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Abstract

Let L be the Hill operator or the one-dimensional Dirac operator with π-periodic

potential considered on the real line R. The spectrum of L has a band-gap struc-

ture, that is, the intervals of continuous spectrum alternate with spectral gaps. The

endpoints of these gaps are eigenvalues of the same differential operator L but con-

sidered on the interval [0, π] with periodic or antiperiodic boundary conditions.

In this thesis considering the Hill and the one-dimensional periodic Dirac opera-

tors, we provide precise asymptotics of the spectral gaps in case of specific potentials

that are linear combinations of two exponential terms.



HILL VE 1 BOYUTLU DIRAC OPERATÖRLERİNİN SPEKTRAL

BOŞLUKLARININ ASİMPTOTLARI

Berkay Anahtarcı

Matematik, Doktora Tezi, 2014

Tez Danışmanı: Prof. Dr. Plamen Djakov

Anahtar Kelimeler: Hill operatörü, Dirac operatörü, asimptotikler.

Özet

Reel doğru R üzerinde düşünülen π-periyodik Hill operatörü ya da bir-boyutlu

Dirac operatörü L olsun. L’nin spektrumu bant-aralıklı yapıdadır, yani sürekli spek-

trum aralıkları spektral boşluklarla birbirlerini izlerler. Bu boşlukların uç nokta-

ları, aynı fakat [0, π] aralığı üzerinde periyodik ve antiperiyodik sınır koşullarıyla

düşünülen L diferansiyel operatörünün özdeğerleridir.

Bu tezde Hill ve bir-boyutlu periyodik Dirac operatörlerinin iki üssel terimin

lineer kombinasyonu olan özgül potansiyeller ile düşünüldüğü durumunda spektral

boşlukların kesin asimptotlarını temin ediyoruz.
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Chapter 1

HILL OPERATORS

1.1 Introduction

It is well-known (see Thm 2.3.1 in [16], or Thm 2.1 in [30]) that the Hill operator

L(v) = − d2

dx2
+ v, x ∈ R, (1.1.1)

with π-periodic real-valued potential v ∈ L2(R) is self-adjoint and there exists a

sequence of real numbers

−∞ < λ+0 < λ−1 ≤ . . . ≤ λ+n−1 < λ−n ≤ λ+n < λ−n+1 ≤ . . .

such that the spectrum of L has a gap-band structure, i.e.,

Sp(L) =
∞⋃
n=1

[λ+n−1, λ
−
n ],

and all intervals of the spectrum are separated by the spectral gaps

(−∞, λ+0 ), (λ−1 , λ
+
1 ), . . . , (λ−n , λ

+
n ), . . . , n ∈ N.

Floquet theory shows that the endpoints λ−n and λ+n of these gaps are eigenvalues

of the same differential operator L defined in (1.1.1) but considered on the interval

[0, π] with periodic boundary conditions Per+ (for even n) or antiperiodic boundary

conditions Per− (for odd n), where

Per± : y(π) = ±y(0); y′(π) = ±y′(0).

See [16, 30] for more details.
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We study the behaviour of the lengths of spectral gaps

γn = λ+n − λ−n , n ∈ N

of the Hill operator L(v). Hochstadt [23, 24] discovered a direct connection between

the smoothness of v and the rate of decay of the lenghts of spectral gaps (γn) as

follows: If

(A) v ∈ C∞, i.e., v is infinitely differentiable, then

(B) (γn) decreases more rapidly than any power of 1/n.

He also proved that if a continuous function v is a finite-zone potential, i.e., γn = 0

for large enough n, then v ∈ C∞. In the mid-70s (see [32, 34]) the latter statement

was extended, namely, it was shown for real L2([0, π])-potentials v that (B)⇒ (A).

Moreover, Trubowitz [42] proved that an L2([0, π])-potential v is analytic if and only

if (γn) decays exponentially.

If v is a complex-valued potential then the operator (1.1.1) is non-self-adjoint,

so one cannot talk about spectral gaps. Moreover, the periodic and antiperiodic

eigenvalues λ±n are well-defined for large n (see Lemma 1 below) but the asymptotics

of |λ+n − λ−n | do not determine the smoothness of v. In [39] Tkachenko brought into

discussion the Dirichlet b.v.p. y(π) = y(0) = 0. For large enough n, close to n2 there

is exactly one Dirichlet eigenvalue µn, so the deviation

δn =

∣∣∣∣µn − 1

2
(λ+n + λ−n )

∣∣∣∣ (1.1.2)

is well defined. Using an adequate parametrization of potentials in spectral terms

similar to Marchenko–Ostrovskii’s ones [31, 32] for self-adjoint operators, V. Tkachenko

[39, 40] (see also [38]) characterized C∞-smoothness and analyticity in terms of δn

and differences between critical values of Lyapunov functions. See further references

and later results in [6, 7, 14].

In the case of specific potentials, like the Mathieu potential

v(x) = 2a cos 2x, a ∈ R \ {0}, (1.1.3)

or more general trigonometric polynomials

v(x) =
N∑
−N

ck exp(2ikx), ck = c−k, 0 ≤ k ≤ N <∞, (1.1.4)

one comes to two classes of questions:
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(i) Is the n-th spectral gap closed, i.e.,

γn = λ+n − λ−n = 0, (1.1.5)

or, equivalently, is the multiplicity of λ+n equal to 2?

(ii) If γn 6= 0, could we tell more about the size of this gap, or, for large enough n,

what is the asymptotic behavior of γn = γn(v)?

In [26] Ince proved that the Mathieu-Hill operator has only simple eigenvalues

both for periodic and antiperiodic boundary conditions, i.e., γn 6= 0 for every n ∈ N.
His proof is presented in [16]; see other proofs of this fact in [22, 33, 35], and further

references in [16, 29].

For fixed n and as a→ 0, Levy and Keller [28] gave asymptotics of the spectral

gap γn = γn(a) with v ∈ (1.1.3); namely

γn = λ+n − λ−n =
8(|a|/4)n

[(n− 1)!]2
(1 +O(a)) . (1.1.6)

Almost 20 years later, Harrell [21] found, up to a constant factor, the asymptotics

of the spectral gaps of the Mathieu operator for fixed a as n→∞. In [3] Avron and

Simon gave an alternative proof of Harrell’s asymptotics and found the exact value

of the constant factor, which led to the formula

γn =
8(|a|/4)n

[(n− 1)!]2
[
1 + o(n−2)

]
. (1.1.7)

Later, another proof of (1.1.7) was given by Hochstadt [25]. For general trigono-

metric polynomial potentials, Grigis [20] obtained a generic form of the main term

in the gap asymptotics.

Recently, we [1] have refined the result of Harrell-Avron-Simon (1.1.7) by pro-

viding more precise asymptotics of the size of spectral gap for the Mathieu operator;

namely, we proved for fixed a ∈ C and large enough n ∈ N that

λ+n − λ−n = ± 8(a/4)n

[(n− 1)!]2

[
1− a2

4n3
+O(n−4)

]
. (1.1.8)

Our approach is based on the methods developed in [12, 13], where the gap

asymptotics of the Hill operator with two term potential of the form

v(x) = A cos 2x+B cos 4x, A 6= 0, B 6= 0,

was found.
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In this thesis we use the same approach in order to find the asymptotics of

γn = λ+n − λ−n in the case of potentials of the form

v(x) = ae−2ix + be2ix, a, b ∈ C. (1.1.9)

and prove for fixed a, b ∈ C and large enough n ∈ N that

γn = ±8(
√
ab/4)n

[(n− 1)!]2

[
1− ab

4n3
+O(n−4)

]
. (1.1.10)

Additionally, we provide asymptotics for the periodic (if n is even) and antiperi-

odic (if n is odd) eigenvalues for large enough n ∈ N that

λ±n = n2 +
a2

2n2
+

a2

2n4
+O(n−6).

Let Ht(a, b) denotes the Hill operator (1.1.1) with a potential (1.1.9) subject to

the boundary conditions

y(π) = eity(0), y′(π) = eity′(0), −π < t ≤ π.

Veliev [43, Theorem 1] showed that the operators Ht(a, b) have the following isospec-

tral property:

Sp(Ht(a, b)) = Sp(Ht(c, d)) if ab = cd,

where Sp(Ht(a, b)) denotes the spectrum of the operator Ht(a, b). Therefore, (1.1.8)

with
√
ab instead of a implies directly (1.1.10).

1.2 Preliminaries

Let us consider the Hill operator

L(v) = − d2

dx2
+ v, x ∈ [0, π], (1.2.1)

with a potential v ∈ L2([0, π]). Let

v(x) =
∑
k∈Z

vke
2ikx

be the Fourier series expansion of the function v. Throughout the paper we assume

that

v0 =

∫ π

0

v(x)dx = 0. (1.2.2)
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(The assumption that v0 = 0 leads to no loss of generality because any shift of

the potential by a constant shifts the spectrum by the same constant, and thus the

spectral gaps remain the same.) For convenience we set

V (k) =

vk/2 if k is even,

0 if k is odd ,

k ∈ Z.

In this case,

‖v‖2 =
1

π

∫ π

0

|v(x)|2 dx =
∑
k∈Z

|vk|2 =
∑
k∈2Z

|V (k)|2.

We consider the periodic Per+ and antiperiodic Per− boundary conditions:

Per± : y(0) = ±y(π), y′(0) = ±y′(π). (1.2.3)

We denote by LPer± the closed operator defined on the domain

∆Per± = {f ∈ H1([0, π],C) : f ∈ Per±}.

If v = 0, then we use the symbol L0
Per± (or simply L0). We can characterize the

spectra and the eigenfunctions of L0
Per± . Namely;

(i) Sp(L0
Per+) = {n2 : n = 0, 2, 4, . . .}. The eigenspaces are E0

n = Span{e±inx} for

n > 0 and E0
0 = Span{const}, where dim E0

n = 2 for n > 0 and dimE0
0 = 1.

(ii) Sp(L0
Per−) = {n2 : n = 1, 3, 5, . . .}. The eigenspaces are E0

n = Span{e±inx} for

n > 0 and dim E0
n = 2 for n > 0.

Let LPer+(v) and LPer−(v) denote the operator (1.2.1) considered subject to the

corresponding boundary conditions defined in (1.2.3). The following assertion is

well-known (e.g., [12, Proposition 1]).

