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ABSTRACT 

 

 In this thesis, we study the sequential testing problem of 3-level deep Series 

Parallel systems (SPS). We assess the performance of depth-first permutation (DFP) 

algorithm that has been proposed in the literature. DFP is optimal for 1-level deep, 2-

level deep SPSs and 3-level deep SPSs that consist of identical components. It can be 

used to test general SPSs. We report the first computational results regarding the 

performance of DFP for 3-level deep SPSs by comparing its performance with a 

dynamic version of DFP and a hybrid simulated annealing-tabu search algorithm that 

we developed. In order to implement the algorithms, we propose an efficient method 

to compute the expected cost of a permutation strategy. The results of computational 

experiments for this algorithm and other algorithms proposed in the literature are 

reported. 
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ÖZET 

 Bu tezde 3 seviyeli seri-paralel sistemlerde (SPS) ardışık test problemi 

üzerine odaklanılmıştır. Literatürde önerilen derin öncelikli (DFP) algoritmanın 

performansı değerlendirilmiştir. Bu algoritma 1 seviyeli ve 2 seviyeli sistemler ve 3 

seviyeli özdeş bileşenli sistemler için en iyi çözümü vermektedir.  DFP algoritması 

genel SPS’leri test etmek için kullanılabilir. Bu çalışma, DFP algoritmasının 

performansını değerlendiren ilk hesaplamalı çalışmadır. DFP algoritmasının 

performansı, dinamik versiyon DFP algoritması ve geliştirdiğimiz melez tavlama 

benzetimi-tabu araması algoritması ile karşılaştırmalı olarak sunulmuştur. Bu 

algoritmaların uygulanabilmesi için permütasyon stratejilerin beklenen maliyetini 

etkin hesaplayan bir metot önerilmiştir. Hesaplamalı deneyler gerçekleştirilmiş ve  

sonuçları sunulmuştur.  
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NOTATION 

𝑐𝑖 : cost of testing component i 

𝑝𝑖 : working probability of component i 

𝑞𝑖 : failing probability of component i 

˄: logical AND 

˅: logical OR 
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1. INTRODUCTION 

1.1. Sequential Testing Problem 

Sequential Testing problem involves finding a minimum expected cost strategy to 

evaluate a Boolean function when learning the values of the variables are costly. The 

variables assume values independent of each other and the probabilities of each 

variable taking a value of 1 or 0 are also known. 

Sequential testing problem arises in different application areas such as query 

optimization in databases [9], medical diagnosis [15], project management [4], 

inspection in manufacturing [11] etc.  

In this particular study, we concentrate on a special class of Boolean functions that 

correspond to Series-Parallel systems. We will define the Sequential Testing problem 

in a precise manner in the context of Series-Parallel systems in the next section. First 

we define Series-Parallel systems in this section. 

To the best of our knowledge this is the first computational study on 3-level deep 

SPSs (Level concept is presented in Section 1.2). We show that the expected cost of 

any permutation strategy can be computed efficiently for 3-level deep SPSs. This 

efficient cost calculation method provides us to apply metaheuristic methods for 

sequential testing problem. Our contributions are presented as detailed at the end of 

Section 2. 

1.2.  Series-Parallel Systems 

A Series-Parallel system (SPS) is a special multi-component system where each of 

the components can be in working or failing state. The state of the SPS depends on 

the states of the components via a special Boolean function. We will refer to this 

Boolean function as the structure function of the SPS. The structure function of an 

SPS is the Boolean function that maps the states of the components to the state of the 

system. The variables of the Boolean function correspond to the components of the 
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system, and the value of the Boolean function will represent the state of the SPS. The 

simplest SPS is a simple series system or a simple parallel system. A simple series 

system is in working state if all of its components are working and dually a parallel 

system is in working state if at least one of its components is working. The structure 

function of a simple series system and simple parallel system are as follows: 

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1˄𝑥2˄…˄𝑥𝑛   (simple series system) 

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1˅𝑥2˅…˅𝑥𝑛  (simple parallel system) 

where ˄ is the logical AND and ˅ is the logical OR operator. 

We can depict the simple series and simple parallel systems graphically as shown in 

Figure 1. 

1

2 1 2

Simple Parallel System Simple Series System

n

n

 

Figure 1. Simple parallel and simple series systems 

More complicated SPSs can be constructed by a series or parallel connection of other 

SPSs. These other SPSs are called the sub-systems of the SPS. The structure function 

of a series (parallel) connection of some SPSs is the AND (OR) of the structure 

function of these SPSs.  

For instance, the SPS shown in Figure 2 is a series connection of a component and 

two simple parallel systems whereas the second SPS is a parallel connection of four 

components.  
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2

4

5

6

7

3

 

Figure 2. An example series system 

The SPS shown in Figure 3 is generated by connecting a simple series system 

consisting of components 8 and 9, with the SPS given in Figure 2, in parallel. SPS 

shown in Figure 2 is a “subsystem” of the SPS shown in Figure 3. 

1

2

4

5

6

7

8

3

9
 

Figure 3. An example parallel system generated from the SPS given in Figure 2 

Definition 1: An SPS has “𝑙” level deep if the maximum number of reductions is 

“𝑙 − 1” to reach a simple series/parallel system. 

Figure 4 shows a 3-level deep SPS which consists of parallel connection of a 2-level 

deep subsystem and component 4. The 2-level deep subsystem consists of a 1-level 

deep parallel subsystem and component 3. 
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1

2

3

4
 

Figure 4. An example 3-level deep SPS 

The structure function of the SPS given in Figure 4 in logical form can be written as; 

𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4 =    𝑥1˅𝑥2 ˄𝑥3 ˅𝑥4  

Every SPS can be represented as an AND-OR tree. The leaves of the AND-OR tree 

are indexed by the components of the SPS. The internal nodes describe the type of 

the connection of its children (series or parallel).  The length of the longest path from 

the root to a leaf node is the depth of SPS. The AND-OR tree representation of the 

SPS in Figure 4 is given in Figure 5. The simple series and simple parallel systems 

have deep 1. 

