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Abstract

Volumetric Electron Microscopy images can be used for connectomics, the study of brain
connectivity at the cellular level. A prerequisite for this inquiry is the automatic identification
of neural cells, which requires machine learning algorithms and in particular efficient image
segmentation algorithms.

In this thesis, we develop new algorithms for this task. In the first part we provide, for the
first time in this field, a method for training a neural network to predict optimal input data for a
watershed algorithm. We demonstrate its superior performance compared to other segmentation
methods of its category.

In the second part, we develop an efficient watershed-based algorithm for weighted graph
partitioning, the Mutex Watershed, which uses negative edge-weights for the first time. We
show that it is intimately related to the multicut and has a cutting edge performance on a
connectomics challenge. Our algorithm is currently used by the leaders of two connectomics
challenges [55, 90].

Finally, motivated by inpainting neural networks, we create a method to learn the graph
weights without any supervision.
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Zusammenfassung

3D-Elektronenmikroskopbilder können für die Konnektomik, dem Studium der Neuron-
verbindungen im Nervensystem, genutzt werden. Als Vorbereitung für diese Fragestellung nutzt
man die automatische Identifizierung von Neuronen durch effiziente Bildsegmentierungsalgo-
rithmen aus dem maschinellen Lernen.

In dieser Arbeit entwickeln wir neue Algorithmen für diese Aufgabe. Im ersten Teil stellen
wir zum ersten Mal in diesem Forschungsgebiet eine Prozedur vor, die ein neuronales Netzwerk
so trainiert, dass optimale Eingabedaten für einen Watershed Algorithmus bereitgestellt werden.
Wir zeigen, dass diese Methode im Vergleich zu anderen Segmentierungsverfahren derselben
Art bessere Resultate liefert.

Im zweiten Teil, entwickeln wir einen effizienten Algorithmus (den Mutex Watershed) für das
Partitionieren eines gewichteten Graphen. Dieser erlaubt zum ersten Mal die Verwendung neg-
ativer Gewichte. Wir zeigen, dass der Mutex Watershed eng mit dem multicut verwandt ist und
zum Zeitpunkt der Veröffentlichung eine Spitzenposition in einer Konnektomik-Challenge ein-
genommen hat. Unser Algoithmus is momentan Teil von zwei führenden Segmentierungsmeth-
oden [55, 90].

Zum Abschluss stellen wir eine Methode unter Nutzung von bildvervollständigenden neu-
ronalen Netzwerken bereit, welche den gewichteten Graph ganz ohne Überwachung lernt.
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1 Introduction

Understanding the content of digital images is one of the fundamental tasks of Computer
vision. Typically, “understanding” means to find a transformation which maps images to a
condensed description appropriate for further analysis. One example is the task of image
classification, where the image has to be assigned to a specific element of a given set of classes.
If a set of images and their corresponding class assignments are available, one can learn this
transformation, thus extrapolating the assignment to new images. This learning-based image
analysis, a part of Machine Learning, has become a common approach over a wide range of
tasks. Notably, (convolutional) neural networks, as a way to parametrize these transformations,
show remarkable performance. In some applications, they are on par with medical experts in
skin cancer diagnosis [44] or even surpass humans on challenges such as ImageNet[134] where
more than 14 millions of images have to be assigned to thousand different classes.

A deeper understanding of the content of an image can be expressed by finding objects in an
image. This can be done in different ways. In the following we will focus on image segmenta-
tion, which groups the image pixels into meaningful regions. While semantic segmentation is
the assignment of each pixel to a discrete set of labels (e.g. {road, sky, tree, car,. . . }), instance
segmentation groups pixel together and allows to distinguish between instances of the same
class (e.g., assigning each car in the image to its own cluster). One notable example that we
will discuss later is the instance segmentation of neuronal tissue images. Here, every pixel
belongs to a neuron cell (i.e., we only have one class), which makes semantic segmentation
not applicable. Instead, the image pixels have to be grouped such that each group contains
only pixels of one neuron. In this work we introduce new algorithms for instance segmentation
specifically tailored for neuron segmentation. The combination of both tasks, where pixels
are to be grouped, and each group is assigned to a label is known as a semantic instance
segmentation which we will address in Chapter 4.
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1.1 Machine Learning for Segmentation

Neural networks have demonstrated an incredible performance in many fields. This success
was made possible by the development of specialized network architectures. For image analysis
tasks, neural networks commonly are arranged in layers (referred to as multilayer perceptions)
where the output of each neuron only depends on the neurons of the previous layer. The
structure of these connections determines the architecture of the neural network. The most
important architecture class for segmentation tasks are convolutional neural networks (CNNs),
which arrange their neurons spatially and only form connections in their local neighborhoods.
This drastically reduces the number of parameters in the network and is also desirable since
these layers can be efficiently implemented using convolutional kernels.

To solve the task of semantic segmentation, a specialized CNN, the fully convolutional
network (FCN) was designed, that laid the groundwork for further modern methods [99]. The
FCN maps each pixel to a class by analyzing a patch centered on this pixel. A full segmentation
can then be efficiently generated in a sliding-window procedure. This architecture was improved
by using an encoder-decoder structure, called U-Net [132], and feature pyramids FPN [95]
which have recently been extended to semantic instance segmentation [71]. Especially the
U-Net has been particularly successful in biological applications [132] and is used repeatedly
throughout this thesis.

In this thesis we will approach the task of instance segmentation by learning to predict the
input weights for a graph-based segmentation algorithm, which we will review in Section 1.2.
An alternative approach is given by detection-based instance segmentation, which can be
divided into two steps. First, bounding boxes are detected that define the instances and then
pixels inside each bounding box are assigned to the instance if they are within a predicted
mask [54]. However these bounding boxes may overlap and thus produce overlapping segments
which is not always desirable [72].

We will also investigate methods for dense instance segmentation where all pixels have to
be assigned to exactly one cluster. In particular we will be present graph-based segmentation
algorithms which in particular dominate the field of connectomics. One key aspect of their
success was the use of Machine Learning to predict meaningful graph weights as an input
for sophisticated graph partitioning algorithms. Very accurate graph weights can be learned
by training an edge classifier that predicts the transitions between objects [89] or the use of
a structured loss function that directly optimizes the segmentation performance [151]. In the
following section we will briefly discuss a selection of graph partitioning algorithms that are
commonly used in combination with learned graph weight estimators.
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Kruskal’s Algorithm:
KA
(
G(V,E), weights w : E → R+:
A← ∅
for (i, j) = e ∈ E in ascending order of we do

if not connected(i, j;A) then
A← A ∪ e

return A

Algorithm 1: Kruskal’s Algorithm for constructing a minimal spanning tree A on the
weighted graph G(V,E).

1.2 Graph-based Segmentation Algorithms

Here we explain the basic ideas and notation of graph-based segmentation algorithms, which
will be frequently used in this thesis. In general, graph-based image segmentation methods
represent the image as a graph G = (V,E) where each node u ∈ V corresponds to a pixel
in the image. Nodes are connected by edges (u, v) ∈ E. A weight we is associated with
each edge e ∈ E based on some property of the pixels that it connects, such as their image
intensities, gradients or the output of an edge classifier (e.g. obtained by a neural network).
Depending on the method and application, the graph might be only sparsely connected, for
example as a grid graph or a graph with limited local neighborhood connectivity. In this thesis
we will build upon segmentation algorithms, including the watershed, that are closely related
to minimum spanning trees (MST) [47, 177] on this graph and their construction algorithms.
One example is Kruskal’s algorithm that constructs a MST by considering all edges in order of
their weight, adding them to the tree if the incident nodes are not already connected. Here, we
introduce the notation that connected(i, j;A) is true if there exists a path π from i to j which
completely lies in a A.

A segmentation can be derived from the tree by breaking the tree at the edges with large
weights [177] or using sets of seed nodes that may not be connected which is known as seeded
watershed [38, 39, 107, 157]. This watershed segmentation can also be understood as a minimal
energy solution to an energy minimization problem. Its objective function is a special case of
the unifying power watershed energy minimization framework [37] which also encompasses
the Random walker and Graph cuts [77].

These algorithms, however, can only ingest positive (attractive) weights and thus need an
auxiliary input (e.g., seed points and thresholds) to partition the graph into clusters. In contrast
to the above class of algorithms, this thesis will provide watershed algorithms which can also
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deal with repulsive weights. Other methods like Multi-label variants [75] and QPBO [133]
and correlation clustering [14, 67, 70, 172, 173] can also use both attractive and repulsive
interactions. However, only our new algorithm presented in Chapter 3 and correlation clustering
(also known as multicut) can find the number of clusters implicitly and are therefore particularly
suited for applications where the number of clusters is a-priori unknown. Since our algorithm
and the multicut both minimize a similar objective function (see Section 3.4) we present a
formal definition of the minimum multicut as

y∗ = arg min
y∈{0,1}E

∑
e∈E

weye (1.1)

subject to ye ≤
∑

e′∈C\{e}

ye′ ∀C ∈ cycles (G) ∀e ∈ C (1.2)

When the image is to be partitioned into semantically similar objects the graph can be aug-
mented with additional semantic nodes and edges [63]. If one wants to no internal boundaries
inside a semantic class this problem can be modeled as a Multiway cut:

y∗ = arg min
y∈{0,1}E

∑
e∈E

weye (1.3)

subject to ye ≤
∑

e′∈C\{e}

ye′ ∀C ∈ cycles (G) ∀e ∈ C (1.4)

∑
t∈T

ytv = |T | − 1, if T 6= ∅,∀v ∈ V \T (1.5)

ytt′ = 1, ∀t, t′ ∈ T, t 6= t′c, f (1.6)

ytu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T \ A (1.7)

ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T (1.8)

ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T (1.9)

In case internal boundaries are desired, the constraints of eq. (1.7) can be removed [81]. Solving
both the multicut and Multiway cut is in general NP-hard since the set of constraints in eq. (1.2)
and eq. (1.4) are of exponential size. Therefore any exact solver will fail to scaling to large
graphs [18]. In this work we will investigate a novel set of watershed algorithms that intimately
relate to the multicut and Asymmetric Multiway Cut objective but can be efficiently solved on
large graphs.
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1.2.1 Segmentation for Connectomics

Figure 1.1: llustration of neuron reconstruction in the Drosophila melanogaster brain. The neurons
are reconstructed from serial section transmission EM (TEM) volumes (represented on the
left) of the fruit fly brain (ventral view on the right). Individual neuron instances are shown,
represented by different colors, on the EM slice with corresponding colors in the brain
volume. Image taken from [183].

Graph-based segmentation algorithms have been particularly successful in connectomics, a
field of neuroscience that strives to reconstruct the complete central nervous systems of animals
and studies their neural wiring diagram. A necessary step towards this goal is the segmentation
of neural tissue delineating individual neuron cells and revealing their 3D shapes. This process
is known as neuron reconstruction. The neural tissue is commonly imaged using electron
microscopy techniques (e.g., serial section transmission EM) that yield 3D image volumes. For
example, the brain of an adult Drosophila melanogaster, with a volume of ∼ 8 · 107µm3 and
comprising ∼100,000 neurons has been imaged with nanometer resolution producing a dataset
of 106 TB [183]. To study data-sets of this size, automated processing, especially automated
segmentation, is paramount to not only reconstruct the complete neural wiring diagram but
also study neuron morphology and ultra-structure.

One automatic method for neuron tracing, the flood-filling networks, uses a recurrent neural
network to iteratively extend individual neurons [60]. Other approaches learn to predict affinity
graph between voxels or supervoxels [89, 152] and determine the segmentation as optimal
cuts of this graph [6, 7, 20, 49, 105, 119, 120]. Almost all of the top submissions of the
CREMI [26] and SNEMI3D [135] segmentation challenge predict these affinities directly using
convolutional networks [89, 163]. An alternative approach to the direct prediction of affinities
was proposed by Lee et al. [90], who instead learn dense voxel embeddings via deep metric
learning and derive affinities in the embedded space.
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1.3 Contribution and Overview of this Thesis

The core of this thesis is a novel set of watershed algorithms, whose centerpiece, the Mutex
Watershed, is presented in Chapter 3 and extended to semantic instance segmentation in Chapter
4. This set extends the classical family of watershed algorithms operating on purely attractive
graphs by including repulsive interactions and effectively obviating the need for explicit seeds.
We investigate machine learning approaches for predicting input weights for classical and
Mutex Watersheds, focusing especially on supervised end-to-end learning in Chapter 2 and
fully unsupervised learning in Chapter 5. The following list gives a brief overview of each
chapter’s content.

Chapter 2: We show how to train a the boundary map prediction jointly with the watershed
computation. The estimator for the merging priorities is cast as a neural network
that is convolutional (over space) and recurrent (over iterations). The latter allows
the learning of complex shape priors and outperforms other seeded segmentation
methods on the CREMI segmentation challenge.

Chapter 3: We propose a greedy algorithm for signed graph partitioning, the Mutex Watershed.
Unlike seeded watershed, the algorithm can accommodate not only attractive but
also repulsive interactions, allowing it to find a previously unspecified number of
segments without the need for explicit seeds or a tunable threshold. We also prove
that this simple algorithm finds a global optimum of an objective function that is
intimately related to the multicut / correlation clustering integer linear programming
formulation.

Chapter 4: The link between Mutex Watershed and correlation clustering suggests that a
similar Watershed algorithm for joint graph partitioning and labeling exists whose
objective function closely relates to the Asymmetric Multiway Cut objective. We
prove its existence by extending the Mutex Watershed and demonstrate on 3D
electron microscopy images that this joint formulation outperforms a procedure
which separately optimizes of the partitioning and labeling problems.

Chapter 5: Deep neural networks trained to inpaint partially occluded images show a deep
understanding of image composition. We investigate how this implicit knowledge
of image composition can be leveraged for a fully self-supervised generation of
Mutex Watershed inputs and thus self-supervised segmentation. We evaluate our
method on two microscopy image datasets to show that it reaches comparable
segmentation performance to supervised methods.
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2 Learned Watershed

Common pipelines for segmentation and super-pixel generation consist of a learned boundary
predictor and an inference step (e.g. seeded watershed). The following work was motivated
by the observation that small holes in the boundary map estimation can drastically reduce
the segmentation accuracy of the seeded watershed. This effect may be most prevalent when
the boundary estimation (often a neuronal network) is trained with an unstructured loss that
penalizes every pixel individually. Although heuristics (e.g. using the distance transform trans-
form [20]) may mitigate this problem, it can ultimately only be addressed through structured
loss functions that take the inference method into account. In this chapter1, we present our
approach to incorporate a neural network into the seeded watershed segmentation algorithm
and train it end-to-end. Furthermore, this integration enables adaptive boundary prediction
where predictions in the current iterations can be based on past decisions. Through a lesion
study we show that adaptive prediction outperforms static baselines.

2.1 Introduction

The watershed algorithm is an important computational primitive in low-level computer vision.
Since it does not penalize segment boundary length, it exhibits no shrinkage bias like multi-
terminal cuts or (conditional) random fields and is especially suited to segment objects with
high surface-to-volume ratio, e.g. neurons in biological images.

In its classic form, the watershed algorithm comprises three basic steps: altitude computation,
seed definition, and region assignment. These steps are designed manually for each application
of interest. In a typical setup, the altitude is the output of an edge detector (e.g. the gradient
magnitude or the gPb detector [10]), the seeds are located at the local minima of the altitude
image, and pixels are assigned to seeds according to the drop-of-water principle [39].

In light of the very successful trend towards learning-based image analysis, it is desirable
to eliminate hand-crafted heuristics from the watershed algorithm as well. Existing work

1This chapter is based on our paper [162], which was published in 2017. The results in this chapter represent the
current state at the time of publication. The implementation and training of the deep neural network for the
experiments of this chapter have been carried out by Lukas Schott and myself with many enjoyable days of pair
programming.

21



shows that learned edge detectors significantly improve segmentation quality, especially when
convolutional neural networks (CNNs) are used [16, 34, 130, 169]. We take this idea one
step further and propose to learn altitude estimation and region assignment jointly, in an
end-to-end fashion: Our approach no longer employs an auxiliary objective (e.g. accurate
boundary strength prediction), but trains the altitude function together with the subsequent
region assignment decisions so that the final segmentation error is minimized directly. The
resulting training algorithm is closely related to reinforcement learning.

Our method keeps the basic sructure of the watershed algorithm intact: Starting from given
seeds2, we maintain a priority queue storing the topographic distance of candidate pixels to
their nearest seed. Each iteration assigns the currently best candidate to “its” region and updates
the queue. The topographic distance is induced by an altitude function estimated with a CNN.
Crucially, and deviating from prior work, we compute altitudes on demand, allowing their
conditioning on prior decisions, i.e. partial segmentations. The CNN thus gets the opportunity
to learn priors for likely region shapes in the present data. We show how these models can
be trained end-to-end from given ground truth segmentations using structured learning. Our
experiments show that the resulting segmentations are better than those from hand-crafted
algorithms or unstructured learning.

2.2 Related Work

Various authors demonstrated that learned boundary probabilities (or, more generally, boundary
strengths) are superior to designed ones. In the most common setting, these probabilities are
defined on the pixel grid, i.e. on the nodes of a grid graph, and serve as input of a node-based
watershed algorithm. Training minimizes a suitable loss (e.g. squared or cross-entropy loss)
between the predicted probabilities and manually generated ground truth boundary maps in an
unstructured manner, i.e. over all pixels independently. This approach works especially well
with powerful models like CNNs. In the important application of connectomis (see section
2.6.3), this was first demonstrated by [59]. A much deeper network [34] was the winning entry
of the ISBI 2012 Neuro-Segmentaion Challenge [12]. Results could be improved further by
progress in CNN architectures and more sophisticated data augmentation, using e.g. U-Nets
[130], FusionNets [126] or networks based on inception modules [20]. Clustering of the
resulting watershed superpixels by means of the GALA algorithm [73, 117] (using altitudes
from [12] resp. [130]) or the lifted multicut [20] (using altitudes from their own CNN) lead to
additional performance gains.

When ground truth is provided in terms of region labels rather than boundary maps, a suitable

2Incorporating seed definition into end-to-end learning is a future goal of our research, but beyond the scope of
this paper.
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boundary map must be created first. Simple morphological operations were found sufficient
in [130], while [20] preferred smooth probabilities derived from a distance transform starting
at the true boundaries. Outside connectomics, [16] achieved superior results by defining the
ground truth altitude map in terms of the vector distance transform, which allows optimizing
the prediction’s gradient direction and height separately.

Alternatively, one can employ the edge-based watershed algorithm and learn boundary
probabilities for the grid graph’s edges. The corresponding ground truth simply indicates if the
end points of each edge are supposed to be in different segments or not. From a theoretical
perspective, the distinction between node- and edge-based watersheds is not very significant
because both can be transformed into each other [109]. However, the algorithmic details differ
considerably. Edge-based altitude learning was first proposed in [48], who used hand-crafted
features and logistic regression. Subsequently, [152] employed a CNN to learn features and
boundary probabilities simultaneously. Watershed superpixel generation and clustering on the
basis of these altitudes was investigated in [185].

Learning with unstructured loss functions has the disadvantage that an error at a single point
(node or edge) has little effect on the loss, but may lead to large segmentation errors: A single
missed boundary pixel can cause a big false merger. Learning with structured loss functions, as
advocated in this paper, avoids this by considering the boundaries in each image jointly, so that
the loss can be defined in terms of segmentation accuracy rather than pointwise differences.
Holistically-nested edge detection [76, 169] achieves a weak form of this by coupling the loss
at multiple resolutions using deep supervision. Such a network was successfully used as a
basis for watershed segmentation in [27]. The MALIS algorithm [151] computes shortest paths
between pairs of nodes and applies a correction to the highest edge along paths affected by
false splits or mergers. This is similar to our training, but we apply corrections to root error
edges as defined below. Learned, sparse reconstruction methods such as MaskExtend [104]
and Flood-filling networks [60] predict region membership for all nodes in a patch jointly,
performing region growing for one seed at a time in a one-against-the-rest fashion. In contrast,
our algorithm grows all seeds simultaneously and competitively.

2.3 Mathematical Framework

The watershed algorithm is especially suitable when regions are primarily defined by their
boundaries, not by appearance differences. This is often the case when the goal is instance
segmentation (one neuron vs. its neighbors) as opposed to semantic segmentation (neurons
vs. blood vessels). In graphical model terms, pairwise potentials between adjacent nodes are
crucial in this situation, whereas unary potentials are of lesser importance or missing altogether.
Many real-world applications have these characteristics, see [37] and section 2.6 for examples.
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We consider 4-connected grid graphs G = (V,E). The input image I : V → RD maps
all nodes to D-dimensional vectors of raw data. A segmentation is defined by a label image
S : V → {1, 2, . . . , n} specifying the region index or label of each node. The ground truth
segmentation is called S∗. Pairwise potentials (i.e. edge weights) are defined by an altitude
function over the graph’s edges

f : E → R (2.1)

where higher values indicate stronger boundary evidence. Since this paper focuses on how
to learn f , we assume that a set of seed nodes M = {m1, . . . ,mn} ⊂ V is provided by a
suitable oracle (see section 2.6 for details). The watershed algorithm determines S by finding a
mapping σ : V →M that assigns each node to the best seed so that

σ(w) = mi ⇒ S(w) = i (2.2)

Initially, node assignments are unknown (designated by λ) except at the seeds, where they are
assumed to be correct:

σ0(w) =

mi if w = mi with S∗(mi) = i

λ otherwise
(2.3)

In this paper, we build upon the edge-based variant of the watershed algorithm [39, 106]. This
variant is also known as watershed cuts because segment boundaries are defined by cuts in the
graph, i.e. by the set of edges whose incident nodes have different labels. We denote the cuts in
our solution as ∂S and in the ground truth as ∂S∗.

Let Φ(m,w) denote the set of all paths from seed m to node w. Then the max-arc topo-
graphic distance between m and w is defined as [45]

T (m,w) = min
φ∈Φ(m,w)

max
e∈φ

f(e) (2.4)

In words, the highest edge in a path φ determines the path’s altitude, and the path of lowest
altitude determines the topographic distance. The watershed algorithm assigns each node to
the topographically closest seed [129]:

σ(w) = arg min
m∈M

T (m,w) (2.5)

The minimum distance path from seed m to node w shall be denoted by φm(w). This path is
not necessarily unique, but ties are rare and can be broken arbitrarily when f(e) is a real-valued
function of noisy input data.
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It was shown in [39] that the resulting partitioning is equivalent to the minimum spanning
forest (MSF) over seeds M and edge weights f(e). Thus, we can compute the watershed
segmentation incrementally using Prim’s algorithm: Starting from initial seeds σ0, each
iteration k finds the lowest edge whose start point uk is already assigned, but whose end point
vk is not

uk, vk = arg min
(u,v)∈E

σk−1(u)6=λ, σk−1(v)=λ

f(e = (u, v)) (2.6)

and propagates the seed assignment from uk to vk:

σk(w) =

σk−1(uk) if w = vk

σk−1(w) otherwise
(2.7)

In a traditional watershed implementation, the altitude f(e) is a fixed, hand-designed function
of the input data

f(e) = ffixed(e|I) (2.8)

for example, the image’s Gaussian gradient magnitude or the “global Probability of boundary”
(gPb) detector [10].

2.4 Joint Structured Learning of Altitude and Region
Assignment

We propose to use structured learning to train an altitude regressor f(e) jointly with the region
assignment procedure defined by Prim’s algorithm. We will discuss two types of learnable
altitude functions: fstatic comprises models that, once trained, only depend on the input image
I , whereas fdyn additionally incorporates dynamically changing information about the current
state of Prim’s algorithm.

