.

Føre M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster

T et al. (2018) Precision fish farming: a new framework to

improve production in aquaculture. Biosystems Engineering

173: 176–193.
Freeman MA (2002) Potential biological control agents for the sal-

mon louse Lepeophtheirus salmonis (Krøyer, 1837). PhD thesis.

Institute of Aquaculture, University of Stirling, Stirling.

Freeman MA, Sommerville C (2011) Original observations of Des-

mozoon lepeophtherii, a microsporidian hyperparasite infecting

the salmon louse Lepeophtheirus salmonis, and its subsequent

detection by other researchers. Parasites and Vectors 4: 2–5.
Fridell F (2003) Detection of a paramyxovirus in selected tissues

from Salmo salar after experimental challenge. Master thesis.

p 68, Department of Fisheries and Marine Biology, University

of Bergen, Norway. (in Norwegian).

Fringuelli E, Savage PD, Gordon A, Baxter EJ, Rodger HD, Gra-

ham DA (2012) Development of a quantitative real-time PCR

for the detection of Tenacibaculum maritimum and its appli-

cation to field samples. Journal of Fish Diseases 35: 579–590.
Frisch K, Sm�age SB, Brevik ØJ, Duesund H, Nylund A (2017)

Genotyping of Tenacibaculum maritimum isolates from

farmed Atlantic salmon in Western Canada. Journal of Fish

Diseases 41: 131–137.
Fryer JL, Lannan CN (1994) Rickettsial and chlamydial infec-

tions of freshwater and marine fishes, bivalves, and crus-

taceans. Zoological Studies 33: 95–107.

Garseth H, Gjessing MC, Moldal T, Gjevre AG (2018) A survey

of salmon gill poxvirus (SGPV) in wild salmonids in Norway.

Journal of Fish Diseases 41: 139–145.
Gjessing MC, Yutin N, Tengs T, Senkevich T, Koonin E, Røn-

ning HP et al. (2015) Salmon gill poxvirus, the deepest repre-

sentative of the Chordopoxvirinae. Journal of Virology 89:

9348–9367.
Gjessing MC, Weli SC, Dale OB (2016) Poxviruses of fish. In:

Kibenge FSB, Godoy MG (eds) Aquaculture Virology, pp. 119–
125. Academic Press, Oxford.

Gjessing MC, Thoen E, Tengs T, Skotheim SA, Dale OB (2017)

Salmon gill poxvirus, a recently characterized infectious agent

of multifactorial gill disease in freshwater- and seawater-reared

Atlantic salmon. Journal of Fish Diseases 40: 1253–1265.
Gjessing MC, Steinum T, Olsen AB, Lie KI, Tavornpanich S,

Colquhoun DJ (2019) Histopathological investigation of

complex gill disease in sea farmed Atlantic salmon. PLoS ONE

14: 1–18.
Gunnarsson GS, Blindheim S, Karlsbakk E, Plarre H, Imsland

AK, Handeland S et al. (2017) Desmozoon lepeophtherii (mi-

crosporidian) infections and pancreas disease (PD) outbreaks

in farmed Atlantic salmon (Salmo salar L.). Aquaculture 468:

141–148.
Handlinger J, Soltani M, Percival S (1997) The pathology of

Flexibacter maritimus in aquaculture species in Tasmania,

Australia. Journal of Fish Diseases 20: 159–168.
Haugland GT, Olsen AB, Rønneseth A, Andersen L (2017)

Lumpfish (Cyclopterus lumpus L.) develop amoebic gill disease

(AGD) after experimental challenge with Paramoeba perurans

and can transfer amoebae to Atlantic salmon (Salmo salar L.).

Aquaculture 478: 48–55.
Hellebø A, Stene A, Aspehaug V (2017) PCR survey for Para-

moeba perurans in fauna, environmental samples and fish

associated with marine farming sites for Atlantic salmon

(Salmo salar L.). Journal of Fish Diseases 40: 661–670.
Herrero A, Thompson KD, Ashby A, Rodger HD, Dagleish MP

(2018) Complex gill disease: an emerging syndrome in farmed

Atlantic salmon (Salmo salar L.). Journal of Comparative

Pathology 163: 23–28.
Hishida Y, Katoh H, Oda T, Ishimatsu A (1998) Comparison of

physiological responses to exposure to Chattonella marina in

yellowtail, red sea bream and Japanese flounder. Fisheries

Science 64: 875–881.
Hjeltnes B, Bornø G, Jansen MD, Haukaas A, Walde C (2017)

The Health Situation in Norwegian Aquaculture 2016. Norwe-

gian Veterinary Institute, Oslo.

Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annual

Review of Microbiology 62: 113–131.
Hvas M, Karlsbakk E, Mæhle S, Wright DW, Oppedal F (2017)

The gill parasite Paramoeba perurans compromises aerobic

scope, swimming capacity and ion balance in Atlantic salmon.

Conservation Physiology 5: 1–12.
ICES (2016) Interim Report of the Working Group on Pathol-

ogy and Diseases of Marine Organisms (WGPDMO), 17–20
February 2016. Virginia.

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd16

A. S. Boerlage et al.

http://www.fhf.no/prosjekter/prosjektbasen/901515
http://www.fhf.no/prosjekter/prosjektbasen/901515


Iversen M, Finstad B, McKinley RS, Eliassen RA, Carlsen KT,

Evjen T (2005) Stress responses in Atlantic salmon (Salmo

salar L.) smolts during commercial well boat transports, and

effects on survival after transfer to sea. Aquaculture 243: 373–
382.

Jansson E, Vennerstrom P (2014) Infectious diseases of cold-

water fish in marine and brackish waters. In: Woo PTK,

Bruno DW (eds) Diseases and Disorders of Finfish in Cage

Culture, 2nd edn, pp. 15–59. CABI International, Walling-

ford.

Jones JB, Rhodes LL (1994) Suffocation of pilchards (Sardinops

sagax) by a green microalgal bloom in Wellington harbour,

New Zealand. New Zealand Journal of Marine and Freshwater

Research 28: 379–383.
Jones SRM, Prosperi-Porta G, Kim E (2012) The diversity of

microsporidia in parasitic copepods (Caligidae: Siphonostom-

atoida) in the northeast Pacific ocean with description of

Facilispora margolisi n. g., n. sp. and a new family Facilispori-

dae n. fam. Journal of Eukaryotic Microbiology 59: 206–217.
Kaatvedt S, Johnsen TM, Aksnes DL, Lie U, Svendse H (1991)

Occurrence of the toxic flagellate Prymnesium parvum and

associated fish mortality in a Norwegian fjord system. Cana-

dian Journal of Fisheries and Aquatic Sciences 48: 2316–2323.
Karlsbakk E, Olsen AB, Einen ACB, Mo TA, Fiksdal IU, Aase H

et al. (2013) Amoebic gill disease due to Paramoeba perurans

in ballan wrasse (Labrus bergylta). Aquaculture 412–413: 41–
44.

Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S, Plarre

H (2008) Characterization of “Candidatus Clavochlamydia

salmonicola”: an intracellular bacterium infecting salmonid

fish. Environmental Microbiology 10: 208–218.
Karlsen C, Ottem KF, Brevik ØJ, Davey M, Sørum H, Winther-

Larsen HC (2017) The environmental and host-associated

bacterial microbiota of Arctic seawater-farmed Atlantic sal-

mon with ulcerative disorders. Journal of Fish Diseases 40:

1645–1663.
Kent M (1992) Diseases of Seawater Netpen-Reared Salmonid

Fishes in the Pacific Northwest. Canadian Special Publication of

Fisheries and Aquatic Sciences 116. Department of Fisheries

and Oceans, Nanaimo, BC.

Kent M, Sawyer T, Hedrick R (1988) Paramoeba pemaquidensis

(Sarcomastigophora: Paramoebidae) infestation of the gills of

coho salmon Oncorhynchus kisutch reared in sea water. Dis-

eases of Aquatic Organisms 5: 163–169.
Kent ML, Whytel JNC, Latrace C (1995) Gill lesions and mortal-

ity in seawater pen-reared Atlantic salmon Salmo salar associ-

ated with a dense bloom of Skeletonema costatum and

Thalassiosira species. Diseases of Aquatic Organisms 22: 77–81.
Kiemer MCB, Black KD (1997) The effects of hydrogen peroxide

on the gill tissues of Atlantic salmon, Salmo salar L. Aquacul-

ture 53: 181–189.
Kintner A, Brierley AS (2019) Cryptic hydrozoan blooms pose

risks to gill health in farmed North Atlantic salmon (Salmo

salar). Journal of the Marine Biological Association of the Uni-

ted Kingdom 99(2): 539–550.