Lemma 1. The spectra of LPer±(v) are discrete. There is an N0 = N0(v) such that

the union
⋃
n>N0

Dn of the discs Dn = {z : |z − n2| < 1} contains all but finitely

many of the eigenvalues of LPer± .

Moreover, for n > N0 the disc Dn contains exactly two (counted with algebraic

multiplicity) periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ−n , λ
+
n

(where Reλ−n < Reλ+n or Reλ−n = Reλ+n and Imλ−n ≤ Imλ+n ).

Lemma 1 allows us to apply the Lyapunov–Schmidt projection method and re-

duce the eigenvalue equation Ly = λy for λ ∈ Dn to an eigenvalue equation in the

two-dimensional space E0
n = {L0y = n2y} (see [14, Section 2.2]).
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This leads to the following (see the formulas (2.24)–(2.30) in [14]).

Lemma 2. In the above notations, λ = n2 + z, for |z| < 1, is an eigenvalue of

LPer±(v) if and only if z is a root of the equation∣∣∣∣∣∣z − S
11 S12

S21 z − S22

∣∣∣∣∣∣ = 0, (1.2.4)

where S11, S12, S21, S22 can be represented as

Sij(n, z) =
∞∑
k=0

Sijk (n, z), i, j = 1, 2, (1.2.5)

with

S11
0 = S22

0 = 0, S12
0 = V (−2n), S21

0 = V (2n), (1.2.6)

and for each k = 1, 2, ...,

S11
k (n, z) =

∑
j1,...,jk 6=±n

V (−n+ j1)V (j2 − j1) · · ·V (jk − jk−1)V (n− jk)
(n2 − j21 + z) · · · (n2 − j2k + z)

, (1.2.7)

S22
k (n, z) =

∑
j1,...,jk 6=±n

V (n+ j1)V (j2 − j1) · · ·V (jk − jk−1)V (−n− jk)
(n2 − j21 + z) · · · (n2 − j2k + z)

, (1.2.8)

S12
k (n, z) =

∑
j1,...,jk 6=±n

V (−n+ j1)V (j2 − j1) · · ·V (jk − jk−1)V (−n− jk)
(n2 − j21 + z) · · · (n2 − j2k + z)

, (1.2.9)

S21
k (n, z) =

∑
j1,...,jk 6=±n

V (n+ j1)V (j2 − j1) · · ·V (jk − jk−1)V (n− jk)
(n2 − j21 + z) · · · (n2 − j2k + z)

. (1.2.10)

The above series converge absolutely and uniformly for |z| ≤ 1.

Moreover, (1.2.5)–(1.2.10) imply the following (see Lemma 23 in [14]).

Lemma 3. For any (complex-valued) potential v

S11(n, z) = S22(n, z). (1.2.11)

Moreover, if V (−m) = V (m) ∀m, then

S12(n, z) = S21(n, z̄), (1.2.12)

and if V (−m) = V (m) ∀m, then

S12(n, z) = S21(n, z). (1.2.13)
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Proof. For each k ∈ N, the change of summation indices is = −jk+1−s, s = 1, . . . , k

proves that S11
k (n, z) = S22

k (n, z). In view of (1.2.5) and (1.2.6), (1.2.11) follows.

In a similar way, we obtain that (1.2.12) and (1.2.13) hold by using for each

k ∈ N the change of indices is = jk+1−s, s = 1, 2, . . . , k.

For convenience, we set

αn(z) := S11(n, z) = S22(n, z), β+
n (z) := S21(n, z), β−n (z) := S12(n, z). (1.2.14)

Under these notations the basic equation (1.2.4) becomes

(z − αn(z))2 = β−n (z)β+
n (z). (1.2.15)

By Lemmas 1 and 2, for large enough n ∈ N, this equation has in the unit disc

exactly the following two roots (counted with multiplicity):

z−n = λ−n − n2, z+n = λ+n − n2. (1.2.16)

In the sequel we consider potentials of the form

v(x) = ae−2ix + be2ix

whose corresponding Fourier coefficients are

V (−2) = a, V (2) = b, V (k) = 0 if k 6= ±2. (1.2.17)

1.3 Asymptotic estimates for z±n and αn(z)

In this section we use the basic equation (1.2.15) to derive asymptotic estimates for

the deviations z±n . It turns out that |βn(z)|, |z| ≤ 1, is much smaller than |αn(z)|,
so it is enough to analyze the asymptotics of αn(z±n ) in order to find asymptotic

estimates for z±n .

The following inequality is well known (e.g., see Lemma 78 in [14]):

∑
j 6=±n

1

|n2 − j2|
<

2 log 6n

n
, for n ∈ N. (1.3.1)

Lemma 4. If |z| ≤ 1, then

∑
j1,...,jν 6=±n

1

|n2 − j21 + z| · · · |n2 − j2ν + z|
<

(
4 log 6n

n

)ν
. (1.3.2)

7



Proof. If |z| ≤ 1 and j 6= ±n, then

|n2 − j2 + z| ≥ |n2 − j2| − 1 ≥ 1

2
|n2 − j2|.

Therefore,

∑
j1,...,jν 6=±n

1

|n2 − j21 + z| · · · |n2 − j2ν + z|
≤ 2ν

(∑
j 6=±n

1

|n2 − j2|

)ν

,

so (1.3.2) follows from (1.3.1).

The next lemma gives a rough estimate for βn(z); we improve this estimate in

the next section.

Lemma 5. For |z| ≤ 1 we have

βn(z) = O ((4C log n)n/nn) , (1.3.3)

where C = max{|a|, |b|}.

Proof. If ν < n − 1, then all terms of the sum S21
ν (n, z) in (1.2.10) vanish. In-

deed, each term of the sum S21
ν (n, z) is a fraction which nominator has the form

V (x1)V (x2) · · ·V (xν+1) with x1 = n+j1, x2 = j2−j1, . . . , xν+1 = n−jν . Therefore, if

ν < n−1 then there are no x1, x2, . . . , xν+1 ∈ {−2, 2} satisfying x1+x2+· · ·+xν+1 =

2n, so every term of the sum S21
ν (n, z) vanishes due to (1.2.17). Hence, by (1.2.17)

we have

|βn(z)| ≤
∞∑

ν=n−1

∑
j1,...,jν 6=±n

|C|ν+1

|n2 − j21 + z| · · · |n2 − j2ν + z|
,

so (1.3.3) follows from (1.3.2).

Lemma 6. In the above notations, as n→∞,

z±n =
ab

2n2
+O(n−4), αn(z±n ) =

ab

2n2
+O(n−4). (1.3.4)

Proof. In view of (1.2.5), (1.2.7) and (1.2.14), we have

αn(z) =
∞∑
p=1

Ap(n, z), (1.3.5)

where

Ap(n, z) =
∑

j1,...,jp 6=±n

V (−n+ j1)V (j2 − j1) · · ·V (jp − jp−1)V (n− jp)
(n2 − j21 + z) · · · (n2 − j2p + z)

. (1.3.6)
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First we show that

A2k(n, z) ≡ 0 ∀k ∈ N. (1.3.7)

Indeed, for p = 2k each term of the sum in (1.3.6) is a fraction which nominator has

the form V (x1)V (x2) · · ·V (x2k+1) with

x1 = −n+ j1, x2 = j2 − j1, . . . , x2k+1 = n− j2k.

Since x1 + x2 + · · · + x2k+1 = 0, it follows that there is i0 such that xi0 6= ±2, so

V (xi0) = 0 due to (1.2.17). Therefore, every term of the sum A2k(n, z) vanishes,

hence (1.3.7) holds.

Next we estimate iteratively, in two steps, αn(z) and z±n . The first step provides

rough estimates which we improve in the second step.

Step 1. By (1.3.6), we have

A1(n, z) =
∑
j1 6=±n

V (−n+ j1)V (n− j1)
n2 − j21 + z

.

In view of (1.2.17), we get a non-zero term in the above sum if and only if j1 = n+2,

or j1 = n− 2. Therefore,

A1(n, z) =
ab

n2 − (n− 2)2 + z
+

ab

n2 − (n+ 2)2 + z
= ab

8− 2z

(4n)2 − (4− z)2
, (1.3.8)

which implies that

A1(n, z) = O(n−2) for |z| ≤ 1. (1.3.9)

On the other hand, from (1.2.17), (1.3.2) and (1.3.6) it follows that

|A2k−1(n, z)| ≤ |C|2k
(

4 log 6n

n

)2k−1

, k = 2, 3, . . . , (1.3.10)

where C = max{|a|, |b|}, which implies

∞∑
k=2

|A2k−1(n, z)| ≤
∞∑
k=2

|C|2k
(

4 log 6n

n

)2k−1

= o(n−2). (1.3.11)

Hence, by (1.3.9) and (1.3.11) we obtain

αn(z) = O(n−2) for |z| ≤ 1. (1.3.12)
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Furthermore, from (1.2.15), (1.2.16) and (1.3.3) it follows immediately that

z±n − αn(z±n ) = O(n−k), ∀k ∈ N. (1.3.13)

Therefore, (1.3.12) implies that

z±n = O(n−2). (1.3.14)

Step 2. By (1.3.8) we have

A1(n, z) =
ab

2n2
+O(n−4) if z = O(n−2). (1.3.15)

Let us consider

A3(n, z) =
∑

j1,j2,j3 6=±n

V (−n+ j1)V (j2 − j1)V (j3 − j2)V (n− j3)
(n2 − j21 + z)(n2 − j22 + z)(n2 − j23 + z)

.

In view of (1.2.17), we get a non-zero term in the above sum if and only if

j1 = n+ 2; j2 = n+ 4; j3 = n+ 2,

or

j1 = n− 2; j2 = n− 4; j3 = n− 2.