2.4.1 Static Altitude Prediction

To find optimal parameters θ of a model fstatic(e|I; θ), consider how Prim’s algorithm proceeds:
It builds a MSF which assigns each node w to the closest seed m̂ = σ(w) by identifying the
shortest path φm̂(w) from m̂ to w. Such a path can be wrong in two ways: it may cross ∂S∗

and thus miss a ground truth cut edge, or it may end at a false cut edge, placing ∂S in the
interior of a ground truth region. More formally, we have to distinguish two failure modes: (i)
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Figure 2.1: Example of root errors in the minimal spanning forest (a) and the constrained MSF (b) of a
grid graph. Orange and purple indicate the segmentation S in (a) and S∗ in (b). The root
errors ρ(w) (top) and ρ∗(w) (bottom) of a wrongly labeled node w are marked red, with
corresponding paths φm̂(w) and ψm∗(w) depicted by arrows.

A node was assigned to the wrong seed, i.e. m̂ 6= m∗ = mS∗(w) or (ii) it was assigned to the
correct seed via a non-admissible path, i.e. a path taking a detour across a different region. To
treat both cases uniformly, we construct the corresponding ground truth paths ψm∗(w).

These paths can be found by running Prim’s algorithm with a modified altitude

f̃(e) =

∞ if e ∈ ∂S∗

fstatic(e|I; θ) otherwise
(2.9)
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forcing cuts in the resulting constrained MSF to coincide with ∂S∗ (see figure 2.1). We denote
the topographic distances along φm̂(w) and ψm∗(w) as T (m̂, w) and T ∗(m∗, w) respectively.
By construction of the MSF, φ and ψ are equal for all correct nodes. Conversely, they differ for
incorrect nodes, causing distance T ∗ to exceed distance T . This property defines the set V− of
incorrect nodes:

V− = {w : T ∗(m∗, w) > T (m̂, w)} (2.10)

Every incorrect path φm̂(w) contains at least one erroneous cut edge. The first such edge shall
be called the path’s root error edge ρ(w) and is always a missing cut. Training should increase
its altitude until it becomes part of the cut set ∂S. The root error edge ρ∗(w) of a ground
truth path ψm∗(w) is the first false cut edge in ψ in failure mode (i) and the first edge where ψ
deviates from φ in mode (ii). Here, the altitude should be decreased to make the edge part of the
MSF, see figure 2.1. Accordingly, we denote the sets of root edges as E↑ := {ρ(w) : w ∈ V−}
and E↓ := {ρ∗(w) : w ∈ V−}.

Since all assignment decisions in Prim’s algorithm are conditioned on decisions taken earlier,
the errors in any path also depend on the path’s root error. Structured learning must therefore
consider these errors jointly, and we argue that training updates must be derived solely from the
root edges: They are the only locations whose required correction direction is unambiguously
known. In contrast, we cannot even tell if subsequent errors will simply disappear once the
root error has been fixed, or need updates of their own. When the latter applies, however, these
edges will eventually become root errors in later training epochs, and we delay updating them
to that point.

Since we need a differentiable loss to perform gradient descent, we use the perceptron loss
of distance differences:

L =
∑
w

T ∗(m∗, w)− T (m̂, w) (2.11)

Correct nodes have zero contribution since T ∗ = T holds for them. To serve as a basis for
structured learning, we transform this into a loss over altitude differences at root edges. Since
topographic distances equal the highest altitude along the shortest path, we have

T (m̂, w) ≥ fstatic(ρ(w)) (2.12)

To derive similar relations for T ∗, consider how the constrained MSF is constructed from the
unconstrained one: First, edges crossing ∂S∗ are removed from the MSF. Each of the resulting
orphaned subgraphs is then reconnected into the constrained MSF via the lowest edge not
crossing ∂S∗. The newly inserted edges are the root edges ρ∗ of all their child nodes, i.e. all
nodes in the respective subgraph. Since these root edges did not belong to the original MSF,
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their altitude cannot be less than the maximum altitude in the corresponding child subgraph.
For w ∈ V−, it follows that

T ∗(m∗, w) = fstatic(ρ
∗(w)) (2.13)

We can therefore upper-bound the perceptron loss by

LSL =
∑
w∈V−

fstatic(ρ
∗(w))− fstatic(ρ(w)) ≥ L (2.14)

and minimize this upper bound. By rearranging the sum, the loss can be simplified into

LSL(θ) =
∑
e∈E

R(e)fstatic(e|I; θ) (2.15)

where we introduced a weight function counting the children of each root edge

R(e) :=


∑

w: e=ρ∗(w) 1 if e ∈ E↓
−
∑

w: e=ρ(w) 1 if e ∈ E↑
0 otherwise

(2.16)

A training epoch of structured learning thus consists of the following steps:

1. Compute fstatic(e|I; θ(t)) and f̃ (t)(e) with current model parameters θ(t) and determine
the MSF and the constrained MSF.

2. Identify root edges and define the weights R(t)(e) and the loss L(t)
SL(θ).

3. Obtain an updated parameter vector θ(t+1) via gradient descent on∇θL(t)(θ) at θ = θ(t).

These steps are iterated until convergence, and the resulting final parameter vector is denoted
as θSL.

2.4.2 Relation to Reinforcement Learning

In this section we compare the structured loss function LSL with policy gradient reinforcement
learning, which will serve as motivation for a refinement of the weighting function R(e). To
see the analogy, we refer to continuous control deep reinforcement learning as proposed by
[94, 142, 147].

Looking at the region growing procedure from a reinforcement learning perspective, we
define states as tuples s = (e, I) where e ∈ E is the edge under consideration, and the action
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space A := R is the altitude to be predicted by fstatic(e|I; θ). The Policy Gradient Theorem
[147] defines the appropriate update direction of the parameter vector θ. In a continuous action
space, it reads

∇θJ = ∇θ
∑
s

dπ(s)

∫
A
π(a|s; θ)Qπ(s, a) da (2.17)

where J is the performance to be optimized, dπ(s) the discounted state distribution, π the
policy to be learned, and Q the action-value function estimating the discounted expected future
reward

Qπ(s, a) =Eπ
[ T∑
t=0

γtrt
∣∣∣a0 = a, s0 = s;π

]
(2.18)

In our case, the state distribution reduces to dπ(s) = 1
|V | because Prim’s algorithm reaches

each edge exactly once. Inserting our deterministic altitude prediction

π(a|s) := fstatic(s|I; θ) δ(a− fstatic(s|I; θ)), (2.19)

where δ is the Dirac distribution, we get

∇θJ =
1

|V |
∇θ
∑
s

fstatic(s|I; θ)Qπ(s, a). (2.20)

Comparing equation (2.20) with equation (2.15), we observe that ∇θJ ∼ ∇θLSL, where
our weights R(e) essentially play the role of the action-value function Q. This suggests to
introduce a discount factor in R(e). To do so, we replace the temporal differences t between
states in (2.18) with tree distances dist(w, ρ(w)) or dist(w, ρ∗(w)) counting the number of
edges between node w and its root edge. This gives the discounted weights

RRL(e) :=



∑
w: e=ρ∗(w)

γ dist(w, ρ∗(w)) if e ∈ E↓∑
w: e=ρ(w)

−γ dist(w, ρ(w)) if e ∈ E↑

0 otherwise

(2.21)

with discount factor 0 ≤ γ ≤ 1 to be chosen such that γdist decays roughly according to the
size of the CNNs receptive field. Substituting RRL(e) for R(e) in (2.15) significantly improves
convergence in our experiments. This analogy further motivates the application of current deep
reinforcement training methods as described in section 2.5.2.
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2.4.3 Dynamic Altitude Prediction

In every iteration, region growing according to Prim’s algorithm only considers edges with
exactly one end node located in the already assigned set. This offers the possibility to delay
altitude estimation to the time when the values are actually needed. On-demand altitude
computations can take advantage of the partial segmentations already available to derive
additional shape clues that help resolving difficult assignment decisions.

Relative Assignments: To incorporate partial segmentations, we remove their dependence
on the incidental choice of label values by means of label-independent projection. Consider
an edge e = (u, v) where node u is assigned to seed m and node v is unassigned. We now
construct a labeling relative to m, distinguishing nodes assigned to m (“me” region), to another
seed (“them”) and unassigned (“nobody”). Relative labelings are represented by a standard
1-of-3 coding:

P(w |m,σ) =


(1, 0, 0) if σ(w) = m (me)

(0, 1, 0) if σ(w) = λ (nobody)

(0, 0, 1) otherwise (them)

(2.22)

In practice, we process relative labelings by adding a new branch to our neural network that
receives P as an input, see section 2.5.1 for details.

Non-Markovian modeling: Another potentially useful cue is afforded by the fact that
Prim’s algorithm propagates the assignments recursively. Thus during every evaluation of f the
complete history from previous iterations along the growth paths φm can be incorporated. We
encode the historyH : V → Rr about past assignment decisions as an r-dimensional vector
in each node. In practice, we incorporate history by adding a recurrent layer to our neural
network.

We introduce the dynamic altitude predictions:

f(e = (u,v)),H(v) =

fdyn(e | I,P(. |σ(u), σ),H(u); θdyn)
(2.23)

that receives the relative assignments projection P and u’s hidden stateH(u) as an additional
input and outputs both the edge’s altitude f(e) and v’s hidden stateH(v): This variant of the
altitude estimator performs best in our experiments. The emergent behavior of our models
suggests that the algorithm uses history to adjust local diffusion parameters such as preferred
direction and “viscosity”, similar to the viscous watershed transform described in [156].
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Figure 2.2: Overview implementation of learned watershed algorithm with neural network and priority
queue. In each iteration the minimal edge according to equation (2.6) is found using a
priority queue (a) and the region label is propagated (b), which updates the projection P .
For all unassigned edges that are not in the priority queue and need to be considered by
Prim’s algorithm in the next iteration, the altitude fdyn(e) is evaluated using the dynamic
edge prediction network (c).

31



2.5 Methods

2.5.1 Neural Network Architecture

Our network architecture builds mainly on the work of Yu and Koltun [175] who introduced
dilated convolutions to achieve dense segmentations and systematically aggregate multi-scale
contextual information without pooling operations. We split our network into two convolutional
branches (see Figure 2.3): The upper branch processes the static input I , and the lower one
the dynamic input P(·). Since the input of the upper branch doesn’t change during prediction,
its network activations can be precomputed for all edges, leading to a significant speed-up.
We choose gated recurrent units (GRU) instead of long short-term memory (LSTM) in the
recurrent network part, because GRUs have no internal state and get all history from the hidden
state vectorH(·), saving on memory and bookkeeping.

2.5.2 Training Methods

Augmenting the Input Image: We noted above that structured learning is superior because
it considers edges jointly. However, it can only rely on the sparse training sets E↓ ∪ E↑. In
contrast, unstructured learning can make use of all edges and thus has a much bigger training
set. This means that more powerful predictors, e.g. much deeper CNNs, can be trained, leading
to more robust predictions and bigger receptive fields.

To combine the advantages of both approaches, we propose to augment the input image I
with an additional channel holding node boundary probabilities predicted by an unstructured
model g(w|I; θUL):

Ĩ := [I g] : V → RD+1 (2.24)

We train the CNN g separately beforehand and replace I with the augmented input Ĩ everywhere
in fstatic and fdyn. This simplifies structured learning because the predictor only needs to learn
a refinement of the already reasonable altitudes in g. In principle, one could even train f and g
jointly, but the combined model is too big for reliable optimization.

Training Schedule: Taking advantage of the close relationship with reinforcement learning,
we adopt the asynchronous update procedure proposed by [110]. Here, independent workers
fetch the current CNN parameters θ from the master and compute loss gradients for randomly
selected training images in parallel. The master then applies these updates to the parameters
in an asynchronous fashion. We found experimentally, that this lead to faster and more stable
convergence than sequential training.

In order to train the recurrent network part, we replace the standard temporal input ordering
with the succession of edges defined by the paths φ and ψ. In a sense, backpropagation in time
thus becomes backpropagation along the minimum spanning forest.
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Figure 2.3: Neural Network architecture: The static body extracts features from the raw input and edge
detector output. The more shallow dynamic body processes the interactions of different
region projections P . These informations are combined in a fully connected layer and set
into a temporal context using a recurrent GRU layer. The network output is the priority of
the edge towards the pixel at the center of the field of view.

2.6 Experiments and Results

Our experiments illustrate the performance of our proposed end-to-end trainable watershed in
combination with static and dynamic altitude prediction. To this end, we compare with standard
watershed and power watershed algorithms [37] on statically trained CNNs according to [20],
see section 2.6.2. Furthermore we show in section 2.6.3 that the learned watershed surpasses
the state-of-the-art segmentation in an adapted version of the CREMI Neuron Segmentation
Challenge [26].

2.6.1 Experimental Setup and Evaluation Metrics

Seed Generation Oracle: All segmentation algorithms start at initial seeds M which are
here provided by a “perfect” oracle. In our experiments, this oracle uses the ground truth
segmentation to select one pixel with maximal L2 distance to the region boundary per ground
truth region.

Segmentation Metrics: In accordance with the CREMI challenge [26], we use the fol-
lowing segmentation metrics: The Rand score V Rand measures the probability of agreement
between segmentation S and ground truth S∗ w.r.t. a randomly chosen node pair w,w′. Two
segmentations agree if both assign w and w′ to the same region or to different regions. The
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Rand error ARAND = 1− V Rand is the opposite, so that smaller values are better.
The Variation of Information(VOI) between S and S∗ is defined as V OI(S;S∗) = H(S|S∗)+

H(S∗|S), where H is the conditional entropy [103]. To distinguish split errors from merge er-
rors, we report the summands separately as VOISPLIT = H(S|S∗) and VOIMERGE = H(S∗|S)

2.6.2 Artificial Data

a) b) c) d)

Figure 2.4: Artificial data example. a) Raw with σnoise = 0.6 and prediction of baseline CNN. b) Ground
truth. c) The brown region leaks out when standard watershed runs on top of baseline CNN.
d) Our algorithm uses learned shape priors to close boundary gaps.

Dataset: In order to compare our models fstatic and fdyn with solutions based on unstructured
learning, we create an artificial segmentation benchmark dataset with variable difficulty. First,
we generate an edge image via the zero crossing of a 2D Gaussian process. This image is then
smoothed with a Gaussian filter and corrupted with Gaussian noise at σnoise ∈ {0.3, 0.6, 0.9}.
For each σnoise, we generate 1900 training images and 100 test images of size 252x252. One
test image with corresponding ground truth and results is shown in figure 2.4.

Baseline: We choose a recent edge detection network from [175] to predict boundaries
between different instances in combination with standard watershed (WS) and Power Watershed
(PWS) [37] to generate an instance segmentation. Since these algorithms work best on slightly
smoothed inputs, we apply Gaussian smoothing to the CNN output. The optimal smoothing
parameters are determined by grid search on the training dataset. Additionally, we apply all
watershed methods directly to smoothed raw image and report their overall best result as RAW
+ WS.

Performance: The measured segmentation errors of all algorithms are shown in table
2.1. Observed differences in performance mainly indicate how well each method handles
low-contrast edges and narrow gaps between regions. The structurally trained watersheds
outperform the unstructured baselines, because our loss function LSL heavily penalizes the
resulting segmentation errors. In all experiments, the dynamic prediction function fdyn has the
best performance, due to its superior modeling power. It can identify holes and close most
contours correctly because it learns to derive shape and contingency clues from monitoring
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ARAND σnoise = 0.3 σnoise = 0.6 σnoise = 0.9

LSL + fdyn 5.8 ± 0.8 12.5 ± 1.7 32.2 ± 1.8
LSL + fstatic 6.4 ± 0.9 13.8 ± 1.6 32.4 ± 2.2

NN + WS 6.5 ± 0.8 14.9 ± 3.6 33.4 ± 1.7

NN + PWS 6.5 ± 0.8 14.9 ± 1.7 33.2 ± 1.7

RAW + WS 24.0 ± 1.6 41.9 ± 1.8 55.0 ± 1.8

Table 2.1: Quality of the segmentation results on the artificial dataset. Reported lowest error for all
parameters of baseline watersheds based on the rand error and a two pixel boundary distance
tolerance.

intermediate results during the flooding process. A representative example of this effect is
shown in figure 2.4.

2.6.3 Neurite Segmentation

Dataset: The MICCAI Challenge on Circuit Reconstruction from Electron Microscopy Im-
ages [26] contains 375 fully annotated slices of electron microscopy images I (of resolution
1250x1250 pixels). Part of a data slice is displayed in figure 2.6 top. Since the test ground
truth segmentation has not been disclosed, we generate a new train/test split from the 3 origi-
nal challenge training datasets by spltnting them into 3x75 z-continuous training- and 3x50
z-continuous test blocks.

Ideally, we would compare with [20] whose results define the state-of-the-art on the CREMI
Challenge at time of submission. However, their pipeline, as described in their supplementary
material, optimizes 2D segmentations jointly across multiple slices with a complex graphical
model, which is beyond the scope of this paper.

Instead, we isolate the 2D segmentation aspect by adapting the challenge in the following
manner: We run each segmentation algorithm with fixed ground truth seeds (see section 2.6.1)
and evaluate their results on each z-slice separately. The restriction to 2D evaluation requires a
slight manual correction of the ground truth: The ground truth accuracy in z-direction is just
±1 slice. The official 3D evaluation scores compensate for this by ignoring deviations of ±1
pixels in z-direction. Since this trick doesn’t work in 2D, we remove 4 regions with no visual
evidence in the image and all segments smaller than 5 pixels. Boundary tolerances in the x-y
plane are treated as in the official CREMI scores where deviations from the true boundary are
ignored if they do not exceed 6.25 pixels.

Baseline: We compare the Learned Watershed performance against the Power Watershed
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Figure 2.5: Detailed success and failure cases of our method. Success case: long thin neurites (left),
weak boundaries (middle). Failure case (right).

[37], Viscous Watershed [156], RandomWalker [50], Stochastic Watershed [9] and Distance
Transform Watershed [20]. The boundary probability prediction g (the same g as in equation
(2.24)) was provided by a deep CNN trained with an unstructured loss-function. In particular,
the Distance Transform Watershed (DTWS) and the prediction g were used to produce the
current state-of-the-art on the CREMI challenge. To obtain the DTWS, one thresholds g,
computes a distance transform of the background, i.e. the non-boundary pixels and runs the
watershed algorithm on the inverted distances. According to [20], this is the best known
heuristic to close boundary gaps in these data, but requires manual parameter tuning. We found
the parameters of all baseline algorithms by grid search using the training dataset. To ensure
fair comparison, we start region growing from ground truth seeds in all cases. Our algorithm
takes the augmented image Ĩ from eq. (2.24) as input and learns how to close boundary gaps.

Comparison to state-of-the-art: We show the 2D CREMI segmentation scores in Table 2.2.
It is evident that the learned watershed transform significantly outperforms DTWS in both
ARAND and VOI score. Quantitatively, we find that the flooding patterns and therefore the
region shapes of the learned watershed prefer to adhere to biologically sensible structures.
We illustrate this with our results on one CREMI test slice in Figure 2.6, as well as specific
examples in Figure 2.5. We find throughout the dataset that especially thin processes, as
depicted in the left panel of Figure 2.5, are a strength of our algorithm. Biologically sensible
shape completions can also be found for roundish objects and is particularly noticeable when
boundary evidence is weak, as shown in Figure 2.5 center. However, in rare cases, we find

36



ARAND VOI split VOI merge

PowerWS 0.122 ± 0.003 0.340 ± 0.031 0.180 ± 0.019

ViscousWS 0.093 ± 0.003 0.328 ± 0.030 0.069 ± 0.003

RandomWalker 0.103 ± 0.004 0.355 ± 0.037 0.060 ± 0.004

Stochastic WS 0.193 ± 0.012 0.612 ± 0.080 0.077 ± 0.004

DTWS 0.085 ± 0.001 0.320 ± 0.029 0.070 ± 0.005

Learned WS 0.082 ± 0.001 0.319 ± 0.030 0.057 ± 0.004

Table 2.2: CREMI segmentation metrics evaluated on 2D slices: The Variation of Information (VOI)
between a predicted segmentation and ground truth (lower is better) and the Adapted Rand
Error (lower is better) [12].

incorrect shape completions (see right panel of Figure 2.5), mainly in areas of weak boundary
evidence. It stands to reason that these errors could be fixed by providing more training data.

2.7 Conclusion

This paper proposes an end-to-end learnable seeded watershed algorithm that performs well
an artificial data and neurosegmentation EM images. We found the following aspects to
be critical success factors: First, we train a very powerful CNN to control region growing.
Second, the CNN is trained in a structured fashion, allowing it to optimize segmentation
performance directly, instead of treating pixels independently. Third, we improve modeling
power by incorporating dynamic information about the current state of the segmentation.
Specifically, feeding the current partial segmentation into the CNN provides shape clues for the
next assignment decision, and maintaining a latent history along assignment paths allows to
adjust growing parameters locally. We demonstrate experimentally that the resulting algorithm
successfully solves difficult configurations like narrow region parts and low-contrast boundaries,
where previous algorithms fail. In future work, we plan to include seed generation into the
end-to-end learning scheme.
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Figure 2.6: From top: Raw data. Ground truth. Result of distance transform WS (red arrows point out
major errors). Result of our algorithm.
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3 Mutex Watershed

In this chapter1, we present our approach to incorporate repulsive interactions into the wa-
tershed algorithm. We show that this is beneficial in practice, obviating the need for seed
prediction2. Furthermore, we prove that this simple algorithm finds a global optimum of an
objective function that is intimately related to the multicut / correlation clustering integer
linear programming formulation. When presented with short-range attractive and long-range
repulsive cues from a deep neural network, the Mutex Watershed gives the best results currently
known for the competitive ISBI 2012 EM segmentation benchmark.

3.1 Introduction

Most image partitioning algorithms are defined over a graph encoding purely attractive inter-
actions. No matter whether a segmentation or clustering is then found agglomeratively (as in
single linkage clustering / watershed) or divisively (as in spectral clustering or iterated normal-
ized cuts), the user either needs to specify the desired number of segments or a termination
criterion. An even stronger form of supervision is in terms of seeds, where one pixel of each
segment needs to be designated either by a user or automatically. Unfortunately, clustering with
automated seed selection remains a fragile and error-fraught process, because every missed
or hallucinated seed causes an under- or oversegmentation error. Although the learning of
good edge detectors boosts the quality of classical seed selection strategies (such as finding
local minima of the boundary map, or thresholding boundary maps), non-local effects of seed
placement along with strong variability in region sizes and shapes make it hard for any learned
predictor to place exactly one seed in every true region.

In contrast to the above class of algorithms, multicut / correlation clustering partitions

1This chapter is based on our paper [163, 165], which was published in 2018/2019. The results in this chapter rep-
resent the current state at the time of publication. The algorithm was implemented and conceived by Constantin
Pape and myself, whose neural network training pipeline for EM-images segmentation was indispensable for
beating the state-of-the-art on the ISBI challenge. The theoretical characterization of the algorithm was done
by Alberto Bailoni and me. Alberto especially developed the relation of the MWS to the Power watershed
framework.

2Seed prediction for neuron segmentation is usually infeasible, due to the large, complex structures of the segments
that also lack unique identification points.
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vertices with both attractive and repulsive interactions encoded into the edges of a graph.
Multicut has the great advantage that a “natural” partitioning of a graph can be found, without
needing to specify a desired number of clusters, or a termination criterion, or one seed per
region. Its great drawback is that its optimization is NP-hard.

The main insight of this paper is that when both attractive and repulsive interactions between
pixels are available, then a generalization of the watershed algorithm can be devised that
segments an image without the need for seeds or stopping criteria or thresholds. It examines all
graph edges, attractive and repulsive, sorted by their weight and adds these to an active set iff
they are not in conflict with previous, higher-priority, decisions. The attractive subset of the
resulting active set is a forest, with one tree representing each segment. However, the active set
can have loops involving more than one repulsive edge. See Fig. 3.1 for a visual abstract.

In summary, our principal contributions are, first, a fast deterministic algorithm for graph
partitioning with both positive and negative edge weights that does not need prior specification
of the number of clusters (section 3.4); and second, its theoretical characterization, including
proof that it globally optimizes an objective related to the multicut correlation clustering
objective (3.4).

