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Abstract—In this paper, we propose a novel secure key agree-
ment protocol that uses biometrics with unordered set of features.
Our protocol enables the user and the server to agree on a
symmetric key, which is generated by utilizing only the feature
points of the user’s biometrics. It means that our protocol does
not generate the key randomly or it does not use any random
data in the key itself. As a proof of concept, we instantiate our
protocol model using fingerprints. In our protocol, we employ
a threshold-based quantization mechanism, in order to group
the minutiae in a predefined neighborhood. In this way, we
increase the chance of user-server agreement on the same set
of minutiae. Our protocol works in rounds. In each round,
depending on the calculated similarity score on the common set
of minutiae, the acceptance/rejection decision is made. Besides,
we employ multi-criteria security analyses for our proposed
protocol. These security analyses show that the generated keys
possess acceptable randomness according to Shannon’s entropy.
In addition, the keys, which are generated after each protocol
run, are indistinguishable from each other, as measured by the
Hamming distance metric. Our protocol is also robust against
brute-force, replay and impersonation attacks, proven by high
attack complexity and low equal error rates.

I. INTRODUCTION

In generic cryptographic applications, unique and user-
specific secret keys are used. However, these keys can be
stolen, lost or willingly shared. On the other hand, biometric
traits are used to identify or verify users since they are strictly
bound to the user. The reason behind this is that the biometric
traits are unique physical, physiological or behavioral char-
acteristics of individuals. In order to provide higher security
and privacy, biometrics and cryptography are combined as this
combination provides the binding of user’s personal charac-
teristics to cryptographic keys. The combination of biometrics
and cryptography is referred to as crypto-biometric or bio-
cryptographic systems. This way, the secret keys, which are
used for encryption and decryption in cryptographic applica-
tions, are derived from the biometric data with the help of
their unique features.

Each biometric data has its own distinctive features. These
features can be represented with either ordered or unordered
sets. Ordered sets are typically binary strings. Iris is an
example of a biometric with ordered features, as iris code is
a binary string retrieved from the unrolled iris texture. On the
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other hand, unordered sets are generally a list of points on a
coordinate system with insignificant orders. Biometric features
from which independent points can be extracted are examples
of unordered feature sets, such as fingerprints.

In this paper, we propose a novel biometric key agreement
protocol that uses unordered set of features. As an example,
we implement and evaluate our protocol using fingerprints,
which are represented with unordered set of minutiae points.
Our protocol generates the keys by using only the minutiae
points, without any other helper component. In this key agree-
ment protocol, hash functions and threshold mechanisms are
employed. Moreover, in order to mask the genuine minutiae
points, fake minutiae points are generated according to a
strategy. This strategy is developed to properly manage the
trade-off between information leakage to the attacker and
acceptable verification results. For this reason, a distance
threshold and a neighborhood relation are defined such that
there cannot be more than one point (genuine and/or fake) in
a pre-defined distance neighborhood. This process is analogous
to quantization.

Our key agreement protocol runs in a round-manner such
that at each round, the user and the server tries to find a
common set of minutiae points. At the end of the protocol,
either the user is rejected due to the reason that the similarity
score is below the acceptance threshold or the user and the
server agree on a secure symmetric key.

We analyzed the security performance of our system from
different perspectives. From biometrics point of view, our
model shows high verification performance, proven by low
Equal Error Rates (EER). We also analyzed the resistance
of our protocol against some known attacks, such as brute-
force, replay and impersonation attacks. Moreover, the quality
of the agreed keys is analyzed in terms of randomness and
distinctiveness. These analyses show that our system is quite
resistant to these attacks; the generated keys are random
enough to be used as cryptographic keys; and each key is
distinct from the other agreed keys.

The rest of this paper is organized as follows. Section II
gives background information and summarizes the related
work in the literature. In Section III, we introduce our pro-
posed secure key agreement protocol. Section IV evaluates
the performance of our proposed protocol and discusses its
security analyses. Finally, in Section V we conclude the paper
and provide some future works.