1 2

3

4

Parallel

Series

Parallel

 

Figure 5. Tree representation of the SPS given in Figure 4 

The structure function of any SPS is a special type of Boolean function referred to as 

Read-Once function. The function is called Read-Once since the Boolean function 

can be represented in a form where each variable appears exactly once. For instance 

the structure function of the SPS shown in Figure 3 can be written as; 
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𝑓 𝑥1, 𝑥2, 𝑥3 , 𝑥4, 𝑥5 , 𝑥6, 𝑥7, 𝑥8, 𝑥9 =   𝑥1˄ 𝑥2˅𝑥3˅𝑥4˅𝑥5 ˄ 𝑥6˅𝑥7  ˅  𝑥8˄𝑥9   

Read-Once functions have been extensively studied in the literately for other reasons 

[9]. 
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2. PROBLEM DEFINITION 

As indicated in Section 1, Sequential Testing problem for an SPS requires finding a 

strategy that finds out the correct state of the SPS with the minimum expected cost.  

Given the structure function of an SPS, a cost vector C, where 𝑐𝑖  is the cost of 

learning the correct state of component 𝑖, and a probability vector P where 𝑝𝑖   is the 

probability that components is in working state, a feasible strategy outputs the next 

component to test given the states of previously tested components. Testing a 

component is used interchangeable with learning the value of the corresponding 

variable in the structure function. 

For a simple series system a feasible strategy is just a permutation of the components 

since we stop testing if any component is in failing state or all components are tested. 

Graphically we can show a feasible solution as in Figure 6.  

1 2 3 4

1

2

3

4

1

1

1

0

0

0

0 1A feasible solution:      1-2-3-4

: Fail

: Work

A simple series system

a. c. 

b. 

 

Figure 6. (a) a simple series system (b) A feasible strategy (c) BDT representation of 

the strategy 

Expected cost of the strategy in Figure 6 can be written as follows. 

𝐸 𝐶𝑜𝑠𝑡 = 𝑐1 +  𝑝1 𝑐2 +  𝑝1𝑝2 𝑐3 +   𝑝1𝑝2𝑝3 𝑐4 
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In general, a strategy can be represented as a binary decision tree (BDT). Each 

internal node corresponds to a variable or component. The right (left) branch of a 

node corresponds to the case when the variable is 1(0) or the component is in 

working state. The leaves of the BDT correspond to the state of the SPS or the value 

of the structure function. For instance, the strategy 3-1-2-4 for the SPS in Figure 4 is 

shown in Figure 7.  

3

4 1

2

4

0 1

1 0

0 1

1

0

0

1 : Fail

: Work
 

Figure 7. An inspection strategy for the SPS shown in Figure 4 

We can compute the expected cost of a strategy in two ways. One is finding the 

probability of a component being tested and summing up the expected testing costs 

of all components. The other is to sum up the expected costs of all root-to-leaf paths 

of the BDT. We illustrate these two methods for the strategy shown in Figure 7 as 

follows. 

𝐸 𝐶𝑜𝑠𝑡 =   𝑝3 𝑐1 +  𝑝3𝑞1 𝑐2 + 𝑐3 +   𝑞3 + 𝑝3𝑞1𝑞2 𝑐4 

We can also write the following recursive equation in order to compute the expected 

cost of this strategy. 

𝐸 𝐶𝑜𝑠𝑡 = 𝑐3 +  𝑞3𝑐4 +  𝑝3  𝑐1 + 𝑞1 𝑐2 +  𝑞2𝑐4     

In fact, we don’t need to have the whole tree at hand in order to execute the strategy. 

An algorithm that tells us which component to test next given the states of the 

previously tested components suffices to execute the strategy.  
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In general an optimal BDT describing the whole strategy can have exponential size 

in terms of the input size.  Obviously, for simple series and parallel systems this is 

not the case there are also exceptions to this for systems other than SPSs. For 

instance, it is shown in [18] that an optimal strategy for testing k out of n systems can 

be stored in O(n
2
) space. Although we don’t need to have the whole strategy tree to 

execute the strategy but we need to know which component to test next given the 

states of tested components, in order to compute the expected cost of the tree, we 

may need the whole tree. 

On way to avoid this exponential growth is to consider a subset of the strategies that 

are easy to describe. One example is permutation strategies where we test the 

components according to a permutation as long as they can affect the state of the 

system. Although, the whole strategy can be described efficiently in this case, the 

computation of the expected cost may still be a problem. We will refer to a strategy 

that cannot be described by a permutation strategy non-permutation (or dynamic) 

strategy.  

In this thesis, distinction between permutation and dynamic strategies will be 

important so we describe these concepts in detail via examples. 

2.1. Solution Strategies 

2.1.1. Permutation Strategies 

Permutation strategies are static solutions. It means that, the testing order of 

components does not alter during the inspection. These types of strategies can be 

described a permutation of the components. So it is easy to store and execute these 

strategies. 

Inspection steps of an example permutation strategy 1-2-3-4 for the SPS in Figure 4 

are given in Figure 8.  This is a permutation strategy because testing order does not 

differ during inspection. For example component 3 is tested before component 4 in 

all paths. If component 1 turns out to be in failing condition, component 2 becomes 

redundant and has no effect on the state of the SPS. So in this case, we continue 

testing the next component in the permutation which is component 3.  
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0

4

1

0
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0

1

:  fails

:  works

 

Figure 8. BDT representation of inspection steps of a permutation strategy 

2.1.2. Nonpermutation Strategies 

Nonpermutation strategies are dynamic solutions. It means that, the testing order of 

components depends on the results of the tests performed. These types of strategies 

can be represented as a BDT. Inspection steps of an example nonpermutation 

strategy for the SPS in Figure 4 are given in Figure 9. This is a nonpermutation 

strategy because component 4 is tested before component 3 if component 1 fails; on 

the other hand component 3 is tested before component 4 if component 1 works. 

:  fails

:  works

1

4 2

43

4

3

0

1

0 1 0 1

0 1 0 10 1

0

1

 

Figure 9. BDT representation of inspection steps of a nonpermutation strategy 
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2.2. Properties 

Observation 1: Combining more than one SPS does not always generate a deeper 

SPS. 

Let’s explain Observation 1 with an example. Assume that we have two SPSs having 

structure functions 𝑓𝐴 𝑥1, 𝑥2, 𝑥3 =   𝑥1˄𝑥2 ˅𝑥3  and 𝑓𝐵 𝑥4, 𝑥5 =  𝑥4˄𝑥5 . 