Hence,

A3(n, z) =
a2b2

[n2 − (n+ 2)2 + z][n2 − (n+ 4)2 + z][n2 − (n+ 2)2 + z]

+
a2b2

[n2 − (n− 2)2 + z][n2 − (n− 4)2 + z][n2 − (n− 2)2 + z]
,

so it is easy to see that

A3(n, z) = O(n−4) if |z| ≤ 1. (1.3.16)

On the other hand, by (1.3.10) we have

∞∑
k=3

|A2k−1(n, z)| ≤
∞∑
k=3

|C|2k
(

4 log 6n

n

)2k−1

= o(n−4). (1.3.17)
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Therefore, by (1.3.15), (1.3.16) and (1.3.17) imply that

αn(z) =
ab

2n2
+O(n−4) if z = O(n−2). (1.3.18)

Hence, from (1.3.13) it follows that

z±n =
ab

2n2
+O(n−4). (1.3.19)

Remark. From (1.3.8) and (1.3.19) it follows that

A1(n, z
±
n ) =

ab

2n2
+

ab

2n4
− a2b2

16n4
+O(n−6). (1.3.20)

Similarly, it is easily seen that

A3(n, z
±
n ) =

a2b2

16n4
+O(n−6). (1.3.21)

On the other hand, analyzing A5(n, z) one can show that

A5(n, z) = O(n−6) if |z| ≤ 1. (1.3.22)

Moreover, by (1.3.10) we have

∞∑
k=4

|A2k−1(n, z)| = o(n−6) if |z| ≤ 1. (1.3.23)

Hence, in view of (1.3.13), the estimates (1.3.20)–(1.3.23) lead to

z±n =
ab

2n2
+

ab

2n4
+O(n−6). (1.3.24)

This analysis could be extended in order to obtain more asymptotic terms of z±n ,

and even to explain that the corresponding asymptotic series along the powers of

1/n contains only even nontrivial terms. However, in this paper we need only the

estimate (1.3.19).

The following assertion plays an essential role later.
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Lemma 7. With γn = λ+n − λ−n = z+n − z−n , we have

dαn/dz = O(n−4) for |z| ≤ 1/2, (1.3.25)

and

αn(z+n )− αn(z−n ) = γn

[
− ab

8n2
+O(n−4)

]
. (1.3.26)

Proof. By (1.3.5) and (1.3.7) we obtain

αn(z+n )− αn(z−n ) = A1(n, z
+
n )− A1(n, z

−
n ) +

∫ z+n

z−n

d

dz
α̃n(z) dz, (1.3.27)

where we integrate along the line segment between z−n and z+n , and

α̃n(z) = αn(z)− A1(n, z) = A3(n, z) + A5(n, z) + · · · .

In view of (1.3.16) and (1.3.17),

α̃n(z) = O(n−4) for |z| ≤ 1.

By the Cauchy formula for derivatives, this estimate implies

dαn/dz = O(n−4) for |z| ≤ 1/2.

Hence, we obtain

∫ z+n

z−n

d

dz
α̃n(z) dz = |γn|O(n−4). (1.3.28)

On the other hand, by (1.3.8) it follows that

A1(n, z
+
n )− A1(n, z

−
n ) =

[
8− 2z+n

(4n)2 − (4− z+n )2
− 8− 2z−n

(4n)2 − (4− z−n )2

]
ab

= γn

[
−32n2 − 32 + 8(z+n + z−n )− 2z+n z

−
n

[(4n)2 − (4− z+n )2][(4n)2 − (4− z−n )2]

]
ab.

Therefore, taking into account (1.3.4), we obtain

A1(n, z
+
n )− A1(n, z

−
n ) = γn

[
−ab
8n2

+O(n−4)

]
. (1.3.29)

In view of (1.3.27), the estimates (1.3.28) and (1.3.29) lead to (1.3.26).
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1.4 Asymptotic formulas for β±n (z) and γn

In this section we find more precise asymptotics of β±n (z). These asymptotics, com-

bined with the results of the previous section, lead to an asymptotics for γn.

In view of (1.2.17), each nonzero term in (1.2.10) corresponds to a k -tuple of

indices (j1, ..., jk) with j1, . . . , jk 6= ±n such that

(n+ j1) + (j2 − j1) + · · ·+ (jk − jk−1) + (n− jk) = 2n (1.4.1)

and

n+ j1, j2 − j1, . . . , jk − jk−1, n− jk ∈ {−2, 2}. (1.4.2)

Recall that a walk x on the integer grid Z from c to d (where c, d ∈ Z) is a finite

sequence of integers x = (xt)
µ
t=1 with x1 + x2 + . . .+ xµ = d− c. The numbers

jk = c+
k∑
t=1

xt, 1 ≤ k < µ

are known as vertices of the walk x.

By (1.4.1) and (1.4.2), there is one-to-one correspondence between the nonzero

terms in (1.2.10) and the admissible walks x = (x(t))k+1
t=1 on Z from −n to n with

steps x(t) = ±2 and vertices j0 = −n, jk+1 = n,

js = −n+
s∑
t=1

x(t) 6= ±n, s = 1, . . . , k. (1.4.3)

Let Xn(p), p = 0, 1, 2, . . . , denote set of all such walks with p negative steps. It is

easy to see that every walk x ∈ Xn(p) has totally n+ 2p steps because
∑
x(t) = 2n.

Therefore, every admissible walk has at least n steps.

In view of (1.2.5), (1.2.10), (1.2.17) and (1.2.14), we have

β+
n (z) =

∞∑
p=0

σ+
p (n, z) with σ+

p (n, z) =
∑

x∈Xn(p)

h+(n, z), (1.4.4)

where, for x = (x(t))k+1
t=1 ,

h+(x, z) =
bk+1

(n2 − j21 + z)(n2 − j22 + z) · · · (n2 − j2k + z)
(1.4.5)

with j1, . . . , jk given by (1.4.3).
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Of course, we can also write similar formulas for β−n (z). Let Yn(p), p = 0, 1, 2, . . . ,

denote the set of all admissible walks from n to −n having p positive steps.

In view of (1.2.5), (1.2.9), (1.2.17) and (1.2.14), we have

β−n (z) =
∞∑
p=0

σ−p (n, z) with σ−p (n, z) =
∑

x∈Xn(p)

h−(n, z), (1.4.6)

where, for x = (x(t))k+1
t=1 ,

h−(x, z) =
ak+1

(n2 − j21 + z)(n2 − j22 + z) · · · (n2 − j2k + z)
. (1.4.7)

We first analyze β+
n (z). The set Xn(0) has only one element, namely the walk

ξ = (ξ(t))nt=1, ξ(t) = 2 ∀t. (1.4.8)

Therefore,

σ+
0 (n, z) = h+(ξ, z) =

bn

(n2 − j21 + z) · · · (n2 − j2n−1 + z)
(1.4.9)

with jk = −n+ 2k, k = 1, · · · , n− 1. Moreover, since

n−1∏
k=1

(
n2 − (−n+ 2k)2

)
= 4n−1[(n− 1)!]2,

the following holds.

Lemma 8. In the above notations,

σ+
0 (n, 0) = h+(ξ, 0) =

4(b/4)n

[(n− 1)!]2
. (1.4.10)

It is well known (as a partial case of the Euler-Maclaurin sum formula, see [5,

Sect. 3.6]) that

m∑
k=1

1

k
= logm+ g +

1

2m
+O(m−2), m ∈ N, (1.4.11)

where g = limm→∞
(∑m

k=1
1
k
− logm

)
is the Euler constant.
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Lemma 9. In the above notations,

σ+
0 (n, z±n ) = σ+

0 (n, 0)

[
1− ab log n

4n3
− abg

4n3
+O(n−4)

]
. (1.4.12)

Proof. By (1.4.9), we have

σ+
0 (n, z±n ) = σ+

0 (n, 0)
n−1∏
k=1

(
1 +

z±n
n2 − (−n+ 2k)2

)−1
. (1.4.13)

For simplicity, we set ck(n) =
z±n

n2 − (−n+ 2k)2
=

z±n
4k(n− k)

. Then,

log

(
n−1∏
k=1

(1 + ck(n))−1

)
= −

n−1∑
k=1

log(1 + ck(n)) = −
n−1∑
k=1

ck(n) +O

(
n−1∑
k=1

|ck(n)|2
)
.

Using (1.3.4), we obtain

n−1∑
k=1

ck(n) =

(
n−1∑
k=1

1

4k(n− k)

)[
ab

2n2
+O(n−4)

]

=
1

2n

(
n−1∑
k=1

1

k

)[
ab

2n2
+O(n−4)

]
.

By (1.4.11), it follows that

n−1∑
k=1

ck(n) =
ab log n

4n3
+
abg

4n3
+O(n−4).

On the other hand, by (1.3.4),

n−1∑
k=1

|ck(n)|2 =

(
n−1∑
k=1

1

[4k(n− k)]2

)
O(n−4) = O(n−4).

Hence,

log

(
n−1∏
k=1

(1 + ck(n))−1

)
= −ab log n

4n3
− abg

4n3
+O(n−4),

which implies (1.4.12).
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We also need the following modification of Lemma 9.

Lemma 10. If z = O(n−2), then

σ+
0 (n, z) = σ+

0 (n, 0)(1 +O((log n)/n3)). (1.4.14)

Proof. We follow the proof of Lemma 9, replacing z±n with z and using z = O(n−2)

instead of (1.3.4).

Next we study the ratio σ+
1 (n, z)/σ+

0 (n, z).

Lemma 11. We have

σ+
1 (n, z) = σ+

0 (n, z) · Φ(n, z), (1.4.15)

where

Φ(n, z) =
n−1∑
k=2

ϕk(n, z) (1.4.16)

with

ϕk(n, z) =
ab

[n2 − (−n+ 2k)2 + z][n2 − (−n+ 2k − 2)2 + z]
. (1.4.17)

Proof. From the definition of Xn(1) and (1.4.4) it follows that

σ+
1 (n, z) =

∑
x∈Xn(1)

h+(x, z) =
n−1∑
k=2

h+(xk, z), (1.4.18)

where xk denotes the walk with (k + 1)’th step equal to -2, i.e.,

xk(t) =

 2 if t 6= k

−2 if t = k

, 1 ≤ t ≤ n+ 2.

Now, we figure out the connection between vertices of ξ and xk as follows:

jα(xk) =


jα(ξ), 1 ≤ α ≤ k,

jk−1(ξ) α = k + 1,

jα−2(ξ) k + 2 ≤ α ≤ n = 2.
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Therefore, by (1.4.5)

h+(xk, z) = h+(ξ, z)
ab

(n2 − [jk−1(ξ)]2 + z)(n2 − [jk(ξ)]2 + z)
. (1.4.19)

Since jk(ξ) = −n+ 2k, k = 2, . . . , n− 1, (1.4.18) and (1.4.19) imply (1.4.15).