II. RELATED WORK

Bio-cryptographic systems are threefold: (i) key release,
(ii) key generation and (iii) key binding. In [1] and [2],
the authors describe these bio-cryptographic methods and
discuss their problems. In the key release mechanism, firstly
a biometric authentication process is run. In this process,
the input biometric template is compared with the one in
the system database. If the matching is successful, a key is
released. However, the fact that the user authentication and
key release are independent processes is a disadvantage of this
mechanism. The key and the user biometric are not strictly
bound to each other. On the other hand, in key generation
or key binding mechanisms, biometrics and cryptography are
integrated; a cryptographic key is bound to the biometric data
of the user. In these methods, neither the biometric template,
nor the cryptographic key is accessible to the attacker. The
correct cryptographic key could only be generated when a
valid biometric template is presented by the user. Biometric
matching is not performed, because when the correct key
cannot be generated from the biometric template, the decryp-
tion function fails and the user is rejected automatically. The
reason behind this is that cryptographic encryption/decryption
functions require exactly the same key.

The main issue in biometric key generation or key bind-
ing methods is the variance of biometric template. Due to
variations in biometrics, if one bit of the generated key is
different than that of the correct one, the genuine user may
be rejected. In order to avoid these false rejects, fuzzy key
binding methods are proposed, namely fuzzy commitment and
fuzzy vault. The fuzzy commitment scheme was proposed by
Juels and Wattenberg [3]. In this scheme, the user selects a
secret word W . The difference (XOR) between the user’s
biometric template X and the codeword W is denoted as
d. The difference vector d and the hash of secret word
y = H(W ) together constitute the encrypted message. At the
verification stage, the user provides a query biometric Y . The
difference between Y and d is W

′
, and y is used to check the

correctness of the extracted W
′
. This scheme is applicable to

be used with ordered set of features, such as iris code. In [4],
the authors propose a mechanism to obtain cryptographic keys
from iris codes using fuzzy commitment, which is based on
the method described in [5]. However, [6] and [7] shows that
the fuzzy commitment methods are vulnerable, because the
attacker can reconstruct not only the key but also the iris code
by making use of the error correction codes and statistical
attacks.

The fuzzy vault scheme is proposed by Juels and Sudan [8].
In contrast to the fuzzy commitment scheme, the fuzzy vault
scheme is applied to the unordered set of features, such as
minutiae in fingerprints. In this method, a secret word W
is mapped to the coefficients of a polynomial P (x). This
polynomial is evaluated on the feature points of the biometric
template. In addition to the evaluated points (x, P (x)), a large
number of chaff points that do not lie on the polynomial
are generated. These genuine and chaff points are mixed and

the total set is named as the vault. In the verification stage,
the user provides a query template, and with the help of
this template, genuine points are determined. Using Lagrange
Interpolation, the polynomial P (x) is reconstructed and its
coefficients are mapped to the secret W

′
. With the use of

error correction codes, the correct secret W is obtained. In [9]
and [10], fingerprint-based fuzzy vault methods are presented.
However, it is proven that the fuzzy vault is also vulnerable
to some known attacks; such as brute-force [11], stolen-key
inversion [12] and correlation based attacks [13]. Although
in [14], the authors improve fuzzy vault for fingerprint veri-
fication, they still leak some information to the attacker by
inserting chaff points into the vault that are close to each
other but away from the genuine points. With this strategy,
the attacker can make sure that if there are two points which
are close enough to each other and if it is known that one of
these points is chaff, the other point is definitely a chaff point.

In both of the fuzzy commitment and the fuzzy vault
mechanisms, the secret word is selected by the user or it is
randomly generated. In other words, the secret word is not
derived directly from the biometric template. On the contrary,
the biometric template is used as a component to hide the
secret word. In contrast to all of these methods, in this paper,
the secret word (key) is directly generated from the feature
points of the biometric template.

