
 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2012. VOLUME 14, ISSUE 3. ISSN 1392-8716 
1263 

851. Entropy-based fault detection approach for motor 

vibration signals under accelerated aging process 

 
D. Sonmez

1
, S. Seker

2
, M. Gokasan

3
 

Faculty of Electrical and Electronic Engineering, Istanbul Technical University  

34469, Maslak, Istanbul-Turkey 

Email: 1duhansonmez@itu.edu.tr, 2sekers@itu.edu.tr, 3gokasan@itu.edu.tr  

(Received 30 June 2012; accepted 4 September 2012) 

 

Abstract. The purpose of this study is to analyze motor vibration signals due to the bearing 

fault, which is artificially generated by aging process. Vibration signal data recorded by the 

experimental setup has been conditioned by a high-pass filter (Butterworth type) to reach the 

regarding frequency components of the bearing failure. Spectral analysis has been applied to 

realize the degradation on the bearing and the power spectral density figures revealed that the 

magnitudes of frequency components between 1.5-4 kHz bandwidth increased after every aging 

cycle. Vibration signals were investigated statistically by examining four main statistical 

parameters: mean value, standard deviation, skewness and kurtosis. Evaluation of these 

parameters indicated that significant variance occurred on standard deviation. At this point 

Shannon entropy became an approach to analyze the variance on the standard deviation. The 

probability of the aging cycles has been defined as a function of standard deviation values for 

each aging cycle. Entropy definition, which is a function of probability, determines the 

uncertainty level on the data and it has been examined to identify the effect of the aging progress 

on the bearing by examining the transferred entropy amount between aging cycles. 
 

Keywords: motor vibration signal, bearing fault, spectral analysis, statistical analysis, aging 

process, Shannon entropy. 

 

1. Introduction 

 

The usage of induction motors in recent decades increased evidently in various industries. 

The main reasons depend on the facts of easy structure and running facilities, low cost and 

maintenance efforts and high reliability. On the other hand, the performance goals in every 

industry started to force the enterprises to increase the productivity efficiency by minimum 

failure at these production lines, which means that every motor has to run without fault 

continuously. Therefore, this approach increased the importance of fault diagnosis tools and 

applications for induction motors significantly. According to the studies on this subject in [1-5], 

it is observed that the most significant motor faults are because of the mechanical effects. In 

particular, bearing faults take an important part (more than 40 % of all induction motor faults). 

Also many researchers concentrated on the development of fault diagnosis and condition 

monitoring techniques to detect incipient motor faults signals and overcome the unscheduled 

machine down-times because of motor faults. 

There are many different approaches and techniques developed in recent decades, which are 

mainly based on three groups as “Signal-based”, “Model-based” and “Data-based” condition 

monitoring and fault diagnosis techniques. Signal-based fault signature analysis is one of the 

most preferred techniques for condition monitoring and diagnosis and also to investigate the 

incipient fault signature of the motor. There are different types of signals that can be measured 

and analyzed from the actual motor which has been subjected in [1-5]. Mainly these are 

electrical measurements (current, power, flux), mechanical measurements (vibration, noise), 

temperature measurement, chemical measurements (gas analysis) and partial discharge 

detection. 

Bearing faults generally causes static and dynamic eccentricities on the rolling elements, 

which lead to many negative effects on the performance of the motor. Primarily, mechanical 

vibration on the system occurs due to bearing faults and the level of the signal increases during 
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the fault progress as mentioned in [6-8]. Therefore, this study concentrates on vibration signal 

analysis for an AC motor. A proper aging process is applied at seven sequential steps for this 

motor, to bring out the bearing fault and its effects at the end of this period. Measured actual 

motor vibration signals will be investigated for each aging cycle by spectrum analysis and 

statistical parameters, which will be helpful to diagnose the status of the motor bearing and 

follow up the aging process in terms of bearing degradation trend. 

Shannon Entropy definition, which explains the amount of uncertainty on a random signal, 

will be implemented in this study to get the data flowing through the aging process, from healthy 

case to the bearing fault case as mentioned in [9]. This approach will be helpful to understand 

the level of fault in the aging process. The amount of entropy variation between each aging 

cycle, which is called as entropy transfer rate in this study, will be evaluated to be able to 

determine the degree of degradation in the motor bearing. 

 

2. Aging Process by Stochastic Entropy 

 

The cascade steps in an aging system accelerate the physical system collapse. This 

mechanism can be illustrated by Fig. 1 in terms of linear system approach. 