If we create a new parallel system by combining A and B, the new system C will 

have 2-level deep (same with system A). The function will be 𝑓𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5 =

  𝑥1˄𝑥2 ˅𝑥3˅ 𝑥4˄𝑥5  .  Alternatively, if we create a new series system by 

combining A and B, the new system C will have 3-level deep (larger than A and B). 

The function will be  𝑓𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5 =    𝑥1˄𝑥2 ˅𝑥3 ˄𝑥4˄𝑥5 . 

An SPS is a connection of smaller SPSs and can be represented with Read Once 

structure functions [16]. For instance, the system given in Figure 10 is not an SPS 

[6]. 

1

4

2

5

3

 

Figure 10. A non series-parallel system 

Duality concept is described in [6]. Dual system can be derived by switching the 

parallel and series signs in any representation. If the SPS is parallel (series) then the 

dual system is series (parallel). The SPS and the dual system are same level. Let’s 

show the dual of the SPS in Figure 4. Dual system will be obtained 

as 𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4 =    𝑥1˄𝑥2 ˅𝑥3 ˄𝑥4 . Figure 11 shows dual system. 
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1 2

3

4

 

Figure 11. Dual of the SPS given in Figure 4 

Duality provides us a very important feature; algorithms and results of a sequential 

testing problem for an SPS can be easily translated for its dual system. It means that 

when we solved a sequential testing problem of an SPS, we have already solved the 

sequential testing problem of dual system [6]. 

In this work, we concentrate on general 3-level deep SPSs and try to analyze the 

performance of various approaches from a computational point of view. 

Our contributions can be summarized as follows: 

 To the best of our knowledge this is the first computational study on 3-level 

deep SPSs. 

 We show that the expected cost of any permutation strategy can be computed 

efficiently for 3-level deep SPSs. 

 We compare the performance of DFP by an extension of DFP that is dynamic 

in nature and never produces strategies that are worse than DFP in terms of 

expected cost. 

 We develop a special simulated annealing-tabu search based algorithm by 

using properties of 3-level deep SPSs and analyze how much improvement 

can be made starting at a DFP solution. 
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3. LITERATURE REVIEW 

The sequential testing problem have a wide area of applications including healthcare 

(testing patients against some dangerous disease), telecommunication (testing 

stability systems, connectivity of networks), artificial intelligence (finding optimal 

derivation strategies in knowledge bases, testing search algorithms), manufacturing 

(testing machines before delivery, testing for replacement in technical service 

centers), design of screening procedures,. The inspection of the system is usually 

repeated many times in real life so it is important to minimize the total cost in the 

long run [18]. 

In this literature review, we don’t intend to provide a complete review of Sequential 

Testing applications and solution algorithms. Rather, after describing a couple of 

examples, we will review the results for SPS systems in detail. 

Doctors determine whether their patients has disease by making some tests, each test 

has an associated cost and confidence level. They can diagnose a disease by making 

one test or making some combinations of several tests. Minimum expected test cost 

can be found by solving a sequential testing problem of [15]. Although many articles 

on sequential testing, motivate their problems by using medical diagnosis examples 

(see e.g. Greiner [15]), medical diagnosis problem has many different aspects. Still a 

diagnosis strategy can be described by a tree. 

It is important to protect the functionality of complex systems such as electricity 

distribution systems, nuclear power plants etc. from adaptive threats. Attackers can 

adapt their strategies by analyzing the defense of possible targets. The defense levels 

of possible targets change the expended effort and success probability of attacks. 

Investment can increase the defense levels of these points. Investments can be 

planned by willing to make the attacks as costly as possible. The defender wants to 

increase the minimum expected effort of an attack. Finding the attack having 

minimum expected effort can be another motivation for sequential testing problem 

[12]. 
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In the literature, polynomial time algorithms to find optimal strategies for 1-level, 2-

level deep SPSs and 3-level deep SPSs having identical (testing costs and working 

probabilities are the same for all) components are provided. There is no study which 

focuses to 3-level deep or more complex SPSs optimally. Solution methods are 

proposed for general SPSs and they don’t guarantee high quality solutions. 

In literature, precedence constraints are considered as extension of sequential testing 

problem. The researchers have examined different classes of testing policies for 1-

level systems under general precedence constraints. Dynamic programming and 

branch-and-bound algorithms are suggested for solution. The dynamic programming 

has memory limitation, branch-and-bound algorithm does not have the limitation of 

memory issues, but it is limited in the size of the instances [20]. 

Most results in the literature are for the case when we have a simple series or parallel 

system. Chiu et al. [17] provide an optimal algorithm for parallel precedence 

constraints, for series or parallel systems. Garey in [13] gives a polynomial time 

optimal algorithm that works for the series case under forest-type precedence 

constraints. Berend et al. [5] also present similar result with Garey for 1-level 

systems with general type of precedence by using object detection and acceptance 

testing as motivation. They argue the runtime as cost, introduce mathematical models 

and give complexity of solution methods. There is no further study to solve 2-level 

deep or more complex SPSs under precedence constraints. 

There is limited number of studies about sequential testing problem in literature. 

Generally theoretical studies have made and there is no extensive computational 

benchmark study. Some solution methods are proposed but the solution qualities are 

not analyzed. In this study we have focused to 3-level deep SPSs and implemented 

some solution strategies which are offered for general SPSs in the literature. We have 

also developed a new method and compared the results on randomly generated 

instances. 
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4. SOLUTION APPROACHES 

4.1.  Depth First Permutation (DFP) 

The DFP strategy is an intuitive algorithm generalizing the optimal strategies for 

simple series and simple parallel systems and it is proposed by several studies (see 

[6][18][15][12][21]) and [10]). DFP produces a strategy for any SPS. The strategy 

produced by DFP is a permutation strategy and it is optimal for 1-level, 2-level deep 

SPSs and 3-level deep SPSs with identical components. A strategy for a 1-level deep 

SPS is simply a permutation of the components since for instance for a series system 

testing stops as soon as a failing component has been found. The optimal 

permutation is the non-decreasing order of ci/qi which is quite intuitive. We would 

like to test component that are more likely to fail and cheap to test first. That is 

quantified by the ratio ci/qi. This can be proved by a simple exchange argument. 

(Similarly an optimal permutation for a parallel system is the non-decreasing order of 

ci/pi) DFP is an intuitive generalization of this strategy for more general SPSs. 