Combined with a deep net, the algorithm also happens to define the state-of-the-art in a
competitive neuron segmentation challenge (Section 3.5).

This is an extended version version of [163], with the second principal contribution (section
3.4) being new.

Figure 3.1: Left: Overlay of raw data from the ISBI 2012 EM segmentation challenge and the edges for
which attractive (green) or repulsive (red) interactions are estimated for each pixel using a
CNN. Middle: vertical / horizontal repulsive interactions at intermediate / long range are
shown in the top / bottom half. Right: Active mutual exclusion (mutex) constraints that the
proposed algorithm invokes during the segmentation process.
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3.2 Related Work

In the original watershed algorithm [22, 157], seeds were automatically placed at all local
minima of the boundary map. Unfortunately, this leads to severe over-segmentation. Defining
better seeds has been a recurring theme of watershed research ever since. The simplest solution
is offered by the seeded watershed algorithm [23]: It relies on an oracle (an external algorithm
or a human) to provide seeds and assigns each pixel to its nearest seed in terms of minimax
path distance.

In the absence of an oracle, many automatic methods for seed selection have been proposed
in the last decades with applications in the fields of medicine and biology. Many of these
approaches rely on edge feature extraction and edge detection like gradient calculation [4,
124]. Other types of methods generate seeds by first performing feature extraction [125, 166],
whereas others first extract region of interests and then place seeds inside these regions by
using thresholding [3], binarization [140], k-means [111] or other strategies [1, 2].

In applications where the number of regions is hard to estimate, simple automatic seed
selection methods, e.g. defining seeds by connected regions of low boundary probability, do
not work: The segmentation quality is usually insufficient because multiple seeds are in the
same region and/or seeds leak through the boundary. Thus, in these cases seed selection may
be biased towards over-segmentation (with seeding at all minima being the extreme case). The
watershed algorithm then produces superpixels that are merged into final regions by more
or less elaborate postprocessing. This works better than using watersheds alone because it
exploits the larger context afforded by superpixel adjacency graphs. Many criteria have been
proposed to identify the regions to be preserved during merging, e.g. region dynamics [51], the
waterfall transform [21], extinction values [155], region saliency [115], and (α, ω)-connected
components [144]. A merging process controlled by criteria like these can be iterated to produce
a hierarchy of segmentations where important regions survive to the next level. Variants of
such hierarchical watersheds are reviewed and evaluated in [123].

These results highlight the close connection of watersheds to hierarchical clustering and
minimum spanning trees/forests [108, 113], which inspired novel merging strategies and
termination criteria. For example, [137] simply terminated hierarchical merging by fixing
the number of surviving regions beforehand. [101] incorporate predefined sets of generalized
merge constraints into the clustering algorithm. Graph-based segmentation according to [47]
defines a measure of quality for the current regions and stops when the merge costs would
exceed this measure. Ultrametric contour maps [10] combine the gPb (global probability of
boundary) edge detector with an oriented watershed transform. Superpixels are agglomerated
until the ultrametric distance between the resulting regions exceeds a learned threshold. An
optimization perspective is taken in [52, 69], which introduces h-increasing energy functions
and builds the hierarchy incrementally such that merge decisions greedily minimize the energy.
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The authors prove that the optimal cut corresponds to a different unique segmentation for every
value of a free regularization parameter.

An important line of research is given by partitioning of graphs with both attractive and
repulsive edges [66]. Solutions that optimally balance attraction and repulsion do not require
external stopping criteria such as predefined number of regions or seeds. This generaliza-
tion leads to the NP-hard problem of correlation clustering or (synonymous) multicut (MC)
partitioning. Fortunately, modern integer linear programming solvers in combination with
incremental constraint generation can solve problem instances of considerable size [8], and
good approximations exist for even larger problems [119, 172] Reminiscent of strict minimizers
[91] with minimal L∞-norm solution, our work solves the multicut objective optimally when
all graph weights are raised to a large power.

Related to the proposed method, the greedy additive edge contraction (GAEC) [65] heuristic
for the multicut also sequentially merges regions, but we handle attractive and repulsive
interactions separately and define edge strength between clusters by a maximum instead of
an additive rule. The greedy fixation algorithm introduced in [92] is closely related to the
proposed method; it sorts attractive and repulsive edges by their absolute weight, merges
nodes connected by attractive edges and introduces no-merge constraints for repulsive edges.
However, similar to GAEC, it defines edge strength by an additive rule, which increases the
algorithm’s runtime complexity compared to the presented Mutex Watershed. Also, it is not
yet known what objective the algorithm optimizes globally, if any.

Another beneficial extension is the introduction of additional long-range edges. The strength
of such edges can often be estimated with greater certainty than is achievable for the local
edges used by watersheds on standard 4- or 8-connected pixel graphs. Such repulsive long-
range edges have been used in [179] to represent object diameter constraints, which is still an
MC-type problem. When long-range edges are also allowed to be attractive, the problem turns
into the more complicated lifted multicut (LMC) [56]. Realistic problem sizes can only be
solved approximately [19, 65], but watershed superpixels followed by LMC postprocessing
achieve state-of-the-art results on important benchmarks [20]. Long-range edges are also used
in [89], as side losses for the boundary detection convolutional neural network (CNN); but they
are not used explicitly in any downstream inference.

In general, striking progress in watershed-based segmentation has been achieved by learning
boundary maps with CNNs. This is nicely illustrated by the evolution of neurosegmentation
for connectomics, an important field we also address in the experimental section. CNNs were
introduced to this application in [59] and became, in much refined form [34], the winning entry
of the ISBI 2012 Neuro-Segmentation Challenge [12]. Boundary maps and superpixels were
further improved by progress in CNN architectures and data augmentation methods, using
U-Nets [130], FusionNets [126] or inception modules [20]. Subsequent postprocessing with
the GALA algorithm [73, 117], conditional random fields [154] or the lifted multicut [20]
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pushed the envelope of final segmentation quality. MaskExtend [104] applied CNNs to both
boundary map prediction and superpixel merging, while flood-filling networks [60] eliminated
superpixels altogether by training a recurrent neural network to perform region growing one
region at a time.

Most networks mentioned so far learn boundary maps on pixels, but learning works equally
well for edge-based watersheds, as was demonstrated in [121, 185] using edge weights gener-
ated with a CNN [151, 152]. Tayloring the learning objective to the needs of the watershed
algorithm by penalizing critical edges along minimax paths [151] or end-to-end training of
edge weights and region growing [162] improved results yet again.

Outside of connectomics, [16] obtained superior boundary maps from CNNs by learning not
just boundary strength, but also its gradient direction. Holistically-nested edge detection [76,
169] couples the CNN loss at multiple resolutions using deep supervision and is successfully
used as a basis for watershed segmentation of medical images in [27].

We adopt important ideas from this prior work (hierarchical single-linkage clustering, at-
tractive and repulsive interactions, long-range edges, and CNN-based learning). The proposed
efficient segmentation framework can be interpreted as a generalization of [101], because we
also allow for soft repulsive interactions (which can be overridden by strong attractive edges),
and constraints are generated on-the-fly.

3.3 The Mutex Watershed Algorithm as an Extension of
Seeded Watershed

In this section we introduce the Mutex Watershed Algorithm, an efficient graph clustering
algorithm that can ingest both attractive and repulsive cues. We first reformulate seeded
watershed as a graph partitioning with infinitely repulsive edges and then derive the generalized
algorithm for finitely repulsive edges, which obviates the need for seeds.

3.3.1 Definitions and notation

Let G = (V,E,w) be a weighted graph. The scalar attribute w : E → R associated with
each edge is a merge affinity: the higher this number, the higher the inclination of the two
incident vertices to be assigned to the same cluster. Conversely, large negative affinity indicates
a greater desire of the incident vertices to be in different clusters. In our application, each
vertex corresponds to one pixel in the image to be segmented. We call an edge e ∈ E repulsive
if we < 0 and we call it attractive if we > 0 and collect them in E− = {e ∈ E |we < 0} and
E+ = {e ∈ E |we > 0} respectively.
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In our application, each vertex corresponds to one pixel in the image to be segmented. The
Mutex Watershed algorithm, defined in Section 3.3.3, maintains disjunct active sets A+ ⊆ E+,
A− ⊆ E−, A+ ∩A− = ∅ that encode merges and mutual exclusion constraints, respectively.
Clusters are defined via the “connected” predicate:

∀i, j ∈ V :

Πi→j = {paths π from i to j with π ⊆ E+}
connected(i, j;A+) ⇔ ∃ path π ∈ Πi→j with π ⊆ A+

cluster(i;A+) = {i} ∪ {j : connected(i, j;A+)}

Conversely, the active subset A− ⊆ E− of repulsive edges defines mutual exclusion relations
by using the following predicate:

mutex(i, j;A+, A−) ⇔ ∃ e = (k, l) ∈ A− with

k ∈ cluster(i;A+) and

l ∈ cluster(j;A+) and

cluster(i;A+) 6= cluster(j;A+)

Admissible active edge sets A+ and A− must be chosen such that the resulting clustering is
consistent, i.e. nodes engaged in a mutual exclusion constraint cannot be in the same cluster:
mutex(i, j;A+, A−)⇒ notconnected(i, j;A+). The “connected” and “mutex” predicates can
be efficiently evaluated using a union find data structure.

3.3.2 Seeded watershed from a mutex perspective

One interpretation of the proposed method is in terms of a generalization of the edge-based
watershed algorithm [106–108] or image foresting transform [45]. This algorithm can only
ingest a graph with purely attractive interactions, E− = ∅. Without further constraints, the
algorithm would yield only the trivial result of a single cluster comprising all vertices. To
obtain more interesting output, an oracle needs to provide seeds (e.g. one node per cluster).
These seed vertices are all connected to an auxiliary node (see Fig. 3.2 (a)) by auxiliary edges
with infinite merge affinity. A maximum spanning tree (MST) on this augmented graph can be
found in linearithmic time; and the maximum spanning tree (or in the case of degeneracy: at
least one of the maximum spanning trees) will include the auxiliary edges. When the auxiliary
edges are deleted from the MST, a forest results, with each tree representing one cluster [45,
107, 108].

We now reformulate this well-known algorithm in a way that will later emerge as a special
case of the proposed Mutex Watershed: we eliminate the auxiliary node and edges, and replace
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Figure 3.2: Two equivalent representations of the seeded watershed clustering obtained using (a) a
maximum spanning tree computation or (b) Algorithm 2. Both graphs share the weighted
attractive (green) edges and seeds (hatched nodes). The infinitely attractive connections to
the auxiliary node (gray) in (a) are replaced by infinitely repulsive (red) edges between each
pair of seeds in (b). The two final clusterings are defined by the active sets (bold edges) and
are identical. Node colors indicate the clustering result, but are arbitrary.

Seeded Watershed:
WS
(
G(V,E), pos. weights w : E → R+, seeds S ⊆ V

)
:

A+ ← ∅
A− ← {(s, t) ∈ S × S | s 6= t}

. Equivalent to introducing infinitely
repulsive edges between seeds

for (i, j) = e ∈ E in descending order of we do
if not connected(i, j;A+) and not mutex(i, j;A+, A−) then

A+ ← A+ ∪ e
. merge i and j and inherit the mutex

constraints of the parent clusters

return A+ ∪A−

Algorithm 2: Mutex version of seeded watershed algorithm. The output clustering is defined
by the connected components of the final attractive active set A+.

them by a set of infinitely repulsive edges, one for each pair of seeds (Fig. 3.2 (b)). Algorithm
2 is a variation of Kruskal’s MST algorithm operating on the seed mutex graph just defined,
and gives results identical to seeded watershed on the original graph.
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This algorithm differs from Kruskal’s only by the check for mutual exclusion in the if-
statement. Obviously, the modified algorithm has the same effect as the original algorithm,
because the final set A+ is exactly the maximum spanning forest obtained after removing the
auxiliary edges from the original solution.

In the sequel, we generalize this construction by admitting less-than-infinitely repulsive
edges. Importantly, these can be dense and are hence much easier to estimate automatically
than seeds with their strict requirement of only-one-per-cluster.

Mutex Watershed:
MWS

(
G(V,E), w : E → R, boolean connect_all

)
:

A+ ← ∅; A− ← ∅
for (i, j) = e ∈ E in descending order of |we| do

if e ∈ E+ then
if not mutex(i, j;A+, A−) then

if not connected(i, j;A+) or connect_all then
merge(i, j): A+ ← A+ ∪ e

. merge i and j and inherit the mutex
constraints of the parent clusters

else
if not connected(i, j;A+) then

addmutex(i, j): A− ← A− ∪ e
. add mutex constraint between i and j

return A+ ∪A−

Algorithm 3: Mutex Watershed Algorithm. The output clustering is defined by the connected
components of the final attractive active set A+. The connect_all parameter changes the
internal cluster connectedness from trees to fully connected, but does not change the out-
put clustering. The connected predicate can be efficiently evaluated using union find data
structures.
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Figure 3.3: Some iterations of the Mutex Watershed Algorithm 3 applied to a graph with weighted
attractive (green) and repulsive (red) edges. Edges accumulated in the active set A after a
given number of iterations are shown in bold. The connect_all parameter of the algorithm
is set to False, so that only the positive edges belonging to the maximum spanning tree of
each cluster are added to the active set. Once the algorithm terminates, the final active set
(f) defines the final clustering (indicated using arbitrary node colors). Some edges are not
added to the active set because they are mutex constrained (yellow highlight) or because the
associated nodes are already connected and in the same cluster (blue highlight).
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3.3.3 Mutex Watersheds

We now introduce our core contribution: an algorithm that is empirically no more expensive
than a MST computation; but that can ingest both attractive and repulsive cues and partition a
graph into a number of clusters that does not need to be specified beforehand. Neither seeds
nor hyperparameters that implicitly determine the number of resulting clusters are required.

The Mutex Watershed, Algorithm 3, proceeds as follows. Given a graph G = (V,E) with
signed weights w : E → R, do the following: sort all edges E, attractive or repulsive, by
their absolute weight in descending order into a priority queue. Iteratively pop all edges from
the queue and add them to the active set one by one, provided that a set of conditions are
satisfied. More specifically, assuming connect_all is False, if the next edge popped from the
priority queue is attractive and its incident vertices are not yet in the same tree, then connect
the respective trees provided this is not ruled out by a mutual exclusion constraint. If on the
other hand the edge popped is repulsive, and if its incident vertices are not yet in the same tree,
then add a mutual exclusion constraint between the two trees. The output clustering is defined
by the connected components of the final attractive active set A+.

The crucial difference to Algorithm 2 is that mutex constraints are no longer pre-defined, but
created dynamically whenever a repulsive edge is found. However, new exclusion constraints
can never override earlier, high-priority merge decisions. In this case, the repulsive edge in
question is simply ignored. Similarly, an attractive edge must never override earlier and thus
higher-priority must-not-link decisions.

The boolean value of the connect_all input parameter of the algorithm does not influence
the final output clustering, but defines the internal cluster connectedness: when it is set to True,
the algorithm adds all attractive intra-cluster edges to the active set A+. When it is set to False,
then a maximum spanning tree is built for each cluster similar to the seeded watershed. This
variant of the algorithm will be helpful in the next section 3.4 to highlight the relation between
the Mutex Watershed and the multicut problem.

Fig. 3.3 illustrates the proposed algorithm: Fig. 3.3a and Fig. 3.3b show examples of an
unconstrained merge and an added mutex constraint, respectively; Fig. 3.3c and Fig. 3.3d
show, respectively, an example of an attractive edge (we = 14) and repulsive edge (we = −13)
that are not added to the active set because their incident vertices are already “connected” and
belong to the same tree of the forest A+; finally, Fig. 3.3e shows an attractive edge (we = 12)
that is ruled out by a previously introduced mutual exclusion relation.

3.3.4 Time Complexity Analysis

Before analyzing the time complexity of algorithm 3 we first review the complexity of Kruskal’s
algorithm. Using a union-find data structure (with path compression and union by rank) the time
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complexity of merge(i, j) and connected(i, j) is O(α(V )), where α is the slowly growing
inverse Ackerman function, and the total runtime complexity is dominated by the initial sorting
of the edges O(E logE) [36].
To check for mutex constraints efficiently, we maintain a set of all active mutex edges

M [Ci] = {(u, v) ∈ A−|u ∈ Ci ∨ v ∈ Ci}

for everyCi = cluster(i) using hash tables, where insertion of new mutex edges (i.e. addmutex)
and search have an average complexity ofO(1). Note that every cluster can be efficiently identi-
fied by its union-find root node. For mutex(i, j) we check if M [Ci]∩M [Cj ] = ∅ by searching
for all elements of the smaller hash table in the larger hash table. Therefore mutex(i, j) has
an average complexity of O(min(|M [Ci]|, |M [Cj ]|). Similarly, during merge(i, j), mutex
constraints are inherited by merging two hash tables, which also has an average complexity
O(min(|M [Ci]|, |M [Cj ]|).
In conclusion, the average runtime contribution of attractive edgesO(max(|E+| ·α(V ), |E+| ·
M)) (checking mutex constraints and possibly merging) and repulsive edges O(max(|E−| ·
α(V ), |E−|)) (insertion of one mutex edge) result in a total average runtime complexity of
algorithm 3:

O(max(E logE , EM)). (3.1)

where M is the expected value of min(|M [Ci]|, |M [Cj ]|) and therefore3 α(V ) ∈ O(log V ) ∈
O(logE). In the worst case O(M) ∈ O(E), the Mutex Watershed Algorithm has a runtime
complexity of O(E2). Empirically, we find that O(EM) ≈ O(E logE) by measuring the
runtime of Mutex Watershed for different sub-volumes of the ISBI challenge (see Figure 3.4),
leading to a

Empirical Mutex Watershed Complexity: O(E logE) (3.2)

3.4 Theoretical characterization

Towards the Multicut framework. In section 3.3.3, we have introduced the Mutex Watershed
(MWS) algorithm as a generalization of seeded watersheds and the Kruskal algorithm in
particular. However, since we are considering graphs with negative edge weights, the MWS is
conceptually closer to the multicut problem and related heuristics such as GAEC and GF [92].
Fortunately, due to the structure of the MWS it can be analyzed using dynamic programming.
This section summarizes our second contribution, i.e. the proof that the Mutex Watershed
Algorithm globally optimizes a precise objective related to the multicut.

3In the worst case, G is a fully connected graph, with |E| = |V |2, hence log |V | = 1
2
log |E|.
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Figure 3.4: Runtime T of Mutex Watershed (without sorting of edges) measured on sub-volumes of
the ISBI challenge of different sizes (thereby varying the total number of edges E). We
plot T

|E| over |E| in a logarithmic plot, which makes T ∼ |E|log(|E|) appear as straight
line. A logarithmic function (blue line) is fitted to the measured T
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(R2 = 0.9896). The good fit suggests that empirically T ≈ O(E logE).
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Figure 3.5: Consistent and inconsistent active sets – Two different active edge sets A1 ⊆ E (on the left)
and A2 ⊆ E (on the right) on identical toy graphs with six nodes, attractive (green) and
repulsive (red) edges. The value of the edge indicator xA ∈ {0, 1}|E| defined in Eq. 3.4
is shown for every edge. Members of the active sets are shown as solid lines. On the left,
the active set A1 is consistent, i.e. does not include any conflicted cycle C−(G, w) (see Def.
3.4.1): Therefore, it is associated with a clustering (represented by arbitrary node colors).
On the right, the active set A2 is not consistent and includes at least one conflicted cycle
(highlighted in yellow), thus it cannot be associated with a node clustering.
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3.4.1 Review of the Multicut problem and its objective

In the following, we will review the multicut problem not in its standard formulation but in the
Cycle Covering Formulation introduced in [85], which is similar to the MWS formulation as it
also considers the set of attractive and repulsive edges separately. Previously, in Sec. 3.3.1, we
defined a clustering by introducing the concept of an active set of edges A = A+ ∪A− ⊆ E
and the connected/mutex predicates. In particular, an active set describes a valid clustering if
it does not include both a path of only attractive edges and a path with exactly one repulsive
edge connecting any two nodes i, j ∈ V :

connected(i, j;A+) =⇒ not mutex(i, j;A+, A−). (3.3)

In other words, an active set is consistent and describes a clustering if it does not contain any
cycle with exactly one repulsive edge (known as conflicted cycles).

Definition 3.4.1. Conflicted cycles – We call a cycle of G conflicted w.r.t. (G, w) if it contains
precisely one repulsive edge e ∈ E−, s.t. we < 0. We denote by C−(G, w) ⊆ C(G, w)
the set of all conflicted cycles. Furthermore, given a set of edges A ⊆ E, we denote by
C−(A,G, w) ⊆ C−(G, w) the set of conflicted cycles involving only edges in A.

From now on, in order to describe different clustering solutions in the framework of (integer)
linear programs, we associate each active set A with the following edge indicator xA

xA := 1{e /∈ A)} ∈ {0, 1}|E|. (3.4)

In this way, the cycle-free property C−(A,G, w) = ∅ of an active set can be reformulated in
terms of linear inequalities:

∀C ∈ C−(G, w) :
∑
e∈EC

xAe ≥ 1 ⇐⇒ C−(A,G, w) = ∅. (3.5)

In words, the active set cannot contain conflicted cycles; or vice versa, every conflicted cycle
must contain at least one edge that is not part of the active set. Following [85], via this property
we describe the space of all possible clustering solutions by defining the convex hull SC(G, w)
of all edge indicators corresponding to valid clusterings of (G, w):

Definition 3.4.2. Let SC(G, w) denote the convex hull of all edge indicators x ∈ {0, 1}|E|
satisfying the following system of inequalities:

∀C ∈ C−(G, w) :
∑
e∈EC

xe ≥ 1. (3.6)
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That is, SC(G, w) contains all edge labelings for which every conflicted cycle is broken at least
once. We call SC(G, w) the set covering polyhedron with respect to conflicted cycles, similarly
to [85].

Fig. 3.5 summarizes these definitions and provides an example of consistent and inconsistent
active sets with their associated clusterings and edge indicators.

As shown in [85], the multicut optimization problem can be formulated with constraints over
conflicted cycles in terms of the following integer linear program (ILP), which is NP-hard:

min
x∈SC(G,w)

∑
e∈E
|we|xe. (3.7)

The solution of the multicut problem is given by the clustering associated to the connected
components of the active set Â+ = {e ∈ E+|x̂e = 0}, where x̂ ∈ {0, 1}|E| is the solution of
(3.7).

3.4.2 Mutex Watershed Objective

We now define the Mutex Watershed objective that is minimized by the Mutex Watershed
Algorithm (proof in Section 3.4.3) and show how it is closely related to the multicut problem
defined in Eq. (3.7). Lange et al. [85] introduce the concept of dominant edges in a graph. For
example, an attractive edge f ∈ E+ is called dominant if there exists a cut B with f ∈ EB
such that |wf | ≥

∑
e∈EB\{f} |we|. These highlight an aspect of the multicut problem that

can be used to search for optimal solutions more efficiently. Not all weighted graphs contain
dominant edges; but if, assuming no ties, we raise all graph weights to a large enough power a
similar property emerges.

Definition 3.4.3. Dominant power: Let G = (V,E,w) be an edge-weighted graph, with
unique weights w : E → R. We call p ∈ N+ a dominant power if:

|we|p >
∑

t∈E,wt<we

|wt|p ∀e ∈ E, (3.8)

In contrast to dominant edges [85], we do not consider edges on a cut but rather all edges with
smaller absolute weight. Note that there exists a dominant power for any finite set of edges,
since for any e ∈ E we can divide (3.8) by |we|p and observe that the normalized weights
|wt|p/|we|p (and any finite sum of these weights) converges to 0 when p tends to infinity.

