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ABSTRACT  
 

This work aims to model long-term simulations of sway-sloshing 

motion in a partially filled rectangular tank with different water depths 

and enforced motion frequencies. The lateral motion frequency of the 

tank is chosen so as to coincide with the lowest theoretical natural 

frequency for the corresponding beam of the tank and initial depth of 

water reserve. A truly meshless method, Smoothed Particle 

Hydrodynamics (SPH) is used to discretize and solve the governing 

equations. It is shown that numerical results of the proposed SPH 

scheme are in good agreement with experimental and numerical 

findings of the literature. 

 

KEY WORDS:  SPH method; correction algorithms; Sway-Sloshing 

problem; Violent free-surface flows. 

 

INTRODUCTION 

 

The general stability and the motion characteristics of ships can be 

distorted significantly by the inner free-surface flows inside huge liquid 

cargo tanks. Ships like LNG, LPG and chemical tankers carry very 

large amounts of liquid products and are always subjected to the 

sloshing motion throughout their life cycle. The enforced motion 

frequency and fullness ratio of the tank determine the complexity of the 

fluid motion. Long-term simulations are required in critical motion 

frequencies and fullness ratios in order to understand the physical 

behaviors of the fluid motion clearly.  

 

In the context of hydrodynamics, the enforced surge or pitch motion of 

the liquids in partially filled tanks has been attracting the attention of 

engineers and scientists hence leading to several experimental, 

theoretical and numerical studies in literature (Faltinsen and Timokha, 

2001, Iglesias, et. al. 2011). As the free surface profiles change rapidly 

and the rate of its deformation is quite high during the evolution of the 

fluid flow, the non-linear effects in the mathematical modeling 

increases dramatically. Faltinsen and Timokha (2001) stated that the 

direct numerical methods like finite difference, finite volume and 

boundary elements, experience some deficiencies in volume and energy 

conservation as well as in the accurate description of fluid impact on 

the tank walls during the long term simulations. They modeled 2D 

surge and pitch excited sloshing problem by an adaptive multi-modal 

method which assumes that the flow is irrotational and there is no 

overturning waves. Although they obtained quite compatible results 

with experimental measurements, their model had a sub-limitation of 

water depth to tank beam ratio of 0.24. To further extend the scope of 

their theory, Faltinsen and Timokha (2002) presented an asymptotic 

approximation that can handle the sloshing phenomenon for the 

depth/beam ratios between 0.1 and 0.24. Besides theoretical methods, 

there are many attempts to model liquid sloshing by numerical methods 

like Marker and Cell (MAC), Volume of Fluid (VOF), Level Set (LS) 

and combined VOF-LS. The pros and cons of these methods are 

presented in the study of Chen et. al. (2009) briefly. They noted the 

shortcomings of these numerical techniques in capturing the topology 

of the free surface and the low numerical accuracy in acquiring impact 

pressures and forces. In addition to mesh-based numerical methods, 

there are also studies with mesh-free methods like the recent work of 

Khayyer and Gotoh (2013) which implements Moving Particle Semi-

implicit (MPS) on the multi-phase modeling of sloshing flows 

considering the entrapped air. 

 

After the extension of Smoothed Particle Hydrodynamics (SPH) 

method into the incompressible fluid flow problems by Monaghan 

(1992), the research studies on the modeling of violent free surface 

flows by using SPH increased enormously because of the Lagrangian 

nature of the method which captures the free surface intrinsically. It has 

been applied to various types of violent free surface hydrodynamics 

problems like dam-break (Marrone, et.al. 2011), waves on beaches 

(Monaghan and Kos, 1999), ship bow waves produced by certain ship 

hulls (Marrone et.al. 2012) and water entry of a free-falling object 

(Shao, 2009) problems. Sloshing problem includes highly non-linear 

free surface deformations, instantaneous pressure loads on walls and 

variable velocity fields in problem domains, which requires the 

implementation of coupled numerical schemes enabling accurate and 

precise modeling of the physical phenomenon. Hence, one may find 

several other studies on modeling sloshing problem which used 

different SPH numerical schemes (Gotoh, et.al. 2014, Delorme, et.al. 

2009, Chowdhury and Sannasiraj, 2014).  