Koppang EO, Kvellestad A, Fischer U (2015) Fish mucosal

immunity. In: Beck BH, Peatman E (eds) Health in Aquacul-

ture, pp. 93–133. Academic Press, Oxford.

Kralberg A, Baumann M, Durselen C-D (2010) Coastal Phyto-

plankton: Photo Guide for Northern European Seas. Verlag Dr.

Friedrich Pfeil, Munchen.

Kroglund F, Rosseland OB, Teien HC, Salbu B, Kristensenm T,

Finstad B (2007) Water quality limits for Atlantic salmon

(Salmo salar L.) exposed to short term reductions in pH and

increased aluminium simulating episodes. Hydrology and

Earth System Sciences Discussions, European Geosciences Union

4: 3317–3355.
Kvellestad A, Dannevig BH, Falk K (2003) Isolation and partial

characterization of a novel paramyxovirus from the gills of

diseased seawater-reared Atlantic salmon (Salmo salar L.).

Journal of General Virology 84: 2179–2189.
Kvellestad A, Falk K, Nygaard SMR, Flesj�a K, Holm JA (2005)

Atlantic salmon paramyxovirus (ASPV) infection contributes

to proliferative gill inflammation (PGI) in seawater-reared

Salmo salar. Diseases of Aquatic Organisms 67: 47–54.
Lokesh J, Kiron V (2016) Transition from freshwater to seawater

reshapes the skin-associated microbiota of Atlantic salmon.

Scientific Reports 6: 1–10.
Lorenz I, Earley B, Gilmore J, Hogan I, Kennedy E, More SJ

(2011) Calf health from birth to weaning. III. Housing and

management of calf pneumonia. Irish Veterinary Journal 64:

1–9.
Lucas CH, Gelcich S, Uye S-I (2014) Living with jellyfish:

management and adaptation strategies. In: Pitt KA, Lucas

CH (eds) Jellyfish Blooms, pp. 129–152. Springer, Dor-

drecht.

Mallatt J (1985) Fish gill structural changes induced by toxicants

and other irritants: a statistical review. Canadian Journal of

Fisheries and Aquatic Sciences 42: 630–648.
Marcos-Lopez M, Mitchell SO, Rodger HD (2016) Pathology

and mortality associated with the mauve stinger jellyfish Pela-

gia noctiluca in farmed Atlantic salmon Salmo salar L. Journal

of Fish Diseases 39: 111–115.
Matthews CGG, Richards RH, Shinn AP, Cox DI (2013) Gill

pathology in Scottish farmed Atlantic salmon, Salmo salar L.,

associated with the microsporidian Desmozoon lepeophtherii

Freeman et Sommerville, 2009. Journal of Fish Diseases 36:

861–869.
Maynard BT, Taylor RS, Kube PD, Cook MT, Elliott NG (2016)

Salmonid heterosis for resistance to amoebic gill disease

(AGD). Aquaculture 451: 106–112.
Mitchell S, Rodger H (2007) Pathology of wild and cultured fish

affected by a Karenia mikimotoi bloom in Ireland, 2005. Bul-

letin of the European Association of Fish Pathologists 27: 39–42.
Mitchell SO, Rodger HD (2011) A review of infectious gill dis-

ease in marine salmonid fish. Journal of Fish Diseases 34:

411–432.
Mitchell SO, Steinum T, Rodger H, Holland C, Falk K, Colqu-

houn DJ (2010) Epitheliocystis in Atlantic salmon, Salmo

salar L., farmed in fresh water in Ireland is associated with

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd 17

Marine gill diseases in Atlantic salmon



“Candidatus Clavochlamydia salmonicola” infection. Journal

of Fish Diseases 33: 665–673.
Mitchell SO, Steinum TM, Toenshoff ER, Kvellestad A, Falk K,