By considering the multicut problem in Eq. (3.7) and raising the weights |we| to a dominant
power p, we fundamentally change the problem structure:
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Definition 3.4.4. Mutex Watershed Objective: Let G = (V,E,w) be an edge-weighted graph,
with unique weights w : E → R and p ∈ N+ a dominant power. Then the Mutex Watershed
Objective is defined as the integer linear program

min
x∈SC(G,w)

∑
e∈E
|we|p xe (3.9)

where SC(G, w) is the convex hull defined in Def. 3.4.2.

In the following section, we will prove that this modified version of the multicut objective,
which we call Mutex Watershed Objective, is indeed optimized by the Mutex Watershed
Algorithm:

Theorem 3.4.1. Let G = (V,E,w) be an edge-weighted graph, with unique weights w : E →
R and p ∈ N+ a dominant power. Then the edge indicator given by the Mutex Watershed
Algorithm 3

xMWS := 1

{
e /∈MWS

(
G, w, connect_all=True

)}
minimizes the Mutex Watershed Objective in Eq. (3.9).

3.4.3 Proof of optimality via dynamic programming

Conflicted-Cycles Mutex Watershed:
CCMWS

(
G(V,E), w : E → R

)
:

A← ∅
for (i, j) = e ∈ E in descending order of |we| do

if C−(A ∪ {e},G, w) = ∅ then
A← A ∪ e

return A

Algorithm 4: Equivalent formulation of the Mutex Watershed Algorithm 3, with input
parameter connect_all=True. The set of conflicted cycles C−(A,G, w) is defined in Def.
3.4.1. The output clustering is defined by the connected components of the final attractive
active set A+ = A ∩ E+.

In this section we prove Theorem 3.4.1, i.e. that the Mutex Watershed Objective defined in
3.4.4 is solved to optimality by the Mutex Watershed Algorithm 4. Particularly, in the following
Sec. 3.4.3 we show that the edge indicator associated to the solution of the MWS algorithm
lies in SC(G, w), whereas in Sec. 3.4.3 we prove that it solves Eq. 3.9 to optimality.
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Cycle consistency

The Mutex Watershed algorithm introduced in Sec. 3.3 iteratively builds an active set A =
A+ ∪ A− such that nodes engaged in a mutual exclusion constraint (encoded by edges in
A−) are never part of the same cluster. In other words, this means that the active set built by
the Mutex Watershed at every iteration does never include a conflicted cycle and is always
consistent. In particular, for any attractive edge (i, j) = e+ ∈ E+ and any consistent set A
that fulfills C−(A,G, w) = ∅:

not mutex(i, j, A+, A−) ⇔ C−(A ∪ {e+},G, w) = ∅

Similarly, for any repulsive edge (s, t) = e− ∈ E−:

not connected(s, t, A+) ⇔ C−(A ∪ {e−},G, w) = ∅

Therefore, we can rewrite Algorithm 3 in the form of Algorithm 4. This new formulation
makes it clear that

C−
(
MWS

(
G, w, connect_all=True

))
= ∅. (3.10)

Thus, thanks to Eq. 3.5 and definition 3.4.2, it follows that the MWS edge indicator xMWS

defined in 3.4.1 lies in SC(G, w):

xMWS ∈ SC(G, w). (3.11)

Optimality

We first note that the Mutex Watershed Objective 3.4.4 and Theorem 3.4.1 can easily be
reformulated in terms of active sets to minimize

arg min
A⊆E

−
∑
e∈A
|we|p s.t. C−(A,G, w) = ∅. (3.12)

We now generalize the Mutex Watershed (see Algorithm 5) and the objective such that an initial
consistent set of active edges Ã ⊆ E is supplied:

Definition 3.4.5. Energy optimization subproblem. Let G = (V,E,w) be an edge-weighted
graph. Define the optimal solution of the subproblem as

S(G, Ã) := argmin
A⊆(E\Ã)

T (A) with T (A) := −
∑
e∈A
|we|p, (3.13)

s.t. C−(A ∪ Ã,G, w) = ∅, (3.14)

where Ã ⊆ E is a set of initially activated edges such that C−(Ã,G, w) = ∅.
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Initialized Mutex Watershed:
IMWS

(
G(V,E), w : E → R, initial active set Ã

)
:

A← ∅
for e ∈ E \ Ã in descending order of weight do

if C−(A ∪ Ã ∪ {e},G, w) = ∅ then
A← A ∪ e

return A

Algorithm 5: Mutex Watershed algorithm starting from initial active set Ã. An initial set Ã
of active edges is given as additional input and the final active set is such that A ⊆ E \ Ã.
Note that Algorithm 4 is a special case of this algorithm when Ã = ∅. Differences with
Algorithm 4 are highlighted in blue.

We note that for Ã = ∅, the optimal solution S(G, ∅) is equivalent to the solution minimizing
the Mutex Watershed Objective and Eq. (3.12).

Definition 3.4.6. Incomplete, consistent initial set: For an edge-weighted graph G = (V,E,w)
a set of edges Ã ⊆ E is consistent if

C−(Ã,G, w) = ∅. (3.15)

Ã is incomplete if it is not the final solution and there exists a consistent edge ẽ that can be
added to Ã without violating the constraints.

∃ ẽ ∈ E \ Ã s.t. C−(Ã ∪ {ẽ},G, w) = ∅ (3.16)

Definition 3.4.7. First greedy step: Let us consider an incomplete, consistent initial active set
Ã ⊆ E on G = (V,E,w). We define

g := argmax
e∈(E\Ã)

|w(e)| s.t. C−(Ã ∪ {e},G, w) = ∅. (3.17)

as the feasible edge with the highest weight, which is always the first greedy step of Algorithm
5.

In the following two lemmas, we prove that the Mutex Watershed problem has an optimal
substructure property and a greedy choice property [36], which are sufficient to prove that the
Mutex Watershed algorithm finds the optimum of the Mutex Watershed Objective.
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Lemma 3.4.2. Greedy-choice property. For an incomplete, consistent initial active set Ã of
the Mutex Watershed, the first greedy step g is always part of the optimal solution

g ∈ S(G, Ã).

Proof. We will prove the theorem by contradiction by assuming that the first greedy choice is
not part of the optimal solution, i.e. g /∈ S(G, Ã). Since g is by definition the feasible edge
with highest weight, it follows that:

|w(e)| < |w(g)| ∀e ∈ S(G, Ã). (3.18)

We now consider the alternative active set A′ = {g}, that is a consistent solution, with

T (A′) = −|wg|p
(3.8)
< −

∑
t∈S(G,Ã)

|wt|p = T
(
S(G, Ã)

)
(3.19)

which contradicts the optimality of S(G, Ã).

Lemma 3.4.3. Optimal substructure property. Let us consider an initial active set Ã, the
optimization problem defined in Equation 3.13, and assume to have an incomplete, consistent
problem (see Def. 3.4.6). Then it follows that:

1. After making the first greedy choice g, we are left with a subproblem that can be seen as
a new optimization problem of the same structure;

2. The optimal solution S(G, Ã) is always given by the combination of the first greedy
choice and the optimal solution of the remaining subproblem.

Proof. After making the first greedy choice and selecting the first feasible edge g defined in
Equation 3.17, we are clearly left with a new optimization problem of the same structure that
has the following optimal solution: S(G, Ã ∪ {g}).
In order to prove the second point of the theorem, we now show that:

S(G, Ã) = {g}∪S(G, Ã ∪ {g}). (3.20)

Since algorithm 5 fulfills the greedy-choice property, g ∈ S(G, Ã) and we can add the edge g
as an additional constraint to the optimal solution:

S(G, Ã) = argmin
A⊆(E\Ã)

T (A)

s. t. C−(A ∪ Ã,G, w) = ∅; g ∈ A
(3.21)
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Then it follows that:

S(G, Ã) ={g}∪ argmin
A⊆E\(Ã∪{g})

T (A)

s. t. C−
(
A ∪ {g} ∪ Ã,G, w

)
= ∅

(3.22)

which is equivalent to Equation 3.20.

Proof of Theorems 3.4.1. In Lemmas 3.4.2 and 3.4.3 we have proven that the optimization
problem defined in 3.12 has the optimal substructure and a greedy choice property. It follows
through induction that the final active set MWS

(
G, w, connect_all=True

)
found by the Mutex

Watershed Algorithm 4 is the optimal solution for the Mutex Watershed objective (3.12)
[36].

3.4.4 Relation to the extended Power Watershed framework

The Power Watershed [37] is an important framework for graph-based image segmentation that
includes several algorithms like seeded watershed, random walker and graph cuts. Recently,
[114] extended the framework to even more general types of hierarchical optimization algo-
rithms thanks to the use of Γ-theory and Γ-convergence [24, 41]. In this section, we show how
the Mutex Watershed algorithm can also be included in this extended framework4 and how the
framework suggests an optimization problem that is solved by the Mutex Watershed.

Mutex Watershed as hierarchical optimization algorithm

We first start by introducing the extended Power Watershed framework and restating the main
theorem from [114]:

Theorem 3.4.4. [114] Extended Power Watershed Framework. Consider three strictly posi-
tive integers p,m, t ∈ N+ and t real numbers

1 ≥ λ0 > λ1 > . . . λt−1 > 0 (3.23)

Given t continuous functions Qk : Rm → R with 0 ≤ k < t, define the function

Qp(x) :=
∑

0≤k<t
λpkQk(x). (3.24)

4The connection between the Mutex Watershed and the extended Power Watershed framework was kindly pointed
out by an anonymous reviewer.
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Generic hierarchical optimization:
GHO(Q0, . . . , Qt−1):

M0 = arg minx∈Rm Q0(x)

for k ∈ 1, . . . , t− 1 do
Mk = arg minx∈Mk−1

Qk(x)

return some x∗ ∈Mt−1

Algorithm 6: Generic hierarchical optimization algorithm introduced in [114]. The se-
quence of continuous functions Qk : Rm → R is sorted according to the associated scales λk
(Eq. 3.23).

Then, if any sequence (xp)p>0 of minimizers xp of Qp(x) is bounded (i.e. there exists C > 0
such that for all p > 0, ||xp||∞ ≤ C), the sequence is convergent, up to taking a subsequence,
toward a point of Mt−1, which is the set of minimizers recursively defined in Algorithm 6.

Proof. See [114] (Theorem 3.3).

We now show that the Mutex Watershed algorithm can be seen as a special case of the generic
hierarchical Algorithm 6, for a specific choice of scales λk and functions Qk(x) : Rm → R
(see definitions (3.25, 3.26) below) .

Scales λk: Let w̃k be the signed edge weights w : E → R ordered by decreasing absolute
value |w̃1| > |w̃2| > . . . > |w̃t−1|. If two edges share the same weight, then the weight is
called w̃k for both and Ek ⊆ E denotes the set of all edges with weight w̃k. We then define the
scales λk as

λk :=

1 if k = 0∣∣∣ w̃k
2w̃1

∣∣∣ otherwise.
(3.25)

The continuous functions Qk(x) : R|E| → R are defined as follows

Qk(x) :=

|E| ·minx′∈ISC(G,w) ||x′ − x|| if k = 0∑
e∈Ek

xe otherwise,
(3.26)

where ISC(G, w) is defined as:

ISC(G, w) := SC(G, w) ∩ {0, 1}|E|. (3.27)
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In words, Q0(x) is proportional to the distance between x and the closest point on the set
ISC(G, w), whereas Qk(x) depends only on the indicators xe of edges in Ek, for k > 0.

Algorithm 7 is obtained by substituting the scales λk and functions Qk(x) (respectively
defined in Eq. (3.25) and (3.26)) into Algorithm 6 . The algorithm starts by setting M0 to
ISC(G, w), i.e. by restricting the space of the solutions only to integer edge labelings x that
do not include any conflicted cycles. Then, in the following iterations k ∈ 1, . . . , t − 1, the
algorithm solves a series of minimization sub-problems that in the most general case are NP-
hard, even though they involve a smaller set of edges Ek ⊆ E. Nevertheless, if we assume that
all weights are distinct, then |Ek| = 1 for all k and the solution to the sub-problems amounts to
checking if the new edge can be labeled with xe = 0 without introducing any conflicted cycles.
This procedure is identical to Algorithm 3: at every iteration, the Mutex Watershed tries to add
an edge to the active set A, provided that no mutual exclusion constraints are violated.

In summary, using the framework in [114] allows generalizing the Mutex Watershed Al-
gorithm to graphs with tied edge weights. In practice, when edge weights are estimated by a
CNN, we do not expect tied edge weights.

PWSMWS(Q0, . . . , Qt−1):
M0 = arg minx∈R|E| Q0(x) = ISC(G, w)

for k ∈ 1, . . . , t− 1 do
Mk = arg minx∈Mk−1

∑
e∈Ek

xe

end
return some x∗ ∈Mt−1

Algorithm 7: Special case of the general hierarchical Algorithm 6 obtained by substituting
Def. (3.25) and (3.26). With the additional assumption of unique signed weights w : E → R,
this algorithm is equivalent to the Mutex Watershed Algorithm 4. The sequence of functions
Qk : Rm → R defined in Eq. 3.26 is sorted according to the associated scales λk in Eq. 3.25.
ISC(G, w) is defined in Eq. 3.27

Convergence of the sequence of minimizers

In this section, we see how Theorem 3.4.4 also suggests a minimization problem that is solved
by the Mutex Watershed algorithm. A short summary is given in the final paragraph of the
section.
First, we make sure that the conditions of Theorem 3.4.4 are satisfied when we apply it to
Algorithm 7:
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Lemma 3.4.5. Let us consider the scales λk and continuous functions Qk(x) : R|E| → R
respectively defined in Eq. (3.25) and (3.26). For any value of p ∈ N+, let xp ∈ R|E| be a
minimizer of the function Qp(x) defined in Eq. (3.24). Then, the minimizer xp lies in the set
ISC(G, w). From this, it follows that any sequence of minimizers (xp)p>0 is bounded and the
conditions of Theorem 3.4.4 are satisfied.

Proof. See Appendix A.1.

Then, given any p ∈ N+ and the Def. (3.25, 3.26), we have that the minimization of the
function Qp(x) defined in Eq. (3.24) is given by the following problem:

arg min
x∈Rm

Qp(x) = arg min
x∈Rm

∑
0≤k<t

λpkQk(x) (3.28)

= arg min
x∈ISC(G,w)

∑
1≤k<t

∣∣∣∣ w̃k2w̃1

∣∣∣∣p ∑
e∈Ek

xe (3.29)

= arg min
x∈ISC(G,w)

1

|2w̃1|p
∑
e∈E
|we|p xe (3.30)

where we used Lemma 3.4.5 and restricted the domain of the arg min operation to ISC(G, w),
so that Q0(x) = 0 for all x ∈ ISC(G, w).

It follows from Lemma 3.4.5 and Theorem 3.4.4 that a sequence of minimizers (xp)p>0

of the problem (3.30) converge, up to taking a subsequence, to the solution x∗ returned by
Algorithm 7. More specifically, we know that any minimizer xp of (3.30) is in the discrete
set ISC(G, w). Hence, the convergent sequence of minimizers (xp)p>0 eventually becomes
constant and there exists a p′ ∈ N+ large enough such that xp = x∗ for all p ≥ p′. In other
words, in the case of unique weights and p ≥ p′ large enough, the solution x∗ of the Mutex
Watershed Algorithm 7 solves the problem (3.30), which is just a rescaled version of the Mutex
Watershed Objective we introduced in Sec. 3.4.2.

To summarize, we used the extended Power Watershed framework to show that the Mutex
Watershed provides a solution to the minimization problem in Eq. (3.30) for p large enough.
In particular, this problem suggested by the Power Watershed framework is the same one
previously derived in Sec. 3.4.2 by linking the Mutex Watershed Algorithm to the multicut
optimization problem.
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3.5 Experiments

We evaluate the Mutex Watershed on the challenging task of neuron segmentation in electron
microscopy (EM) image volumes. This application is of key interest in connectomics, a field
of neuro-science that strives to reconstruct neural wiring digrams spanning complete central
nervous systems. The task requires segmentation of neurons from electron microscopy images
of neural tissue – a challenging endeavor, since segmentation has to be based only on boundary
information (cell membranes) and some of the boundaries are not very pronounced. Besides,
cells contain membrane-bound organelles, which have to be suppressed in the segmentation.
Some of the neuron protrusions are very thin, but all of those need to be preserved in the
segmentation to arrive at the correct connectivity graph. While a lot of progress is being made,
currently only manual tracing or proof-reading yields sufficient accuracy for correct circuit
reconstruction [139].

We validate the Mutex Watershed algorithm on the most popular neural segmentation
challenge: ISBI2012 [12]. We estimate the edge weights using a CNN as described in Section
3.5.1 and compare with other entries in the leaderboard as well as with other popular post-
processing methods for the same network predictions in Section 3.5.2.

3.5.1 Estimating edge weights with a CNN

The common first step to EM segmentation is to predict which pixels belong to a cell membrane
using a CNN. Different post-processing methods are then used to obtain a segmentation, see
Section 3.2 for an overview of such methods. The CNN can either be trained to predict
boundary pixels [20, 34] or undirected affinities [49, 89] which express how likely it is for a
pixel to belong to a different cell than its neighbors in the 6-neighborhood. In this case, the
output of the network contains three channels, corresponding to left, down and next imaging
plane neighbors in 3D. The affinities do not have to be limited to immediate neighbors – in fact,
[89] have shown that introduction of long-range affinities is beneficial for the final segmentation
even if they are only used to train the network. Building on the work of [89], we train a CNN
to predict short- and long-range affinities and then use those directly as weights for the Mutex
Watershed algorithm.

We estimate the affinities / edge weights for the neighborhood structure shown in Figure
3.6. To that end, we define local attractive and long-range repulsive edges. When attractive
edges are only short-range, the solution will consist of spatially connected segments that cannot
comprise “air bridges”. This holds true for both (lifted) multicut and for Mutex Watershed.
We use a different pattern for in-plane and between-plane edges due to the great anisotropy of
the data set. In more detail, we pick a sparse ring of in-plane repulsive edges and additional
longer-range in-plane edges which are necessary to split regions reliably (see Figure 3.6). We
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also added connections to the indirect neighbors in the lower adjacent slice to ensure correct
3D connectivity (see Figure 3.6). In our experiments, we pick a subset of repulsive edges, by
using strides of 2 in the XY-plane in order to avoid artifacts caused by occasional very thick
membranes. Note that the stride is not applied to local (attractive) edges, but only to long-range
(repulsive) edges. The particular pattern used was selected after inspecting the size of typical
regions. The specific pattern is the only one we have tried and was not optimized over.

In total, C+ attractive and C− repulsive edges are defined for each pixel, resulting in
C+ + C− output channels in the network. We partition the set of attractive / repulsive edges
into subsets H+ and H− that contain all edges at a specific offset: E+ =

⋃C+

c=1H
+
c for

attractive edges, with H− defined analogously. Each element of the subsets H+
c and H−c

corresponds to a specific channel predicted by the network. We further assume that weights
take values in [0, 1].

Network architecture and training

We use the 3D U-Net [33, 130] architecture, as proposed in [49].
Our training targets for attractive / repulsive edges

∗
w± can be derived from a groundtruth

label image
∗
L according to

∗
w+
e=(i,j)=

1, if
∗
Li=

∗
Lj

0, otherwise
(3.31)

∗
w−e=(i,j)=

0, if
∗
Li=

∗
Lj

1, otherwise
(3.32)

Here, i and j are the indices of vertices / image pixels. Next, we define the loss terms

J +
c = −

∑
e∈H+

c
(1− w+

e )(1− ∗
w+
e )∑

e∈H+
c

((1− w+
e )2 + (1− ∗

w+
e )2)

(3.33)

J −c = −
∑

e∈H−c w
−
e
∗
w−e∑

e∈H−c ((w−e )2 + (
∗
w−e )2)

(3.34)

for attractive edges (i.e. channels) and repulsive edges (i.e. channels).
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Figure 3.6: Local neighborhood structure of attractive (green) and repulsive (red) edges in the Mutex
Watershed graph.

Equation 3.33 is the Sørensen-Dice coefficient [42, 145] formulated for fuzzy set membership
values. During training we minimize the sum of attractive and repulsive loss terms J =∑C+

c J +
c +

∑C−

c J −c . This corresponds to summing up the channel-wise Sørensen-Dice loss.
The terms of this loss are robust against prediction and / or target sparsity, a desirable quality for
neuron segmentation: since membranes are locally two-dimensional and thin, they occupy very
few pixels in three-dimensional the volume. More precisely, if w+

e or
∗
w+
e (or both) are sparse,

we can expect the denominator
∑

e((w
+
e )2 + (

∗
w+
e )2) to be small, which has the effect that the

numerator is adaptively weighted higher. In this sense, the Sørensen-Dice loss at every pixel i
is conditioned on the global image statistics, which is not the case for a Hamming-distance
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based loss like Binary Cross-Entropy or Mean Squared Error.
We optimize this loss using the Adam optimizer [68] and additionally condition learning

rate decay on the Adapted Rand Score [12] computed on the training set every 100 iterations.
During training, we augment the data set by performing in-plane rotations by multiples of 90
degrees, flips along the X- and Y-axis as well as elastic deformations. At prediction time, we
use test time data augmentation, presenting the network with seven different versions of the
input obtained by a combination of rotations by a multiple of 90 degrees, axis-aligned flips
and transpositions. The network predictions are then inverse-transformed to correspond to the
original image, and the results averaged.

3.5.2 ISBI Challenge

The ISBI 2012 EM Segmentation Challenge [12] is the neuron segmentation challenge with the
largest number of competing entries. The challenge data contains two volumes of dimensions
1.5 × 2 × 2 microns and has a resolution of 50 × 4 × 4 nm per pixel. The groundtruth
is provided as binary membrane labels, which can easily be converted to a 2D, but not 3D
segmentation. To train a 3D model, we follow the procedure described in [20].
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(a) Mutex Watershed (b) Mutex Watershed (c) Multicut partitioning
based

segmentation (MC-FULL)

(d) Thresholding of local
boundary maps

(THRESH)

(e) Watershed, seeded at local
minima of the smoothed

input map (WS)

(f) Distance Transform
Watershed (WSDT)

Figure 3.7: Mutex Watershed and baseline segmentation algorithms applied on the ISBI Challenge test
data. Red arrows point out major errors. Orange arrows point to difficult, but correctly
segmented regions. All methods share the same input maps.

The test volume has private groundtruth; results can be submitted to the leaderboard. They
are evaluated based on the Adapted Rand Score (Rand-Score) and the Variation of Information
Score (VI-Score) [12].

Our method holds the top entry in the challenge’s leader board5 at the time of submission,
see Table 3.1a. This is especially remarkable insofar as it is simpler than the methods holding
the other top entries. Three out of four rely on a CNN to predict boundary locations and
postprocess its output with the complex pipeline described in [20]. This post-processing first
generates superpixels via distance transform watersheds. Then it computes a merge cost for
local and long-range connections between superpixels. Based on this, it defines a lifted multicut

5http://brainiac2.mit.edu/isbi_challenge/leaders-board-new, the leader-board of the ISBI segmentation challenge
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partioning problem that is solved approximately. In contrast, our method operates purely on
the pixel level and does not involve a NP-hard partioning step.

Comparison with other segmentation methods

The weights predicted by the CNN described above can be post-processed directly by the Mutex
Watershed algorithm. To ensure a fair comparison, we transform the same CNN predictions into
a segmentation using basic and state-of-the-art post-processing methods. We start from simple
thresholding (THRESH) and seeded watershed. Since these cannot take long-range repulsions
into account, we generate a boundary map by taking the maximum6 values over the attractive
edge channels. Based on this boundary map, we introduce seeds at the local minima (WS)
and at the maxima of the smoothed distance transform (WSDT). For both variants, the degree
of smoothing was optimized such that each region receives as few seeds as possible, without
however causing severe under-segmentation. The performance of these three baseline methods
in comparison to Mutex Watershed is summarized in Table 3.1b. The methods were applied
only in 2D, because the high degree of anisotropy leads to inferior results when applied in 3D.
In contrast, the Mutex Watershed can be applied in 3D out of the box and yields significantly
better 2D segmentation scores.