Mainly, DFP recursively replaces the subsystem at the lowest level of the SPS 

(which is a simple series or simple parallel system) by a single component whose 

testing cost is the optimal expected cost of testing that subsystem and whose 

probability of functioning is the probability that the subsystem functions. When a 

subsystem is replaced by a component, this means that the components of that 

subsystem will be tested one after another.  At the end of this recursive process, we 

end up with a simple parallel system or simple series system whose components 

correspond to some subsystems of the SPS. Then the DFP strategy is to test these 

subsystems one by one in the corresponding optimal order. 

Theorem 1: DFP is optimal for 1-level deep SPSs, 2-level deep SPS and 3-level 

deep SPSs that consist of identical (testing costs and working probabilities are the 

same for all) components. See [6][18][15][21] for the proof of the theorem. 

DFP solution is not optimal for general 3-level deep SPSs and 4-level deep SPSs 

with identical components [6]. There are SPS instances where this algorithm can 
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behave very badly. For instance, [19] reports a construct where the algorithm misses 

the optimal solution by any constant. A similar result is presented in [15] for 3-level 

deep small sized SPSs. In this strategy, once we start testing a subsystem, we never 

switch to another subsystem before we determine the former subsystem is working or 

failing. We refer to this algorithm Depth first Permutation (DFP) since it starts 

testing the subsystem with the best ratio and switches to the next subsystem after 

determining the state of the current subsystem.  

Figure 8 shows a depth-first permutation strategy (1-2-3-4) because it tests the 

component 3 after determining the state of 1-level deep parallel system (1˅2) and 

tests component 4 after determining the state of 2-level deep series system 

((1˅2)˄3). On the other hand the strategy shown in Figure 7 is permutation because 

it can be represented as 3-4-2-1 but not depth-first. It starts with component 3 but 

tests component 4 while the state of 2-level deep series system ((1˅2)˄3) is not 

determined. 

Some properties of the strategy produced by DFP can be summarized as follows: 

 The DFP algorithm produces a permutation strategy [15].  

 DFP produces a strategy that has the lowest cost among all depth-first 

strategies [15]. 

 These strategies do not switch from one subsystem to another before the 

current subsystem has been resolved.  

 It is very easy to obtain these strategies and to compute their expected cost. 

In the literature different pseudo-codes can be found for DFP (see [6][15][12]), we 

present the one which we implemented for 3-level deep SPSs, since this study 

concentrates on 3-level deep SPSs. The pseudo-code of DFP is as follows. 

Definitions 

𝐸 𝐶 : Expected cost of testing given 3-level SPS 

𝑃: Working probability of given SPS 

S: permutation solution found by algorithm 

c: cost vector 

p: working probability vector 

q: failing probability vector (q = 1-p) 
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Algorithm 

partial sequence(*) of component i is 𝜋𝑖 =  𝑖   

L = 1 

WHILE L <= 3 

  label L level deep subsystems with the index j 

  REPEAT 

    IF subsystem j is a parallel system 

    THEN 

      label all elements of system j with the index i 

      sort components in non-decreasing order of 𝑐𝑖/𝑝𝑖 

      relabel components according to order with the index 

      𝑖’ ∈  𝑘1 , 𝑘2, … , 𝑘𝑡  

      calculate 𝑐𝑗 =  (𝑞𝑘1
…𝑞𝑘𝑎−1

𝑐𝑘𝑎
)𝑡

𝑎=1  and 𝑝𝑗 = 1 − 𝑞𝑗 = 𝑞𝑘1
𝑞𝑘2

…𝑞𝑘𝑡
     

      find sequence 𝜋𝑗 =  𝜋𝑘1
, 𝜋𝑘2

, … , 𝜋𝑘𝑡
  

    ELSE 

      label all elements of system j with the index i 

      sort components in non-decreasing order of 𝑐𝑖/𝑞𝑖 

      relabel components according to order with the index  

      𝑖’ ∈  𝑘1 , 𝑘2, … , 𝑘𝑡  

      calculate 𝑐𝑗 =  (𝑝𝑘1
…𝑝𝑘𝑎−1

𝑐𝑘𝑎
)𝑡

𝑎=1  and 𝑝𝑗 = 𝑝𝑘1
𝑝𝑘2

…𝑝𝑘𝑡
 

      find sequence 𝜋𝑗 =  𝜋𝑘1
, 𝜋𝑘2

, … , 𝜋𝑘𝑡
  

    ENDIF 

    convert system j to the equivalent component i’’ having cost 

    𝑐𝑖 ′′ = 𝑐𝑗, working probability 𝑝𝑖 ′′ = 𝑝𝑗 and partial sequence 𝜋𝑖 ′′ = 𝜋𝑗 

  UNTIL all the L level deep subsystem j’s are examined 

  IF L = 3 

  THEN 

    𝐸 𝐶 = 𝑐𝑗 , 𝑃 = 𝑝𝑗 and S = 𝜋𝑗 

  ENDIF 

  increment L 

ENDWHILE 

PRINT 𝐸 𝐶  , 𝑃 and S. 

(*) Partial sequence: It implies the scheduled part of the solution. For example if we 

decided to test the components i and j in the order i-j, the partial sequence is {i,j}. 

The final solution consists of partial sequences. In order to initialize the algorithm, 

partial sequences are defined for all components. 
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The time complexity of DFP algorithm is polynomial in number of components and 

number of subsystems so it can solve big instances in reasonable time. We have tried 

to solve randomly generated instances having 100 components and having 

subsystems between 35 and 49. The DFP algorithm solves an instance in less than 

one second.  

Example 1: Let’s find the DFP solution for the SPS given in Figure 12. 

1

2

3

4

5

6

c=1

p= 1/2

c=1

p= 1/5

c=1

p= 1/3

c=1

p= 1/7

c=1

p= 1/4

c=1

p= 1/6

 

Figure 12. An example 3-level deep parallel system 

Iteration 1: Let’s label the 1-level subsystems. Label the parallel subsystem as A 

which includes components 1 and 2 (𝐴 =  1˅2 ). Label the parallel subsystem as B 

which includes components 5 and 6 (𝐵 =  5˅6 ). 