Horn M (2013) Candidatus Branchiomonas cysticola is a

common agent of epitheliocysts in seawater-farmed Atlantic

salmon Salmo salar in Norway and Ireland. Diseases of Aquatic

Organisms 103: 35–43.
Morrison DB, Saksida S (2013) Trends in antimicrobial use in

Marine Harvest Canada farmed salmon production in British

Columbia (2003–2011). Canadian Veterinary Journal 54:

1160–1163.
Morrison RN, Crosbie PBB, Cook MT, Adams MB, Nowak BF

(2005) Cultured gill-derived Neoparamoeba pemaquidensis

fails to elicit amoebic gill disease (AGD) in Atlantic salmon

Salmo salar. Diseases of Aquatic Organisms 66: 135–144.
Nolsøe M, Weidmann M, Christiansen DH (2015) Investigation

of the prevalence of salmonid gill pox virus in Faroese freshwater

salmonidp Production sites. Master thesis, University of Stir-

ling, Scotland.

Noguera P, Olsen AB, Hoare J, Lie KI, Poppe TT, Rodger H

(2019) Complex gill disorder (CGD): a histopathology work-

shop report. Bulletin of the European Association of Fish

Pathologists 39: 172–176.
Nowak BF, Archibald JM (2018) Opportunistic but lethal: the

mystery of Paramoebae. Trends in Parasitology 34: 404–419.
Nowak BF, Clark A (1999) Prevalence of epitheliocystis in Atlan-

tic salmon, Salmo salar L., farmed in Tasmania, Australia.

Journal of Fish Diseases 22: 73–78.
Nowak BF, LaPatra SE (2006) Epitheliocystis in fish. Journal of

Fish Diseases 29: 573–588.
Nylund A, Kvenseth AM, Isdal E (1998) A morphological study

of the epitheliocystis agent in farmed Atlantic salmon. Journal

of Aquatic Animal Health 10: 43–55.
Nylund A, Watanabe K, Karlsen M, Nylund S, Karlsbakk E,

Sæther PA (2006) A new gill disease in salmon—Poxvirus.

Norsk Fiskeoppdrett 31: 54–56 (in Norwegian).

Nylund A, Watanabe K, Nylund S, Karlsen M, Sæther PA, Arne-

sen CE et al. (2008) Morphogenesis of salmonid gill poxvirus

associated with proliferative gill disease in farmed Atlantic sal-

mon (Salmo salar) in Norway. Archives of Virology 153: 1299–
1309.

Nylund S, Nylund A, Watanabe K, Arnesen CE, Karlsbakk E

(2010) Paranucleospora theridion n. gen., n. sp. (Microspori-

dia, Enterocytozoonidae) with a life cycle in the salmon louse

(Lepeophtheirus salmonis, Copepoda) and Atlantic Salmon

(Salmo salar). Journal of Eukaryotic Microbiology 57: 95–114.
Nylund S, Andersen L, Sævareid I, Plarre H, Watanabe K, Arnesen

CE et al. (2011) Diseases of farmed Atlantic salmon Salmo salar

associated with infections by the microsporidian Paranucleospora

theridion. Diseases of Aquatic Organisms 94: 41–57.
Nylund S, Steigen A, Karlsbakk E, Plarre H, Andersen L, Karlsen

M et al. (2015) Characterization of ‘Candidatus Syngnamydia

salmonis’ (Chlamydiales, Simkaniaceae), a bacterium associ-

ated with epitheliocystis in Atlantic salmon (Salmo salar L.).

Archives of Microbiology 197: 17–25.

Nylund A, Pistone D, Tr€osse C, Blindheim S, Andersen L, Plarre

H (2018) Genotyping of Candidatus Syngnamydia salmonis

(Chlamydiales; Simkaniaceae) co-cultured in Paramoeba peru-

rans (Amoebozoa; Paramoebidae). Archives of Microbiology

200: 859–867.
Oldham T, Rodger HD, Nowak BF (2016) Incidence and distri-

bution of amoebic gill disease (AGD) – an epidemiological

review. Aquaculture 457: 35–42.
Olsen AB, Nilsen H, Sandlund N, Mikkelsen H, Sørum H, Col-