Qualitatively, we show patches of results in Figure 3.7. The major failure case for WS
(Figure 3.7e) and WSDT (Figure 3.7f) is over-segmentation caused by over-seeding a region.
The major failure case for THRESH is under-segmentation due to week boundary evidence (see
Figure 3.7d). In contrast, the Mutex Watershed produces a better segmentation, only causing
minor over-segmentation (see Figure 3.7a, Figure 3.7b).

Note that, in contrast to most pixel-based postprocessing methods, our algorithm can take
long range predictions into account. To compare with methods which share this property,
we turn to the multicut and lifted multicut-based partitioning for neuron segmentations as
introduced in [8] and [56]. As proposed in [7], we compute costs corresponding to edge cuts
from the affinities estimated by the CNN via:

se =

log w+
e

1−w+
e
, if e ∈ E+

log 1−w−e
w−e

, otherwise,
(3.35)

We set up two multicut problems: the first is induced only by the short-range edges (MC-
LOCAL), the other by short- and long-range edges together (MC-FULL). Note that the solution
to the full connectivity problem can contain “air bridges”, i.e. pixels that are connected only by
long-range edges, without a path along the local edges connecting them. However, we found

6The maximum is chosen to preserve boundaries.
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this not to be a problem in practice. In addition, we set up a lifted multicut (LMC) problem
from the same edge costs.

Both problems are NP-hard, hence it is not feasible to solve them exactly on large grid
graphs. For our experiments, we use the approximate Kernighan Lin [64, 65] solver. Even
this allows us to only solve individual 2D problems at a time. The results for MC-LOCAL
and MC-FULL can be found in Table 3.1b. The MC-LOCAL approach scores poorly because
it under-segments heavily. This observation emphasizes the importance of incorporating
the longer-range edges. The MC-FULL and LMC approaches perform well. Somewhat
surprisingly, the Mutex Watershed yields a better segmentation still, despite being much
cheaper in inference. We note that both MC-FULL, LMC and the Mutex Watershed are
evaluated on the same long-range affinity maps (i.e. generated by the same CNN with the same
set of weights).

3.6 Conclusion

We have presented a fast algorithm for the clustering of graphs with both attractive and
repulsive edges. The ability to consider both gives a valid alternative to other popular graph
partitioning algorithms that rely on a stopping criterion or seeds. The proposed method has
low computational complexity in imitation of its close relative, Kruskal’s algorithm. We have
shown which objective this algorithm optimizes exactly, and that this objective emerges as a
specific case of the multicut objective. It is possible that recent interesting work [85] on partial
optimal solutions may open an avenue for an alternative proof.

Finally, we have found that the proposed algorithm, when presented with informative edge
costs from a good neural network, outperforms all known methods on a competitive bioimage
partitioning benchmark, including methods that operate on the very same network predictions.

67



Method Rand-Score VI-Score

UNet + MWS 0.98792 0.99183
ResNet + LMC [167] 0.98788 0.99072

SCN + LMC [160] 0.98680 0.99144

M2FCN-MFA [141] 0.98383 0.98981

FusionNet + LMC [126] 0.98365 0.99130

(a) Top five entries at time of submission. Our
Mutex Watershed (MWS) is state-of-the-art
without relying on the complex lifted multicut
postprocessing used by most other top entries.

Method Rand-Score VI-Score Time [s]

MWS 0.98792 0.99183 43.3

MC-FULL 0.98029 0.99044 9415.8

LMC 0.97990 0.99007 966.0

THRESH 0.91435 0.96961 0.2

WSDT 0.88336 0.96312 4.4

MC-LOCAL 0.70990 0.86874 1410.7

WS 0.63958 0.89237 4.9

(b) Comparison to other segmentation strategies,
all of which are based on our CNN.

Table 3.1: Results on the ISBI 2012 EM Segmentation Challenge.
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4 Semantic Mutex Watershed

In this chapter1, we present our approach for joint graph partitioning and labeling to adress the
problem of semantic instance segmentation.

The development of our algorithm was motivated by the connection of Mutex Watershed and
multicut (see Chapter 3) that suggested the existence of a similar, efficient algorithm connected
to the Asymmetric Multiway Cut. We propose an extension to the Mutex Watershed, that
we call Semantic Mutex Watershed (SMWS) and show that it optimizes an objective, which
is connected to the Asymmetric Multiway Cut. Furthermore, we apply the SWMS on the
Cityscapes dataset (2D urban scenes) and on 3D microscopy volumes. We show that our
technique, combined with the use of current deep neural networks, outperforms the strong
baseline of ‘Panoptic Feature Pyramid Networks’ by Kirillov et al. [71]. In the special case of
3D electron microscopy images, we show explicitly that our joint formulation outperforms a
separate optimization of the partition problem and labeling problem.

4.1 Introduction

Image segmentation literature distinguishes semantic segmentation - associating each pixel
with a class label - and instance segmentation, i.e. detecting and segmenting individual objects
while ignoring the background. The joint task of simultaneously assigning a class label to each
pixel and grouping pixels to instances has been addressed under different names, including
semantic instance segmentation, scene parsing [148], image parsing [150], holistic scene
understanding [171] or instance-separating semantic segmentation [93]. Recently, a new metric
and evaluation approach to such problems has been introduced under the name of panoptic
segmentation [72].

From a graph theory perspective, semantic instance segmentation corresponds to the si-
multaneous partitioning and labeling of a graph. Most greedy graph partitioning algorithms
are defined on graphs encoding attractive interactions only. Clusters are then formed through

1This chapter is based on our paper [164] which was published in 2019. The results in this chapter represent the
current state at the time of publication. The training of the deep neural network used for the experiments of
this chapter has been carried out by Yuyan Li (2D urban scenes) and Constantin Pape (3D electron microscopy
images). Yuyan additionally aided in the implementation and characterization of the SMWS.
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agglomeration or division until a user-defined termination criterion is met (often a threshold
or a desired number of clusters). These algorithms perform pure instance segmentation. The
semantic labels for the segmented instances need to be generated independently.

If repulsive - as well as attractive - forces are defined between the nodes of the graph,
partitioning can be formulated as a Multicut problem [5]. In this formulation clusters emerge
naturally without the need for a termination criterion. Furthermore, the Multicut problem can
be extended to include the labeling of the graph, delivering a semantic instance segmentation
from a joint optimization of partitioning and labeling [81].

We propose to solve the joint partitioning and labeling problem by an efficient algorithm
which we term Semantic Mutex Watershed (SMWS), inspired by the Mutex Watershed [165].
In more detail, in this contribution we:

• propose a fast algorithm for joint graph partitioning and labeling
• prove that the algorithm minimizes (exactly) an objective function closely related to the

Asymmetric Multiway Cut objective
• demonstrate competitive performance on natural and biological images.

4.2 Related Work

Semantic segmentation. State-of-the-art semantic segmentation algorithms are based on
convolutional neural networks (CNNs) which are trained end-to-end. The networks commonly
follow the design principles of image classification networks (e.g. [53, 80, 143]), replacing
the fully connected layers at the end with convolutional layers to form a fully convolutional
network [99]. This architecture can be further extended to include encoder-decoder paths
[131], dilated or atrous convolutions [28, 175] and pyramid pooling modules [29, 182].

Instance segmentation. Many instance segmentation methods use a detection or a region
proposal framework as their basis; object segmentation masks are then predicted inside region
proposals. A cascade of multiple networks is employed by [40], each solving a specific
subtask to find the instance labeling. Mask-RCNN [54] builds on the bounding box prediction
capabilities of Faster-RCNN [127] to simultaneously produce masks and class predictions. An
extension of this method with an additional semantic segmentation branch has been proposed
in [71] as a single network for semantic instance segmentation.

In contrast to the region-based methods, proposal-free algorithms often start with a pixel-
wise representation which is then clustered into instances [46, 78, 174]. Alternatively, the
distance transform of instance masks can be predicted and clustered by thresholding [15].
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Graph-based segmentation. Graph-based methods, used independently or in combi-
nation with machine learning on pixels, form another popular basis for image segmentation
algorithms [47]. In this case, the graph is built from pixels or superpixels of the image and
the instance segmentation problem is formulated as graph partitioning. When the number of
instances is not known in advance and repulsive interactions are present between the graph
nodes, graph partitioning can in turn be formulated as a Multicut or correlation clustering
problem [5]. This NP-hard problem can be solved reasonably fast for small problem sizes
with integer linear programming solvers [7] or approximate algorithms [20, 119]. A modified
Multicut objective is introduced by [165] together with the Mutex Watershed - an efficient
clustering algorithm for its optimization.

The Multicut objective can be extended to solve a joint graph partitioning and labeling
problem [62, 81] for simultaneous instance and semantic segmentation. In practice, the
computational complexity of the joint problem only allows for approximate solutions [93],
possibly combined with reducing the problem size by over-segmentation into superpixels. This
formulation has been applied to natural images by [70] and to biological images by [79].

Similar to the semantic segmentation use case, CNNs can be used to predict pixel and
superpixel affinities which serve as edge weights in the graph partitioning problem [89, 98,
100].

4.3 The Semantic Mutex Watershed

In this section, we introduce an extension to the Mutex Watershed algorithm for semantic
instance segmentation. Similar to instance segmentation algorithms discussed in Chapter 3,
we build a graph of image pixels (voxels) or superpixels and formulate the semantic instance
segmentation problem as the joint partitioning and labeling of a graph.

Weighted graph with terminal nodes. To partition an undirected weighted graph G =
G(V,E,w) graph into instances Wolf et al. [165] differentiate between attractive edges E+ =
{e ∈ E |we >= 0} and repulsive edges E− = {e ∈ E |we < 0}. In other words, the weights
encode the attraction and repulsion between the incident nodes of each edge. Since we will
augment this graph with additional nodes, we will refer to V as internal nodes and edges
E = E+ ∪ E− as internal edges.

Semantic instance segmentation can be achieved by clustering the internal nodes and as-
signing a semantic label l ∈ {l0, ..., lk} to each cluster. We extend G by k terminal nodes
{t0, ..., tk} ∈ T where each ti is associated with a label li. Every internal node v ∈ V is
connected to every t by a weighted semantic edge e ∈ ES . Here, a large semantic weight
wut ⊆ R+ implies a strong association of internal node u with the label of the terminal node
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Figure 4.1: Left: An example of an extended graph. Nodes on the top are terminal nodes whereby each
color represents a label class. The associated semantic edges are colored correspondingly.
The internal nodes are on the bottom with attractive (green) and repulsive (red) edges
between them. Right: Semantic instance segmentation. Edges that are part of the active set
are shown in bold. Clusters are depicted in grey. Note that two adjacent nodes with the same
label are not necessarily clustered together.

t. The extended graph thus becomes G′(V ′, E′,W ′) with V ′ = V ∪ T, E′ = E ∪ ES and
W ′ = W ∪WS . Figure 4.1 shows an example of such an extended graph.

4.3.1 The Semantic Mutex Watershed Algorithm.

We will now extend the Mutex Watershed Algorithm to the extended graph G′ for joint graph
partitioning and labeling. The algorithm finds a clustering and label assignment described by
a set of active edges: A ⊆ E′ where A+ := A ∩ E+, A− := A ∩ E− and AS := A ∩ ES
encode clusters, mutual exclusions and label assignments, respectively. In order to restrict A to
a consistent partitioning and labeling we will make the following definitions:

We define two internal nodes i, j ∈ V as connected if they are connected by active attractive
edges, i.e.

∀i, j ∈ V : (4.1)

Πi→j = {paths π from i to j with π ⊆ E′} (4.2)

connected(i, j;A+) ⇔ ∃ path π ∈ Πi→j with π ⊆ A+ (4.3)

cluster(i;A+) = {i} ∪ {j : connected(i, j;A+)} (4.4)
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Semantic Mutex Watershed:
SMWS

(
G(V,E′), w : E′ → R, boolean connect_all

)
:

A+ ← ∅; A− ← ∅
for (i, j) = e ∈ E′ in descending order of |we| do

if e ∈ E+ then
if not mutex(i, j;A+, A−)
and not differentclass(i, j, A+, AS) then

if not connected(i, j;A+) or connect_all then
merge(i, j): A+ ← A+ ∪ e

. merge i and j and inherit the mutex
constraints of the parent clusters

else if e ∈ E− then
if not connected(i, j;A+) then

addmutex(i, j): A− ← A− ∪ e
. add mutex constraint between i and j

else if e ∈ ES then
if class(i, A+, AS) = ∅ or class(i, A+, AS) = lj then

assignLabel(i, j): A← A ∪ e

return A
Algorithm 8: The Semantic Mutex Watershed algorithm. The differences to the Mutex
Watershed are marked in blue.

and the mutual exclusion between two nodes as

mutex(i, j;A+, A−) ⇔ ∃ e = (k, l) ∈ A− with (4.5)

k ∈ cluster(i;A+) and (4.6)

l ∈ cluster(j;A+) and (4.7)

cluster(i;A+) 6= cluster(j;A+) (4.8)

Two nodes are thus mutual exclusive if they are connected by a path from i to j with exactly
one repulsive edge. Furthermore, a label lj is assigned to a node i if this node is connected to
the corresponding terminal node tj by attractive and semantic edges:

class(i, A+, AS) = lj ⇔ ∃π ∈ Πi→j with π ⊆ A+ ∪AS . (4.9)
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For unlabeled nodes i, where class(i, A+, AS) 6= c ∀c ∈ {l0, ..., lk}, we use the notation
class(i, A+, AS) = ∅ and use it to define the following predicate

differentclass(i, j, A+, AS) ⇔ class(i, A+, AS) 6= class(j, A+, AS) and (4.10)

class(i, A+, AS) 6= ∅ and (4.11)

class(j, A+, AS) 6= ∅ (4.12)

Algorithm. The Semantic Mutex Watershed algorithm is an extension of the Mutex Wa-
tershed algorithm introduced by Wolf et al. [165]. It augments the partitioning of the latter
with a consistent labeling. The algorithm is shown in algorithm 8 with the additions to [165]
highlighted. In the following we explain the syntax and procedure of the shown pseudocode.

All edges E′ are considered to be added to the active set A. The decisions are made in
descending order of their absolute edge-weights and depend on the type of each edge:
Attractive edges: The edge is added if the incident nodes are not mutual exclusive and not
labeled differently.
Repulsive edges: The edge is added if the incident nodes are not connected.
Semantic edges: The edge is added if the node is either unlabeled or already has the same label
as the edge’s terminal node.

After following these rules, the set of attractive edges in the final set A ∩ E+ form clusters
in the graph G, which are each connected to a single terminal node indicating the labeling.
Figure 4.1(b) shows a simple example of such an active set. Note, that the Mutex Watershed
algorithm is embedded in the Semantic Mutex Watershed for the special case when there are
zero or one label (|T | ∈ {0, 1}).

Efficient Implementation with Maximum-Spanning-Trees. The SMWS is similar to
the efficient Kruskal’s maximum spanning tree algorithm [84] and can feasibly be applied to
pixel-graphs of large images and even image volumes. Our implementation utilizes an efficient
union-find data structure; mutex relations are realized through a hash table.

4.3.2 The Semantic Mutex Watershed Objective

The Semantic Mutex Watershed, introduced in the previous section, operates on a graph with
semantic nodes identical to the Asymmetric Multiway Cut. In this section we prove that
the Semantic Mutex Watershed optimizes a precise objective and show how it relates to the
Asymmetric Multiway Cut objective. To this end, we will extend the proof of [165] to the
Semantic Mutex Watershed. Let us first recall the definitions of dominant powers and mutex
constraints in [165].
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Dominant power. Let G = (V ′, E′, w) be an edge-weighted graph, with unique weights
w : E‘→ R. We call p ∈ N+ a dominant power if:

|we|p >
∑

t∈E′, wt<we

|wt|p ∀e ∈ E′, (4.13)

Note that there exists a dominant power for any finite set of edges, since for any e ∈ E we can
divide (4.13) by wpe and observe that the normalized weights wps/w

p
e (and any finite sum of

these weights) converges to 0 when p tends to infinity.
Conflicted cycles. (see Definition 3.4.1) We call a cycle of G conflicted w.r.t. (G, w) if it

contains precisely one repulsive edge e ∈ E−, s.t. we < 0. We denote by C−(G, w) ⊆ C(G, w)
the set of all conflicted cycles. Furthermore, given a set of edges A ⊆ E, we denote by
C−(A,G, w) ⊆ C−(G, w) the set of conflicted cycles involving only edges in A. If there are no
conflicted cycles C−(G,A,w) = ∅ then A implies a consistent graph partitioning[85]. In other
words, it ensures that two nodes that are mutual exclusive can not be connected.

Furthermore, we define the set P(A) of all paths π that connect two distinct terminal nodes
through attractive and semantic edges:

P(A) := {π |π ∈ Πt→t′ , π ∈ A ∩ (E+ ∪ ES), t, t′ ∈ T , t 6= t′ } (4.14)

The algorithm must never connect two terminal nodes through such a path, thus we define
the label constraint P(A) = ∅. This ensures the consistency between the partitioning and
labeling.

Lemma 4.3.1 (Optimality of the Semantic Mutex Watershed).
Let G′ = (V ′, E′, w) = (V ∪ T,E ∪ES , w) be an edge-weighted graph extended by terminal
nodes T , with unique weights w′ : E′ → R, wt > 0 ∀ t ∈ T and p ∈ R+ a dominant power.
The edge indicator given by the Semantic Mutex Watershed algorithm 3

xSMWS := 1

is the optimal solution to the integer linear program

arg min
x∈{0,1}|E′|

∑
e∈E′

|we|pxe (4.15)

s.t. C−(G,A,w) = ∅, (4.16)

P(A) = ∅, (4.17)

with A := { e ∈ E | xe = 0 }. (4.18)
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Proof. This proof is completely analogous to Theorem 3.4.1 and even identical for T = ∅. The
SMWS finds the optimal solution because it enjoys the properties optimal substructure and
greedy choice. The proof of Theorem 3.4.1 showing optimal substructure does not rely on
the specific constraints in the ILP. Thus it can also be applied with the additional constraint in
eq. (4.17), giving the ILP eqs. (4.15) to (4.18) optimal substructure.

In every iteration the SMWS adds the feasible edge e with the largest weight to the active set.
Due to the dominant power, its energy contribution is larger than for any combination of edges
e′ with w′e < we. Thus, SMWS has the greedy choice property [36]. It follows by induction
that the SMWS algorithm finds the globally optimal solution to the SMWS objective.

Relation to the Asymmetric Multiway Cut. To understand the relation of the Semantic
Mutex Watershed to the Asymmetric Multiway Cut we will transform the SMWS problem
(eqs. (4.15) to (4.18)) into an ILP with the same minimal energy solution as the Asymmetric
Multiway Cut.

First, we identify the indicator variables x in eq. (4.15) with the AMWC indicators y in
eq. (1.3). For attractive and semantic edges both indicators represent the same graph partitions
and class assignments. In particular, given the associated indicators x and y of any graph
partitioning and labeling, xe = ye ∀ e ∈ E+ ∪ ES holds. For repulsive edges e− ∈ E−
however, xe− indicates a mutex edge and therefore a necessary cut, hence ye− = 1 − xe− .
Additionally, the Asymmetric Multiway Cut introduces repulsive edges between terminal nodes
and constrains them to be always cut. In conclusion we can translate between both indicators
with

ye(x, e) =


xe if e ∈ E+ ∪ ES

1− xe if e ∈ E−

1 if e ∈ (T × T )

(4.19)

Using eq. (4.19) we translate the SWMS objective eq. (4.15)

∑
e∈E′

|we|pxe =
∑
e∈E+

|we|pye +

∑
e∈E−

1


︸ ︷︷ ︸

Ltriv

−
∑
e∈E−

|we|pye +
∑
e∈ES

|we|pye (4.20)

=
∑
e∈E′

sign(we)|we|pye + Ltriv (4.21)

Note that the constant Ltriv does not affect the minimum energy solution.
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Second, we will add the constraints∑
t∈T

ytv = |T | − 1 ∀v ∈ V (4.22)

ye ≤
∑

e′∈C\{e}

ye′ ∀C ∈ cycles (G)∀e ∈ C (4.23)

to the Semantic Mutex Watershed ILP eqs. (4.15) to (4.17) and observe, since y(xSMWS)
always fulfills eqs. (4.22) and (4.23). Therefore, y(xSMWS) also minimizes eq. (4.15) subject
to the tighter constraints eqs. (4.17), (4.18), (4.22) and (4.23). Using Equation (4.22) and
Lemma B.1.1 (see Appendix section B.1) we can replace the path constraints eq. (4.17) by

P(A) = ∅ ⇔
∑
e∈P

ye ≥ 1 ∀P ∈ πt t′ ∀t, t′ ∈ T, t 6= t′ (4.24)

⇔ yut + yuv + yvt′ ≥ 1 ∀(u, v) ∈ E ∀t, t′ ∈ T, t 6= t′ (4.25)

⇔ ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T (4.26)

ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T . (4.27)

We conclude that y(xSMWS) minimizes the objective:

arg min
y∈{0,1}|E′|

∑
e∈E′

sign(we)|we|pye (4.28)

subject to ye ≤
∑

e′∈C\{e}

ye′ ∀C ∈ cycles (G)∀e ∈ C (4.29)

∑
t∈T

ytv = |T | − 1, if T 6= ∅,∀v ∈ V \T (4.30)

ytt′ = 1, ∀t, t′ ∈ T, t 6= t′c, f (4.31)

ytu + yuv ≥ ytv, ∀(u, v) ∈ E, t ∈ T (4.32)

ytv + yuv ≥ ytu, ∀(u, v) ∈ E, t ∈ T (4.33)

highlighting the close connection to the Asymmetric Mutiway Cut objective. In fact, although
unlikely in practical applications, for graphs G′ where d = 1 is a dominant power, the Semantic
Mutex Watershed solves the Asymmetric Mutiway Cut to optimality.

4.4 Experiments

We will now demonstrate how to apply the SMWS algorithm to semantic instance segmentation
of 2D and 3D images. We start from showing how existing CNNs can be used as graph weight

77



im
ag

e
gr

ou
nd

tr
ut

h
pr

ed
ic

tio
n

Figure 4.2: Semantic instance segmentation. Results on Cityscapes using semantic unaries (Deeplab 3+
network) and affinities derived from Mask-RCNN foreground probability. Colors indicate
predicted semantic classes with color tone variations for separate instances.

Figure 4.3: Results for the sponge dataset. From left to right: Raw data. Ground truth. Result of the
Semantic Mutex Watershed. Cell-bodies are colored in blue, microvilli in green and flagella
in red.

estimators and compare different sources of edge weights on the Cityscapes dataset. Addition-
ally, we apply the SMWS algorithm to a 3D electron microscopy volume and demonstrate its
efficiency and scalability.

4.4.1 Affinity Generation with Neural Networks

The only input to the SMWS are the graph weights; it does not require any hyperparamters
such as thresholds. Consequently, its segmentation quality relies on good estimates of the graph
weights W ′ = W ∪WS . In this section we present how state-of-the-art CNNs can be used as
sources for these weights.
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Affinity Learning. Affinities are commonly used in instance segmentation; many modern
algorithms train CNNs to directly predict pixel affinities. A universal approach is to employ a
stencil pattern that describes for each pixel which neighbours to consider for the affinity com-
putation. Regularly spaced, multi-scale stencil patterns are widely used for natural images [98,
100] and bio-medical data [89, 163].

The predicted affinities are usually in the interval [0, 1] and can be interpreted as pseudo-
probabilities. We use these affinities directly as weights for the attractive edges and invert them
to get the repulsive edge weights.

Mask-RCNN produces overlapping masks that have to be resolved for a consistent panoptic
segmentation. We achieve this with the SMWS by deriving affinities from the foreground
probabilities of each mask. A straightforward approach is to compute the (attractive) affinity
a(i, j) of two pixels as their joint foreground probability, weighted by the classification score
s: a(i, j) = s p(i) p(j).