 

This work aims to model lateral motion of a partially filled rectangular 

tank by Weakly Compressible SPH approach together with well-known 

artificial viscosity term (Monaghan, 1999). Additional numerical 

correction algorithms namely, density correction and hybrid Velocity-

updated XSPH (VXSPH) and Artificial Particle Displacement (APD) 

(Ozbulut et. al. 2014) are also added into the numerical scheme which 

are required for the high accuracy and stability of the solution. One of 

the objectives of this study is to draw the framework of the utilization 
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of APD algorithm for the free surface problems. In long-term 

simulations, slight errors may accumulate during the solution procedure 

and lead to a completely different behavior at later stages of the fluid 

motion. Conservation of volume is of utmost importance in long-term 

simulations because the total volume of the fluid inside the tank is 

directly related with the natural frequency of the tank which affects the 

dynamics of the flow. The common practice of utilizing the maximum 

velocity inside computational domain as the APD velocity coefficient 

produces significant increase in fluid volume. This was not encountered 

in short-term simulations of the free-surface flows (Ozbulut et. al. 

2014) or flow problems having bounded domains (Shadloo et.al. 

2011b). During the utilization of global velocity coefficient, the 

particles which hit to the side walls have much higher velocities and the 

APD velocity coefficient is chosen as this high velocity for the whole 

domain at that instant. As a result of this choice, the particles away 

from the side walls gain larger APD values and gradually start to move 

towards to free surface which leads to an increase in the total volume of 

the fluid domain. In order to avoid the artificial increase in volume, 

APD velocity coefficient is computed through velocity variance for 

each particle, referred to as local velocity coefficient. The total volumes 

of both global and local velocity coefficients are compared for long 

term simulation of dam-break problem, where significant improvement 

in volume conservation is observed for APD algorithm with local 

velocity coefficient.   

 

In the following section, the governing equations of the fluid motion, 

their discretization by SPH method and the numerical treatment 

algorithms used during simulations will be presented. The comparative 

results of the total volume by utilizing local and global APD term will 

be shown in the same section. After introducing the entire numerical 

scheme, the simulation results of the free-surface elevations obtained at 

the left wall of the tank will be compared with the experimental and 

numerical findings of the literature in both time and frequency domains 

in the third section. The final comments and concluding remarks will 

be drawn in the last section.        

 

MATHEMATICAL FORMULATION 

 

Governing Equations  

 

The sway-sloshing problem is solved using Euler’s equation of motion 

and continuity coupled with Lagrangian particle advection. Sway-

sloshing problem is characterized as a violent free surface problem 

wherein in general, viscous effects are deemed to be negligible. 

Allowing for fluid element rotation, the governing equations may be 

specified as 

 

/u gpD Dt                       (1) 

/ uD Dt                                     (2) 

/u rD Dt                     (3) 

 

where D/Dt is the material time derivative,  is the Nabla operator, u , 

r  and g are position, velocity and gravitational acceleration vectors, 

p and ρ denote pressure and density.  

WCSPH approach is utilized for the discretization of the governing 

equations. It uses an artificial equation of state which couples density 

and pressure variations through a coefficient which is most commonly 

known as speed of sound. The state equation enables one to calculate 

the pressure for computing pressure gradient in the Euler’s equation of 

motion.  There are numerous forms of state equation within the scope 

of WCSPH while the one proposed by Monaghan & Kos (1999) is used 

during the simulations of this study: 
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In Eq. 4, co is the reference speed of sound, γ is a coefficient and is 

taken to be equal to 7 while 
o  is the reference density of water which 

is equal to 1000 (kg/m3). To keep the density variations below %1 with 

respect to the reference density, the reference speed of sound parameter 

should be at least 10 times higher than the expected maximum velocity 

in the fluid domain (Monaghan, 1992) which leads c0 taken as 40 (m/s) 

in the simulations of this study. 

 

SPH Discretization of the Governing Equations 
 

The SPH method interpolates any arbitrary continuous function,  i
rA  

or concisely denoted as 
i

A in the following manner: 
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Here, h is the smoothing length which determines the compact support 

area of each particle in the domain and 
ijr  represents the magnitude of 

the distance vector given as 
ij i jr r r   for a particle of interest and its 

neighboring particles, denoted by using boldface subscripts i and j, 

respectively while 
i

r  and 
jr  are the position vectors for the particles. 

( , )
ij

W hr is the kernel function which weighs the contribution of each 

neighboring particles according to their distance with respect to the 

particle of interest. A piecewise quintic kernel function is employed in 

the simulations of this study because of its accuracy and stability 

characteristics, (Shadloo et. al. 2011). 