quhoun DJ (2011) Tenacibaculum sp. associated with winter

ulcers in sea-reared Atlantic salmon Salmo salar. Diseases of

Aquatic Organisms 94: 189–199.
Parsons H, Nowak B, Fisk D, Powell M (2001) Effectiveness of

commercial freshwater bathing as a treatment against amoebic

gill disease in Atlantic salmon. Aquaculture 195: 205–210.
Powell MD, Harris JO, Carson J, Hill JV (2005) Effect of gill

abrasion and experimental infection with Tenacibaculum mar-

itimum on the respiratory physiology of Atlantic salmon

Salmo salar affected by amoebic gill disease. Diseases of Aqua-

tic Organisms 63: 169–174.
Powell MD, Reynolds P, Kristensen T (2015) Freshwater treat-

ment of amoebic gill disease and sea-lice in seawater salmon

production: Considerations of water chemistry and fish wel-

fare in Norway. Aquaculture 448: 18–28.
Purcell JE, Baxter EJ, Fuentes VL (2013) Jellyfish as products

and problems of aquaculture. In: Allan C, Burnell C (eds)

Advances in Aquaculture Hatchery Technology, 1st edn, pp.

404–430. Woodhead Publishing, Cambridge.

Rensel JE, Whyte JNC (2004) Finfish mariculture and harmful algal

blooms. In: Hallegraeff GM, Anderson DM, Cembella AD (eds)

Monographs on Oceanographic Methodology: Manual on Harmful

Marine Microalgae, pp. 693–722. Unesco, Landais.
Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jel-

lyfish joyride: causes, consequences and management

responses to a more gelatinous future. Trends in Ecology and

Evolution 24(6): 312–322.
Rodger HD (2007) Gill disorders: an emerging problem for

farmed Atlantic salmon (Salmo salar) in the marine environ-

ment? Fish Veterinary Journal 9: 38–48.
Rodger HD (2019) Amoebic gill disease in farmed halibut (Hip-

poglossus hippoglossus) in the United Kingdom. Veterinary

Record Case Reports 7: e000797.

Rodger HD, McArdle JF (1996) An outbreak of amoebic gill dis-

ease in Ireland. Veterinary Record 139: 348–349.
Rodger HD, Mitchell SO (2013) Marine gill histopathology

workshop. Bulletin of the European Association of Fish Patholo-

gists 33: 35–43.
Rodger HD, Henry L, Mitchell SO (2011a) Non-infectious gill

disorders of marine salmonid fish. Reviews in Fish Biology and

Fisheries 21: 423–440.
Rodger HD, Murphy K, Mitchell SO, Henry L (2011b) Gill dis-

ease in marine farmed Atlantic salmon at four farms in Ire-

land. Veterinary Record 168: 668.

Ruane N, Rodger H, Mitchell S, Doyle T, Baxter E, Fringuelli E

(2013) GILPAT: An Investigation into Gill Pathologies in

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd18

A. S. Boerlage et al.



Marine Reared Finfish. Marine Research Sub-Programme

(NDP 2007–2013). Marine Institute, Oranmore.

SAIC (2019) Gill health in Scottish farmed salmon. [Cited 4

October 2019.] Available from URL: www.scottishaquacul

ture.com/projects/health-and-welfare/details/gill-health-in-sc

ottish-farmed-salmon.

Scottish Government (2018a) Jellyfish as a Nuisance Species to

Aquaculture. The Scottish Government, Edinburgh.

Scottish Government (2018b) Marine Scotland Science Scotland’s

10 year Farmed Fish Health Framework. The Scottish Govern-

ment, Edinburgh.

Sm�age SB, Brevik ØJ, Duesund H, Ottem KF, Watanabe K,

Nylund A (2016a) Tenacibaculum finnmarkense sp. nov., a fish

pathogenic bacterium of the family Flavobacteriaceae isolated

from Atlantic salmon. International Journal of General and

Molecular Microbiology 109: 273–285.
Sm�age SB, Frisch K, Brevik ØJ, Watanabe K, Nylund A (2016b)

First isolation, identification and characterisation of

Tenacibaculum maritimum in Norway, isolated from diseased

farmed sea lice cleaner fish Cyclopterus lumpus L. Aquaculture

464: 178–184.
Sm�age SB, Brevik ØJ, Frisch K, Watanabe K, Duesund H,

Nylund A (2017) Concurrent jellyfish blooms and tenacibacu-

losis outbreaks in Northern Norwegian Atlantic salmon

(Salmo salar) farms. PLoS ONE 12: e0187476.