We find that sparse repulsive edges work well in practice, as they lead to faster inference and
reduced over-segmentation on the instance boundaries. +For this reason, we sample random
points from all pairs of masks and add (repulsive) edges with weight proportional to a soft
intersection over union of two masks m and n:

wnm = 1−
∑

q∈V pm(q)pn(q)∑
q∈V max (pm(q), pn(q))

. (4.34)

Semantic Segmentation CNNs. State of the art CNNs [30, 182] achieve high quality
results on semantic segmentation tasks. The output of the last softmax layer usually used in
these networks can be interpreted as the normalized probability of each pixel belonging to each
class. Thus, we can use these predictions directly as semantic weights WS .

Additionally, we derive affinities from the stuff class probabilities; we treat each stuff class
separately and again compute the affinity of two pixels as their joint probability of being in
each stuff class c, i.e.: ac(i, j) = pc(i) pc(j). This cannot be done for thing classes since they
can have multiple instances.

4.4.2 Panoptic Segmentation on Cityscapes

We apply the SMWS on the challenging task of panoptic segmentation on the Cityscapes
dataset [35]. We illustrate how the different sources of affinities can be used and combined and
show their different strengths and weaknesses.
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MRCNN[54] GMIS[98] Deeplab[30] Cityscapes

att rep att rep att rep sem PQ PQTh PQSt

3 3 3 59.3 50.6 65.7

3 3 3 58.6 48.8 65.7

3 3 3 56.1 42.8 65.7

3 3 3 3 3 3 3 48.7 38.7 55.9

3 3 3 3 3 47.3 35.5 55.9

3 3 3 46.3 33.1 56.0

Table 4.1: Panoptic segmentation quality PQ of the SMWS on top of diverse sources of graph weights.
We distinguish between attractive (att), repulsive (rep) and semantic (sem) graph weights
extracted from the respective methods.

Dataset. The Cityscapes dataset consists of urban street scene images taken from a driver’s
perspective. It has 5k densely annotated images separated into train (2975), val (500) and test
(1525) set. Since there is no public evaluation server for panoptic segmentation on the test set,
we report all results on the validation set. There are 19 classes with 11 stuff classes and 8 thing
classes.

Implementation Details. We employ and combine multiple sources of graph weights to
build the SMWS graph. We train a Deeplab 3+ [30] network for semantic edge weight and
affinities prediction following [98]. We employ the Mask-RCNN [54] implementation provided
by [102] and train a model on Cityscapes following [54]’s training configuration. Further
implementation details can be found in section B.2.1.

Study of Affinity Sources. We evaluate the semantic instance segmentation performance
of the SMWS in terms of the “panoptic” metric using different combinations of the graph
weight sources discussed above. In table 4.1 we compare the PQ metric on the Cityscapes
dataset.

The best performance can be achieved with a combination of Mask-RCNN affinities and
Deeplab 3+ for semantic predictions outperforming the strong baseline of [71] listed in table 4.2
and shown in fig. 4.2 and the supplementary fig. B.1. Through observations on the images,
we find that Mask-RCNN affinities are more reliable in detecting small objects as well as in
connecting fragmented instances. Note that PQ mostly measures detection quality which is
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Cityscapes PQ PQTh PQSt

SMWS 59.3 50.6 65.7
PFPN[71] 58.1 52.0 62.5

DIN[13] 53.8 42.5 62.1

Sponge
SMWS 51.6 62.1 20.0

MWS-MAX 48.1 56.2 23.8
CCsem 43.4 55.6 06.7

CCaff 24.3 27.7 13.9

Table 4.2: Comparison to other segmentation strategies in measuring the panoptic segmentation quality
PQ.

then weighted by the segmentation quality of the found instances, hence the detection strength
of the Mask-RCNN shines through.

We observe that using all sources together leads to a performance drop of 10 percentage
points below the best result. We believe this is due to the greedy nature of the SMWS which
selects the strongest of all provided edges. This example demonstrates how important it is to
carefully select/train the algorithm input.

4.4.3 Semantic Instance Segmentation of 3D EM Volumes

Semantic instance segmentation is an important task in bio-medical image analysis where
classes naturally arise through cellular structure. We use a 3D EM image dataset to compare
the SMWS to algorithms that separately optimize instance segmentation and semantic class
assignment.

Dataset. The data-set consists of two FIBSEM volumes of a sponge choanocye chamber.
The data was acquired in [112] to investigate proto-neural cells in sponges using the segmenta-
tion approach introduced in [120]. These cells filter nutrients from water by creating a flow
with the beating of a flagellum and absorbing the nutrients through microvilli that surround the
flagellum in a collar [86] (see fig. 4.2). In order to investigate this process in detail, a precise
semantic instance segmentation of the cell-bodies, flagella and microvilli is needed. The dataset
consists of three EM image volumes of size 96× 896× 896 pixel (2× 18× 18 µm).
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Implementation Details. We predict affinities with two separate 3D U-Nets [33] to derive
graph edge weights and semantic class probabilities respectively. We adopt the training
procedure of [163] which uses the Dice Coefficient as the loss function. We use two volumes
for training and one for testing.

We also implement baseline approaches which start from the same network predictions, but
do not perform joint labeling and partitioning. First, we compare to instance segmentation
with the Mutex Watershed, followed by assigning instances the semantic label of the strongest
semantic edge (MWS-MAX). In addition, we compute connected components of the semantic
predictions (CCsem) and short-range affinities (CCaff).

Results. The PQ values in table 4.2 show that the SMWS outperforms the baselines ap-
proaches that separately optimize instance segmentation and semantic class assignment. An
additional analysis can be found in the appendix fig. B.2, where we measure the runtimes for
different volume sizes and observe almost linear scaling behavior.

4.5 Conclusion

We have introduced a new method for joint partitioning and labeling of weighted graphs
as a generalization of the Mutex Watershed algorithm. We have shown that it optimally
solves an objective function closely related to the objective of the Asymmetric Multiway Cut
problem. Our experiments demonstrate that SMWS with graph edge weights predicted by
convolutional neural networks outperform strong baselines on natural and biological images.
Any improvement in the CNN performance will translate directly to an improvement of the
SMWS results. However, we also observe that the extreme value selection used by the SMWS
to assign edges to the active set can lead to sub-optimal performance when diverse edge
weights sources are combined. Empirically, the algorithm scales almost linearly with the
number of graph edges N making it applicable to large images and volumes without prior
over-segmentation into superpixels. The source code will be made available upon publication.
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5 Self-Supervised Affinities

Labeling “ground truth” for biological medical image segmentation, especially cell segmenta-
tion and neuron reconstruction, is a challenging and labor-intensive task [152]. It is therefore
of great value in practice if algorithms can provide meaningful segmentation results fully unsu-
pervised, without the need correctly labeled training data. In Chapter 3 we have evaluated the
segmentation quality of the Mutex Watershed algorithm in conjunction fully-supervised affinity
networks. In this chapter1, we present our approach to derive affinities in an unsupervised way.
We observe that deep neural networks trained to inpaint partially occluded images show a deep
understanding of image composition and have even been shown to remove objects from images
convincingly. We investigate how this implicit knowledge of image composition can be lever-
aged for fully self-supervised instance separation. We propose a measure for the independence
of two image regions given a fully self-supervised inpainting network and separate objects by
maximizing this independence. We evaluate our method on two microscopy image datasets
and show that it reaches comparable segmentation performance to fully supervised methods.

5.1 Motivation

Recent inpainting neural networks demonstrate a remarkable ability to remove distortions in
natural images (e.g., text overlays, watermarks, or pixel-wise independent noise) and are even
able to entirely remove foreground objects (e.g., a flagpole as demonstrated here). Trained on
large datsets, these networks learn the statistics that underlie images in a way that goes well
beyond low level features. In this work, we aim to leverage those learnt statistics to distinguish
individual objects in images from each other, without any form of supervision.

In order to intuitively understand how these statistics can be used, let us consider a high-
capacity inpainting network trained on a very large corpus of natural images and imagine the
following scenario: Given the image of a busy street with a region in the center masked out to
inpaint, such a network will be able to continue inpainting cars that are partially visible. If,
however, the masked-out region is large enough to contain entire objects, the provided context
will be uninformative about their location, shape, and texture and will therefore not be able to

1This chapter is based on our paper [161] which was published in 2020. The results in this chapter represent the
current state at the time of publication.
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...

...

raw agglomerated inpainting affinities

P M M∗ affinities

argminM IGM(M)

Figure 5.1: Extraction of instance separating affinities from an inpainting network. Given an image
patch P , we optimize a set of pixels M (shown in purple) to minimize the information gain
measure IGM, which is based on the predictions of a probabilistic inpainting network (see
Section 5.2.2 and Fig. 5.2 for details). This optimization ensures that pixels in M∗ provide
minimal information about the intensity values of pixels in the complement M

∗
(shown

in orange). We apply this procedure recursively to M∗ and M
∗

to obtain a hierarchical
segmentation of the image patch from which we extract affinities (shown in blue/red for
x-/y-direction, respectively). These affinities are computed and averaged over a set of sliding
image patches (green box) to obtain the final affinity estimates.

recover those objects. In other words, the success of predicting masked out objects depends on
the information about those object contained in the surrounding context.

Here, we propose to exploit the predictability of image regions given partial information
to separate instances. We do so by maximizing the surprise of the inpainting network when
trying to predict image content from one segment to another, or, equivalently, by minimizing
the information gain between segments. This optimization can be carried out using only
the implicit knowledge of inpainting networks about instances and thus gives rise to a self-
supervised instance separation.
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In particular, we define an information gain measure between image segments that can
be approximated efficiently given an inpainting network. We show that minimizing this
measure, through a hierarchical optimization algorithm yields useful image decompositions.
We represent those decompositions by affinities, i.e., attractive or repulsive edges between pairs
of pixels, which we average over a set of image patches in a sliding window fashion to obtain
affinities for arbitrarily large images. An overview of this method is shown in Fig. 5.1. The
resulting affinities require only minimal post-processing to obtain a segmentation. We apply
our method to the challenging problem of cell segmentation in microscopy images, where we
show that the unsupervised instance separation finds non-trivial splits and is competitive with
supervised methods.

5.2 Self-Supervised Segmentation

In general, self-supervised segmentation is an under-constrained problem. What exactly con-
stitutes a correct segmentation of an image depends not only on the application context (e.g.,
segment all cells in a microscopy image), but also on a subjective level of detail (e.g., segment
nuclei and cell membrane individually). Without constraining assumptions or instructions, sev-
eral different segmentations of the same image are plausible, leading to an intrinsic ambiguity.
This ambiguity can be prominently observed as the inter-human variance for segmentation
tasks where the concept of a segment is not precisely defined (see, e.g., human generated
segmentations of the BSD500 dataset for fruits, fences, or flowers)[11].

In the case of supervised image segmentation, this ambiguity is resolved by a set of training
object instances in the form of, e.g., affinities, labeled images, bounding boxes, or polygons.
For self-supervised segmentation, on the other hand, assumptions about what constitutes a
segmentation have to fill in for the lack of training data.

Here, we propose to resolve this ambiguity by assuming that pixels of the same instance are
more predictable from each other than across instances. We define the similarity between two
pixels (and therefore the likelihood to be part of the same instance) as the information gained
about the value of one pixel by observing the value of the other one. In the following we will
derive this similarity from a measure of inpainting accuracy.

5.2.1 Self-supervised Inpainting

Let xi be a random variable representing the intensity of pixel i ∈ Ω, and xM with M ⊆ Ω
a set of random variables {xi|i ∈ M}. Probabilistic inpainting is equivalent to learning a
parameterized function pθ(xi|xM ), i.e., the conditional distribution over intensities of pixel i,
given known intensities of a partial observation M . The parameters θ of the distribution pθ
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can be learned by maximizing the likelihood of a measurement x = x∗, or equivalently by
minimizing the following negative log-likelihood:

Linpaint(θ;M) =
∑
i/∈M

− log pθ (xi = x∗i |xM = x∗M ) (5.1)

It is worth noting that this loss formulation resembles the objective of probabilistic NOISE2VOID [83],
highlighting the close connection between inpainting and denoising. In the next subsection, we
will derive a similar connection between inpainting (“predictability”) and instance separation
(“affinity”).

5.2.2 Predictability is Affinity

Our central assumption is that the intensity value of a pixel in an instance is conditionally
independent of all pixels outside the instance.

In other words, pixel values should be well predictable given the values of other pixels in the
same instance (high affinity). Conversely, pixel values from other instances should provide no
additional information (low affinity). More formally, let S = {Su ⊆ Ω} be a segmentation
of Ω (i.e.,

⋃
u Su = Ω and ∀u 6= v : Su ∩ Sv = ∅), and let S(i) ⊆ Ω denote the segment

containing pixel i. We assume that for the true instance segmentation S∗

p(xi|xΩ\{i}) = p(xi|xS∗(i)\{i}), (5.2)

or, equivalently, that there is no further information gain provided by Ω compared to S∗(i)
for estimating the value of xi. For general subsets M ⊆ Ω, let IG(i|M) denote the additional
information gained for estimating the value of xi when observing Ω compared to M alone, i.e.,

IG(i|M) = DKL

(
p(xi|xΩ\{i})

∣∣∣∣∣∣p(xi|xM\{i})), (5.3)

where DKL denotes the Kullback-Leibler divergence. In the following, we will use IG(i|M) as
a measure of how much xi depends on values not contained in M .

Considering our assumption stated in (5.2), a sensible objective to recover a single segment
of the true segmentation S∗ would be to minimize (5.3) with respect toM . In practice, however,
it would be unreasonable to assume that even for a correct segment M the information gain for
pixels in this set from pixels outside this set is exactly zero. In other words, dilating M would
trivially decrease IG(i|M) until M = Ω. Therefore, instead of minimizing (5.3) directly,
we propose to minimize a symmetric information gain measure. Let M = Ω \M be the
complement of M . Recall that IG(i|M) measures the dependency of xi on values in M . We
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introduce a relative information gain that indicates whether M or M provide more information
about the value of xi:

RIG(i|M) = IG(i|M)− IG(i|M). (5.4)

The quality of a single segmentM can now be assessed by the following symmetric information
gain measure over all pixels i:

IGM(M) =
∑
i∈M

RIG(i|M) +
∑
i∈M

RIG(i|M) (5.5)

=
∑
i∈M

RIG(i|M)−
∑
i∈M

RIG(i|M). (5.6)

5.2.3 Efficient Implementation

In its current form, IGM(M) requires evaluation of IG(i|M) for every pixel i ∈ Ω. For each
of these evaluations, pθ(xi|·) has to be computed two times (conditioned on M and M ), which
is too inefficient for a practical implementation.

To remedy this inefficiency, we make two approximations: First, we take advantage of
convolutional neural network architectures that can inpaint an arbitrary set of pixels N for the
same conditional [97]:∏

i∈N
pθ(xi|M \ {i}) ≈

∏
i∈N

pθ(xi|M \N) (5.7)

A similar approximation technique was first proposed by Krull, Buchholz, and Jug [82] who
argue that this approximation is error-free for convolutional neuronal networks, if all pixels
in N are spaced further apart than the field of view of the network. In our experiments, we
find that even much denser subsets can be chosen without significant impact. We will refer to
RIG(i|M) using this approximation as RIGN (i|M) in the following.

Second, due to the limited field of view of the inpainting network, pixels far away from
the conditional set have to be estimated via a constant prior and the relative information
gain can therefore be computed without evaluating the neural network. Similarly, the com-
plement conditional contains all pixels in the field of view. This is exactly the denoising
setup of NOISE2VOID [82]. Therefore, for low-noise-images one can directly approximate
IG(i|Ω) ≈ 0 and otherwise apply the NOISE2VOID as a preprocessing step to our method.
Thus, RIG(i|M) ≈ const for pixels far away from the boundary between M and M .
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In conclusion, limiting the computation of IGM to a specified regionN close to the boundary
combined with the approximate RIGN leads to the following approximation:

IGMN (M) =
∑

i∈M∩N
RIGN (i|M)−

∑
i∈M∩N

RIGN (i|M) (5.8)

≈ IGM(M) + const (5.9)

5.2.4 Segmentation from Maximal Independent Regions

Although the approximation IGMN introduced above reduces the computational burden of
evaluating IGM, finding an optimal mask

M∗ = arg minM IGMN (M) (5.10)

still remains intractable in general due to the combinatorial number of possible masks. We
propose to solve this optimization problem by following a greedy optimization strategy that
generates a sequence of masksM t for t ∈ {0, . . . , T} such that IGMN (M t+1) ≤ IGMN (M t),
illustrated in Fig. 5.2.

To this end, we first separate Ω into two equally sized components M0 and M0 by randomly
splitting them horizontally or vertically. We then evolve the boundary of the split by evaluating
RIGN (i|M t) for all pixels i ∈ N in close proximity to the current boundary between M t and
M t. The sign of RIGN (i|M t) indicates whether M t or M t provide more information about
the pixel i. We update M accordingly, i.e.,

M t+1 = (M t \N) ∪ {i ∈ N |RIGN (i|M t) > 0}, (5.11)

which, by definition of (5.8), monotonically decreases IGMN .
Finally, in order to obtain a decomposition of an image into arbitrarily many maximally

independent regions, we apply the minimization recursively to already identified regions, i.e.,
we repeat the optimization procedure described above on regions M∗ and M∗, until either M∗

or M∗ are empty. Further implementation details on our neighborhood selection can be found
in the appendix.

In order to extract affinities for a full image we compute maximally independent regions
on a set of overlapping, sliding image patches and average their affinities. This procedure is
illustrated in Fig. 5.1.
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min IGM(M):

Mt

inpaint given

inpaint given

RIGN (i|·) Mt+1

Figure 5.2: Details of the hierarchical segmentation of an image patch from an inpainting network.
Given an image patch (top left), we recursively find optimal splits (shown in orange and
purple) by evolving a randomly chosen horizontal or vertical split over T iterations (black
box). For each step (illustrated in the green box), we evolve the boundary of the split by
consulting a probabilistic inpainting network to predict the intensity of pixels in a region
N around the boundary, once given only the information contained in M and once in its
complement M . We then measure the relative information gain RIGN in the inpainting
region to determine which component (orange or purple) provided more information about
the pixels in N and reassign M accordingly.

5.3 Experiments on Microscopy Image Instance
Segmentation

Instance separation is of particular importance for the identification and tracking of individual
cells in microscopy images, where cells frequently form densely packed clusters and thus pose
a challenging segmentation problem [153]. In many cases, those cells are freely moving in a
substrate and can thus be considered as many independent instances of the same kind, which
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(a) Connected Components on
TRUEFG

(b) INPAINTAFF +TRUEFG (c) ground-truth

(d) Connected Components on
TRUEFG

(e) INPAINTAFF +TRUEFG (f) ground-truth

Figure 5.3: Instance separation results assuming an accurate foreground detection TRUEFG on the PANC
dataset (top row) and the HELA dataset (bottom row). A foreground detection alone is
not sufficient to segment touching cells (a, d). INPAINTAFF extracted from an inpainting
network find non-trivial splits between instances (b, e).

makes them suitable for an inpainting based approach like the one we propose here and in
particular for the independence assumption we made in (5.2). In the following, we will refer to
the affinities extracted using the proposed method as INPAINTAFF.

5.3.1 Cell Segmentation Benchmark Dataset

We evaluate INPAINTAFF on a subset of the ISBI Cell Segmentation Benchmark, which includes
a diverse set of 2D microscopy videos covering a wide range of cell types and imaging quality.

In particular, we selected two datasets that contain cells of irregular shape in close proximity
for which instance separation is needed to obtain a correct segmentation: (1) HELA contains
cervical cancer cells expressing H2b-GFP and (2) PANC contains pancreatic stem cells on a
polystyrene substrate (see Fig. 5.7 for samples and the CTC website for further information
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about the datasets).
The PANC dataset arguably belongs to the more difficult datasets of the ISBI Cell Segmenta-

tion Benchmark (reflected in the comparatively low test scores on the challenge), which we
attribute to two factors that are found in both HELA and PANC: First, they contain a large
amount of touching cells with little boundary evidence, which renders a mere foreground
segmentation ineffective for the detection of individual cells. Second, both datasets contain
only little labeled training data (815 instances2 for HELA and 514 for PANC in fully labeled
frames), which challenges fully supervised segmentation approaches.

5.3.2 Results

As argued earlier, completely unsupervised segmentation is an under-constrained problem. As
such, INPAINTAFF alone is unlikely to give rise to a segmentation capturing the intuition of a
human annotator. We recall that the main guiding principle for INPAINTAFF is predictability of
pixel intensities. Depending on the distribution of cells in images used to train the inpainting
network, this predictability might equally well apply to a background region around each cell.
This effect is visible in both datasets (compare Fig. 5.7) and demonstrates that the method is
agnostic about the intensity of pixels and merely clusters pixels that are mutually predictable.

Therefore, we investigate first how well INPAINTAFF separates instances. We then turn
to the problem of instance segmentation, where we assume that at least a small amount of
ground-truth labels is available to capture the notion of objects of interest—an assumption
that arguably holds for any realistic application in practice, where an accurate segmentation is
required.

We report results using the ISBI Cell Segmentation Benchmark segmentation accuracy (SEG
score), a metric that is based on the Jaccard similarity index and measures average IoU of
all segments that overlap at least 50% with the ground truth (further details are given on the
challenge website). The detection score is the percentage of matches that surpass a set IoU
threshold.

Instance Separation We investigate how well INPAINTAFF separates instances, assuming
that an accurate foreground segmentation is already available. For that, we use the ground-truth
segmentation provided in the datasets and convert it into a binary foreground segmentation
TRUEFG, while connecting all segments separated by a one pixel wide gap.

As we show in Table 5.1 (and qualitatively in Fig. 5.3), TRUEFG alone is not sufficient to
achieve an accurate instance segmentation, due to merges of cells in close proximity. Separating

2The HELA dataset has 571 additional instances, in partially labeled frames which can not trivially be used to
train neural networks.
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Method HELA PANC

Connected Components on TRUEFG 0.785 0.748

INPAINTAFF + TRUEFG 0.858 0.914

INPAINTAFF + FGNET50 0.766 0.666

HIT-CN∗ MU-Lux-CZ∗ 0.919 0.715

FR-Ro-GE∗ CVUT-CZ∗ 0.903 0.682

PURD-US∗ HD-Hau-GE∗ 0.902 0.665

Table 5.1: Segmentation scores assuming an accurate foreground detection TRUEFG and FGNET50
(trained with 52/49 labeled instances for HELA/PANC). For reference, we include the official
challenge scores [153] of supervised methods on the same datasets (marked with a star),
which have been trained on more labeled instances and evaluated on a different testing dataset
than our method.
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Figure 5.4: Segmentation score on the test data of PANC and HELA datasets, for varying amounts of
labeled instances used to train FGNET and AFFNET.

those cells using INPAINTAFF, however, results in an almost perfect instance segmentation, in
the case of PANC even significantly exceeding the scores of the best performing methods (albeit
on different testing data and constrained to the ground-truth foreground). Those results suggest
that (1) INPAINTAFF is accurately separating instances, and (2) a foreground segmentation is
necessary and sufficient to constrain the boundaries of found objects to obtain a competitive
segmentation.
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Figure 5.5: Detection accuracy over different IoU thresholds on PANC. Over a large range of IoU
thresholds, INPAINTAFF in combination with a foreground network FGNET trained on 49
labeled instances has a higher detection accuracy than the fully supervised method AFFNET
trained on 230 labeled instances.

Instance Segmentation from Foreground Prediction Since a foreground segmen-
tation is crucial to capture the application specific notion of what constitutes an object, we
next investigate the segmentation accuracy of our method when combined with a foreground
prediction network trained on few instances only, which we will refer to as FGNET (details in
Section 5.3.3). We train FGNET on varying amounts of labeled instances to predict a binary
foreground mask and use this prediction in combination with our INPAINTAFF to obtain an
instance segmentation. As a baseline, we also train a second network AFFNET to predict
affinities directly from the same labeled instances used to train the foreground network.