Lemma 12. In the above notations, if z = O(n−2) then

Φ(n, z) = Φ(n, 0) +O(n−4) (1.4.20)

and

Φ∗(n, z) :=
n−1∑
k=2

|ϕk(n, z)| = Φ(n, 0) +O(n−4). (1.4.21)

Moreover,

Φ(n, 0) =
ab

8n2
+
ab log n

4n3
+
ab(g − 1)

4n3
+O(n−4). (1.4.22)

Proof. Since

ϕk(n, z)

ϕk(n, 0)
=

[
1 +

z

n2 − (−n+ 2k)2

]−1 [
1 +

z

n2 − (−n+ 2k − 2)2

]−1
,

it is easily seen that

ϕk(n, z)/ϕk(n, 0) = 1 +O(n−3) if z = O(n−2).

On the other hand, ϕk(n, 0) = O(n−2), so it follows that

ϕk(n, z)− ϕk(n, 0) = ϕk(n, 0)O(n−2) = O(n−5) if z = O(n−2).

Therefore, we obtain that

n−1∑
k=2

|ϕk(n, z)− ϕk(n, 0)| = O(n−4) if z = O(n−2).

The latter sum dominates both |Φ(n, z) − Φ(n, 0)| and |Φ∗(n, z) − Φ(n, 0)|. Hence,

(1.4.20) and (1.4.21) hold.

Next we prove (1.4.22). Since

Φ(n, 0) =
n−1∑
k=2

ab

16(k − 1)k(n− k)(n+ 1− k)
,
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by using the identities

1

k(n− k)
=

1

n

(
1

k
+

1

n− k

)
,

1

(k − 1)(n+ 1− k)
=

1

n

(
1

k − 1
+

1

n+ 1− k

)
we obtain

Φ(n, 0) =
ab

16n2

4∑
i=1

Di(n), (1.4.23)

where

D1(n) =
n−1∑
k=2

1

k(k − 1)
, D2(n) =

n−1∑
k=2

1

(n− k)(n+ 1− k)
,

D3(n) =
n−1∑
k=2

1

k(n+ 1− k)
, D4(n) =

n−1∑
k=2

1

(k − 1)(n− k)
.

The change of summation index m = n+ 1− k shows that D2(n) = D1(n), and we

have

D1(n) =
n−1∑
k=2

(
1

k − 1
− 1

k

)
= 1− 1

n− 1
= 1− 1

n
+O(n−2). (1.4.24)

Moreover, since

D3(n) =
1

n+ 1

(
n−1∑
k=2

1

k
+

n−1∑
k=2

1

n+ 1− k

)
=

2

n+ 1

n−1∑
k=2

1

k
,

by (1.4.11) we obtain that

D3(n) =
2 log n

n
+

2(g − 1)

n
− 2 log n

n2
+O(n−2). (1.4.25)

Similarly,

D4(n) =
1

n− 1

(
n−2∑
m=1

1

m
+

n−2∑
m=1

1

n−m− 1

)
=

2

n− 1

n−2∑
m=1

1

m
,

and (1.4.11) leads to

D4(n) =
2 log n

n
+

2g

n
+

2 log n

n2
+O(n−2). (1.4.26)

Hence, in view of (2.2.12)–(1.4.26), we obtain (1.4.22).

18



Proposition 13. We have

β+
n (z) = σ+

0 (n, 0)(1 +O((log n)/n3)), if z = O(n−2), (1.4.27)

and

β+
n (z±n ) = σ+

0 (n, 0)

[
1 +

ab

8n2
− ab

4n3
+O(n−4)

]
. (1.4.28)

Proof. From (1.4.12), (1.4.15), (1.4.20) and (1.4.22) it follows immediately that

σ+
1 (n, z±n ) + σ+

0 (n, z±n ) = σ+
0 (n, 0)

[
1 +

ab

8n2
− ab

4n3
+O

(
1

n4

)]
.

Since β+
n (z) =

∑∞
p=0 σ

+
p (n, z), in view of (1.4.12) to complete the proof it is enough

to show that
∞∑
p=2

σ+
p (n, z±n ) = σ+

0 (n, z±n )O(n−4). (1.4.29)

Next we prove (1.4.29). Recall that σ+
p (n, z) =

∑
x∈Xn(p) h

+(x, z). Now we set

σ∗p(n, z) =
∑

x∈Xn(p)

|h+(x, z)|.

We are going to show that there is an absolute constant C > 0 such that

σ∗p(n, z
±
n ) ≤ σ∗p−1(n, z

±
n ) · C

n2
, p ∈ N, n ≥ N0. (1.4.30)

Since σ+
0 (n, z) has one term only, we have σ∗0(n, z) = |σ+

0 (n, z)|.
Let p ∈ N. To every walk x ∈ Xn(p) we assign a pair (x̃, j), where x̃ ∈ Xn(p− 1)

is the walk that we obtain after dropping the first cycle {+2,−2} from x, and j is

the vertex of x where the first negative step of x is performed. In other words, we

consider the map

ϕ : Xn(p) −→ Xn(p− 1)× I, I = {−n+ 4,−n+ 6, . . . , n− 2},

defined by ϕ(x) = (x̃, j), where

x̃(t) =

x(t) if 1 ≤ t ≤ k − 1

x(t+ 2) if k ≤ t ≤ n+ 2p− 2

,

where k = min{t : x(t) = 2, x(t+ 1) = −2} and j = −n+ 2k.
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The map ϕ is clearly injective, and moreover, we have

h+(x, z) = h+(x̃, z)
ab

(n2 − j2 + z)(n2 − (j − 2)2 + z)
. (1.4.31)

Since the mapping ϕ is injective, from (1.4.17), (1.4.21) and (2.4) it follows that

σ∗p(n, z) ≤ σ∗p−1(n, z) · Φ∗(n, z). (1.4.32)

Hence, by (1.4.21) and (1.4.22), we obtain that (1.4.30) holds.

From (1.4.30) it follows (since σ∗0(n, z±n ) = |σ+
0 (n, z±n )|) that

σ∗p(n, z
±
n ) ≤ |σ+

0 (n, z±n )| ·
(
C

n2

)p
.

Hence, (1.4.29) holds, which completes the proof.

The asymptotics of β−n could be found in a similar way. We have the following.

Proposition 14. In the above notations,

β−n (z) = σ−0 (n, 0)(1 +O((log n)/n3)), if z = O(n−2), (1.4.33)

and

β−n (z±n ) = σ−0 (n, 0)

[
1 +

ab

8n2
− ab

4n3
+O(n−4)

]
, (1.4.34)

where

σ−0 (n, 0) =
4(a/4)n

[(n− 1)!]2
. (1.4.35)

Theorem 15. The Hill operator

Ly = −y′′ + (ae−2ix + be2ix)y, a, b ∈ C,

considered with periodic or antiperiodic boundary conditions has, close to n2 for large

enough n, two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ−n ,

λ+n . For fixed a, b ∈ C, and as n→∞,

λ+n − λ−n = ±8(
√
ab/4)n

[(n− 1)!]2

[
1− ab

4n3
+O(n−4)

]
. (1.4.36)

Proof. Let

C = max{|a2|, |b2|}, Dn = {z : |z| < Cn−2}.
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In view of (1.3.4), for large enough n we have

|z±n | <
1

2
Cn−2, (1.4.37)

so z±n ∈ 1
2
Dn.

On the other hand, from (1.4.27) and (1.4.33) it follows that for large enough n

β±n (z) = σ±0 (n, 0)(1 + r±n (z)) with |r±n (z)| ≤ 1/2 for z ∈ 2Dn.

We set

√
β−n (z)β+

n (z) :=
√
σ−0 (n, 0)σ+

0 (n, 0) (1 + r−n (z))1/2(1 + r+n (z))1/2,

where
√
σ−0 (n, 0)σ+

0 (n, 0) is a square root of σ−0 (n, 0)σ+
0 (n, 0) and (1+w)1/2 is defined

by its Taylor series about w = 0. Then
√
β−n (z)β+

n (z) is a well-defined analytic

function on 2Dn, so the basic equation (1.2.4) splits into two equations

z − αn(z)−
√
β−n (z)β+

n (z) = 0 (1.4.38)

z − αn(z) +
√
β−n (z)β+

n (z) = 0. (1.4.39)

Next we show that for large enough n equation (1.4.38) has at most one root in

the disc Dn. Let

ϕn(z) = αn(z) +
√
β−n (z)β+

n (z), fn(z) = z − ϕn(z).

By (1.3.25) we have α′n(z) = O(n−4) for |z| ≤ 1/2. On the other hand, Lemma 5

implies that √
β−n (z)β+

n (z) = O(n−4) for z ∈ 2Dn,

so by the Cauchy formulas for the derivatives we have

d

dz

√
β−n (z)β+

n (z) = O(n−2) for z ∈ Dn.

Therefore

sup{|ϕ′n(z)| : z ∈ Dn} ≤ 1/2,

which implies

|ϕn(z1)− ϕn(z2)| =
∣∣∣∣∫ z2

z1

ϕ′n(z)dz

∣∣∣∣ ≤ 1

2
|z1 − z2| for z1, z2 ∈ Dn.
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Now we obtain, for z1, z2 ∈ Dn, that

|fn(z1)− fn(z2)| = |(z1 + ϕn(z1))− (z2 + ϕn(z2))|

≥ |z1 − z2| − |ϕn(z1)− ϕn(z2)| ≥
1

2
|z1 − z2|.

Hence the equation fn(z) = 0 (i.e., equation (1.4.38)) has at most one solution in

the disc Dn. Of course, the same argument gives that equation (1.4.39) also has at

most one solution in the disc Dn.

On the other hand, we know by Lemma 1 and (1.4.37) that for large enough n

the equation (1.2.4) has exactly two roots z−n , z
+
n in the disc Dn, so either z−n is the

root of (1.4.38) and z+n is the root of (1.4.39), or vise versa z+n is the root of (1.4.38)

and z−n is the root of (1.4.39). Therefore, we obtain

z+n − z−n − [αn(z+n )− αn(z−n )] = ±
[√

β−n (z+n )β+
n (z+n ) +

√
β−n (z−n )β+

n (z−n )
]
. (1.4.40)

Now (1.3.26), (1.4.28) and (1.4.34) imply, with γn = λ+n − λ−n ,

γn

[
1 +

ab

8n2
+O(n−4)

]
= ±8(

√
ab/4)n

[(n− 1)!]2

[
1 +

ab

8n2
− ab

4n3
+O(n−4)

]
,

which proves (1.4.36).