Speare DJ, Arsenault G, MacNair N, Powell MD (1997) Bran-

chial lesions associated with intermittent formalin bath treat-

ment of Atlantic salmon, Salmo salar L., and rainbow trout,

Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 20:

27–33.
Steigen A, Nylund A, Plarre H, Watanabe K, Karlsbakk E, Brevik

Ø (2018) Presence of selected pathogens on the gills of five

wrasse species in western Norway. Diseases of Aquatic Organ-

isms 128: 21–35.
Steinum T, Kvellestad A, Rønneberg LB, Nilsen H, Asheim A,

Fjell K et al. (2008) First cases of amoebic gill disease (AGD)

in Norwegian seawater farmed Atlantic salmon, Salmo salar

L., and phylogeny of the causative amoeba using 18S cDNA

sequences. Journal of Fish Diseases 31: 205–214.
Steinum T, Sj�astad K, Falk K, Kvellestad A, Colquhoun DJ

(2009) An RT PCR-DGGE survey of gill-associated bacteria in

Norwegian seawater-reared Atlantic salmon suffering prolifer-

ative gill inflammation. Aquaculture 293: 172–179.
Steinum T, Kvellestad A, Colquhoun DJ, Heum M, Mohammad S,

Grontvedt RN et al. (2010) Microbial and pathological findings

in farmed Atlantic salmon Salmo salar with proliferative gill

inflammation. Diseases of Aquatic Organisms 91: 201–211.
Steinum TM, Brun E, Colquhoun DJ, Gjessing MC, Lie KL, Olsen

AB et al. (2015) Proliferativ gjellebetennelse hos oppdrettslaks i sjø-

vann – patologi, utvalgte agens og risikofaktorer. Veterinærinsti-

tuttets rapportserie 8-2015. Veterinærinstituttet, Oslo. (In

Norwegian, summary and Tables in English).

Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phy-

logenetic analysis and taxonomic study of marine Cytophaga-

like bacteria: Proposal for Tenacibaculum gen. nov. with

Tenacibaculum maritimum comb. nov. and Tenacibaculum

ovolyticum comb. nov., and description of Tenacibaculum

mesophilum sp. nov. and Tenacibaculum amylolyticum sp.

nov. International Journal of Systematic and Evolutionary

Microbiology 51: 1639–1652.
Sveen S, Øverland H, Karlsbakk E, Nylund A (2012) Paranucle-

ospora theridion (Microsporidia) infection dynamics in

farmed Atlantic salmon Salmo salar put to sea in spring and

autumn. Diseases of Aquatic Organisms 101: 43–49.
Tan CKF, Nowak BF, Hodson SL (2002) Biofouling as a reser-

voir of Neoparamoeba pemaquidensis (Page, 1970), the causa-

tive agent of amoebic gill disease in Atlantic salmon.

Aquaculture 210: 49–58.
Taylor RS, Muller WJ, Cook MT, Kube PD, Elliott NG (2009)

Gill observations in Atlantic salmon (Salmo salar, L.) during

repeated amoebic gill disease (AGD) field exposure and sur-

vival challenge. Aquaculture 290: 1–8.
Taylor R, Kube PD, Evans B, Elliott N (2014) Genetic variation

of handling resilience of Tasmanian Atlantic salmon affected

by amoebic gill disease (AGD). In: Herrmesch S, Dominik S

(eds) Breeding Focus 2014 – Improving Resilience, pp. 101–113.
Animal Genetics and Breeding Unit, University of New Eng-

land, Armidale.