 

i=1 i=2 i=3 i=4 i=n
 

Fig. 1. Aging in a linear structured system 

 

Each node of the cascaded aging process defines the probability values of the aging steps. 

Hence while the physical system becomes old, the probability value of functioning ip  slopes 

down [10]. This trend describes the entropy in this system as: 

)( ii pHH =  (1) 

Therefore stochastic entropy shows that the failure risk of the system increases during the 

aging process. From that point of view, entropy differences between two sequential points can 

be defined by following expression: 

1−−=∆ iii HHH  (2) 

where i is the node number as in Fig. 1. Thus, the change of the entropy difference according to 

the change of probability value defines the slope of the trend in the system as given below: 

αtan≅
∆

∆

i

i

p

H
 (3) 

This trend is in the direction of decreasing, while probability value difference varies with the 

time as tpi ∝∆ . Therefore the entropy difference can be given as: 

tH ii ⋅−=∆ λ  (4) 

This is the entropy of the generic component i, in the aging step of iA , for 0>iλ . As a 

result, the stochastic entropy )( iAH  is a function of the probability ip  of the state iA : 

)(log)()( ieii ppHAH ==  (5) 

 

3. Motor Bearing Faults and Experimental Setup for Accelerated Aging Process 

 

3.1 EDM Effect on Motor Bearing 

 

There are many reasons that cause bearing faults which are mainly based on electrical and 

mechanical effects. One of the most important reasons for degradation of bearings is electrical 
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discharge mode current, which is flowing from motor shaft to the ground throughout bearing 

elements. The effect of this faulty current is known as Electrical Discharge Machining (EDM). 

The reasons of the discharge mode current depend on the bearing voltage which is generally 

increased by electrostatic loads and non-symmetrical magnetic circuitry of the motor, also high 

frequency switching (PWM) inverters, which are very common in industrial applications, cause 

the same bearing voltage and discharge mode current [11, 12]. 

A motor bearing has a structure covering the elements of outer race, inner race, rolling 

elements (ball, cylinder, etc.) and a raceway. The grease, being used inside the cage of bearing, 

is normally between the rolling elements and the races, and it is not conductive. During the 

motor operation at high speeds, the grease forms a uniform distributed layer between bearing 

rolling elements and races, thus the rotor voltage increases up to a level with respect to ground. 

When the voltage reaches critical level, an intermittent discharge current with arching will flow 

from the body to the ground, over the bearing rolling elements. If the rolling speed of the motor 

is slow, then the grease thickness will be minimum, which will cause a direct conduction 

between rolling elements and races. The rotor voltage will not increase because of the current 

continuously flowing over bearing to the ground. Therefore there appear two different types of 

bearing current; as conductive mode current (continuous) and discharge mode current (arching). 

Discharge mode current causes negative effects on the bearing elements as surface degradation. 

Commonly known defects are “pitting” and “fluting”, which start with primitive damage and 

continues with growing level of noise and vibration, finally leading to bearing fault. 

 

3.2 Experimental Setup for Aging Process 

 

An experimental setup was designed to simulate the aging process for a 5HP AC motor, 

which is under electrical and mechanical stresses, also thermal and corrosive effects are added to 

this artificial aging process. This experimental setup is designed regarding IEEE Standard Test 

Procedure for AC Electrical Machinery and Standard for Systems of Insulation Materials       

[13, 14]. 

Electrical and thermal aging processes are applied sequentially to the test motor as an aging 

cycle and this cycle is repeated seven times totally as described in [15, 16]. 

Each aging cycle starts with Electrical Discharge Machining (EDM) process in order to 

simulate electrical discharge current from motor shaft to the bearing. The designed test set for 

this facility is shown in Fig. 2. At each EDM aging cycle the motor was run for 30 minutes with 

no load condition and during the period, an externally supplied shaft current (27 A at 30 VAC) is 

applied to the motor shaft. 

 
Fig. 2. EDM setup for the AC motor 

 

After each EDM aging cycle, a thermal aging process was carried out, which was applied to 

accelerate the aging process. Basically in a thermal aging process, the motor is heated up in a 

laboratory oven that gives a constant temperature of 140°C, and after the heating process, it is 

immersed in the water. The cycle is repeated again after waiting in water to expose the corrosion 

effect on the motor components. 
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Each aging period was followed by a performance test process on an experimental setup, 

where high frequency data was collected with respect to motor currents, voltages, rotor speed, 

and six vibration measurements at a sampling frequency of 12 kHz. Eventually eight set of 

measurements are performed as one healthy and seven aged cases. 