III. PROPOSED SECURE KEY AGREEMENT PROTOCOL
USING PURE BIOMETRICS

In this section we describe our proposed secure key agree-
ment protocol, which uses fingerprint biometrics without any
other type of helper data. The definitions of the symbols
used in the protocol definition are given in Table I. Our
key agreement protocol can be divided into two phases:
(i) enrollment and (ii) verification, each of which is explained
in the following subsections.

A. Enrollment Phase

The enrollment is performed only at the server side and
the corresponding template generation algorithm is given in
Algorithm 1. At the enrollment stage, the user provides three
fingerprint images, FP1, FP2, FP3, of the same finger. Then,
the minutiae of these fingerprints are extracted. Each minutia
is represented with three attributes: x-coordinate, y-coordinate
and type. The type of a minutia can be end or bifurcation.
End type of a minutia indicates a ridge ending. On the other
hand, if the ridge branches into two, the branching point
is a bifurcation type of a minutia. The minutiae list of a
fingerprint image constitutes the template of this particular
fingerprint image. While generating the template, we quantize
the minutiae by selecting representatives from the groups that
are determined by the predefined distance threshold, Tdist. In
this quantization step, the minutiae which are at most Tdist-
away to any other minutia are mapped to one minutia by
picking the one with the smallest y-coordinate value. After
that, the server puts these fingerprint templates on top of
each other, in order to find out the most reliable minutiae.



TABLE I
SYMBOLS USED IN PROTOCOL DEFINITION

Symbol Description

FP Fingerprint

x x-coordinate of a minutia

y y-coordinate of a minutia

type Type of a minutia

nu Total number of genuine minutiae on the user side

ns Total number of genuine minutiae on the server side

ncom Number of common minutiae found by the server

nkey
com Number of minutiae used in the final key agreement

Hi(·) Hash function applied i times (i ≥ 0)

Gs Set of genuine minutiae on the server side

Gu Set of genuine minutiae on the user side

C Set of fake minutiae on the user side

Qu
Set of shuffled

(
H2(gu) ∪H2(c)

)
s.t. gu ∈ Gu & c ∈ C

G′s Set of minutiae ∈ {Qu ∩Gs}

G′′s,j Any subset of G
′
s s.t. |G′′

s,j | = |G
′
s| − j (j ≥ 1)

G′u Any subset of Gu s.t. |G′u| = |G
′
s|

G′′u,j Any subset of G′u s.t. |G′′u,j | = |G
′
s| − j (j ≥ 1)

S Similarity score

Tsim Acceptance similarity score threshold

Tdist Distance threshold used in neighborhood definition

Ki
(us,su)

Ki ith key generated (i ≥ 0)

us by the user to communicate with the server

su by the server to communicate with the user

HMAC(·) Keyed-Hashing for Message Authentication [15]

HMACKus (·) HMAC generated using Kus

HMACKsu (·) HMAC generated using Ksu

HMACKi
su
(·) HMAC generated using Ki

su

attc Attack complexity

The minutiae which are present in at least two out of three
fingerprint templates are considered as reliable minutiae. Only
the reliable minutiae are kept in the final template. For the
reason that the minutiae are close to each other more than Tdist

are considered as one minutia, a Tdist-neighborhood relation is
defined as follows: All of the points in the coordinate system
which have x-coordinate in [xj − Tdist, xj + Tdist] and y-
coordinate in [yj − Tdist, yj + Tdist] are the neighbors of
the minutia with (xj , yj) in the Tdist-neighborhood. This
neighborhood relation is exemplified in Figure 1, where the
original minutia is located at (49, 91) and Tdist is 2.