Finally, if at least one of the coefficients a, b becomes zero, then γn = 0 for

all n. This follows from (1.4.40) where β−n (z±n )β+
n (z±n ) becomes zero for all n, in

consideration of (1.4.27), (1.4.10), (1.4.33) and (1.4.35).
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Chapter 2

DIRAC OPERATORS

2.1 Introduction

The one-dimensional Dirac operator of the form

L(v) = iJ
d

dx
+ v; J =

1 0

0 −1

 , v =

0 P

Q 0

 , v(x+ π) = v(x), (2.1.1)

where P,Q ∈ L2(R) gives rise to a self-adjoint operator in L2(R,C2) if Q(x) = P (x).

It is well-known that the spectrum of L(v) is absolutely continuous and has a band-

gap structure, i.e.,

Sp(L) =
∞⋃

n=∞

[λ+n−1, λ
−
n ],

where

. . . ≤ λ+n−1 < λ−n ≤ λ+n < λ−n+1 ≤ . . . .

Floquet theory shows that the endpoints λ−n and λ+n of these gaps are eigenvalues

of the same differential operator and (2.1.1) but considered on the interval [0, π] with

periodic boundary conditions for even n and antiperiodic boundary conditions for

odd n, where

Per± : y(π) = ±y(0).

See [4, 27] for more details.

It is known that the potential smoothness determines the asymptotic behavior

of the sequence of γn = λ+n − λ−n . Moreover, in the self-adjoint case the asymptotic

behavior of (γn) determines the potential smoothness as well. This phenomenon

was first discovered and studied for Hill operators (see the discussion in section 1.1).

The situation is similar for self-adjoint Dirac operators but the relationship between

smoothness of the potential functions P,Q and decay rate of the spectral gaps (γn)

were studied somewhat later (see [18, 19, 36, 37, 9, 8, 14]).

In the non-self-adjoint case, for both Hill and one-dimensional Dirac operators,
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the decay rate of (|γn|) does not determine the potential smoothness as Gasymov’s

example [17] and its modifications in the Dirac case show. However, Tkachenko

[39, 40, 41] discovered that the potential smoothness could be determined by the

rate of decay of (|γn| + |δn|), where δn is the difference between λ+n and the closest

Dirichlet eigenvalue µn (see also [38, 7, 9, 14]).

Djakov and Mityagin [10, 11] provided an analogue of Ince’s result [26] for the

Mathieu-Hill operator. They studied the spectral gaps of Dirac operators (2.1.1)

with potentials

v(x) =

 0 P (x)

Q(x) 0

 , P (x) = Q(x) = 2a cos(2x), a ∈ R \ {0}, (2.1.2)

and showed that γ−n = γn for all n, γn = 0 for even n, γn > 0 for odd n; and for

large enough m ∈ N,

γ2m+1 = 2
|a|2m+1

42m(m!)2

[
1 +O

(
logm

m

)]
. (2.1.3)

Let us notice that here the operator L is considered on the interval [0, π], whereas

all operators in [10, 11] are considered on [0, 1], and thus the coefficients in (2.1.3)

are normalized correspondingly.

In this thesis, we study the same phenomenon for Dirac operators (2.1.1) with a

four-parameter family of potentials

P (x) = ae−2ix + Ae2ix, Q(x) = be−2ix +Be2ix, a, A, b, B ∈ C.

Our asymptotic formulas (2.4.28), (2.4.29) extend and refine (2.1.3), and show

that γn 6= 0 for odd n with large enough |n|, so all but finitely many antiperiodic

eigenvalues are simple (see also [2]). The main part of these asymptotics was given

in [15, (8.5) in Theorem 29] but formula (8.5) is based on [15, Proposition 28] which

is given without proof. We prove a refined version of that proposition in Section 4

(see Propositions 30 and 31).

Additionally, we provide asymptotics for the periodic (if n is even) and antiperi-

odic (if n is odd) eigenvalues for large enough |n| ∈ Z that

λ±n = n+
Ab+ aB

2n
+
aB − Ab

2n2
+O(|n|−3).
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2.2 Preliminaries

Let us consider the one-dimensional Dirac operator defined as

L(v) = iJ
d

dx
+ v; J =

1 0

0 −1

 , v =

0 P

Q 0

 , x ∈ [0, π], (2.2.1)

with a potential v ∈ L2([0, π]); that is P,Q ∈ L2([0, π]). Let

P (x) =
∑
m∈Z

Pme
2imx and Q(x) =

∑
m∈Z

Qme
2imx

be the Fourier series expansions of the functions P and Q, respectively. For conve-

nience we set for m ∈ Z

p(m) =

Pm/2 if m is even

0 if m is odd

and q(m) =

Qm/2 if m is even

0 if m is odd

.

Then

‖v‖2 =
∑
m∈Z

(|Pm|2 + |Qm|2) =
∑
k∈2Z

(|p(k)|2 + |q(k)|2).

On the space L2([0, π],C2) we define the inner product as

〈(
f1
f2

)
,

(
g1
g2

)〉
=

1

π

∫ π

0

(f1(x)g1(x) + f2(x)g2(x)) dx.

We consider the periodic (Per+) and antiperiodic (Per−) boundary conditions:

Per± : y1(0) = ±y1(π), y2(0) = ±y2(π) (2.2.2)

We denote by LPer± the closed operator defined on the domain

∆Per± = {f ∈ H1(([0, π]),C2) : f =

(
f1
f2

)
∈ Per±}.

If v = 0, that is, if P ≡ 0 and Q ≡ 0 then we use the symbol L0
Per± (or simply

L0). We can characterize the spectra and the eigenfunctions of L0
Per± . Namely;

(i) Sp(L0
Per+) = {n even} = 2Z, each number n ∈ 2Z is a double eigenvalue, and
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the corresponding eigenspaces are

E0
n = Span{e1n, e2n}, (2.2.3)

where

e1n(x) =

(
e−inx

0

)
, e2n(x) =

(
0

einx

)
. (2.2.4)

(ii) Sp(L0
Per−) = {n odd} = 2Z+1, each number n ∈ 2Z+1 is a double eigenvalue,

and the corresponding eigenspaces E0
n are given by the same formulae (2.2.3)

and (2.2.4) but with n ∈ 2Z + 1.

Let LPer+(v) and LPer−(v) denote the operator (2.2.1) subject to the correspond-

ing boundary conditions defined in (2.2.2). The following is well-known (e.g., [14,

Theorem 17]).

Lemma 16. The spectra of LPer±(v) are discrete. There is N0 = N0(v) such that

the union
⋃
|n|>N0

Dn, where Dn = {z : |z − n| < 1
2
}, contains all but finitely many

of the eigenvalues of LPer±(v).

Moreover each disc Dn, |n| > N0, contains exactly two (counted with algebraic

multiplicity) periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ−n , λ
+
n

(where Reλ−n < Reλ+n or Reλ−n = Reλ+n and Imλ−n ≤ Imλ+n ).

Remark. In the sequel we assume that N0 > 1 and consider only integers n ∈ Z
with |n| > N0.

Technically, our approach is based on the following lemma (see [14, Section 2.4]).

Lemma 17. Let v =

0 P

Q 0

, and let p(m) and q(m), m ∈ 2Z be respectively the

Fourier coefficients of P and Q about the system {eimx, m ∈ 2Z}. Then, λ = n+ z

with |z| ≤ 1/2 is an eigenvalue of LPer±(v) if and only if z is an eigenvalue of a

matrix

S11 S12

S21 S22

 whose entries Sij = Sij(n, z; v) are given by

Sij(n, z) =
∞∑
k=0

Sijk (n, z), (2.2.5)

where

S11
0 = S22

0 = 0, S12
0 = p(−2n), S21

0 = q(2n), (2.2.6)

and for ν = 1, 2, . . .

S11
2ν = S22

2ν = 0, S12
2ν−1 = S21

2ν−1 = 0, (2.2.7)
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S11
2ν−1 =

∑
j1,...,j2ν−1 6=n

p(−n− j1)q(j1 + j2) · · · p(−j2ν−2 − j2ν−1)q(j2ν−1 + n)

(n− j1 + z)(n− j2 + z) · · · (n− j2ν−2 + z)(n− j2ν−1 + z)
,

(2.2.8)

S22
2ν−1 =

∑
j1,...,j2ν−1 6=n

q(n+ j1)p(−j1 − j2) · · · q(j2ν−2 + j2ν−1)p(−j2ν−1 − n)

(n− j1 + z)(n− j2 + z) · · · (n− j2ν−2 + z)(n− j2ν−1 + z)

(2.2.9)

S12
2ν =

∑
j1,...,j2ν 6=n

p(−n− j1)q(j1 + j2) · · · q(j2ν−1 + j2ν)p(−j2ν − n)

(n− j1 + z)(n− j2 + z) · · · (n− j2ν−1 + z)(n− j2ν + z)
,

(2.2.10)

S21
2ν =

∑
j1,...,j2ν 6=n

q(n+ j1)p(−j1 − j2) · · · p(−j2ν−1 − j2ν)q(j2ν + n)

(n− j1 + z)(n− j2 + z) · · · (n− j2ν−1 + z)(n− j2ν + z)
,

(2.2.11)

where in all sums jk ∈ n+ 2Z.