  

By using SPH approach given in Eq. 5, Euler’s equation of motion and 

the mass conservation may be discretized by the SPH method hence 

leading to the following relations: 
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Here, the mass is denoted by 
j

m , 
i

  is the gradient operator, N is the 

total neighbor particle number of the particle of interest  and 
ij

  is the 

artificial viscosity term which is calculated as: 
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where, 
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The purpose of adding the artificial viscosity term to the linear 

momentum balance is to advance the numerical stability of the system 

because of using finite number of particles to represent the continuum 

domain. It gives a small amount of diffusion to the fluid as the flow 

evolves where it will has the form of Navier-Stokes viscosity as the 

particle number goes to infinity (Monaghan & Kos, 1999). The level of 

such damping terms should be optimized to minimize its impact on the 

solution while preserving the stabilizing effect. 

 

Here, θ is a constant (taken as 0.05 in this work) which is added to the 

denominator of the Eq. 9 to prevent any singularity and α parameter is 

the coefficient which determines the amount of the artificial diffusion 

in the numerical solution. The value of α parameter is taken as 0.06 in 

this work which provides satisfactory results in the simulations of the 

present work. In Eq. 8, the local speed of sound values of each particle 

is calculated by  
 1 /2

0 /
i i oc c


 


 . 

The time integration procedure utilizes a predictor-corrector scheme. 

Free-slip boundary condition is applied for all of the bounded walls 

through ghost particle technique. Dynamic free surface condition is 

satisfied through assigning zero pressure to all free surface particle as 

or, equivalently, setting the densities of the free surface particles to 

reference density. Further details of numerical scheme and boundary 

condition implementations may be found in our previous study 

(Ozbulut et. al. 2014). 

 

Corrective Numerical Treatments and APD Algorithm with Local 

Velocity Variance  

 

SPH method has many advantages on the modeling of violent free 

surface hydrodynamics problems; however it is also known that it 

produces highly oscillatory pressure fields due to calculating pressures 

by using density variations (Molteni & Colagrossi, 2009, Antuono et al. 

2010). In order to limit these pressure field fluctuations, a density 

smoothing/correction and hybrid VXSPH+APD algorithms are 

included into the numerical scheme. Density smoothing helps to 

eliminate the noise in pressure. On the other hand, APD term provides 

a homogeneous particle distribution as the flow evolves and hinders 

particle clustering which is of detrimental effect on the accuracy of 

pressure field. Shadloo et.al. (2011) added a small artificial 

displacement term to the position vectors of each particle in flow 

simulations with bounded domains since this term encourages uniform 

particle distribution in the flow field by breaking string like particle 

arrangement. There are also other approaches for the regularization/ 

homogenization of particle distribution (Xu et.al. 2009, Lind et.al. 

2012). In our previous work (Ozbulut et. al.2014), hybrid 

VXSPH+APD treatment was applied to the free surface flow problems 

where the fluid domain was divided into two regions, namely, fully 

populated and free surface fluid regions. VXSPH algorithm was 

applied to a very thin layer which acts like a surface tension force thus 

keeping the particles together on the free surface. The readers are 

referred to our recent study for the implementation of the VXSPH 

treatment in free surface flows (Ozbulut et. al.2014).  

 

For the fully populated regions of the fluid flow, APD term was 

employed and it provided uniformity in the distribution of the particles 

thus improving the robustness and the accuracy of the numerical 

scheme. The APD term is defined as follows: 
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where, β is a problem dependent constant which is generally taken 

between the range of 0.01-0.05.  
,o

/
i j ij
r r N  is the average particle 

distance for a given particle i  and 
max

u  is magnitude of the maximum 

velocity in the whole problem domain. The APD algorithm based on 

the magnitude of the maximum particle velocity in the whole problem 

domain is hereafter referred to as global maximum velocity APD.  

 

During the course of long-term simulations conducted in this study, 

significant increase in volume has been observed. However, such an 

increase was not noticed in short term simulations of violent free-

surface flows conducted in our previous studies (Ozbulut et. al. 2014). 

The increase in the total volume arises from the 
max

u term in the APD 

algorithm which was originally taken as the maximum of all fluid 

particle velocities within the computational domain. The fact that short-

term simulations have been successful with global maximum velocity 

coefficient shows that the errors due to such treatment are not large, 

although when accumulated in time may have adverse effects on the 

simulation results. In violent free-surface flows such as dam-break and 

sloshing problems, the variation in the velocity field of the flow is high, 

especially upon and after the impact of the water reserve on the tank 

walls. Thus, applying the same global 
max

u value to all particles 

generates large APD values, hence pushing the particles towards the 

free-surface and resulting in a gradual increase in total fluid volume. To 

ensure the total volume conservation of the fluid domain, instead of 

using global maximum velocity term, an averaged local velocity 

variance is employed in the APD algorithm and computed for all fluid 

particles except the free surface as follows 
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In order to differentiate the local maximum velocity from the global 

maximum velocity in Eq.(10), umax term is denoted as uc in Eq.(11). 