Thereafter, x-coordinate, y-coordinate and type of each
minutia point and its neighbors in Tdist-neighborhood together
with the type of this particular minutia are concatenated
and hashed one by one as H1(x||y||type). These hashes

47, 89 47, 90 47, 91 47, 92 47, 93

48, 89 48, 90 48, 91 48, 92 48, 93

49, 89 49, 90 49,91 49, 92 49, 93

50, 89 50, 90 50, 91 50, 92 50, 93

51, 89 51, 90 51, 91 51, 92 51, 93

Fig. 1. Neighborhood relation when Tdist = 2

Algorithm 1 Template Generation Algorithm
INPUT: FP1, FP2, FP3

OUTPUT: Gs

1: Ginit
s = ExtractMinutiae(FP1, FP2, FP3)

2: for i = 1 : |Ginit
s | − 1 do

3: m1 = Ginit
s (i)

4: for j = i+ 1 : |Ginit
s | do

5: m2 = Ginit
s (j)

6: if m1.x ≥ m2.x− (2 ∗ Tdist)&
7: m1.x ≤ m2.x+ (2 ∗ Tdist)&
8: m1.y ≥ m2.y − (2 ∗ Tdist)&
9: m1.y ≤ m2.y + (2 ∗ Tdist)&

10: m1.type == m2.type then
11: m1.visited++
12: end if
13: end for
14: end for
15: for i = 1 : |Ginit

s | do
16: if Ginit

s (i).visited < 2 then
17: Remove ith minutia from Ginit

s

18: end if
19: end for
20: ind← 1
21: for i = 1 : |Ginit

s | do
22: m1 = Ginit

s (i)
23: for j = (−1) ∗ Tdist : Tdist do
24: for k = (−1) ∗ Tdist : Tdist do
25: Gs(ind) = H1(m1.x+ j||m1.y+k||m1.type)
26: ind← ind+ 1
27: end for
28: end for
29: end for

constitute a particular user’s template in the server. Note that
although double hashes will be needed in the verification stage,
storing single hashes is enough, since the double hashes can
be calculated by re-hashing the stored values once again if
necessary.



B. Verification Phase

At the verification stage, three different fingerprint images
of the same finger are used. As in the enrollment phase, the
minutiae points are extracted from these fingerprints. Similarly,
at most Tdist-away minutiae are mapped to one minutia by
selecting the one with the smallest y-coordinate value. After
that, three fingerprint templates are put on top of each other
and the most reliable minutiae are selected. In order to mask
the genuine minutiae points at the user side, (10× |Gu|) fake
minutiae points are generated randomly. Fake minutiae point
generation is an important process, since the fake points should
not leak any information to the attacker. For this reason, a fake
point must be indistinguishable from a genuine minutia point
from an attacker’s point of view. Since we make sure that all
of the genuine minutiae points are at least Tdist-away from
each other, fake minutiae points must be Tdist-away from all
the other points as well. Therefore, the fake minutiae points
must also preserve the Tdist-neighborhood relation.

After the fake minutiae point generation process ends, each
minutia point’s (genuine and fake) x-coordinate, y-coordinate
and type are concatenated. Each value is double hashed as
follows: H2(x||y||type). As the key will be generated using
single hashed values of the genuine minutiae, the user keeps
H1(x||y||type) only for the genuine minutiae. Note that in
contrast to the enrollment phase, the points in the Tdist-
neighborhood are neither hashed nor sent to the server.

The protocol flow can be seen in Figure 2. Double hashed
points’ list together with the ID of the user is transmitted to the
server. In order to extract the genuine points from the list, the
server compares each point with this particular user’s double
hashed template. Since the server has the neighbor minutiae
points as well, if a genuine minutia of the user is in the Tdist-
neighborhood with a minutia in the server side, it is counted
as a common genuine minutia. However, it may or may not
be a genuine minutia. Our protocol provides solutions in the
following steps for the cases that fake minutiae are considered
as genuine minutiae.

After the comparison is completed, a similarity score is
calculated. There are two well-known methods to calculate the
similarity score of two fingerprints as given in Equation 1 and
Equation 2, where ncom is the number of common minutiae,
nu is the number of genuine minutiae on the user side, ns is
the number of genuine minutiae on the server side. Although,
in [16], it has been claimed that Equation 2 provides better
verification results, in our tests we get better results with
Equation 1.