The segmentation scores for either approach on the test dataset are shown in Fig. 5.4, for
varying amounts of labeled instances used for training. Remarkably, INPAINTAFF consistently
outperform trained affinities in terms of the SEG score . This effect is most visible in dataset
PANC, where cells tend to cluster more compactly and the separation of individual cells is
therefore more challenging. In particular, INPAINTAFF on this dataset in combination with
FGNET trained on as few as 24 labeled cells produce a segmentation that outperforms the
fully supervised AFFNET using one order of magnitude more training data. As shown in
Fig. 5.5, this observation also holds in terms of the detection score over varying IoU thresholds.
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Furthermore, on the PANC datasets the obtained segmentation score using only around 50
labeled instances for the foreground prediction together with unsupervised affinities is on par
with the third leading submissions to the ISBI Cell Segmentation Benchmark, which have been
trained on 514 instances (albeit evaluated on a different testing dataset then used here).

5.3.3 Experiment Details

Training and Testing Split Since INPAINTAFF requires a considerable amount of com-
putational resources (see discussion in Section 5.5) a direct evaluation on the CTC servers on
the official testing data is not possible. Therefore, we split the publicly available data for each
dataset into a train and testing dataset, each containing one video of sparsely labeled cells.

Model Architectures For the inpainting network underlying INPAINTAFF, we use a down-
scaled version of the architecture proposed by Liu et al. [97], i.e., a U-NET architecture with a
depth of four resulting in five levels with 64, 128, 256, 512, and 512 feature maps, each. We
train the network for 1M iterations using the ADAM optimizer and the loss proposed by Liu
et al. [97] that is comprised of a perceptual, style, total variation and reconstruction loss.

FGNET is a PIX2PIX network [58, 184] with a depth of six layers, containing 64 initial
features maps, trained using ADAM to minimize a binary cross-entropy loss [68].

Since we use the MUTEXWATERSHED to post-process affinity predictions, we use the same
training procedure proposed by Wolf et al. [163] for AFFNET (PIX2PIX architecture). In
particular, we also use the Sørensen-Dice coefficient [42, 145] loss and the same affinity
neighborhood (12 distances, up to 27 pixels).

Affinity-Based Segmentation We use the MUTEXWATERSHED to derive a segmenta-
tion from affinities [163], where we introduce a single parameter α to control for over- and
undersegmentation by multiplying all long range affinities (that are used to split) with α. The
optimal α for each evaluated method was determined on the validation dataset.

5.4 Related Work

While classical patch-based inpainting methods such as [17, 43, 146] synthesize high quality
images, they fundamentally cannot make semantically aware decisions for intensity predictions.
Deep inpainting networks, on the other hand, trained on large corpuses of data are known to
develop an intrinsic understanding of images [88], which raises the question what aspects are
captured by these networks. The usefulness of these inpainting models for image segmentation
was shown by Pathak et al. [122], who demonstrate that features extracted from a trained
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(a) PANC raw (b) ground-truth

(c) AFFNET (d) INPAINTAFF

(e) AFFNET + FGNET50 segmentation (f) INPAINTAFF + FGNET50 segmentation

Figure 5.6: Sample test images of PANC. Affinities are shown as blue/red for x-/y-direction, respectively.

inpainting network capture appearance and semantics of visual structures aiding in the pre-
training of classification, detection, and segmentation tasks. Extending inpainting networks
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(a) HELA raw (b) ground-truth

(c) AFFNET (d) INPAINTAFF

(e) AFFNET + FGNET50 segmentation (f) INPAINTAFF + FGNET50 segmentation

Figure 5.7: Sample test images of HELA. Affinities are shown as blue/red for x-/y-direction, respectively.

that directly minimize the reconstruction error [74, 168] with texture and structure aware loss,
such as multi-scale neural patch synthesis [170] or Structure-aware Appearance Flow [128]
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leads to high-fidelity images and prediction and modeling of higher order relations
In parallel, specialized architectures and convolutions have been developed that make it

possible to realistically inpaint arbitrary masks [97, 176].
In this work, we use the network architecture and loss proposed by Liu et al. [97] which

is designed to inpaint arbitrary masks and is trained with an additional style component loss.
Since we leverage the network’s learned distribution by measuring information gain between
image patches, we intentionally avoid networks trained with an additional GAN loss [32, 116,
178]. Although GANs produce extremely realistic looking images, they are prone to mode
collapse that affects our estimate of information gain.

More generally, inpainting falls under the broader category of unsupervised prediction of
left-out data, also known as self-supervised learning [136]. This includes tasks such as image
colorization [87, 180], co-occurrence [57], predicting permutations [138], and denoising [82].
These methods are highly effective at extracting robust features for further transfer learning
[181] and image embeddings [149] and can be considered a proxy task for developing a
semantic understanding [88].

In some cases, the self-supervised task can be used as a free supervisory signal that directly
translates to classically supervised tasks. For example, object tracking emerges from video
colorization [158] (which inspired our title) or through obeying cycle-consistency in time [159].
When provided with background images and images with objects, Ostyakov et al. [118] learn
to segment by predicting masks and paste patches from the object domain onto the background
domain constrained by an adversarial and a cycle consistency loss.

Our work uses the statistical properties of instances to derive a method for separating in-
stances, which closely relates to other self-supervised segmentation approaches that utilize
different properties to identify objects. Burgess et al. [25] utilize compressibility, in a compo-
sitional generative model, where image regions are reconstructed through a low dimensional
bottleneck. They show that their model is capable of discovering useful decompositions of
scenes by identifying segments that can be represented in a common format. Another approach
by Chen, Artières, and Denoyer [31] learns to find masks of objects by learning to replace
the masked content content that corresponds with altering the masked objects properties (e.g.
altering the color of flowers).

97



5.5 Conclusion

It remains an open question as to how far completely unsupervised segmentation based on
image statistics alone will find real world applications. As we already observed on the
segmentation of cells in microscopy images studied here, an experimentalist’s intention of what
constitutes a good cell segmentation does not necessarily match the clustering of pixels based on
information content. Only at least partially supervised methods with application specific losses
can ultimately produce predictions tailored to a specific application, provided enough labeled
training data is available. We see the contribution of this work therefore primarily as an aid to
supervised methods, especially in scenarios in which labeled training data is scarce. As our
experiments demonstrate, INPAINTAFF allow practitioners to obtain competitive segmentations
from very few labeled instances. Given the high rate and diversity of microscopy images
acquired in the life sciences, self-supervised segmentation has the potential to significantly
reduce the amount of human interaction needed. Our work shows that in this domain the
inherent knowledge captured by inpainting networks provides competitive performance with
very few labeled instances.

A limitation of the method proposed here is the runtime: INPAINTAFF requires around 48h
to process a 700x1100 image on a single GPU. Although inference can be trivially parallelized,
the current implementation might be prohibitively slow for many applications. Increasing the
efficiency of the inference by, e.g., training networks directly on IGM, will be subject of future
work.
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6 Conclusion

In this work, we have tackled the problem of instance segmentation in large 3D volumes,
focusing on the application of neuron reconstruction in particular. Before this work, watershed
algorithms were not used to segment large volumes despite their theoretical efficiency. This
is because they rely on seed points, which are very difficult to generate automatically for
neurons. Instead, graph partitioning methods, like the multicut, that use repulsions instead
of seeds were preferred, but could only be applied on reduced problem sizes, where pixels
had been preliminarily clustered. In Chapter 3, we invent a new watershed algorithm that,
for the first time, uses repulsions instead of seeds. We characterize this algorithm by proving
that it finds the global optimum of an objective function. This objective function shows the
close connection to the multicut objective as well as its relationship to the power watershed
framework. Further extensions of this algorithm, to the problem of joint semantic instance
segmentation, are explored in Chapter 4.

We demonstrate that this algorithm, in combination with deep neural network, outperforms
multicut approaches on the ISBI neuron segmentation challenge. Since these results were
published, our method has become a part of two state-of-the-art segmentation pipelines by
Hirsch, Mais, and Kainmueller [55] and Lee et al. [90].

Our results offer several opportunities for further research. The strong ties to multicut
and Multi-Way Cut suggest that other optimization problems with similar structure might
yield further watershed algorithms. A notable example is moral lineage tracing [61], for joint
segmentation and tracking in video time series. Another research direction is the supervised
learning of graph weights, that we explore in Chapter 2. Since the objective function of the
MWS is known, techniques such as structured learning could be applied to learn weights
that optimize the segmentation performance directly. The fact that the MWS objective can
be optimized so efficiently suggests that there is a similarly efficient structured learning
method. Finally, our approach for unsupervised learning, that we propose in chapter Chapter 5
should be explored further. We have proposed to separate instances by directly maximizing
an independence measure. This process is very resource-intensive, requiring many hours to
process a full image. Therefore, one should investigate methods that learn to predict these
independent regions directly, circumventing the costly optimization step.

99





Appendices

101





A Mutex Watershed

A.1 Property of the minimizers of Qp(x)

Recall Lemma 3.4.5:

Lemma A.1.1. Let us consider the scales λk and continuous functions Qk(x) : R|E| → R
respectively defined in Eq. (3.25) and (3.26). For any value of p ∈ N+, let xp ∈ R|E| be a
minimizer of the function Qp(x) defined in Eq. (3.24). Then, the minimizer xp lies in the set
ISC(G, w). From this, it follows that any sequence of minimizers (xp)p>0 is bounded and the
conditions of Theorem 3.4.4 are satisfied.

Proof. The function Qp(x) can be explicitly written as (see Eq. 3.24, 3.25 and 3.26):

Qp(x) =
∑

0≤k<t
λpkQk(x) (A.1)

= |E| min
x′∈ISC(G,w)

||x− x′||+
∑

1≤k<t

∣∣∣∣ w̃k2w̃1

∣∣∣∣p ∑
e∈Ek

xe (A.2)

= |E| min
x′∈ISC(G,w)

||x− x′||+
∑
e∈E

∣∣∣∣ we2w̃1

∣∣∣∣p xe. (A.3)

We then denote these two terms by:

QpA(x) := |E| min
x′∈ISC(G,w)

||x− x′||, (A.4)

QpB(x) :=
∑
e∈E

∣∣∣∣ we2w̃1

∣∣∣∣p xe. (A.5)

Intuitively, we now prove that the minimizer xp of Qp(x) lies in ISC(G, w) by showing that
the first term QpA(x) is always “dominant” as compared to QpB(x).
First, we note that the gradient of the first term QpA(x) has always norm equal to |E| and points
in the direction of the closest point x′ ∈ ISC(G, w). Given a generic point y ∈ R|E|, the only
two cases when the gradient ∇xQpA(x) does not exists are: i) if y ∈ ISC(G, w); ii) if there
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are at least two points x′′, x′′′ ∈ ISC(G, w) such that ||y − x′′|| = ||y − x′′′||. Clearly, QpA(x)
presents minima only in the first case, when y ∈ ISC(G, w).
On the other hand, the second term QpB(x) is always differentiable and the norm of its gradient
is never greater than

√
|E|:

||∇xQpB(x)|| <

∣∣∣∣∣
∣∣∣∣∣∇x

(∑
e∈E

xe

)∣∣∣∣∣
∣∣∣∣∣ =

√
|E| (A.6)

where we used the fact that w̃k/2w̃1 < 1 for every 1 ≤ k < t. Thus, the magnitude of the
gradient given by the first term is always larger compared to the one given by the second
term. We then conclude that the objective can always be reduced unless xp is a point of
ISC(G, w).
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B Semantic Mutex Watershed

B.1 Redundant Path Constraints

Lemma B.1.1 (Redundant Paths). Let G′ = (V ′, E′, w) = (V ∪ T,E ∪ ES , w) be an edge-
weighted graph extended by terminal nodes T . For any edge indicator y ∈ 0, 1|E∪S| that
satisfies∑

t∈T
ytv = |T | − 1∀v ∈ V (B.1)

the following set of constraints are equivalent:

yut + yuv + yvt′ ≥ 1 ∀(u, v) ∈ E ∀t, t′ ∈ T, t 6= t′ (B.2)

⇔ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T (B.3)

ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T . (B.4)

Proof. This lemma is trivially fulfilled for |T | ≤ 1. We will prove the lemma for |T | > 1 by
contradiction in each direction.

“⇒” Assume eq. (B.2) holds and ∃ytv > ytu + yuv. In case ytv = 1, eq. (B.1) implies that
∃t′ 6= t : ytv = 0 which leads to the contradiction

ytv > ytu + yuv ≥ 1− yt′u = 1 (B.5)

In case ytv = 0, eq. (B.1) implies that ∀t′ 6= t : yt′v = 0 leading to the contradiction

ytv > ytu + yuv ≥ 1− yt′u = 0. (B.6)

The proof for eq. (B.4) is analogous.

“⇐” Assume eqs. (B.3) and (B.4) hold and ∃(u, v) ∈ E t, t′ ∈ T, t 6= t′ : yut+yuv+yvt′ < 1.
This leads to the contradiction

yut + yuv + yvt′ < 1 (B.7)

⇒yut = 0, yuv = 0 and yvt′ = 0︸ ︷︷ ︸
⇒yvt=1

(B.8)

⇒1 = yvt ≤ yut + yuv = 0. (B.9)
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B.2 Additional Details of the Cityscapes Experiments

B.2.1 Implementation Details

We use the class probabilities from a Deeplab 3+ [30] as semantic edge weights. We use a
trained model provided by Tensorflow. employ the Mask-RCNN [54] implementation provided
by [102] and trained a model on Cityscapes following [54]’s training configuration. The graph
weights are derived as explained above. We derive graph weights for different offsets: for
attractive edges we use (1) 8-neighbourhood with distances of {1, 2, 4} pixels, (2) random
pairs inside each bounding box. For repulsive edges we sample 5 random pixel pairs for each
mask and compute the soft IOU (eq. (4.34)). [98] trained a Deeplab 3+ to predict affinities
for their graph-clustering algorithm. They kindly provided their trained models allowing us
to use the same affinities. Since their clustering utilizes a threshold, we treat the threshold as
the splitting point between attractive and repulsive edge weights; affinities below the threshold
are inverted and scaled to [0, 1]. In addition to the model by GMIS that is trained on scaled
bounding boxes, we train a Deeplab3+ for affinity predictions on the full images. Because [98]
only tackle instance segmentation, their model does not predict affinities for stuff classes. We
train the network with Sorensen Dice Loss and the same stencil pattern as [98]. The training
protocol follows the settings in [30], using a batch size of 12 and 70k training iterations. We do
not employ any test time augmentations.
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B.2.2 Additional images

image prediction groundtruth

Figure B.1: Further examples panoptic results on Cityscapes using using semantic unaries (Deeplab
3+ network [96]) and affinities derived from Mask-RCNN [54] foreground probability.
Prediction errors are highlighted in green.
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B.3 Scaling Behavior

Figure B.2: Runtime scaling of the SMWS. We evaluate the runtime of the SMWS for different volume
sizes of the 3D Sponge dataset. We find an almost linear relation between runtime and
number of voxels.

108



Publications

I contributed to the following peer reviewed publications:

• Steffen Wolf, Lukas Schott, Ullrich Köthe, and Fred A. Hamprecht. „Learned Watershed:
End-to-End Learning of Seeded Segmentation.“ In: Proceedings of the International
Conference on Computer Vision (ICCV) (2017).

• Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, Ullrich
Kothe, and Fred A. Hamprecht. „The mutex watershed: efficient, parameter-free image
partitioning.“ In: Proceedings of the European Conference on Computer Vision (ECCV).
2018.

• Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ullrich
Köthe, and Fred A. Hamprecht. „The Mutex Watershed and Its Objective: Efficient,
Parameter-Free Image Partitioning.“ In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020).

• Carsten Haubold, Janez Aleš, Steffen Wolf, and Fred A Hamprecht. „A generalized
successive shortest paths solver for tracking dividing targets.“ In: European Conference
on Computer Vision. Springer. 2016.

• Elke Kirschbaum, Manuel Haußmann, Steffen Wolf, Hannah Sonntag, Justus Schnei-
der, Shehabeldin Elzoheiry, Oliver Kann, Daniel Durstewitz, and Fred A Hamprecht.
„LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging
videos.“ In: International Conference on Learning Representations. 2019.

• Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, and Yoshua Bengio.
„Learning the Arrow of Time for Problems in Reinforcement Learning.“ In: International
Conference on Learning Representations. 2020.

• Martin Schiegg, Ben Heuer, Carsten Haubold, Steffen Wolf, Ullrich Koethe, and Fred
A Hamprecht. „Proof-reading guidance in cell tracking by sampling from tracking-
by-assignment models.“ In: International Symposium on Biomedical Imaging (ISBI).
2015.

109



• Vladimír Ulman et al. „An objective comparison of cell-tracking algorithms.“ In: Nature
methods 14.12 (2017), p. 1141.

• Shaofei Wang, Steffen Wolf, Charless Fowlkes, and Julian Yarkony. „Tracking objects
with higher order interactions via delayed column generation.“ In: Artificial Intelligence
and Statistics. 2017.

The following publications are currently under peer review:

• Steffen Wolf, Fred A. Hamprecht, and Jan Funke. „Instance Separation Emerges from
Inpainting.“ In: arXiv preprint arXiv:2003.00891 (2020).

• Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, and Fred A.
Hamprecht. „The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance
Segmentation.“ In: arXiv preprint arXiv:1912.12717 (2019).

110



Bibliography

[1] Mohammed Abdelsamea. „An Enhancement Neighborhood Connected Segmentation
for 2D-Cellular Image.“ In: International Journal of Bioscience, Biochemistry and
Bioinformatics 1.4 (2011).

[2] Ali Qusay Al-Faris, Umi Kalthum Ngah, Nor Ashidi Mat Isa, and Ibrahim Lutfi
Shuaib. „Breast MRI tumour segmentation using modified automatic seeded region
growing based on particle swarm optimization image clustering.“ In: Soft Computing
in Industrial Applications. Springer, 2014, pp. 49–60.

[3] Ali Qusay Al-Faris, Umi Kalthum Ngah, Nor Ashidi Mat Isa, and Ibrahim Lutfi Shuaib.
„Computer-aided segmentation system for breast MRI tumour using modified automatic
seeded region growing (BMRI-MASRG).“ In: Journal of digital imaging 27.1 (2014),
pp. 133–144.

[4] Mustafa A Alattar, Nael F Osman, and Ahmed S Fahmy. „Myocardial segmentation
using constrained multi-seeded region growing.“ In: International Conference Image
Analysis and Recognition. Springer. 2010, pp. 89–98.

[5] Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, and Fred A. Hamprecht.
„Probabilistic Image Segmentation with Closedness Constraints.“ In: 2011 International
Conference on Computer Vision. IEEE, 2011, pp. 2611–2618.

[6] Bjoern Andres, Ullrich Koethe, Thorben Kroeger, Moritz Helmstaedter, Kevin L
Briggman, Winfried Denk, and Fred A. Hamprecht. „3D segmentation of SBFSEM
images of neuropil by a graphical model over supervoxel boundaries.“ In: Medical
image analysis 16.4 (2012), pp. 796–805.

[7] Bjoern Andres, Thorben Kroeger, Kevin L Briggman, Winfried Denk, Natalya Korogod,
Graham Knott, Ullrich Koethe, and Fred A. Hamprecht. „Globally optimal closed-
surface segmentation for connectomics.“ In: European Conference on Computer Vision.
Springer. 2012, pp. 778–791.

[8] Björn Andres, Thorben Kröger, K. L. Briggmann, W. Denk, N. Norogod, G. Knott, Ull-
rich Köthe, and Fred A. Hamprecht. „Globally Optimal Closed-Surface Segmentation
for Connectomics.“ In: Proc. ECCV’12, part 2. 7574. 2012, pp. 778–791.

111



[9] Jesús Angulo and Dominique Jeulin. „Stochastic watershed segmentation.“ In: PROC.
of the 8th International Symposium on Mathematical Morphology. 2007, pp. 265–276.

[10] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. „Contour Detection and Hierarchi-
cal Image Segmentation.“ In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 33.5 (2011), pp. 898–916.

[11] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. „Contour De-
tection and Hierarchical Image Segmentation.“ In: IEEE Transactions Pattern Analysis
Machine Intelligence 33.5 (2011), pp. 898–916.

[12] Ignacio Arganda-Carreras, Srinivas Turaga, Daniel Berger, et al. „Crowdsourcing the
creation of image segmentation algorithms for connectomics.“ In: Front. Neuroanatomy
9 (2015), p. 142.

[13] Anurag Arnab and Philip HS Torr. „Pixelwise Instance Segmentation with a Dynam-
ically Instantiated Network.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 441–450.

[14] Shai Bagon and Meirav Galun. „Large Scale Correlation Clustering Optimization.“ In:
CoRR abs/1112.2903 (2011).

[15] Min Bai and Raquel Urtasun. „Deep Watershed Transform for Instance Segmentation.“
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 2858–2866.

[16] Min Bai and Raquel Urtasun. „Deep watershed transform for instance segmentation.“
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
2017, pp. 2858–2866.

[17] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. „Patch-
Match: A randomized correspondence algorithm for structural image editing.“ In: ACM
Transactions on Graphics (ToG). Vol. 28. 3. ACM. 2009, p. 24.

[18] Thorsten Beier. „Multicut Algorithms for Neurite Segmentation.“ PhD thesis. 2018.

[19] Thorsten Beier, Björn Andres, Ullrich Köthe, and Fred A. Hamprecht. „An efficient
fusion move algorithm for the minimum cost lifted multicut problem.“ In: European
Conference on Computer Vision. Springer. 2016, pp. 715–730.

[20] Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo Prange, et al. „Multicut brings
automated neurite segmentation closer to human performance.“ In: Nature Methods
14.2 (2017), pp. 101–102.

[21] Serge Beucher. „Watershed, Hierarchical Segmentation and Waterfall Algorithm.“ In:
Proc. ISMM’94. Vol. 94. 1994, pp. 69–76.

112



[22] Serge Beucher and Christian Lantuéjoul. „Use of Watersheds in Contour Detection.“
In: Int. Workshop on Image Processing. CCETT/IRISA. 1979.

[23] Serge Beucher and Fernand Meyer. „The morphological approach to segmentation: the
watershed transformation.“ In: Optical Engineering 34 (1992), pp. 433–433.

[24] Andrea Braides. „A handbook of Γ-convergence.“ In: Handbook of Differential Equa-
tions: stationary partial differential equations. Vol. 3. Elsevier, 2006, pp. 101–213.

[25] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins,
Matt Botvinick, and Alexander Lerchner. „Monet: Unsupervised scene decomposition
and representation.“ In: arXiv preprint arXiv:1901.11390 (2019).

[26] Challenge CREMI. MICCAI Challenge on Circuit Reconstruction from Electron Mi-
croscopy Images. 2017. URL: http://cremi.org/ (visited on 02/23/2017).

[27] Jinzheng Cai, Le Lu, Zizhao Zhang, Fuyong Xing, Lin Yang, and Qian Yin. „Pancreas
Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural
Networks.“ In: Proc. MICCAI. 2016.

[28] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan
L. Yuille. „Semantic Image Segmentation with Deep Convolutional Nets and Fully
Connected CRFs.“ In: ICLR. 2016.

[29] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. „Rethink-
ing Atrous Convolution for Semantic Image Segmentation.“ In: CoRR abs/1706.05587
(2017).

[30] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. „Encoder-decoder with atrous separable convolution for semantic image seg-
mentation.“ In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 801–818.

[31] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. „Unsupervised object segmen-
tation by redrawing.“ In: Advances in Neural Information Processing Systems. 2019,
pp. 12705–12716.