Subsytem A:   

𝑐1 𝑝1 = 2 and 𝑐2 𝑝2 = 3 so non-decreasing 𝑐𝑖/𝑝𝑖  order is: B-3. Hence, 

𝜋𝐴 =  1,2  , 𝑐𝐴 = 1 + 1 2 × 1 = 3  2  and  𝑝𝐴 = 1 −  2  3 × 1  2 = 2  3 

Subsytem B:   

𝑐5 𝑝5 = 6 and 𝑐6 𝑝6 = 7 so non-decreasing 𝑐𝑖/𝑝𝑖  order is: 5-6. Hence, 

𝜋𝐵 =  5 , 6  , 𝑐𝐵 = 1 + 5  6 × 1 = 11  6  and  𝑝𝐵 = 1 − 5  6 × 6  7 = 2  7 

Iteration 2: All 1-level subsystems was evaluated so continue with 2-level 

subsystems. Label the series subsystem as C which includes subsystem A and 
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component 3 (𝐶 =  𝐴˄3 ). Label the series subsystem as D which includes 

component 4 and subsystem B (𝐷 =  4˄𝐵 ). 

Subsytem C:   

𝑐𝐴 𝑞𝐴 = 9 2  and 𝑐3 𝑞3 = 4 3   so non-decreasing 𝑐𝑖/𝑞𝑖  order is: 3-A. Hence, 

𝜋𝐶 =  3 , 1 − 2  , 𝑐𝐶 = 1 + 1  4 × 3  2 = 11  8  and  𝑝𝐶 = 2  3 × 1  4 = 1  6 

Subsytem D:   

𝑐4 𝑞4 = 5 4  and 𝑐𝐵 𝑞𝐵 = 77 30   so non-decreasing 𝑐𝑖/𝑞𝑖  order is: 4-B. Hence, 

𝜋𝐷 =  4 , 5 − 6  , 𝑐𝐷 = 1 + 1  5 × 11  6 = 41  30 and  𝑝𝐷 = 1  5 × 2  7 =

2  35 

Iteration 3: All 2-level subsystems was evaluated so continue with 3-level system 

and label as E (𝐸 =  𝐶˅𝐷 ). 

System E: 

𝑐𝐶  𝑝𝐶  = 66/8 and 𝑐𝐷 𝑝𝐷 = 1435/60 so non-decreasing 𝑐𝑖/𝑝𝑖  order is: C-D. 

Hence, 𝜋𝐸 =  3 , 1 − 2 , 4 , 5 − 6  , 𝑐𝐸 = 11/8 + 5 6 × 41/30 = 2.51  and  

𝑝𝐸 = 1 −  5  6 × 32  35 = 0.24 

Solution: The DFP solution is 3-1-2-4-5-6 and the expected cost of this strategy is 

2.51. The BDT representation of the steps of this solution is given in Figure 13. 

3

4 1

25

6 4

5

6

 

Figure 13. BDT representation of DFP solution for the SPS shown in Figure 12 
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4.2. Depth first Dynamic (DF-D) 

Depth first Dynamic (DF-D) algorithm is the dynamic version of DFP algorithm.  As 

a matter of fact, one could improve the DFP algorithm by recomputing all ratios after 

determining the next component to test [19]. It can give the same strategy and result 

with DFP for some instances but it has a potential to give better results.  For the 

cases that DF-D will improve on DFP, we know that the strategy produced by DF-D 

will not be a permutation startegy. This is because in order for DF-D to produce a 

different strategy than DFP, it should be the case that we switch from one subsystem 

to another after recomputing all ratios in some step of the algorithm. 

The results of DF-D algorithm may not be given as permutation so they should be 

represented in BDT representation. This algorithm updates the current SPS at each 

node, it calculates the ratios and tests the component having smallest ratio. 

The DF-D algorithm can give better results than DFP but it needs more computing 

effort and time than DFP. Moreover, executing the strategy found by DF-D is less 

convenient than executing the strategy found by DFP.  

Observation 2: DF-D finds same solution with DFP for 1-level, 2-level SPSs and 3-

level SPSs having identical components. 

Observation 3: DF-D finds permutation solutions for 1-level, 2-level SPSs and 3-

level SPSs having identical components. 

The pseudo-code of implemented algorithm is as follows: 

Definitions 

𝐸 𝐶 : Expected cost of testing given SPS 

𝑃: Working probability of given SPS 

c: cost vector 

p: working probability vector 

q: failing probability vector (q = 1-p) 

TREE: list of nodes which are not examined 

Node: a solution element which consist of an “SPS”, “cost”, 

“probability”,  and “tested” fields 
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Algorithm 

Create node 𝑁0  

Assign given SPS to 𝑁0.SPS 

Run DFP for 𝑁0.SPS 

𝑁0.tested = id of component which is tested first by DFA  

𝑁0.cost = tested component’s cost 

𝑁0.probability = 1 

Add 𝑁0 to TREE 

𝐸 𝐶 = 𝑁0.cost  

P=0 

WHILE TREE is not empty 

  Label the first node of TREE as 𝑁0 

  BLOCK 

    Create a node and label it as 𝑁1 for 𝑁0.tested fails 

    𝑁1.probability = 𝑁0.probability * 𝑞𝑁0 .𝑡𝑒𝑠𝑡𝑒𝑑  

    Update 𝑁0.SPS when 𝑁0.tested fails and assign this SPS to 𝑁1.SPS 

    IF 𝑁1.SPS is not empty 

    THEN 

      Run DFP for 𝑁1.SPS 

      IF level of 𝑁1.SPS is less than or equal to 2 

      THEN 

        𝑁1.cost = 𝑁1.probability * cost of DFP solution 

        𝑁1.probability = 𝑁1.probability * working probability of DFP  

                        solution 

        P = P + 𝑁1.probability 

      ELSE 

        𝑁1.tested = The component’s id which is tested first by DFA  

        𝑁1.cost = 𝑁1.probability * 𝑁1.tested 

        Insert 𝑁1 to TREE at just behind of 𝑁0 

      ENDIF 

      𝐸 𝐶  = 𝐸 𝐶  + 𝑁1.cost 

    ENDIF 

  ENDBLOCK 

  BLOCK 

    Create a node and label it as 𝑁2 for 𝑁0.tested works 

    𝑁2.probability = 𝑁0.probability * 𝑝𝑁0 .𝑡𝑒𝑠𝑡𝑒𝑑  

    Update 𝑁0.SPS when 𝑁0.tested works and assign this SPS to 𝑁2.SPS 

    IF 𝑁1.SPS is empty 

    THEN 



21 

 