S =
n2
com

nu × ns
× 100 (1)

S =
2× ncom

nu + ns
× 100 (2)

If the calculated score is above a certain acceptance thresh-
old, Tsim, the user is accepted and the key agreement process
starts. In the key agreement process, the server concatenates

single hashes of all common minutiae, H1(g
′

s,i), and every-
thing is rehashed to generate Ksu, which is the key to be
used while communicating with the user. In order to make
sure that the user will generate the same key, the server
computes the HMAC of a predefined message msg using Ksu

and transmits this value together with the number of common
found minutiae, |G′

s|, to the user.
Upon receiving the message, the user generates a key using

one of the possible subsets of the genuine minutiae whose size
is the same as the number of found minutiae on the server side.
If the user can verify the HMAC using this generated key, (s)he
sends a positive acknowledgment to the server. Otherwise, the
user generates another key using another subset, until either
the HMAC is verified or all possible subsets are exhausted.
In the case that the HMAC is not verified, RETRY message is
transmitted to the server.

If the protocol continues with the RETRY message, the
server computes the similarity score using |G′

s|−1 as the num-
ber of common minutiae. If the score is above the acceptance
threshold Tsim, the server generates all possible keys using all
possible subsets of the found minutiae, whose size is equal to
|G′

s| − 1. The server then transmits all of the HMAC values
generated using these keys to the user. If the user can verify
any one of these HMAC values using any one of the keys
generated with any possible subset of the genuine minutiae,
whose size is equal to |G′

s| − 1, the user transmits a positive
acknowledgment and the index, i, of the verified HMAC to
the server. Otherwise, another RETRY message is transmitted
to the server. In this case, the same process with |G′

s| − 2
is carried out. The protocol stops at the jth step, if either
the similarity score computed using the number |G′

s| − j is
less than the acceptance threshold, or any HMAC value is
verified by the user. If any HMAC value is verified at the
end of this protocol, the server and the user can agree on a
symmetric cryptographic key without using any non-biometric
or random value. On the other hand, if the protocol stops
without generating a symmetric key, it can start from scratch
upon request.

IV. PERFORMANCE AND SECURITY ANALYSIS

Our proposed protocol is tested with 30 subjects from
Verifinger Sample Database [17], which includes fingerprints
scanned using Cross Match Verifier 300 at 500 ppi [18].
Each subject has 8 fingerprint images. These fingerprint im-
ages are aligned using their intensity values in MATLAB
R2014b. The minutiae of each fingerprint is extracted using
the Neurotechnology Biometric SDK 5.0 Verifinger [17]. First
3 fingerprint images are used to generate the template on the
server side, while the remaining 5 fingerprint images are used
as combinations of 3 at the user side. Hence, each subject
is tested

(
5

3

)
= 10 times. In addition to the genuine tests,

impostor tests are also carried out. In these impostor tests,
each subject’s template is tested against all other subjects’
queries. The hash function used in the protocol is SHA-256
[19]; hence all of the generated keys are 256 bits long.



USER SERVER

H2(gu) ∀gu ∈ Gu

H2(c) ∀c ∈ C

Qu = mix(H2(gu) ∪H2(c))

FOREACH G
′
u ⊂ Gu : |G

′
u| = |G

′
s|

Kus = H1(
|G

′
s|f

k=1

H1(g
′
u,k)) ∀g

′
u ∈ G

′
u

IF HMACKsu(msg) == HMACKus(msg)→ ACCEPT and BREAK
IF NOT ACCEPTED → RETRY

FOREACH G
′′
u,1 ⊂ G

′
u : |G

′′
u,1| = |G

′
s| − 1

Kus = H1(
|G

′
s|−1f

k=1

H1(g
′′
u,k)) ∀g

′′
u ∈ G

′′
u,1

IF HMACKi
su
(msg) == HMACKus(msg)→ ACCEPT and BREAK

IF NOT ACCEPTED → RETRY

FOREACH G
′′
u,j ⊂ G

′
u : |G

′′
u,j | = |G

′
s| − j

Kus = H1(
|G

′
s|−jf

k=1

H1(g
′′
u,k)) ∀g

′′
u ∈ G

′′
u,j

IF HMACKi
su
(msg) == HMACKus(msg)→ ACCEPT and BREAK

IF NOT ACCEPTED → RETRY

G
′
s = Qu ∩Gs

S = |G
′
s|2/(nu × ns)