Another advantage of using local averaged velocity variance APD 

(which will be referred as Local Velocity APD from now on) is the 

elimination of constant β parameter in Eq. 10.   

 

To show the effect of global and local velocity term in the APD 

algorithm during the simulations of violent free surface flow problem, 

dam-break problem is simulated until the water reserve calms down. 

The simulation conditions and the parameters are taken the same as the 

one presented in the study of Ozbulut et. al. (2014). The straight black 

line shows the water level where free-surface profile should reside as 

t→∞ to conserve the initial volume. As observed from the Fig. 1, at t = 

25(s), global velocity coefficient leads significant increase in volume 

which has been effectively avoided by the use of local velocity 

coefficient. 

 
Figure 1: (a) Final fluid volume of the dam-break modeled using the 

APD algorithm with the global velocity coefficient at t = 25 (s). 



 

 

 
Figure 1: (b) Final fluid volume of the dam-break modeled employing 

the APD algorithm with local velocity coefficient at t = 25 (s). 

 

NUMERICAL RESULTS 

 

This work focuses on the simulation of long-term sway sloshing 

problem for two different fullness ratio of the container which has a 

rectangular cross section. The harmonic sway motion of the tank is 

induced by a sinusoidal function such that x(t) = A sin(ωt) where x is 

the horizontal position of the tank, A is the amplitude and ω is the 

angular frequency of the motion. The representative geometry of the 

problems is given in Fig. 2 and dimensions, amplitudes and angular 

frequencies of the test cases are tabulated in Tab. 1.  

 

 
Figure 2: The general geometry of the sway-sloshing simulations. 

 

The test cases scrutinize the kinematic characteristics of the fluid 

motion where the free surface deformations are compared with the 

numerical and experimental findings of the work of Pakozdi (2008). 

The angular frequency of the enforced harmonic sway motion is chosen 

close to the first theoretical natural frequency of the sloshing motion (ω 

1 in Tab. 1). The theoretical nth natural frequency at a certain water 

depth (D) and tank width (L) is given as (Chen et.al. 2009, Pakozdi, 

2008): 
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Table 1: Dimension, amplitude and frequency values in two cases. 

 

 H (m) D (m) L (m) A (m) ω (rad/s) ω/ω1 

Case 1 1.05 0.30 1.73 0.08 3.488 1.173 

Case 2 1.05 0.50 1.73 0.08 3.696 1.032 

 

During the simulations, density and gravitational acceleration are taken 

as 1000 (kg/m3) and 9.81 (m/s2). The equidistant initial particle spacing 

in both x and z directions is utilized, namely, Δx = Δz =0.01 (m) and 

the time step value is Δt = 0.00015 (s). The smoothing length 

parameter, h, is taken as h=1.33Δx. The particles are in rest and have 

only hydrostatic pressure at t = 0 (s). The numerical data 

collection/writing frequency is 11.11 (Hz). 

The free surface at the probe location (i.e., x = -0.815 (m)) is 

determined by averaging the elevation of the free surface fluid particles 

between x = -0.805 (m) and x = -0.825 (m), which corresponds to the 

physical region occupied by the wave probe used in the reference 

experimental study. 

 

The examination of the free surface profile variations during the 

horizontal motion of a partially filled container gives a clear foresight 

to understand the physics behind the chaotic motion of fluid in the tank. 

In this work, the full-time histories and the corresponding frequency 

domain analysis of the free surface elevations are scrutinized. As the 

enforced tank motion has a constant frequency, the water reserve in the 

tank is expected to respond with the similar frequency in free surface 

elevations at the side walls of the tank. The obtained simulation data of 

the present work is compared with the results of the numerical and 

experimental findings of Pakozdi (2008) where the numerical solution 

of the reference work employs also WCSPH approach with periodical 

density re-initialization to increase the accuracy of the pressure field, 

particle refinement in the corners of the tank, XSPH correction and 

Runge-Kutta time integration scheme for the time marching of the 

flow.  

 

The time histories of the fluid motion and the frequency domain 

analyses are given in Fig. 3 and Fig. 4, respectively. The periods and 

the amplitudes of the free surface elevation in time histories graphics 

are in a very good agreement with the experimental measurements and 

numerical findings of the reference work except for a very few 

instances. This compatibility can also be seen from the frequency 

domain analysis where the first three modes of the frequencies are 

matching with a good accuracy. On the other hand, one can notice that 

there are some discrepancies at the maximum points of the time series 

and frequency domain plots. These mismatches arise from the different 

approximations of each study during the determination of the free-

surface region when the water reserve reaches to the maximum level at 

the wall. The discrepancies may be attributed to inherent differences in 

the determination of free-surface location (on vertical walls via particle 

positions) compared to the data acquired by the probe used in 

experiments. Additionally, the water splashes after it impact on side 

walls, and this brings another difficulty on detecting the free surface 

level at that time. In the simulations of this study, the average 

neighboring particle number is around 40 in each time-step and the 

particles less than 25 neighbor particles are considered as a free surface 

particle.  