The experimental setup, shown in Fig. 3, covers electrical and mechanical vibration 

measurement instruments, signal conditioner and the host personal computer. There are two 

accelerometers in this setup for independent vibration measurements and the locations of the two 

accelerometers, S1 and S2, are in plane ‘A-B’ of the motor at process end, on clock position by 

2 and 10 respectively. After getting the vibration signal from accelerometers, signal conditioners 

with anti-aliasing filter are used before data process in a host PC. The anti-aliasing filter has 

been set to 4 kHz cut-off frequency. 

 
Fig. 3. Data collection set: accelerometers S1 and S2 in motor plane A-B for vibration measurement 

 

4. Data Analysis for Vibration Signals 

 

The mathematical fundamentals regarding the vibration signal analysis by spectral analysis 

and statistical analysis can be found in the Appendix A. 

In this study, eight sets of vibration signal data has been recorded with a sampling rate of 12 

kHz for ten seconds by S2 accelerometer, at 100 % load condition of the test motor. The first set 

is for initial (healthy) motor condition and the other seven sets belong to the aging cycles 

respectively. 

The test motor is a 5HP, three-phase, four-pole induction motor. There is an anti-aliasing 

filter which is set at 4 kHz cut-off frequency. 

 

4.1 Spectral Analysis 

 

The first inspection due to each aging cycle data has been in time domain and it was 

observed that vibration signal magnitude increases during the degradation period in the aging 

process, which is shown in Fig. 4. This increase gives an idea about degradation of bearing but it 

does not give some characteristic details about aging process and the bearing fault. 

Therefore when the vibration signal has been examined by spectral analysis, Power Spectral 

Density (PSD) plot, given in Fig. 5 indicates that there are additional frequency components 

after 1.5 kHz, which points out a bearing fault trend during the aging process. 

It is also possible to realize the deviation on vibration signal data, by looking at PSD plot in 

logarithmic scale as shown in Fig. 6. It is obvious that the subjected deviation arises after 

frequency level of 1.5 kHz.  

Because of the additional frequency components in the range of 1.5-4 kHz on the spectrum, 

it was decided to investigate only this frequency range, just to ignore the effect of low frequency 

components during spectrum analysis. Therefore a Butterworth type of high-pass filter has been 
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applied to the signal. This high-pass filter is a 5
th
 order filter, which is set to 1.5 kHz cut-off 

frequency. 
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Fig. 4. Time domain amplitude plots of vibration signal for aging cycle No #0, 3, 5 and 7  

 
Fig. 5. PSD comparison of aging cycles in the frequency domain (unfiltered data) 

(Case #0 - Healthy motor, Case #3 and Case #7 - Bearing fault) 

 
Fig. 6. PSD comparison in logarithmic scale (unfiltered data) 

(Case #0-Healthy motor, Case #3 and Case #7-Bearing fault) 
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After filtering out lower frequency components by Butterworth type high-pass filter, the 

frequency spectrum of the vibration signal has been plotted (Fig. 7) for initial healthy case and 

other three aging cycles. The figure reveals the increasing frequency components by each aging 

cycle. 

 
Fig. 7(a). PSD comparison of aging cycles in frequency domain (high-pass-filtered data) 

(Case #0 - Healthy motor, Case #3 and Case #7 - Bearing fault) 

 
Fig. 7(b). PSD comparison of aging cycles in frequency domain (high-pass-filtered data) 

(Case #3 - Aging Cycle #3) 

 
Fig. 7(c). PSD comparison of aging cycles in frequency domain (high-pass-filtered data) 

(Case #7 - Bearing fault) 
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It was revealed that high frequency components above 1.5 kHz are increased after each aging 

cycle therefore this indicates the degradation of the bearing. 

When the PSD plots are compared in logarithmic scale (Fig. 8), the increase of the 

magnitude of high frequency signal components by each aging cycle clearly points out the 

degradation of the bearing. 

 
Fig. 8. PSD comparison in logarithmic scale (high-pass-filtered data) 

(Case #0 - Healthy motor, Case #3 and Case #7 - Bearing fault) 

 

4.2 Statistical Analysis 

 

Statistical parameters, which are defined in Appendix B, are mean value (µ), standard 

deviation (σ), skewness (α) and kurtosis (β). They have been calculated for each aging cycle to 

analyze the vibration signal data. Table 1 lists the values of these parameters. 