      P = P + 𝑁2.probability 

    ELSE 

      Run DFP for 𝑁2.SPS 

      𝑁2.tested = The component’s id which is tested first by DFA  

      IF level of 𝑁2.SPS is less than or equal to 2 

      THEN 

        𝑁2.cost = 𝑁2.probability * cost of DFP solution 

        𝑁2.probability = 𝑁2.probability * working probability of DFP  

                        solution 

        P = P + 𝑁2.probability 

      ELSE 

        𝑁2.tested = The component’s id which is tested first by DFA  

        𝑁2.cost = 𝑁2.probability * 𝑁2.tested 

        Insert 𝑁2 to TREE at just behind of 𝑁1 

      ENDIF 

      𝐸 𝐶  = 𝐸 𝐶  + 𝑁2.cost 

    ENDIF 

  ENDBLOCK 

  Delete 𝑁0 from TREE 

ENDWHILE 

PRINT 𝐸 𝐶   and 𝑃 

The DF-D algorithm requires too much space and time.  In order to implement a 

more efficient algorithm, we utililize some properties of the problem. We are able to 

solve the instances having 50-60 components rather than 10-12 components by 

utilizing these properties. Some of these properties/observations are given below; 

 DF-D needs to run DFP and update current SPS for each node of the BDT. 

We have checked the updated SPSs level for each node and if the depth of 

SPS is less than or equal to 2 then new node is not created. DFP’s solution is 

accepted as cost of this node, since DFP produces optimal solutions for 1 and 

2-level deep SPSs. 

 In order to reduce memory requirement, we used depth first search in BDT. 

We have erased each node after branched on.  

 In order to reduce memory requirement and accelerate the algorithm we have 

calculated the cost cumulatively. When a node is created, global cost and 

probability variables are updated by using this node’s cost and probability. 
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Example 2: (See [15] for similar examples) 

1

2

3

4

5

p=0.41 p=0.61

p=0.34 p=0.13

p=0.16

c=1 for all components

 

Figure 14. An example 3-level deep parallel system  

DFP solution of the SPS shown in Figure 14 is 1-2-3-4-5 and expected cost of this 

strategy is 3.035. Calculation steps; 

Iteration 1: Evaluate 1-level SPSs. 

𝑐1 𝑝1 = 2.44  𝑎𝑛𝑑 𝑐2 𝑝2 = 2.94  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1 − 2  

𝑐12 = 1 + 0.59 = 1.59  𝑎𝑛𝑑 𝑝12 = 1 − 0.59 × 0.66 = 0.6106 

𝑐3 𝑝3 = 1.64  𝑎𝑛𝑑 𝑐4 𝑝4 = 7.69  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 3 − 4 

𝑐34 = 1 + 0.39 = 1.39  𝑎𝑛𝑑 𝑝34 = 1 − 0.39 × 0.87 = 0.6607 

Iteration 2: Evaluate 2-level SPSs. 

𝑐12 𝑞12 = 4.083  𝑎𝑛𝑑 𝑐34 𝑞34 = 4.088  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1,2 − 3,4  

𝑐1234 = 1.59 + 0.6106 × 1.39 = 2.4387  𝑎𝑛𝑑 𝑝1234 = 0.6106 × 0.6607 = 0.4034 

Iteration 3: Evaluate 3-level SPSs. 

𝑐1234 𝑝1234 = 6.0453 𝑎𝑛𝑑 𝑐5 𝑝5 = 6.25 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1,2,3,4 − 5  

𝑐12345 = 2.4387 + 0.5966 = 3.0353   
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Figure 15 shows BDT representation of this strategy.  
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Figure 15. BDT representation of DFP solution for the SPS shown in Figure 14 

The BDT representation can be used to verify the expected cost of this strategy. The 

expected cost is as follows. 

𝐸 𝐶𝐷𝐹𝑃  = 𝑐1 + 𝑞1  𝑐2 + 𝑞2 𝑐5 + 𝑝2 𝑐3 + 𝑞3 𝑐4 + 𝑞4𝑐5   + 𝑝1 𝑐3 + 𝑞3 𝑐4 + 𝑞4𝑐5   

                = 1 + 0.59  1 + 0.66 + 0.34 1 + 0.39 1 + 0.87   

+ 0.41 1 + 0.39 1 + 0.87     = 3.0353 

Let’s find DF-D solution for the SPS given in Figure 14. 

Iteration 1:  

 Find DFP solution for the current SPS. DFP solution is found as 1-2-3-4-5 

above. Component 1 will be tested. 

 Create two nodes for failing and working states of component 1. Update the 

SPSs of these nodes. 

1

N1 N2

0 1

3

4

55

2

3

4
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Iteration 2:  

 Find DFP solution for the N1’s SPS.  

o 𝑐34 𝑞34 = 4.088 𝑎𝑛𝑑 𝑐2 𝑞2 = 1.515 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 2 − 3,4 

o 𝑐234 𝑝234 = 6.562 𝑎𝑛𝑑 𝑐5 𝑝5 =  6.25  𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 5 − 2,3,4 

o Node N1 tests component 5. 

 Create two nodes for failing and working states of component 1. Update the 

SPSs of these nodes. 

 Find DFP solution for the N2’s SPS. N2 has 1-level deep so do not create a 

new node and use DFP cost. 

o 𝑐3 𝑝3 = 1.64 , 𝑐4 𝑝4 =  7.69 𝑎𝑛𝑑 𝑐5 𝑝5 =  6.25 

o 𝑐354 = 1.7176 

1

5 3,5,4

0 1

N3

1

0

2

3

4

 

Iteration 3: 

 Find DFP solution for the N3’s SPS. N3 has 1-level deep so do not create a 

new node and use DFP cost. 

o 𝑐34 𝑞34 = 4.088 𝑎𝑛𝑑 𝑐2 𝑞2 = 1.515 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 2 − 3,4 

o 𝑐234 = 1.4726 

      𝐸 𝐶𝐷𝐹−𝐷 = 𝑐1 + 𝑞1 𝑐5 + 𝑞5𝑐234 + 𝑝1𝑐354  

                 = 1 + 0.59 1 + 0.84 × 1.4726 + 0.41 × 1.7176 = 3.024 

 

Figure 16 shows BDT representation of DF-D strategy. Dashed lines show DFP 

solution for the SPSs having less than or equal to 2-level deep. 
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Figure 16. BDT representation of DF-D solution for the SPS shown in Figure 14 

Example 2 shows that DF-D can find better solutions than DFP. However DF-D is 

not necessarily find optimal solution for 3-level deep SPSs. Figure 17 shows a better 

strategy than DF-D having expected cost 2.993. (See [15]) 
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Figure 17. BDT representation of a nonpermutation solution for the SPS shown in 

Figure 14 
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4.3. Dynamic Programming Algorithm (DYNPROG) 

DYNPROG is a dynamic programming method which is developed by Greiner et al. 