IF S < Tsim → REJECT
ELSE

Ksu = H1(
|G

′
s|f

k=1

H1(g
′
s,k)) ∀g

′
s ∈ G

′
s

S = (|G
′
s| − 1)2/(nu × ns)

IF S < Tsim → REJECT
ELSE

FOREACH G
′′
s,1 ⊂ G

′
s : |G

′′
s,1| = |G

′
s| − 1

Ki
su = H1(

|G
′
s|−1f

k=1

H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,1

S = (|G
′
s| − j)2/(nu × ns)

IF S < Tsim → REJECT
ELSE

FOREACH G
′′
s,j ⊂ G

′
s : |G

′′
s,j | = |G

′
s| − j

Ki
su = H1(

|G
′
s|−jf

k=1

H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,j

qqq

userID ||Qu

REJECT

|G
′
s| ||HMACKsu(msg)

ACCEPT

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

Fig. 2. Our proposed secure key agreement protocol



In the below subsections, we discuss the verification results
of the system and provide the security analysis of the protocol,
as well as the randomness and distinctiveness analyses of the
generated keys.

A. Verification Results

For each test, a similarity score is calculated as given in
Equation 1 and Equation 2. The minimum score, the maximum
score and the average score of the system are calculated for
each subject. These scores are used as acceptance thresholds
of the system one by one. For each different threshold, the
corresponding False Accept Rate (FAR) and False Reject
Rate (FRR) values of the system are calculated. FAR is
the percentage of the impostor subjects who are accepted as
genuine users; whereas FRR is the percentage of the genuine
subjects who are rejected. As a result of these operations, the
best Equal Error Rate (EER; the point where FAR = FRR)
percentages are obtained when the maximum scores of the
system is picked as the acceptance threshold. It is inevitable
that an impostor subject cannot reach the maximum similarity
score of a genuine subject. Figure 3 shows the FAR and FRR
percentages when the maximum of the similarity scores, which
are calculated using Equation 1, is picked as the acceptance
threshold. As can be seen in this figure, our protocol achieves
0.57% EER when the optimum acceptance threshold is 5.99.
This threshold value is the point where FAR and FRR curves
intersect with each other. In order to minimize both FAR and
FRR at the same time, their intersection point is considered.
If the acceptance threshold is selected as the average score
of the system, the EER lies at 5% with 2.15 acceptance
threshold, as can be seen in Figure 4. On the other hand, if
the acceptance threshold is selected as the minimum score
of the system as in Figure 5, the EER is 10% and the
acceptance threshold is 0.76. In Table II, all of these EER
values that are calculated according to two different predefined
similarity score equations are given. The explained results are
summarized in this table as well.

TABLE II
EER VALUES

Equation Strategy EER (%)

Equation 1
min 10

max 0.57

avg 5

Equation 2
min 10

max 0.57

avg 6.66

B. Security Analysis

In this section, firstly our threat model is given. After that,
the strength of our protocol against brute-force, replay and
impersonation attacks are analyzed. In addition, the quality
of the generated keys are also examined via entropy and
Hamming distance analyses.

Fig. 3. Maximum scores picked as threshold (Equation 1)

Fig. 4. Average scores picked as threshold (Equation 1)

Fig. 5. Minimum scores picked as threshold (Equation 1)



1) Threat Model: The attacker’s main aim is two fold:
(i) to impersonate a genuine user, and (ii) to learn the key
between the server and any victim user for eavesdropping
purposes. We do not assume a secure channel. Thus, the
attacker can obtain all protocol messages including the hash
values and HMACs exchanged between the user and the server.
Consequently, the attacker learns the number of minutiae used
for the key agreement. The attacker may apply brute-force
attack in passive mode by making use of the exchanged
messages and try to guess the key. Similarly, in order to
impersonate a genuine user, the attacker may apply a replay
attack in active mode. However, our protocol resists these
type of attacks to some extend as discussed in the upcoming
subsections.