For each ν ∈ Z+ the change of summation indices is = j2ν+1−s, s = 1, . . . , 2ν + 1

shows that S11
2ν+1(n, z) = S22

2ν+1(n, z); therefore,

S11(n, z) = S22(n, z). (2.2.12)

For convenience we set

αn(z) := S11(n, z), β+
n (z) := S21(n, z), β−n (z) := S12(n, z). (2.2.13)

In these notations the characteristic equation associated with the matrix (Sij) be-

comes

(z − αn(z))2 = β−n (z)β+
n (z). (2.2.14)

In view of Lemmas 16 and 17, for large enough |n| equation (2.2.14) has in the

disc |z| ≤ 1/2 exactly the following two roots (counted with multiplicity):

z−n = λ−n − n, z+n = λ+n − n. (2.2.15)

In the sequel we consider potentials of the form v(x) =

0 P

Q 0

 with

P (x) = ae−2ix + Ae2ix, Q(x) = be−2ix +Be2ix
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whose corresponding Fourier coefficients are

p(−2) = a, p(2) = A; q(−2) = b, q(2) = B, (2.2.16)

and

p(m) = q(m) = 0 for m 6= ±2. (2.2.17)

Let us change in (2.2.11) the indices j2, j4, . . . , j2ν by −j2,−j4, . . . ,−j2ν . Then by

(2.2.16) and (2.2.17) each nonzero term in the resulting sum comes from a 2ν-tuple

of indices (j1, . . . , j2ν) with j1, j3, . . . , j2ν−1 6= n and j2, j4, . . . , j2ν 6= −n such that

(n+ j1) + (j2 − j1) + · · ·+ (j2ν − j2ν−1) + (n− j2ν) = 2n (2.2.18)

and

n+ j1, j2 − j1, . . . , j2ν − j2ν−1, n− j2ν ∈ {−2, 2}. (2.2.19)

So by (2.2.5), (2.2.6) and (2.2.13) we obtain that

β+
n (z) = q(2n) +

∞∑
ν=1

B+
2ν(n, z), (2.2.20)

where

B+
2ν =

∑
(jl)

2ν
l=1∈I2ν

q(n+ j1)p(j2 − j1) · · · p(j2ν − j2ν−1)q(n− j2ν)
(n− j1 + z)(n+ j2 + z) · · · (n− j2ν−1 + z)(n+ j2ν + z)

, (2.2.21)

and

I2ν = {(jl)2νl=1 : j1, j3, . . . , j2ν−1 6= n; j2, j4, . . . , j2ν 6= −n; (2.2.22)

n+ j1, j2 − j1, . . . , j2ν − j2ν−1, n− j2ν ∈ {−2, 2}}.

In view of (2.2.18) and (2.2.19), there is one-to-one correspondence between the

nonzero terms in (2.2.21) and the admissible walks x = (xt)
2ν+1
t=1 on Z from −n to n

with steps xt = ±2 such that j1, j3, . . . , j2ν−1 6= n and j2, j4, . . . , j2ν 6= −n. For every

such walk x = (xt)
2ν+1
t=1 we set

h+(x, z) =
q(x1)p(x2)q(x3) · · · p(x2ν)q(x2ν+1)

(n− j1 + z)(n+ j2 + z) · · · (n− j2ν−1 + z)(n+ j2ν + z)
. (2.2.23)

Let Xn(r), r = 0, 1, 2, . . . denote the set of all admissible walks from −n to n,

with r negative steps if n > 0 or with r positive steps if n < 0. It is easy to see

that every walk x ∈ Xn(r) has totally |n| + 2r steps because
∑
xt = 2n. In these
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notations, we have

β+
n (z) =

∞∑
r=0

σ+
r (n, z) with σ+

r (n, z) =
∑

x∈Xn(r)

h+(x, z). (2.2.24)

Of course, we may write similar formulas for β−n (z) as well. A walk y = (yt)
2ν+1
t=1

from n to −n is admissible if its steps are ±2 and its vertices satisfy j1, j3, . . . , j2ν−1 6=
−n and j2, j4, . . . , j2ν 6= n. We set

h−(y, z) =
p(y1)q(y2)p(y3) · · · q(y2ν)p(y2ν+1)

(n+ j1 + z)(n− j2 + z) · · · (n+ j2ν−1 + z)(n− j2ν + z)
, (2.2.25)

and let Yn(r), r = 0, 1, 2, . . . denote the set of all admissible walks from n to −n
having r positive steps if n > 0 or r negative steps if n < 0. Then, changing in

(2.2.10) the indices j1, . . . , j2ν−1 by −j1, . . . ,−j2ν−1, we see that

β−n (z) =
∞∑
r=0

σ−r (n, z) with σ−r (n, z) =
∑

y∈Yn(r)

h−(y, z). (2.2.26)

Finally, we consider αn(z). A walk (wt)
2ν
t=1 from n to n is admissible if its steps

are ±2 and its vertices satisfy j1, . . . , j2ν−1 6= −n and j2, . . . , j2ν−2 6= n. We set

h(w, z) =
p(w1)q(w2) · · · p(w2ν−1)q(w2ν)

(n+ j1 + z)(n− j2 + z) · · · (n+ j2ν−2 + z)(n− j2ν−1 + z)
, (2.2.27)

and let Wn(ν), ν = 1, 2, . . . denote the set of all admissible walks from n to n having

2ν steps. In view of (2.2.5) and (2.2.13), changing in (2.2.8) the indices j1, . . . , j2ν−1

by −j1, . . . ,−j2ν−1, we obtain that

αn(z) =
∞∑
ν=1

τν(n, z) with τν(n, z) =
∑

w∈Wn(ν)

h(w, z). (2.2.28)

Of course, σ±r and β±n depend on the potential functions but in the above nota-

tions this dependence is suppressed. If we use instead the notations σ±r (P,Q;n, z)

and β±n (P,Q; z) then the following holds.

Lemma 18. In the above notations,

σ−r (P,Q;n, z) = σ+
r (Q,P ;−n,−z), r ∈ Z+, (2.2.29)

and

β−n (P,Q; z) = β+
−n(Q,P ;−z). (2.2.30)
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Proof. Let us write also h±P,Q(x, z). One can easily see that Yn(r) = X−n(r) and if

y ∈ Yn(r) then

h−P,Q(y, z) = h+Q,P (y,−z).

Now (2.2.29) follows and so (2.2.30) holds as well.

Proposition 19. For n ∈ 2Z with large enough |n| we have

β−n (z) ≡ 0, β+
n (z) ≡ 0; (2.2.31)

z∗n = α(z∗n), where z∗n = z−n = z+n ; (2.2.32)

λ−n = λ+n . (2.2.33)

Proof. If n is even then there are no admissible walks from −n to n. Indeed, since

every admissible walk has odd number of steps (each equal to ±2), the sum of

all steps is not divisible by 4 while 2n is multiple to 4. Therefore, it follows that

β+
n (z) ≡ 0. The same argument shows that β−n (z) ≡ 0, so (2.2.31) is proved.

Now the equation (2.2.14) takes the form (z − αn(z))2 = 0, so it has a double

root, say z∗n. Hence (2.2.32) and (2.2.33) hold.

2.3 Asymptotic estimates for z±n and αn(z)

In this section we give the asymptotics of αn(z) and derive asymptotic formulas for

z±n = λ±n − n using the basic equation (2.2.14).

The following lemma gives preliminary asymptotic estimates of β±n (z) for odd

n ∈ Z; the precise asymptotics will be given in the next section.

Lemma 20. If n = ±(2m+ 1), m ∈ N then

β±n (z) = O
(
(8D2)m/mm

)
, |z| ≤ 1/2, (2.3.1)

where D = max{|a|, |A|, |b|, |B|}.

Proof. We prove (2.3.1) for β+
n only. The same argument could be used in the case

of β−n as well, but by (2.2.30) the assertion for β−n follows if (2.3.1) is known for β+
n .

Fix r ∈ Z+, and let x ∈ Xn(r) be a walk from −n to n having r negative

(positive) steps if n is positive (respectively negative). If (j`)
2ν
`=1, ν = m+ r, are the

vertices of x, then

|n± j` + z| ≥ |n± j`| − 2−1 ≥ 2−1|n± j`|, ` = 1, . . . , 2ν. (2.3.2)
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On the other hand we have

|n− j`| · |n+ j`+1| ≥ |n|, ` = 1, . . . , 2ν − 1. (2.3.3)

Indeed, both |n−j`| and |n+j`+1| are even. If j` and j`+1 have the same sign, then at

least one of those numbers is greater than |n|, so (2.3.3) follows. Since |j`+1−j`| = 2,

j` and j`+1 could have opposite signs if, and only if, |j`| = |j`+1| = 1. But then

|n− j`| · |n+ j`+1| = n2 − 1 > |n|,

so (2.3.3) holds. Now (2.3.2) and (2.3.3) imply, for n = ±(2m + 1) and |z| ≤ 1/2,

that
1

|n− j1 + z||n+ j2 + z| · · · |n− j2ν−1 + z||n+ j2ν + z|
≤ 22ν

(2m)ν
,

so in view of (2.2.23) we obtain

|h+(x, z)| ≤ D2ν+1(2/m)ν , ν = m+ r.

Since the steps of every walk x ∈ Xn(r) are equal to ±2, we have cardXn(r) ≤ 22ν .

Thus,

|σ+
r (n, z)| ≤

∑
x∈Xn(r)

|h+(x, z)| ≤ D
(
8D2/m

)m+r
,

which implies (2.3.1).

Proposition 21. For odd n ∈ Z with large enough |n|

z±n = αn(n, z±n ) +O(|n|−p) ∀p > 0. (2.3.4)

Proof. Let n = ±(2m+ 1). We know that z±n are roots of equation (2.2.14). There-

fore, from (2.3.1) it follows that

|z±n − αn(n, z±n )| = O
(
(8D2/m)m

)
which implies (2.3.4).

Lemma 22. For n ∈ Z with large enough |n|

αn(z) =
Ab+ aB

2n
+O(n−2), |z| ≤ 1/2, (2.3.5)

and

z±n =
Ab+ aB

2n
+O(n−2). (2.3.6)
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Proof. We estimate αn(z) by using (2.2.28). To evaluate τ1(n, z) we consider the

two-step walks from n to n. There are two such walks, respectively with steps (2,−2)

and (−2, 2), and the corresponding vertices are j1 = n+2 and j1 = n−2. Therefore,

for |z| ≤ 1/2 we have

τ1(n, z) =
Ab

2n+ 2 + z
+

aB

2n− 2 + z
, (2.3.7)

which implies

τ1(n, z) =
Ab+ aB

2n
+O(n−2), |z| ≤ 1/2. (2.3.8)

Next we consider τ2(n, z). The related set Wn(2) of four-step walks from n to n

has two elements: (2, 2,−2,−2) and (−2,−2, 2, 2). The corresponding vertices are

j1 = n+ 2, j2 = n+ 4, j3 = n+ 2

and

j1 = n− 2, j2 = n− 4, j3 = n− 2.