[15]. This algorithm can solve 3-level or deeper SPSs optimally but time complexity 

and memory requirement of this algorithm is high.  

Theorem 2: In any optimal strategy the components that are in the same 1 level deep 

sub-system should be in the correct order on any path from root to leaf in the strategy 

tree, meaning that components that belong to the same parallel sub-system should be 

in non-decreasing order of ci/pi in all paths. (They do not need to be one after another 

though) [15] 

DYNPROG uses Theorem 2 so the time complexity is a function of number of 

subsystems and number of components. Hence it is a dynamic programming method, 

it makes enumeration; it cannot be used for large instances in a computational study. 
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5. IMPROVED SOLUTION METHOD 

5.1. Cost of Permutation Strategies 

We mentioned about the expected cost calculation methods in Section 2. We need to 

create BDT to calculate cost of any random permutation or dynamic/nonpermutation 

strategy. Only exception is depth first permutation strategies; we don’t need to create 

BDT for calculating the cost of these strategies. Creating a BDT for a given SPS 

having “n” components have a time and space complexity O(2
n
 ).  

Cost calculation is a time consuming operation so it is hard to solve the SPSs having 

more than 10-20 components. Moreover, metaheuristic methods cannot be applied to 

Sequential Testing problem because they have to search for a solution many times as 

subroutine.  And the expected costs of many solutions need to be evaluated. 

In this study we focused 3-level deep parallel SPSs and developed an algorithm for 

calculating the expected cost faster for permutation strategies. This new method 

enables to apply metaheuristics for 3-level deep SPSs. It also increases the solvable 

instance size. When we solve parallel systems, we can find solution for series 

systems by using duality.  

Input: A permutation of the components δ 

Output: The expected cost of testing with respect to the 

permutation. 

Algorithm 

ci: cost of testing component i  

Pj: working probability of series subsystem j 

Qjk: failing probability of subsystem k of series system j 

Initially 𝑃𝑗  , 𝑄𝑗𝑘  =  1 for all j and k , TotalCost = 0 

Renumber components as i' according to permutation δ. 

FOR i’=1 to number of components 

  Let j’ is the index of the series system including component i’ 

  J is the set of series systems which can give result(*) 

  Kj is the set of parallel subsystems of series system j 
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     𝑃 = 1 −   𝑃𝑗    1 − 𝑄𝑗𝑘  

𝑘∈𝐾𝑗

 

𝑗∈𝐽  ,   𝑗≠𝑗 ′

  

 

  IF i’ is element of a series system 

  THEN  

    TotalCost = TotalCost + 𝑐𝑖 ′ × 𝑃𝑗 ′ × 𝑃 

    𝑃𝑗 ′ = 𝑃𝑗 ′ × 𝑝𝑖 ′  

  ELSE 

    Let k’ is the index of 1-level parallel system including     

    component i’ 

    TotalCost = TotalCost + 𝑐𝑖 ′ × 𝑃𝑗 ′ × 𝑄𝑗 ′ 𝑘 ′ × 𝑃 

    𝑄𝑗 ′ 𝑘 ′ = 𝑄𝑗 ′ 𝑘 ′ × 𝑞𝑘 ′ 

    IF all tests are realized in system k’  

    THEN 

      𝑃𝑗 ′ = 𝑃𝑗 ′ ×  1 − 𝑄𝑗 ′ 𝑘 ′   

    ENDIF 

  ENDIF 

ENDFOR 

(*) A 3-level deep parallel SPS functions if we have a series system that functions.  

In other words, if all of the single components and individually at least one 

component of each parallel subsystem of a series system are tested and working then 

this system is in working state. For example: In Figure 12, if we test component 1 

and 3 and they are working, we can declare that the SPS is working state without 

testing any other component. 

Example 3. Let’s calculate the cost of permutation strategies 3-1-2-4-5-6 and 1-3-5-

4-2-6 for the SPS shown in Figure 12. 

Label the first series system ((1˅2) ˄3) as A and parallel subsystem (1˅2) as Aa 

Label the second series system (4˄ (5˅6)) as B and parallel subsystem (5˅6) as Ba 

Permutation: 3-1-2-4-5-6 

Initialization: 𝐶 = 0 , 𝑃𝐴 , 𝑃𝐵 , 𝑄𝐴𝑎 , 𝑄𝐵𝑎 = 1 
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Iteration 1: Test 3 

𝑃 = 1  
𝐶 = 𝐶 + 𝑐3 = 1 
𝑃𝐴 = 𝑝3 

Iteration 2: Test 1 

𝑃 = 1  
𝐶 = 𝐶 + 𝑐1𝑃𝐴 = 𝐶 + 𝑐1𝑝3 = 1.25 
𝑄𝐴𝑎 = 𝑞1 

Iteration 3: Test 2 

𝑃 = 1  
𝐶 = 𝐶 + 𝑐2𝑃𝐴𝑄𝐴𝑎 = 𝐶 + 𝑐2𝑝3𝑞1 = 1.375 
𝑄𝐴𝑎 = 𝑞1𝑞2 
𝑃𝐴 = 𝑝3(1 − 𝑞1𝑞2) 