 
Table 1. Values of statistical parameters for each aging cycle 

Aging 

Cycle 

Mean Value 

(µ) 

Standard Deviation 

(σ) 

Skewness 

(α) 

Kurtosis 

(β) 

C#0 -2,68.10-7 0,0267 -8,18.10-2 3,2874 

C#1 -9,83.10-7 0,0642 1,53.10-5 3,2741 

C#2 3,65.10-7 0,1355 -3,85.10-4 3,1475 

C#3 -8,74.10-7 0,2127 1,70.10-7 3,0662 

C#4 3,70.10-7 0,2980 -3,46.10-4 3,0398 

C#5 -5,40.10-7 0,2953 -8,35.10-4 3,0303 

C#6 -3,56.10-6 0,3576 -1,60.10-3 3,0207 

C#7 4,96.10-6 0,5578 -9,33.10-4 3,0366 

 

For the healthy motor, the vibration signal data draws a standard normal (Gaussian) 

distribution in terms of probability distribution. During the aging process, standard deviation 

value increases significantly, which is also an indicator of deviation from standard normal 

distribution. At the final stage of aging process (Cycle #7), standard deviation value becomes 20 

times bigger than the initial case (healthy motor).  

The other statistical parameters do not differ as much as standard deviation. The probability 

density functions show the differentiation on these parameters by each aging cycle in Fig. 9 and 

the amplitude of data distribution increases. 

The increase trend of standard deviation can be observed in Fig. 10 and it implies that the 

degradation of bearing accelerated after aging Cycle #3, which finally leads to bearing fault in 

the last cycle. 
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Fig. 9. Probability density functions of aging cycles No #0, 3, 5 and 7 

(Case #0 - Healthy motor, Case #3 and Case #7 - Bearing fault) 

 
Fig. 10. Standard deviation trend as a function of aging cycles 

 

5. Entropy Approach for Vibration Signal Analysis 

 

According to the Shannon Entropy definition given in Appendix C, entropy value, which is 

defined as a measure of uncertainty, will be helpful to understand the degree of degradation by 

calculating the amount of transferred data from initial case (healthy motor) to the last aging 

cycle (bearing fault) throughout the aging process [9]. 

It was stated in Section 4.2 that standard deviation is the parameter that undergone the most 

significant change during the aging process. Therefore regarding to the entropy definition, 

standard deviation can be the parameter which determines the probability value of each cycle at 

the aging process. 

Thus there will be eight probability values in terms of following ip  definition: 
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where 0σ  is standard deviation at the initial case (healthy motor), i is the aging cycle index       

(i = 1, ..., 7) for each aged state, and iσ  is standard deviation at the i
th
 aging cycle. For instance, 

the probability value of first aging will be: 

4155,0
0642,0

0267,0

1

0
1 ===

σ

σ
p  

In terms of physical meaning, ip  value determines the probability of being healthy, where 

also the probability of being faulty, ,
i

q  is defined as below: 

ε+−= ii pq 1  (7) 

where ε is a small constant value ( 0001.0=ε ). 

Therefore, at the initial case (healthy motor), the probability of being healthy will be 

calculated as ( 10 =p ), as well as the probability of being faulty will be zero ( 00 =q ). Also, the 

probability of being faulty for the first aging cycle can be calculated as: 

5846,00001.04155,011 =+−=q  

At this point, Shannon Entropy definition, as given in Appendix C, will help to evaluate the 

entropy value of each aging cycle. Entropy value of the initial case, regarding the probability of 

being healthy state, will be zero as stated below: 

5265.0)(log 1211 =−= ppH p  
also the entropy value of the initial case, regarding the probability of being faulty state, will be 

calculated as below: 

4527.0)(log 1211 =−= qqH q  

Table 2 gives the probability values in terms of being healthy ( ip ) and faulty ( iq ) and also 

entropy values regarding probabilities of each aging cycles of the process. 

 
Table 2. Probability and entropy values 

Aging 

Cycle 
��  ��  ���  ���  

C#0 1 0 0 0.0013 

C#1 0,4155 0,5846 0,5265 0,4527 

C#2 0,1968 0,8033 0,4616 0,2539 

C#3 0,1253 0,8748 0,3755 0,1689 

C#4 0,0895 0,9106 0,3116 0,1230 

C#5 0,0903 0,9098 0,3133 0,1241 

C#6 0,0746 0,9255 0,2793 0,1033 

C#7 0,0478 0,9523 0,2097 0,0672 

 

The trends of probability functions regarding aging cycles are provided in Fig. 11. 