Therefore, in view of (2.2.27)

τ2(n, z) =
abAB

[n+ (n+ 2) + z][n− (n+ 4) + z][n+ (n+ 2) + z]
(2.3.9)

+
abAB

[n+ (n− 2) + z][n− (n− 4) + z][n+ (n− 2) + z]
,

so it follows that

τ2(n, z) = O(n−2), |z| ≤ 1/2. (2.3.10)

Further, if w ∈ Wn(ν), ν = 3, 4, . . . is a walk with 2ν steps from n to n, then

h(w, z) is a fraction whose denominator d(w, z) has the form

d(w, z) = (2n± 2 + z)
ν−1∏
k=1

(n− j2k + z)(n+ j2k+1 + z).

For |z| ≤ 1/2, we have |2n± 2 + z| ≥ |n|/2 and by (2.3.2) and (2.3.3) the absolute

value of every factor of the product is greater than |n|/2, so

|d(w, z)| ≥ (|n|/2)ν .

Now the same argument as in the proof of Lemma 20 leads to

|τν(n, z)| ≤ Cν/|n|ν , ν = 3, 4, . . . , (2.3.11)

32



where C is a constant depending only on a, b, A,B. Therefore, it follows that

∞∑
ν=3

|τν(n, z)| ≤
∞∑
ν=3

Cν

|n|ν
= O(|n|−3) for |z| ≤ 1/2. (2.3.12)

Now (2.3.8), (2.3.10) and (2.3.12) imply (2.3.5). In view of (2.2.32) and (2.3.4),

(2.3.6) follows from (2.3.5).

Next we refine (2.3.6) by finding the next term in the asymptotic expansion of

z±n about the powers of 1/|n|.

Proposition 23. For large enough |n| ∈ Z

z±n =
Ab+ aB

2n
+
aB − Ab

2n2
+O(|n|−3). (2.3.13)

Proof. From (2.3.7) and (2.3.6) it follows that

τ1(n, z
±
n ) =

Ab

2n
(1− 1/n+O(n−2)) +

aB

2n
(1 + 1/n+O(n−2))

=
Ab+ aB

2n
+
aB − Ab

2n2
+O(|n|−3).

On the other hand, (2.3.9) and (2.3.6) imply with z = z±n

τ2(n, z
±
n ) =

−abAB
(2n+ 2 + z)2(4− z)

+
abAB

(2n− 2 + z)2(4 + z)
= O(|n|−3).

Therefore, in view of (2.3.12) we obtain (2.3.13).

Remark. Of course, one can easily get more terms of the asymptotic expansion

of z±n by using (2.3.13) and refining further the asymptotic analysis of αn(z±n ).

In order to estimate γn = λ+n − λ−n = z+n − z−n in the next section, we need the

following.

Lemma 24. If n = ±(2m+ 1) with m ∈ N, then

dαn(z)/dz = O(m−2) for |z| ≤ 1/4, (2.3.14)

and

αn(z+n )− αn(z−n ) = γnO(m−2). (2.3.15)

Proof. By (2.2.28) we have

αn(z) = τ1(n, z) + α̃n(z) with α̃n(z) =
∞∑
ν=2

τν(n, z).
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In view of (2.3.10) and (2.3.12),

α̃n(z) = O(m−2) for |z| ≤ 1/2.

Therefore, the Cauchy formula for derivatives implies that

dα̃n(z)/dz = O(m−2) for |z| ≤ 1/4.

On the other hand, by (2.3.7) we have

∂zτ1(n, z) = − Ab

(2n+ 2 + z)2
− aB

(2n− 2 + z)2
= O(m−2) for |z| ≤ 1/2,

so (2.3.14) follows.

Further we have

αn(z+n )− αn(z−n ) =

∫ z+n

z−n

α′n(z) dz, (2.3.16)

where the integral is taken over the segment [z−n , z
+
n ] from z−n to z+n . Therefore, by

2.3.14 we obtain

|αn(z+n )− αn(z−n )| ≤ |z+n − z−n | sup
[z−n ,z

+
n ]

|α′n(z)| = |z+n − z−n |O(m−2),

hence (2.3.15) holds.

2.4 Asymptotic formulas for β±n (z) and γn.

In this section only odd integers n with large enough |n| are considered.

We use (2.2.24) to find precise asymptotics of β+
n (z). First we analyze σ+

0 (n, z).

If n = 2m + 1 with m ∈ N then there is only one admissible walk from −n to n

with no negative steps. We denote this walk by ξ, so we have Xn(0) = {ξ} and

σ0(n, z) = h+(ξ, z). Since

ξ(t) = 2, 1 ≤ t ≤ 2m+ 1, (2.4.1)

we obtain

σ+
0 (n, z) =

AmBm+1

(n− j1 + z)(n+ j2 + z) · · · (n− j2m−1 + z)(n+ j2m + z)
(2.4.2)
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with jν = −2m− 1 + 2ν, ν = 1, . . . , 2m.

If n = −(2m+ 1), then again Xn(0) has only one element, say

ξ̄ = (ξ̄t)
2m+1
t=1 , ξ̄(t) = −2 ∀t. (2.4.3)

Therefore σ0(n, z) = h+(ξ̄, z) and so it follows that

σ+
0 (n, z) =

ambm+1

(n− j1 + z)(n+ j2 + z) · · · (n− j2m−1 + z)(n+ j2m + z)
(2.4.4)

with jν = 2m+ 1− 2k, ν = 1, · · · , 2m.

Lemma 25. In the above notations,

σ+
0 (n, 0) =


AmBm+1

42m(m!)2
for n = 2m+ 1,

ambm+1

42m(m!)2
, for n = −2m− 1.

(2.4.5)

Proof. In the case n = 2m+ 1 we have

m∏
k=1

[n− (−n+ 2(2k − 1))]
m∏
k=1

[n+ (−n+ 2(2k))] = 42m(m!)2,

so (2.4.5) holds. The proof is similar for n = −2m− 1.

Lemma 26. For n = ±(2m+ 1),

σ+
0 (n, z±n )

σ+
0 (n, 0)

=

[
1− (Ab+ aB) logm

8m
− g(Ab+ aB)

8m
+O

(
log2m

m2

)]
, (2.4.6)

where g is the Euler constant.

Proof. From (2.4.2) and (2.4.4) it follows that

σ+
0 (n, z±n )

σ+
0 (n, 0)

=
m∏
k=1

(1 + ck(n))−1
m∏
k=1

(1 + dk(n))−1

with

ck(n) = sgn (n)
z±n
4k
, dk(n) =

sgn (n) z±n
4(m− k + 1)

. (2.4.7)

One can easily see that
∏m

k=1(1 + ck(n))−1 =
∏m

k=1(1 + dk(n))−1 and

log

(
m∏
k=1

(1 + ck(n))−1

)
= −

m∑
k=1

log(1 + ck(n)) = −
m∑
k=1

ck(n) +O

(
m∑
k=1

|ck(n)|2
)
.
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In view of (2.3.6) and (2.4.7) we have

m∑
k=1

ck(n) =

(
m∑
k=1

1

4k

)[
Ab+ aB

4m
+O(m−2)

]
,

and
m∑
k=1

|ck(n)|2 =

(
m∑
k=1

1

16k2

)
O(m−2) = O(m−2).

Therefore, by (1.4.11) we obtain

log

(
m∏
k=1

1

1 + ck(n)

)
= −(Ab+ aB) logm

16m
− g(Ab+ aB)

16m
+O

(
logm

m2

)
. (2.4.8)

Hence,

m∏
k=1

1

1 + ck(n)
= 1− (Ab+ aB) logm

16m
− g(Ab+ aB)

16m
+O

(
log2m

m2

)
,

which implies (2.4.6).

We need also the following modification of Lemma 26.

Lemma 27. For n = ±(2m+ 1), if z = O(m−1) then

σ+
0 (n, z) = σ+

0 (n, 0)(1 +O((logm)/m)). (2.4.9)

Proof. We follow the proof of Lemma 26, replacing z±n by z and using z = O(m−1)

instead of (2.3.6).

Next we estimate the ratio σ+
1 (n, z)/σ+

0 (n, z).

Lemma 28. If n = ±(2m+ 1), then

σ+
1 (n, z) = σ+

0 (n, z) · Φ(n, z), (2.4.10)

where

Φ(n, z) =
m∑
k=1

ϕk(n, z) +
m∑
k=2

ψk(n, z) (2.4.11)

with

ϕk(n, z) =
bA

(4(m+ 1− k)± z)(4k ± z)
(2.4.12)

and

ψk(n, z) =
aB

(4(k − 1)± z)(4(m+ 1− k)± z)
, (2.4.13)
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where we have + or − in front of z according as n > 0 or n < 0.

Proof. From the definition of Xn(1) and (2.2.24) it follows that

σ+
1 (n, z) =

∑
x∈Xn(1)

h+(x, z) =
2m∑
ν=2

h(xν , z), (2.4.14)

where xν denotes the walk with (ν + 1)-th step equal to -2 and all others equal to

2 if n = 2m + 1 or the walk with (ν + 1)-th step equal to 2 and all others equal to

-2 if n = −(2m+ 1). The vertices of xν are given by

jα(xν) =


iα, 1 ≤ α ≤ ν

iν−1, α = ν + 1

iα−2, ν + 2 ≤ α ≤ |n|+ 2

with ik =

−n+ 2k, n > 0

−n− 2k, n < 0

Therefore, by (2.2.23)

h(x2k, z) = h(ξ, z)
bA

(n− i2k−1 + z)(n+ i2k + z)
, (2.4.15)

and

h(x2k−1, z) = h(ξ, z)
aB

(n+ i2k−2 + z)(n− i2k−1 + z)
. (2.4.16)

Now (2.4.14))–(2.4.16) imply (2.4.10).

Lemma 29. If n = ±(2m+ 1) and z = O(m−1), then

Φ(n, z) =
(Ab+ aB) logm

8m
+
g(Ab+ aB)

8m
+O

(
logm

m2

)
(2.4.17)

and

Φ∗(n, z) :=
m∑
k=1

|ϕk(n, z)|+
m∑
k=2

|ψk(n, z)| = O

(
logm

m

)
. (2.4.18)

Proof. In view of (2.4.11)–(2.4.13),

Φ(n, z) =
bA

2m+ 2± z

m∑
k=1

1

4k ± z
+

aB

2m+ 2± z

m−1∑
k=1

1

4k ± z
.