2) Resistance Against Brute-Force Attacks: The attacker
can always launch a brute-force attack by trying all possible
key combinations. Since the key is 256 bits long, this attack
is infeasible. However, in this section, we will give a more
intelligent brute-force attack by making use of the protocol
messages.

This attack is applied by generating all possible minutiae
locations and types. One fingerprint can have at most 512
x and y values, because of the sizes of the fingerprints
in our database. A minutia can have two different types:
end or bifurcation. It means that the attacker must generate
512×512×2 = 219 points and hash them once and twice. Due
to the fact that the user sends the genuine and fake minutiae
list to the server, attacker’s search space decreases from 219 to
|Qu|. However, our analysis shows that this brute-force attack
is still infeasible as discussed below.

The attacker has the set of genuine and fake minutiae
points sent by the user, Qu, and the number of minutiae,
with which the key is generated, nkey

com. In order to find the
generated key, the attacker should try all possible subsets of
the set Qu with size nkey

com, yielding the attack complexity
attc (Equation 3). For instance, if the user sends a list of 440
points, i.e. |Qu| = 440, in which 40 of them are genuine,
i.e. |Gu| = 40, and if the key agreement is completed with 16
common minutiae, i.e. nkey

com = 16, then the attack complexity
becomes

(
440

16

)
= 440!

16!×(440−16)!
∼= 296.

attc =

( |Qu|
nkey
com

)
=

|Qu|!
nkey
com!× (|Qu| − nkey

com)!
(3)

In order to calculate the overall attack complexity of the
system, the combination in Equation 3 is calculated after each
key agreement. Then, we take the average of the complexity
results. The analysis shows that the average attack complexity
of the system is 94 bits (i.e. it requires 294 hash and HMAC
verifications) on the average. As discussed in [20], even with
custom hardware implementation, computation of one block
of HMAC-SHA256 takes approximately 0.8977 microsec-
onds. Thus, the abovementioned complexity corresponds to
5.6× 1014 years of attack. As a result, we can conclude that
our protocol efficiently resists intelligent brute-force attacks.

3) Resistance Against Replay Attack and Impersonation:
The aim of replay attack is to impersonate a genuine user
and get the legitimate key. In order to do this, the attacker
replays the previously exchanged messages between the victim
user and the server. The attacker needs to know the genuine
minutiae points to effectively calculate the generated key;
otherwise, (s)he must try all possible combinations out of Qu.
Since the attacker does not know the genuine minutiae points,
the complexity of this attack becomes the same as that of the
brute-force attack given in Equation 3.

Moreover, the attacker may use his/her own fingerprint
instead of the genuine user’s fingerprint. The resistance of the
protocol against this type of classical impersonation attack is
shown to be very low since the FAR is 0.57%. The readers
should also note that such counterfeiting attacks are general
problems of all biometrics and related protocols; not specific
to our one.

4) Randomness of the Generated Keys: The entropy mea-
sures the randomness of the keys. In this analysis, Shannon’s
Entropy values are calculated using Equation 4, in which Ki

represents the ith bit of the key.

H = −
∑
i

P (Ki)log2P (Ki) (4)

As in the sample set, we use 300 keys (30 subjects, 10
keys per subject). The entropy values of these keys are given
in Figure 6. The more the entropy value approaches to 1,
the more random the key is. As can be seen in this figure,
83.67% of the keys have entropy values that are greater than
0.994, and also all of the keys have entropy values that are
greater than 0.98, which implies very good randomness. It is
important to note that these keys are generated by hashing
the common minutiae. It can be normal to have high entropy
for the hash results, because the hash functions kind of
randomize the input string. Therefore, the entropy values of
the concatenation of common minutiae are calculated as well.
The concatenation is as follows, x||y||type. The entropy values
of these concatenations are given in Figure 7. Although the
entropy values decrease a little, 92.3% of the keys have entropy
value above 0.98. Thus, they are still random enough.