Toenshoff ER, Kvellestad A, Mitchell SO, Steinum T, Falk K,

Colquhoun DJ et al. (2012) A novel betaproteobacterial agent

of gill epitheliocystis in seawater farmed Atlantic salmon

(Salmo salar). PLoS ONE 7: 1–7.
Toranzo AE, Magari~nos B, Romalde JL (2005) A review of the

main bacterial fish diseases in mariculture systems. Aquacul-

ture 246: 37–61.
Treasurer JW, Hannah F, Cox D (2003) Impact of a phytoplank-

ton bloom on mortalities and feeding response of farmed

Atlantic salmon, Salmo salar, in west Scotland. Aquaculture

218: 103–113.
Valdenegro-Vega VA, Crosbie P, Bridle A, Leef M, Wilson R,

Nowak BF (2014) Differentially expressed proteins in gill and

skin mucus of Atlantic salmon (Salmo salar) affected by

amoebic gill disease. Fish and Shellfish Immunology 40: 69–77.
Valdenegro-Vega VA, Cook M, Crosbie P, Bridle AR, Nowak BF

(2015) Vaccination with recombinant protein (r22C03), a

putative attachment factor of Neoparamoeba perurans, against

AGD in Atlantic salmon (Salmo salar) and implications of a

co-infection with Yersinia ruckeri. Fish and Shellfish Immunol-

ogy 44: 592–602.
Vincent BN, Morrison RN, Nowak BF (2006) Amoebic gill dis-

ease (AGD)-affected Atlantic salmon, Salmo salar L., are resis-

tant to subsequent AGD challenge. Journal of Fish Diseases 29:

549–559.
Vincent BN, Adams MB, Crosbie PBB, Nowak BF, Morrison RN

(2007) Atlantic salmon (Salmo salar L.) exposed to cultured

gill-derived Neoparamoeba branchiphila fail to develop amoe-

bic gill disease (AGD). Bulletin of the European Association of

Fish Pathologists 27: 112–115.
Volkova E, Kudryavtsev A (2017) Description of Neoparamoeba

longipodia n. sp. and a new strain of Neoparamoeba aestuarina

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd 19

Marine gill diseases in Atlantic salmon

http://www.scottishaquaculture.com/projects/health-and-welfare/details/gill-health-in-scottish-farmed-salmon
http://www.scottishaquaculture.com/projects/health-and-welfare/details/gill-health-in-scottish-farmed-salmon
http://www.scottishaquaculture.com/projects/health-and-welfare/details/gill-health-in-scottish-farmed-salmon


(Page, 1970) (Amoebozoa, Dactylopodida) from deep-sea habi-

tats. European Journal of Protistology 61: 107–121.
Weli SC, Dale OB, Hansen H, Gjessing MC, Rønneberg LB, Falk

K (2017) A case study of Desmozoon lepeophtherii infection in

farmed Atlantic salmon associated with gill disease, peritoni-

tis, intestinal infection, stunted growth, and increased mortal-

ity. Parasites and Vectors 10: 1–13.
Wiik-Nielsen J, Gjessing M, Solheim HT, Litlabø A, Gjevre AG,

Kristoffersen AB et al. (2017) Ca. Branchiomonas cysticola,

Ca. Piscichlamydia salmonis and salmon gill pox virus trans-

mit horizontally in Atlantic salmon held in fresh water. Jour-

nal of Fish Diseases 40: 1387–1394.
Woo PTK, Bruno DW (2014) Diseases and Disorders of Finfish in

Cage Culture, 2nd edn. CABI International, Wallingford.

Wright DW, Nowak B, Oppedal F, Bridle A, Dempster T (2015)

Depth distribution of the amoebic gill disease agent,

Neoparamoeba perurans, in salmon sea-cages. Aquaculture

Environment Interactions 7: 67–74.
Wright DW, Nowak B, Oppedal F, Bridle A, Dempster T (2017)

Free-living Neoparamoeba perurans depth distribution is

mostly uniform in salmon cages, but reshaped by stratifica-

tion and potentially extreme fish crowding. Aquaculture Envi-

ronment Interactions 9: 269–279.
Young ND, Dykov�a I, Snekvik K, Nowak BF, Morrison RN

(2008) Neoparamoeba perurans is a cosmopolitan aetiological

agent of amoebic gill disease. Diseases of Aquatic Organisms

78: 217–223.
Young ND, Dykov�a I, Crosbie PBB, Wolf M, Morrison RN,

Bridle AR et al. (2014) Support for the coevolution of

Neoparamoeba and their endosymbionts, Perkinsela amoe-

bae-like organisms. European Journal of Protistology 50: 509–
523.

Reviews in Aquaculture, 1–20

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd20

A. S. Boerlage et al.