Calculated entropy values for each aging cycle are presented in Fig. 12 and Fig. 13. The 

figures indicate that the greater aging cycle, the greater probability of being faulty, the lower is 

the entropy value. It means that during the aging process the probability of being faulty increases 

and the uncertainty at being faulty state decreases which depends on the Shannon Entropy 

definition. 

If the entropy variation between each aging cycle has been evaluated then it is possible to 

realize the amount of entropy which is transferred between aging cycles. Thus the entropy 

transfer rate H∆  can be defined as given in Eq. (2), Section 2. Here i is the number of aging 

cycle ( 1,  ...,  7i = ). By this calculation, iH∆
 
values in terms of fault prospect are given in Table 

3 and shown in Fig. 14.  
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Fig. 11(a). Probability function regarding state of being healthy  

 
Fig. 11(b). Probability function regarding state of being faulty 

 

From the point of being faulty prospect, the entropy transfer rate has the maximum value at 

the first aging cycle, which points out the maximum uncertainty about this state. After every 

aging cycle process, the calculated transfer rates between cycles decrease as like the entropy 

value in Fig. 14 and Table 3. This trend can also be expressed by a limit function regarding the 

probability of being healthy as given below: 

0)(lim
1

=∆
→

pH
p

 (8) 

 
Table 3. Entropy transfer rates between aging cycles 

∆�� ∆�	 ∆�
 ∆�� ∆�� ∆� ∆�� 

0,452 0,199 0,085 0,046 0,001 0,021 0,036 

 

Thus, when the figures in this section are evaluated together, it can be realized that, 

beginning with the fourth aging cycle:  

• The probability of being faulty state has a value over 0.90 which is very close to 100 % 

failure. 

• The entropy value reaches a saturated level under 0.15 bits at all the other cycles. 

• The entropy transfer rate gets a small value under 0.05 bits which is converging to zero 

value. 
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Fig. 12(a). Entropy trend depending on probability of being healthy 

 
Fig. 12(b). Entropy trend depending on probability of being faulty 

 
Fig. 13. Entropy values regarding the probability of being faulty at each aging cycle  

 

Therefore the fourth aging cycle can be determined as the remarkable stage of bearing 

degradation that can be considered significant. 
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Fig. 14. Entropy transfer rates at each aging cycle 

 

6. Discussion and Conclusions  

 

The main purpose of this study was to analyze motor vibration signal data to maintain a fault 

detection approach due to bearing fault in an induction motor. Hence, an experimental setup was 

built to simulate the bearing fault state in an induction motor by an accelerated aging process. 

Motor vibration signal data collected from the experimental setup by properly installed 

accelerometers for totally 8 states of the motor. The first data set was for the initial case (healthy 

motor) and the other seven states refer to the aging process cycles, where the last cycle was for 

the faulty state of the motor bearing. 

While investigating vibration data in time domain, it is clear that the magnitude of the signal 

increases after each aging cycle. Therefore eight sets of vibration data were examined by 

spectral analysis. It was established that frequency components between 1.5-4 kHz increase due 

to bearing degradation after each aging process cycle. Thus a Butterworth type high-pass filter 

was applied to examine the pure effect of these frequency components in the frequency band 

(>1.5 kHz). Power spectral density of the data for each aging cycle revealed that high frequency 

components above 1.5 kHz increase due to bearing degradation. 

Statistical analysis has been conducted to the filtered vibration signal data sets. Four 

statistical parameters were determined: mean value, standard deviation, skewness and kurtosis. 

Standard deviation has undergone the most considerable change during aging process. 

Therefore, probability values of each aging cycle states have been calculated by the probability 

definition in (1) regarding the standard deviation parameters. According to these calculations, 

the probability of being healthy state has drawn a decreasing trend during the aging process in 

Fig. 11(a). During the accelerated aging process, the probability value of being healthy starts 

with 1.0 (100 % healthy) value and approaches to a lower rate (approx. 5 %) value at the last 

aging cycle, which indicates the bearing fault state. 