Since
m∑
k=1

1

4k + z
=

m∑
k=1

1

4k
+O(m−1) if z = O(m−1),
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(2.4.17) follows immediately.

To obtain (2.4.18) we use that |4k ± z| ≥ 2k, and therefore,

Φ∗n(n, z) ≤ 4Φ∗n(n, 0) ≤ 4|bA|
2m+ 2

m∑
k=1

1

4k
+

4|aB|
2m+ 2

m−1∑
k=1

1

4k
= O

(
logm

m

)
.

Proposition 30. For n = ±(2m+ 1) we have

β+
n (z) = σ+

0 (n, 0)

[
1 +O

(
logm

m

)]
if z = O(m−1) (2.4.19)

and

β+
n (z±n ) = σ+

0 (n, 0)

[
1 +O

(
log2m

m2

)]
, (2.4.20)

with

σ+
0 (n, 0) =


AmBm+1

42m(m!)2
for n = 2m+ 1,

ambm+1

42m(m!)2
, for n = −2m− 1.

(2.4.21)

Proof. From (2.4.9), (2.4.10) and (2.4.17) it follows that

σ+
1 (n, z) + σ+

0 (n, z) = σ+
0 (n, 0)

[
1 +O

(
logm

m

)]
if z = O(m−1).

Also, (2.4.6)), (2.4.10) and (2.4.17) imply that

σ+
1 (n, z±n ) + σ+

0 (n, z±n ) = σ+
0 (n, 0)

[
1 +O

(
log2m

m2

)]
.

Since β+
n (z) =

∑∞
r=0 σ

+
r (n, z), to complete the proof it is enough to show that

∞∑
r=2

σ+
r (n, z) = σ+

0 (n, z)O

(
log2m

m2

)
if z = O(m−1). (2.4.22)

Next we prove (2.4.22). Recall that σ+
r (n, z) =

∑
x∈Xn(r) h

+(x, z). Now we set

σ∗r(n, z) :=
∑

x∈Xn(r)

|h+(x, z)|.

We are going to show that there is an absolute constant C > 0 such that for

38



n = ±(2m+ 1) with large enough m

σ∗r(n, z) ≤ σ∗r−1(n, z) ·
C logm

m
if z = O(m−1), r = 1, 2, . . . . (2.4.23)

Since σ+
0 (n, z) has one term only, we have σ∗0(n, z) = |σ+

0 (n, z)|.
Let r ∈ N. To every walk x ∈ Xn(r) we assign a pair (x̃, k), where k is such

that x(k + 1) is the first negative (if n > 0) or positive (if n < 0) step of x and

x̃ ∈ Xn(r − 1) is the walk that we obtain after dropping from x the steps x(k) and

x(k + 1). In other words, we consider the map

ϕ : Xn(r) −→ Xn(r − 1)× I, ϕ(x) = (x̃, k), k ∈ I = {2, . . . , 2m},

where k =

min{t : x(t) = 2, x(t+ 1) = −2} if n > 0,

min{t : x(t) = −2, x(t+ 1) = 2} if n < 0,

x̃(t) =

x(t) if 1 ≤ t ≤ k − 1,

x(t+ 2) if k ≤ t ≤ 2m+ 2r − 1.

The map ϕ is clearly injective and we have

h(x, z)

h(x̃, z)
=


bA

(n−j+2±z)(n+j±z) if k is even,

aB
(n+j−2±z)(n−j±z) if k is odd,

j =

−n+ 2k if n > 0,

−n− 2k if n < 0,

where in front of z we have + if n > 0 or − if n < 0.

Since ϕ is injective, from (2.4.13), (2.4.18) it follows that

σ∗r(n, z) ≤ σ∗r−1(n, z) · Φ∗(n, z).

Hence, by (2.4.18) and (2.4.17), we obtain that (2.4.23) holds.

From (2.4.23) it follows (since σ∗0(n, z) = |σ+
0 (n, z)|) that

σ∗r(n, z) ≤ |σ+
0 (n, z)| ·

(
C logm

m

)r
.

Hence, (2.4.22) holds, which completes the proof.

The asymptotics of β−n could be found in a similar way. We have the following.
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Proposition 31. If n = ±(2m+ 1) then

β−n (z) = σ−0 (n, 0)

[
1 +O

(
logm

m

)]
if z = O(m−1) (2.4.24)

and

β−n (z±n ) = σ−0 (n, 0)

[
1 +O

(
log2m

m2

)]
, (2.4.25)

with

σ−0 (n, 0) =


am+1bm

42m(m!)2
for n = 2m+ 1,

Am+1Bm

42m(m!)2
for n = −2m− 1.

(2.4.26)

Proof. One could give a proof by following step by step the proof of Proposition 30

but analyzing the sums (2.2.26) instead of (2.2.24).

However, Lemma 18 provides an alternative approach. In view of (2.2.30), for-

mula (2.4.24) follows from (2.4.19) immediately.

Theorem 32. The Dirac operator (2.1.1) considered with

P (x) = ae−2ix + Ae2ix, Q(x) = be−2ix +Be2ix, a, A, b, B ∈ C,

has for large enough |n| ∈ Z two periodic (if n is even) or antiperiodic (if n is odd)

eigenvalues λ−n , λ+n such that

λ±n = n+
Ab+ aB

2n
+
aB − Ab

2n2
+O(|n|−3). (2.4.27)

If n is even, then γn = λ+n − λ−n = 0. For odd n = ±(2m+ 1) with m ∈ N, we have

γ2m+1 = ±2

√
(Ab)m(aB)m+1

42m(m!)2

[
1 +O

(
log2m

m2

)]
, (2.4.28)

and

γ−(2m+1) = ±2

√
(Ab)m+1(aB)m

42m(m!)2

[
1 +O

(
log2m

m2

)]
. (2.4.29)

Proof. For even n with large enough |n| we have λ+n = λ−n by Proposition 19, and

(2.4.27) comes from (2.3.13).

Let n = ±(2m+ 1), and let

C = max{|a|2, |b|2, |A|2, |B|2}, Dm = {z : |z| < Cm−1}.
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In view of (2.3.6), for large enough m we have

|z±n | <
1

2
Cm−1, (2.4.30)

so z±n ∈ 1
2
Dm.

On the other hand, from (2.4.19) and (2.4.24) it follows that for large enough m

β±n (z) = σ±0 (n, 0)(1 + r±n (z)) with |r±n (z)| ≤ 1/2 for z ∈ 2Dm.

We set

√
β−n (z)β+

n (z) :=
√
σ−0 (n, 0)σ+

0 (n, 0) (1 + r−n (z))1/2(1 + r+n (z))1/2,

where
√
σ−0 (n, 0)σ+

0 (n, 0) is a square root of σ−0 (n, 0)σ+
0 (n, 0) and (1+w)1/2 is defined

by its Taylor series about w = 0. Then
√
β−n (z)β+

n (z) is a well-defined analytic

function on 2Dm, so the basic equation (2.2.14) splits into two equations

z − αn(z)−
√
β−n (z)β+

n (z) = 0, (2.4.31)

z − αn(z) +
√
β−n (z)β+

n (z) = 0. (2.4.32)

Next we show that for large enough m equation (2.4.31) has at most one root in

the disc Dm. Let

ϕn(z) = αn(z) +
√
β−n (z)β+

n (z), fn(z) = z − ϕn(z).

By (2.3.14) we have α′n(z) = O(m−2) for |z| ≤ 1/4. On the other hand, Lemma 20

implies that √
β−n (z)β+

n (z) = O(m−2) for z ∈ 2Dm,

so by the Cauchy formulas for the derivatives we have

d

dz

√
β−n (z)β+

n (z) = O(m−1) for z ∈ Dm.

Therefore

sup{|ϕ′n(z)| : z ∈ Dm} ≤ 1/2,

which implies

|ϕn(z1)− ϕn(z2)| =
∣∣∣∣∫ z2

z1

ϕ′n(z)dz

∣∣∣∣ ≤ 1

2
|z1 − z2| for z1, z2 ∈ Dm.
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Now we obtain, for z1, z2 ∈ Dm, that

|fn(z1)− fn(z2)| = |(z1 + ϕn(z1))− (z2 + ϕn(z2))|

≥ |z1 − z2| − |ϕn(z1)− ϕn(z2)| ≥
1

2
|z1 − z2|.

Hence the equation fn(z) = 0 (i.e., equation (2.4.31)) has at most one solution in

the disc Dm. Of course, the same argument gives that equation (2.4.32) also has at

most one solution in the disc Dm.

On the other hand, we know by Lemma 16 and (2.4.30) that for large enough

m equation (2.2.14) has exactly two roots z−n , z
+
n in the disc Dm, so either z−n is the

root of (2.4.31) and z+n is the root of (2.4.32), or vise versa z+n is the root of (2.4.31)

and z−n is the root of (2.4.32). Therefore, we obtain

z+n − z−n − [αn(z+n )− αn(z−n )] = ±
[√

β−n (z+n )β+
n (z+n ) +

√
β−n (z−n )β+

n (z−n )
]
. (2.4.33)

Now (2.3.15), (2.4.20), (2.4.21), (2.4.25) and (2.4.26) imply, for n = 2m+ 1,

γn
[
1 +O(m−2)

]
= ±2

√
(Ab)m(aB)m+1

42m(m!)2

[
1 +O

(
log2m

m2

)]
,

which yields (2.4.28).

The same argument shows that (2.3.15), (2.4.20), (2.4.21), (2.4.25) and (2.4.26)

imply (2.4.29).

Finally, if at least one of the coefficients a,A, b, B becomes zero, then γn = 0

for all n. This follows from (2.4.33) where β−n (z±n )β+
n (z±n ) becomes zero for all n, in

consideration of (2.4.19), (2.4.21), (2.4.24) and (2.4.26).
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[18] B. Grébert, T. Kappeler and B. Mityagin, Gap estimates of the spectrum of

the Zakharov-Shabat system, Appl. Math. Lett. 11 (1998), 95-97.
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