 

 
Figure 3: (a) Comparison of the time histories of the free-surface 

elevations at x = −0.815 (m) for Case 1. 



 

 
Figure 3 (b): Comparison of the frequency domain analysis of the free-

surface elevations at x = −0.815 (m) for Case 1. 

 
Figure 4: (a) Comparison of the time histories of the free-surface 

elevations at x = −0.815 (m) for Case 2. 

 

 
Figure 4: (b) Comparison of the frequency domain analysis of the free-

surface elevations at x = −0.815 (m) for Case 2. 

 

An illustrative figure which shows the free surface and the fully 

populated fluid domains therefore represents the effective regions for 

VXSPH and APD algorithms is given in Figure 5. As can be seen from 

this figure, the free surface region where the VXSPH algorithm is 

defined as a very thin layer and does not alter the physics of the flow. 

 

 
Figure 5: The sketch of free surface (red) and fully populated (blue) 

regions during the evolution of sway-sloshing motion. 

 

In Figure 6 are shown pressure fields, free-surface profiles and particle 

distribution at four different instants of test case 1. As seen from these 

snapshots, the computed pressure fields during the sloshing motion are 

non-oscillatory and smooth due to the homogeneous particle 

distribution and precise free-surface profiles. 

 

 
(a) Snapshot at t=30.015(s) (b) Snapshot at t=30.375 (s) 

 

 
(c) Snapshot at t=31.455(s) (d) Snapshot at t=31.725 (s) 

Figure 6: Pressure fields, particle distribution and free-surface profiles 

at four different instants. 

 

CONCLUDING REMARKS  

 

Two-dimensional long-term sway-sloshing motion of a partially filled 

rectangular tank is investigated in this work. The simulation of fluid 

motion is carried on until the free surface elevations on the side walls 

reach a harmonic steady state. Euler’s equation of motion and 

continuity equation are discretized utilizing WCSPH approach and 

integrated in time via a predictor-corrector scheme. As the conventional 

SPH method requires some numerical treatments in order to have 

accurate and robust numerical solutions, density correction and hybrid 

VXSPH+APD algorithms are incorporated into the conventional SPH 

numerical scheme. 

 

The hybrid VXSPH+APD treatment was first employed in our previous 

work (Ozbulut et.al 2014) where the APD algorithm was applied to the 

fully populated fluid domain and VXSPH was utilized for the free 

surface region. It is observed that in the long-term modeling of violent 

free surface flows where the velocity field changes rapidly in whole 

fluid domain, the APD algorithm with global maximum velocity term 

causes a significant volume increase as the flow evolves in time. Using 

the same global maximum velocity coefficient for all fluid particles 

causes fluid particles to move upward which leads to an increase in the 

total volume of the fluid gradually. To avoid this problem, local 

velocity coefficient is proposed and it is shown that the total volume of 

the fluid domain is exactly conserved in the long-term simulation of 

dam-break problem. 

 



 

After showing the effectiveness of the proposed local velocity 

coefficient in APD algorithm, the kinematic characteristics of the sway-

sloshing problem is scrutinized quantitatively. A rectangular tank with 

two different fullness ratios is enforced to move laterally by a motion 

frequency which is close to the first theoretical natural frequency in 

corresponding water depth. The free-surface elevations on the left wall 

of the tank are compared with experimental and numerical solutions 

available in literature, showing good agreement in both time and 

frequency domains. Considering the results obtained for the test cases, 

it is possible to infer that the proposed WCSPH scheme and related 

corrective numerical treatments are able to capture the long-term 

evolution of sway-sloshing motion.  

 

Recall that the current study is intentionally limited to the investigation 

of the kinematical characteristics of the sway-sloshing problem to 

reveal the effectiveness of the proposed scheme whereby we have 

considered only a single enforced motion frequency, which is set close 

to the first theoretical natural frequency.  

In future study, a frequency domain analysis will be performed to 

construct the wave response curves of the problem, which will enable 

us to further test the capabilities of proposed numerical scheme and 

also study the complete physics of the problem. Additionally, the 

dynamic characteristics of the problem will be compared with available 

literature data referring to pressure loads on the walls.    
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