Shannon Entropy approach has been applied to identify the bearing fault trend. Shannon 

Entropy is defined as a measure of uncertainty on a random signal data and it is a function of 

probability value for the motor states. All the calculation results regarding probability and 

entropy values are given in Table 2. The probability values are evaluated regarding both healthy 

and faulty states.  

The probability of faulty state reaches the value over 0.90 after 4
th
 aging cycle, which can be 

an alarm level for early fault detection. Finally, it reaches the value of 0.95, which clearly 

implies bearing fault. 
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Also entropy regarding faulty state had the biggest value at the initial cycles with a 

decreasing trend as shown in Fig. 12. This result demonstrates that the uncertainty about motor 

bearing state decreases. After the 4
th
 aging cycle, the value of entropy dropped down to a lower 

level of 0.15 bits, which can be an alarm level for the fault detection.  

Finally, entropy transfer rate, between each aging cycles, has been calculated by the 

difference of entropy values. The examined data in Table 3 reveals that the entropy transfer rate 

also decreases gradually from the initial cycles to the last cycle. After the 4
th
 cycle, the entropy 

transfer rate decreases below a small value of 0.05 bits, which also constitutes an alarm level for 

the fault detection. 

In this study, all these figures regarding entropy approach state out a degradation trend for 

the motor bearing during the aging process. Thus, it becomes important to define a proper alarm 

level on these trends as an early fault detection process. 

 

Appendix A. Frequency Domain - Spectral Analysis 

 

The frequency features of a random signal can be identified generally by applying Fourier 

Transform, which is a continuous function that transforms the signal from time domain to 

frequency domain. General Fourier Transform definition is: 

∫
∞

∞−

−⋅= dtetxfX ftj π2)()(
 

(A.1) 

where )( fX  is a complex transform of ( ).x t  t and f are real numbers, which are time variable in 

seconds and frequency variable in Hertz, respectively. 

If it is defined in discrete form, DFT will be expressed as below by accepting fmf ∆=  and 

,t k t= ∆  and assuming that )(tx  has nonzero values only at the times tkt ∆=  for N values of k. 

Also )( fX  has non-zero values only at the frequencies of fmf ∆=  for N values of m: 
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where 0,  1,  ...,  ( 1)m N= −  and here f∆  and t∆  are defined as frequency resolution and data

 sampling interval respectively. 

Fast Fourier Transform (FFT) is a special version of DFT which is running more efficiently. 

In the case of DFT, N complex valued functions are computed by N
2
 number of operations, but 

Cooley & Tukey performed an algorithm for computing DFT in number of 
2

logN N⋅  where N 

is a power of 2, which is known as FFT [17, 18]. 

Power Spectral Density function measures the distribution of power of a random signal in the 

frequency domain. It is also the Fourier transform of autocorrelation function. Therefore the auto 

power spectral density of x(t) is defined as [18]: 

2
)(

1
)( fmX

N
fSxx ∆=

 
(A.3) 

where fmf ∆= . 

 

Appendix B. Statistical Analysis 

 

Generally, four basic statistical parameters are examined to analyze the features of a random 

signal. Two of these parameters are mean value (µ) and standard deviation (σ), which are 

defined as below regarding a collected data set {xi} with N, number of data points: 
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Mean value describes the location of distribution for the data set. Typically, the central value 

is the best value that describes the data. Also standard deviation is the square root of variance, 

which characterizes the variability of the data set. 

Regarding the Gaussian (normal) probability distribution, two other parameters are 

concerned to expose the variation from normal distribution. They are known as skewness (c) and 

kurtosis (k) and defined as below: 
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(A.7) 

Skewness is a measure of symmetry for the collected data set and zero skewness is a 

characteristic property of the normal distribution. Positive skewness informs that the distribution 

is skewed at right side, and negative value informs that the distribution is skewed at left side of 

the centre.  

The other parameter, kurtosis is a measure of flatness of the data set distribution. Regarding 

normal distribution, kurtosis value is 3 (three), whereas greater values imply “peaked” 

distribution and the lower values imply “flat” distribution [19]. 

 

Appendix C. Shannon Entropy Function 

 

Entropy is defined as a measure of uncertainty and irregularity of a random signal. In the 

form of Shannon entropy, the expected value of the information being transferred in a block of 

data is computed in units of “bits”. The mathematical definition of Shannon Entropy, H is 

presented below by a logarithmic equation with base 2: 

∑
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ii ppH
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(A.8) 

Here i is the number of states ( 1,  ...,  i n= ) and ip  is the probability value for each index 

state [9, 20]. 
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