5) Distinctiveness of the Generated Keys: Due to the fact
that the fingerprints are time invariant biometrics, it is impor-
tant to have a different key in each agreement. In each attempt,
generating the same key is undesirable, because compromise
of a key should not risk the confidentiality of the messages
in other sessions. The minutiae quality and ordering change
according to the fingerprint scanner, pressure of the finger
on the scanner, acquisition environment, etc. This situation
has both negative and positive effects on the key generation
process. The negative effect is the difficulty of agreement on
the same key in a protocol run. On the other hand, the positive
effect is the generation of different keys in each attempt. In
order to measure the difference of the keys for the same user,
we calculate the Hamming distances of the keys of the same
user after different protocol runs. As can be seen in Figure 8,



Fig. 6. Entropy values of the generated keys

Fig. 7. Entropy values of the minutiae concatenations

the average Hamming distances of the keys vary between
approximately 120-130 bits out of 256 bits for each user. Also
the minimum difference is 97 bits. It means that the users have
distinct keys after each key agreement phase. Additionally, as
can be seen in Figure 9, the average Hamming distances of
the keys that are generated for different users vary between
approximately 120-135 bits. These values are very close to
the average Hamming distances of the same users’ keys. It
means that we cannot decide if any two keys belong to the
same user or different users by looking at their similarities or
differences.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel secure key agreement
protocol using unordered feature sets of biometric traits. This
protocol is exemplified using the fingerprint biometrics. The
key is generated by making use of minutiae points in the
fingerprint; no random data is used while generating the key.
This way, the user is strictly bound to the cryptographic key.

Fig. 8. Average Hamming distances of the same users’ keys

Fig. 9. Average Hamming distances of the different users’ keys

Moreover, there is no need to store any helper or random data
other than the biometric template of the user at the server side.

Our system uses hash functions and threshold mechanisms
while generating the keys. In addition, we carefully designed a
fake minutiae generation strategy such that the fake minutiae
hide the genuine minutiae without being confused with the
genuine minutiae. For this purpose, we defined the concept of
neighborhood relation. With the help of the neighborhood re-
lation, the fake minutiae increase the verification performance
of the system while not leaking any information to the attacker.

We analyzed the security performance of our protocol in
different aspects. Our results showed verification performance
of 0.57% EER. The resistance of our protocol against intel-
ligent brute-force, replay and impersonation attacks is also
analyzed. Such attacks require 294 trials on the average,
which is shown to provide good computational security. In
addition, we employed entropy-based randomness analyses of
the agreed keys. Our analyses showed that 83.67% of the
keys’ entropy values are above 0.994 and all of the keys’



entropy values are above 0.98, which implies that the keys
are random enough to be used as cryptographic keys. Besides,
the distinctiveness of the generated keys is measured using
the Hamming distance metric. Our Hamming distance-based
analyses showed that the same users’ and different users’ keys
are quite indistinguishable from each other.

As a future work, the template renewal process on the
server side can be designed. In other words, templates can
be cancelable when needed. Moreover, our protocol can be
adopted to other biometrics with ordered set of features, such
as the iris biometrics.
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vault scheme for fingerprint verification,” International Conference on
Security and Cryptography, 2008.

[15] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” RFC-2104, US, 1997.

[16] A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline
modelling of elastic deformations,” Pattern Recognition, vol. 36, no. 8,
pp. 1859–1867, 2003.

[17] “Neurotechnology Verifinger sample db,”
http://www.neurotechnology.com/, accessed: 2015-05-01.

[18] “Cross Match Verifier 300 lc,” http://www.crossmatch.com/verifier-300-
lc/, accessed: 2015-05-01.

[19] National Institute of Standards and Technology, FIPS PUB 180-1:
Secure Hash Standard, 1995.

[20] M. Juliato and C. Gebotys, “FPGA implementation of an HMAC
processor based on the sha-2 family of hash functions,” University of
Waterloo, Tech. Rep., 2011.