[32] Zeyuan Chen, Shaoliang Nie, Tianfu Wu, and Christopher G. Healey. „High Reso-
lution Face Completion with Multiple Controllable Attributes via Fully End-to-End
Progressive Generative Adversarial Networks.“ In: CoRR abs/1801.07632 (2018).

[33] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. „3D U-Net: learning dense volumetric segmentation from sparse annotation.“
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer. 2016, pp. 424–432.

113

http://cremi.org/


[34] Dan C Ciresan, Alessandro Giusti, Luca M Gambardella, and Jurgen Schmidhuber.
„Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Im-
ages.“ In: Proc. NIPS’12 (2012).

[35] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. „The Cityscapes
Dataset for Semantic Urban Scene Understanding.“ In: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

[36] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Third Edition. 3rd. The MIT Press, 2009.

[37] Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot. „Power watershed:
A unifying graph-based optimization framework.“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 33.7 (2011).

[38] Michel Couprie and Gilles Bertrand. „Topological gray-scale watershed transforma-
tion.“ In: Vision Geometry VI. Vol. 3168. International Society for Optics and Photonics.
1997, pp. 136–146.

[39] Jean Cousty, Gilles Bertrand, Laurent Najman, and Michel Couprie. „Watershed cuts:
Minimum spanning forests and the drop of water principle.“ In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2009).

[40] Jifeng Dai, Kaiming He, and Jian Sun. „Instance-Aware Semantic Segmentation via
Multi-Task Network Cascades.“ en. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2016, pp. 3150–3158.

[41] Gianni Dal Maso. An introduction to Γ-convergence. Vol. 8. Springer Science &
Business Media, 2012.

[42] Lee R Dice. „Measures of the amount of ecologic association between species.“ In:
Ecology 26.3 (1945), pp. 297–302.

[43] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. „Fragment-based image comple-
tion.“ In: ACM SIGGRAPH. 2003, pp. 303–312.

[44] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M
Blau, and Sebastian Thrun. „Dermatologist-level classification of skin cancer with deep
neural networks.“ In: Nature 542.7639 (2017), pp. 115–118.

[45] Alexandre X Falcão, Jorge Stolfi, and Roberto de Alencar Lotufo. „The image foresting
transform: Theory, algorithms, and applications.“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.1 (2004), pp. 19–29.

114



[46] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song, Sergio
Guadarrama, and Kevin P. Murphy. „Semantic Instance Segmentation via Deep Metric
Learning.“ en. In: arXiv:1703.10277 [cs] (2017).

[47] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. „Efficient Graph-Based Image
Segmentation.“ en. In: International Journal of Computer Vision 59.2 (2004), pp. 167–
181.

[48] Charless Fowlkes, David R. Martin, and Jitendra Malik. „Learning affinity functions
for image segmentation: combining patch-based and gradient-based approaches.“ In:
Proc. CVPR. 2003.

[49] Jan Funke, Fabian David Tschopp, William Grisaitis, Arlo Sheridan, Chandan Singh,
Stephan Saalfeld, and Srinivas C Turaga. „Large Scale Image Segmentation with
Structured Loss based Deep Learning for Connectome Reconstruction.“ In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2018).

[50] Leo Grady. „Random walks for image segmentation.“ In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 28.11 (2006), pp. 1768–1783.

[51] Michel Grimaud. „New measure of contrast: the dynamics.“ In: Proc. Image Algebra
and Morphological Processing. Ed. by P. D. Gader, E. R. Dougherty, & J. C. Serra.
Vol. 1769. SPIE Conf. Series. 1992, pp. 292–305.

[52] Laurent Guigues, Jean Pierre Cocquerez, and Hervé Le Men. „Scale-sets image analy-
sis.“ In: International Journal of Computer Vision 68.3 (2006), pp. 289–317.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Deep Residual Learning
for Image Recognition.“ In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770–778.

[54] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. „Mask R-CNN.“ In:
2017 IEEE International Conference on Computer Vision (ICCV). 2017, pp. 2980–
2988.

[55] Peter Hirsch, Lisa Mais, and Dagmar Kainmueller. „PatchPerPix for Instance Segmen-
tation.“ In: arXiv preprint arXiv:2001.07626 (2020).

[56] Andrea Horňáková, Jan-Hendrik Lange, and Bjoern Andres. „Analysis and optimization
of graph decompositions by lifted multicuts.“ In: International Conference on Machine
Learning. 2017, pp. 1539–1548.

[57] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. „Learning visual
groups from co-occurrences in space and time.“ In: arXiv preprint arXiv:1511.06811
(2015).

115



[58] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. „Image-to-image trans-
lation with conditional adversarial networks.“ In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 1125–1134.

[59] Viren Jain, Joseph F Murray, Fabian Roth, Srinivas Turaga, Valentin Zhigulin, Kevin L
Briggman, Moritz N Helmstaedter, Winfried Denk, and H Sebastian Seung. „Super-
vised learning of image restoration with convolutional networks.“ In: Proc. ICCV’07
(2007), pp. 1–8.

[60] Michał Januszewski, Jörgen Kornfeld, Peter H Li, Art Pope, Tim Blakely, Larry
Lindsey, Jeremy Maitin-Shepard, Mike Tyka, Winfried Denk, and Viren Jain. „High-
precision automated reconstruction of neurons with flood-filling networks.“ In: Nature
methods (2018), p. 1.

[61] Florian Jug, Evgeny Levinkov, Corinna Blasse, Eugene W Myers, and Bjoern Andres.
„Moral lineage tracing.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 5926–5935.

[62] Jörg Hendrik Kappes, Markus Speth, Björn Andres, Gerhard Reinelt, and Christoph
Schn. „Globally optimal image partitioning by multicuts.“ In: International Work-
shop on Energy Minimization Methods in Computer Vision and Pattern Recognition.
Springer. 2011, pp. 31–44.

[63] Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. „Higher-
order segmentation via multicuts.“ In: Computer Vision and Image Understanding 143
(2016), pp. 104–119.

[64] Brian W Kernighan and Shen Lin. „An efficient heuristic procedure for partitioning
graphs.“ In: The Bell System Technical Journal 49.2 (1970), pp. 291–307.

[65] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas
Brox, and Bjorn Andres. „Efficient decomposition of image and mesh graphs by lifted
multicuts.“ In: Proc. ICCV’15. 2015, pp. 1751–1759.

[66] Margret Keuper, Siyu Tang, Yu Zhongjie, Bjoern Andres, Thomas Brox, and Bernt
Schiele. „A multi-cut formulation for joint segmentation and tracking of multiple
objects.“ In: arXiv preprint arXiv:1607.06317 (2016).

[67] Sungwoong Kim, Chang D Yoo, Sebastian Nowozin, and Pushmeet Kohli. „Image
segmentation using higher-order correlation clustering.“ In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 36.9 (2014), pp. 1761–1774.

[68] D Kinga and J Ba Adam. „A method for stochastic optimization.“ In: International
Conference on Learning Representations (ICLR). Vol. 5. 2015.

116



[69] B. Ravi Kiran and Jean Serra. „Global–local optimizations by hierarchical cuts and
climbing energies.“ In: Pattern Recognition 47.1 (2014), pp. 12–24.

[70] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bogdan Savchynskyy, and
Carsten Rother. „Instancecut: from edges to instances with multicut.“ In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 5008–
5017.

[71] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. „Panoptic feature
pyramid networks.“ In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 6399–6408.

[72] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár.
„Panoptic segmentation.“ In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2019, pp. 9404–9413.

[73] Seymour Knowles-Barley, Verena Kaynig, Thouis Ray Jones, Alyssa Wilson, Joshua
Morgan, Dongil Lee, Daniel Berger, Narayanan Kasthuri, Jeff W Lichtman, and
Hanspeter Pfister. „RhoanaNet Pipeline: Dense Automatic Neural Annotation.“ In:
arXiv:1611.06973 (2016).

[74] Rolf Köhler, Christian Schuler, Bernhard Schölkopf, and Stefan Harmeling. „Mask-
specific inpainting with deep neural networks.“ In: German Conference on Pattern
Recognition. Springer. 2014, pp. 523–534.

[75] Pushmeet Kohli, Alexander Shekhovtsov, Carsten Rother, Vladimir Kolmogorov, and
Philip Torr. „On partial optimality in multi-label MRFs.“ In: Proceedings of the 25th
international conference on Machine learning. 2008, pp. 480–487.

[76] Iasonas Kokkinos. „Surpassing Humans in Boundary Detection using Deep Learning.“
In: 4th International Conference on Learning Representations, ICLR 2016, Conference
Track Proceedings. 2016.

[77] Vladimir Kolmogorov and Ramin Zabin. „What energy functions can be minimized
via graph cuts?“ In: IEEE Transactions on Pattern Analysis and Machine Intelligence
26.2 (2004), pp. 147–159.

[78] Shu Kong and Charless C. Fowlkes. „Recurrent Pixel Embedding for Instance Group-
ing.“ In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 2018,
pp. 9018–9028.

[79] Niko Krasowski, Thorsten Beier, Graham Knott, Ulrich Kothe, Fred A. Hamprecht,
and Anna Kreshuk. „Neuron Segmentation With High-Level Biological Priors.“ en. In:
IEEE Transactions on Medical Imaging 37.4 (2018), pp. 829–839.

117



[80] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. „ImageNet Classification
with Deep Convolutional Neural Networks.“ en. In: Communications of the ACM 60.6
(2017), pp. 84–90.

[81] Thorben Kroeger, Jörg H. Kappes, Thorsten Beier, Ullrich Koethe, and Fred A. Ham-
precht. „Asymmetric Cuts: Joint Image Labeling and Partitioning.“ en. In: Pattern
Recognition. Vol. 8753. Springer International Publishing, 2014, pp. 199–211.

[82] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. „Noise2void-learning denois-
ing from single noisy images.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2129–2137.

[83] Alexander Krull, Tomas Vicar, and Florian Jug. „Probabilistic Noise2Void: Unsuper-
vised content-aware denoising.“ In: arXiv preprint arXiv:1906.00651 (2019).

[84] Joseph B Kruskal. „On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem.“ en. In: Proceedings of the American Mathematical Society (1956),
p. 3.

[85] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern Andres. „Partial Optimality and
Fast Lower Bounds for Weighted Correlation Clustering.“ In: International Conference
on Machine Learning. 2018, pp. 2898–2907.

[86] Paul-Friedrich Langenbruch and Norbert Weissenfels. „Canal systems and choanocyte
chambers in freshwater sponges (Porifera, Spongillidae).“ In: Zoomorphology 107.1
(1987), pp. 11–16.

[87] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. „Learning representations
for automatic colorization.“ In: European Conference on Computer Vision. Springer.
2016, pp. 577–593.

[88] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. „Colorization as a proxy
task for visual understanding.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 6874–6883.

[89] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H Sebastian Seung. „Super-
human Accuracy on the SNEMI3D Connectomics Challenge.“ In: arXiv preprint
arXiv:1706.00120 (2017).

[90] Kisuk Lee, Ran Lu, Kyle Luther, and H Sebastian Seung. „Learning Dense Voxel
Embeddings for 3D Neuron Reconstruction.“ In: arXiv preprint arXiv:1909.09872
(2019).

[91] Zohar Levi and Denis Zorin. „Strict Minimizers for Geometric Optimization.“ In: ACM
Transactions on Graphics 33.6 (2014), 185:1–185:14.

118



[92] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. „A Comparative Study
of Local Search Algorithms for Correlation Clustering.“ In: German Conference on
Pattern Recognition. Springer. 2017, pp. 103–114.

[93] Evgeny Levinkov, Jonas Uhrig, Siyu Tang, Mohamed Omran, Eldar Insafutdinov,
Alexander Kirillov, Carsten Rother, Thomas Brox, Bernt Schiele, and Bjoern Andres.
„Joint Graph Decomposition & Node Labeling: Problem, Algorithms, Applications.“
en. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017, pp. 1904–1912.

[94] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. „Continuous control with deep reinforce-
ment learning.“ In: 4th International Conference on Learning Representations, ICLR
2016, Conference Track Proceedings. 2016.

[95] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. „Feature Pyramid Networks for Object Detection.“ In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017.

[96] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L.
Yuille, and Li Fei-Fei. „Auto-DeepLab: Hierarchical Neural Architecture Search for
Semantic Image Segmentation.“ In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2019.

[97] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. „Image Inpainting for Irregular Holes Using Partial Convolutions.“ In: The
European Conference on Computer Vision (ECCV). 2018.

[98] Yiding Liu, Siyu Yang, Bin Li, Wengang Zhou, Ji-Zeng Xu, Houqiang Li, and Yan
Lu. „Affinity Derivation and Graph Merge for Instance Segmentation.“ en. In: The
European Conference on Computer Vision (ECCV). 2018, p. 18.

[99] Jonathan Long, Evan Shelhamer, and Trevor Darrell. „Fully convolutional networks for
semantic segmentation.“ In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 3431–3440.

[100] Michael Maire, Takuya Narihira, and Stella X. Yu. „Affinity CNN: Learning Pixel-
Centric Pairwise Relations for Figure/Ground Embedding.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 174–182.

[101] Filip Malmberg, Robin Strand, and Ingela Nyström. „Generalized hard constraints for
graph segmentation.“ In: Scandinavian Conference on Image Analysis. Springer. 2011,
pp. 36–47.

119



[102] Francisco Massa and Ross Girshick. „Maskrcnn-Benchmark: Fast, Modular Refer-
ence Implementation of Instance Segmentation and Object Detection Algorithms in
PyTorch.“ In: (2018).

[103] Marina Meila. „Comparing clusterings: an axiomatic view.“ In: Proc. ICML’05. 2005,
pp. 577–584.

[104] Yaron Meirovitch, Alexander Matveev, Hayk Saribekyan, David Budden, David Rol-
nick, Gergely Odor, Seymour Knowles-Barley Thouis Raymond Jones, Hanspeter
Pfister, Jeff William Lichtman, and Nir Shavit. „A Multi-Pass Approach to Large-Scale
Connectomics.“ In: arXiv preprint:1612.02120 (2016).

[105] Yaron Meirovitch, Lu Mi, Hayk Saribekyan, Alexander Matveev, David Rolnick,
and Nir Shavit. „Cross-classification clustering: An efficient multi-object tracking
technique for 3-d instance segmentation in connectomics.“ In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 8425–8435.

[106] Fernand Meyer. „Minimum spanning forests for morphological segmentation.“ In:
Mathematical morphology and its applications to image processing. 1994, pp. 77–84.

[107] Fernand Meyer. „Topographic distance and watershed lines.“ In: Signal processing
38.1 (1994), pp. 113–125.

[108] Fernand Meyer. „Morphological multiscale and interactive segmentation.“ In: NSIP.
1999, pp. 369–377.

[109] Fernand Meyer. „Watersheds on weighted graphs.“ In: Pattern Recognition Letters 47
(2014), pp. 72 –79.

[110] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P
Lillicrap, et al. „Asynchronous methods for deep reinforcement learning.“ In: Proc.
ICML’16. 2016.

[111] D Muhammad Noorul Mubarak, M Mohamed Sathik, S Zulaikha Beevi, and K Revathy.
„A hybrid region growing algorithm for medical image segmentation.“ In: International
Journal of Computer Science & Information Technology 4.3 (2012), p. 61.

[112] Jacob M Musser, Klaske J Schippers, Michael Nickel, Giulia Mizzon, Andrea B Kohn,
Constantin Pape, Jörg U Hammel, Florian Wolf, Cong Liang, Ana Hernández-Plaza,
et al. „Profiling cellular diversity in sponges informs animal cell type and nervous
system evolution.“ In: BioRxiv (2019), p. 758276.

[113] Laurent Najman. „On the equivalence between hierarchical segmentations and ultra-
metric watersheds.“ In: Journal of Mathematical Imaging and Vision 40.3 (2011),
pp. 231–247.

120



[114] Laurent Najman. „Extending the power watershed framework thanks to Γ-convergence.“
In: SIAM Journal on Imaging Sciences 10.4 (2017), pp. 2275–2292.

[115] Laurent Najman and Michel Schmitt. „Geodesic saliency of watershed contours and
hierarchical segmentation.“ In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 18.12 (1996), pp. 1163–1173.

[116] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi. „Edge-
Connect: Structure Guided Image Inpainting using Edge Prediction.“ In: The IEEE
International Conference on Computer Vision (ICCV) Workshops. 2019.

[117] Juan Nunez-Iglesias, Ryan Kennedy, Toufiq Parag, Jianbo Shi, and Dmitri Chklovskii.
„Machine learning of hierarchical clustering to segment 2D and 3D images.“ In: PLoS
one 8 (2013), e71715.

[118] Pavel Ostyakov, Roman Suvorov, Elizaveta Logacheva, Oleg Khomenko, and Sergey
I Nikolenko. „Seigan: Towards compositional image generation by simultaneously
learning to segment, enhance, and inpaint.“ In: arXiv preprint arXiv:1811.07630 (2018).

[119] Constantin Pape, Thorsten Beier, Peter Li, Viren Jain, Davi D Bock, and Anna Kreshuk.
„Solving large multicut problems for connectomics via domain decomposition.“ In:
Proceedings of the IEEE International Conference on Computer Vision Workshops.
2017, pp. 1–10.

[120] Constantin Pape, Alex Matskevych, Adrian Wolny, Julian Hennies, Giulia Mizzon,
Marion Louveaux, Jacob Musser, Alexis Maizel, Detlev Arendt, and Anna Kreshuk.
„Leveraging Domain Knowledge to Improve Microscopy Image Segmentation with
Lifted Multicuts.“ In: Frontiers in Computer Science 1 (2019), p. 6.

[121] Toufiq Parag, Fabian Tschopp, William Grisaitis, Srinivas C Turaga, Xuewen Zhang,
Brian Matejek, Lee Kamentsky, Jeff W Lichtman, and Hanspeter Pfister. „Anisotropic
EM Segmentation by 3D Affinity Learning and Agglomeration.“ In: arXiv preprint
1707.08935 (2017).

[122] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. „Context encoders: Feature learning by inpainting.“ In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 2536–2544.

[123] Benjamin Perret, Jean Cousty, Silvio Jamil F Guimaraes, and Deise S Maia. „Evaluation
of hierarchical watersheds.“ In: IEEE Transactions on Image Processing 27.4 (2018),
pp. 1676–1688.

[124] Regina Pohle and Klaus D Toennies. „Segmentation of medical images using adaptive
region growing.“ In: Medical Imaging 2001: Image Processing. Vol. 4322. International
Society for Optics and Photonics. 2001, pp. 1337–1346.

121



[125] S Poonguzhali and G Ravindran. „A complete automatic region growing method for
segmentation of masses on ultrasound images.“ In: 2006 International Conference on
Biomedical and Pharmaceutical Engineering. IEEE. 2006, pp. 88–92.

[126] Tran Minh Quan, David GC Hilderbrand, and Won-Ki Jeong. „FusionNet: A deep fully
residual convolutional neural network for image segmentation in connectomics.“ In:
arXiv:1612.05360 (2016).

[127] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. „Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks.“ In: Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015, pp. 91–99.

[128] Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H Li, Shan Liu, and Ge Li. „Struc-
tureFlow: Image Inpainting via Structure-aware Appearance Flow.“ In: Proceedings of
the IEEE International Conference on Computer Vision. 2019, pp. 181–190.

[129] Jos BTM Roerdink and Arnold Meijster. „The watershed transform: Definitions, al-
gorithms and parallelization strategies.“ In: Fundamenta informaticae 41.1, 2 (2000),
pp. 187–228.

[130] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. „U-Net: Convolutional Networks
for Biomedical Image Segmentation.“ In: Proc. MICCAI’15 (2015), pp. 234–241.

[131] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. „U-Net: Convolutional Networks
for Biomedical Image Segmentation.“ In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

[132] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. „U-net: Convolutional networks
for biomedical image segmentation.“ In: International Conference on Medical image
computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[133] Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer. „Opti-
mizing binary MRFs via extended roof duality.“ In: 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE. 2007, pp. 1–8.

[134] Olga Russakovsky et al. „ImageNet Large Scale Visual Recognition Challenge.“ In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

[135] Challenge SNEMI3D. ISBI 2013 challenge: 3D segmentation of neurites in EM images.
2017. URL: http://brainiac2.mit.edu/SNEMI3D/ (visited on 01/01/2020).

[136] Virginia R de Sa. „Learning classification with unlabeled data.“ In: Advances in neural
information processing systems. 1994, pp. 112–119.

122

http://brainiac2.mit.edu/SNEMI3D/


[137] Philippe Salembier and Luis Garrido. „Binary Partition Tree as an Efficient Repre-
sentation for Image Processing, Segmentation, and Information Retrieval.“ In: IEEE
Transactions on Image Processing 9 (2000), pp. 561–576.

[138] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. „Deep-
PermNet: Visual Permutation Learning.“ In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 3949–3957.

[139] Philipp Schlegel, Marta Costa, and Gregory S X E Jefferis. „Learning from connec-
tomics on the fly.“ In: Current opinion in insect science 24 (2017), pp. 96–105.

[140] Juan Shan, Heng-Da Cheng, and Yuxuan Wang. „A novel automatic seed point selection
algorithm for breast ultrasound images.“ In: 2008 19th International Conference on
Pattern Recognition. IEEE. 2008, pp. 1–4.

[141] Wei Shen, Bin Wang, Yuan Jiang, Yan Wang, and Alan L. Yuille. „Multi-stage Multi-
recursive-input Fully Convolutional Networks for Neuronal Boundary Detection.“ In:
2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2410–
2419.

[142] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, et al. „Deterministic Policy
Gradient Algorithms.“ In: Proc. ICML’14. 2014.

[143] Karen Simonyan and Andrew Zisserman. „Very Deep Convolutional Networks for
Large-Scale Image Recognition.“ In: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, Conference Track Proceedings. 2015.

[144] Pierre Soille. „Constrained Connectivity for Hierarchical Image Decomposition and
Simplification.“ In: IEEE Transactions on Pattern Analysis and Machine Intelligence
30.7 (2008), pp. 1132–1145.

[145] Thorvald Sørensen. „A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the vegetation
on Danish commons.“ In: Biol. Skr. 5 (1948), pp. 1–34.

[146] Jian Sun, Lu Yuan, Jiaya Jia, and Heung-Yeung Shum. „Image completion with struc-
ture propagation.“ In: ACM SIGGRAPH. 2005, pp. 861–868.

[147] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al.
„Policy gradient methods for reinforcement learning with function approximation.“ In:
Proc. NIPS’99. 1999.

[148] Joseph Tighe, Marc Niethammer, and Svetlana Lazebnik. „Scene Parsing with Object
Instance Inference Using Regions and Per-Exemplar Detectors.“ en. In: International
Journal of Computer Vision 112.2 (2015), pp. 150–171.

123



[149] Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. „Selfie: Self-supervised pretraining
for image embedding.“ In: arXiv preprint arXiv:1906.02940 (2019).

[150] Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, and Song-Chun Zhu. „Image Parsing:
Unifying Segmentation, Detection, and Recognition.“ en. In: International Journal of
Computer Vision 63.2 (2005), pp. 113–140.

[151] Srinivas C. Turaga, Kevin L. Briggman, Moritz Helmstaedter, Winfried Denk, and H.
Sebastian Seung. „Maximin Affinity Learning of Image Segmentation.“ In: Proceedings
of the 22nd International Conference on Neural Information Processing Systems.
NIPS’09. Curran Associates Inc., 2009, 1865–1873.

[152] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter,
Kevin Briggman, Winfried Denk, and H Sebastian Seung. „Convolutional networks
can learn to generate affinity graphs for image segmentation.“ In: Neural Computation
22.2 (2010), pp. 511–538.

[153] Vladimír Ulman, Martin Maška, Klas EG Magnusson, Olaf Ronneberger, Carsten
Haubold, Nathalie Harder, Pavel Matula, Petr Matula, David Svoboda, Miroslav Rado-
jevic, et al. „An objective comparison of cell-tracking algorithms.“ In: Nature methods
14.12 (2017), p. 1141.
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