Iteration 4: Test 4 

𝑃 =  𝑞3 + 𝑝3𝑞1𝑞2 
𝐶 = 𝐶 + 𝑐4𝑃 = 𝐶 + 𝑐4 𝑞3 + 𝑝3𝑞1𝑞2 = 2.208 
𝑃𝐵 = 𝑝4 

Iteration 5: Test 5 

𝑃 =  𝑞3 + 𝑝3𝑞1𝑞2 
𝐶 = 𝐶 + 𝑐5𝑃𝐵 = 𝐶 + 𝑐5𝑝4  𝑞3 + 𝑝3𝑞1𝑞2 = 2.375 
𝑄𝐵𝑎 = 𝑞5 
𝑃𝐵 = 𝑝4 

Iteration 6: Test 6 

𝑃 =  𝑞3 + 𝑝3𝑞1𝑞2 
𝐶 = 𝐶 + 𝑐6𝑃𝐵𝑄𝐵𝑎 = 𝐶 + 𝑐6𝑝4𝑞5  𝑞3 + 𝑝3𝑞1𝑞2 = 2.514 

Permutation: 1-3-5-4-2-6 

Initialization: 𝐶 = 0 , 𝑃𝐴 , 𝑃𝐵 , 𝑄𝐴𝑎 , 𝑄𝐵𝑎 = 1 

Iteration 1: Test 1 

𝑃 = 1  
𝐶 = 𝐶 + 𝑐1 = 1 
𝑄𝐴𝑎 = 𝑞1 

Iteration 2: Test 3 

𝑃 = 1  
𝐶 = 𝐶 + 𝑐3 = 2 
𝑃𝐴 = 𝑝3 
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Iteration 3: Test 5 

𝑃 = 1 − 𝑝1𝑝3  
𝐶 = 𝐶 + 𝑐5𝑃 = 𝐶 + 𝑐5(1 − 𝑝1𝑝3) = 2.875 
𝑄𝐵𝑎 = 𝑞5 

Iteration 4: Test 4 

𝑃 =  1 − 𝑝1𝑝3 
𝐶 = 𝐶 + 𝑐4𝑃 = 𝐶 + 𝑐4(1 − 𝑝1𝑝3) = 3.750 
𝑃𝐵 = 𝑝4 

Iteration 5: Test 2 

𝑃 =  1 − 𝑝4𝑝5 
𝐶 = 𝐶 + 𝑐2𝑃𝐴𝑄𝐴𝑎𝑃 = 𝐶 + 𝑐2𝑝3𝑞1(1 − 𝑝4𝑝5) = 3.871 
𝑄𝐴𝑎 = 𝑞1𝑞2 
𝑃𝐴 = 𝑝3(1 − 𝑞1𝑞2) 

Iteration 6: Test 6 

𝑃 =   𝑞3 + 𝑝3𝑞1𝑞2 
𝐶 = 𝐶 + 𝑐6𝑃𝐵𝑄𝐵𝑎 = 𝐶 + 𝑐6𝑝4𝑞5  𝑞3 + 𝑝3𝑞1𝑞2 = 4.01 
 

5.2.   SAPATS Algorithm 

5.2.1. Simulated Annealing Algorithm 

The Simulated Annealing algorithm simulates the heating and cooling process of 

solids. Annealing is a  physical process  where  a  solid  heated  to  high  temperature, 

cools  slowly  and  tends  to  state  with  least  internal energy. The SA begins with 

some initial solution and temperature and operates until the temperature reaches 

critical value. If the cooling process is slow, particles of the solid will be close to 

each other, and the solid have high resistance.  If the cooling process is fast, the solid 

will be hard but fragile.  Because some particles will be close to each other but some 

particles will not.  If we heat a solid and refrigerate too fast than the particles of this 

solid select the first good position as destination point. They don’t have enough 

chance to search better points. These are local optimal points. If they find enough 

time to search, they can find better destination points.  The simulated annealing 

heuristic is based on this fact [2][8][14].  
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There exist different variations of SA in literature but the main procedure is as 

follows [14];  

 Start with an initial solution and an initial temperature  

 Find a neighbor of this solution   

 If the new solution improves the objective function value then accept this 

solution   

 If  the  new  solution  does  not  improve  the objective  function  value  then  

accept  this solution according to a probability (which depends  on  the  

current  temperature  and the  difference  between  current  solution and  best  

solution’s  objective  function value.)  

 If  a  solution  is  accepted  then update/decrease the temperature (cooling)  

 Repeat this procedure (continue with finding a neighbor of accepted solution) 

until termination conditions.  

The acceptance probability of bad solutions is calculated as follows;  

𝑝 = 𝑒 −∆𝐶 𝑇 

∆𝐶 shows the difference between current solution and best solution’s objective 

function value and 𝑇 shows the current temperature.  If the temperature decreases or 

∆𝐶 increases then acceptance probability decreases. The cooling process provides 

that the algorithm converges to a local optimum with the passing of iterations.  

5.2.2. Tabu Search Algorithm 

The tabu search employs restrictions to block certain moves, and aspiration criteria to 

allow very good solutions to overcome any tabu status.  Tabu restrictions are used to 

prevent moving back to previously analyzed solutions. The aspiration criteria 

determines when a move produces a solution better than the best known solution it is 

accepted as new solution even if tabu [7]. This structure is used to prevent cycling 

and search for good solutions and reach a local optimal. 

5.2.3. Improved Algorithm 

The SA can find good solutions quickly but it converges to a local (or global) 

optimum in a short time period so it may not improve the solution in a long time. On 
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the other hand, the Tabu Search may not find a good solution quickly but it can 

improve this solution in a long time and can find better solutions than SA. This 

means that, SA can find better solutions than TS in short time limits [8]. The results 

which are reached by Hussin and Stützle [14] confirm this situation. They compares 

the different SA and TS algorithms’ performances.   

Thanks to the method given in section 3.2 a metaheuristic method can be applied to 

this problem. In the light of the above comparison we decided to develop a hybrid 

metaheuristic method to solve sequential testing problem. We want to combine the 

advantages and reduce the disadvantages of these two algorithms. This hybrid 

algorithm works faster than TS and it finds better solutions than SA [2][8].  

We use the fast cost calculation method presented in section 3.2 and Theorem 2 to 

develop a simulated annealing with post analysis tabu search (SAPATS) algorithm. 

A similiar structure is proposed by Misevicius [2] and it is compared with SA, TS 

and different hybrid SA-TS algorithms. This algorithm performs better than other 

algorithms both in terms of solving time and solution quality.  

 The SAPATS algorithm starts with a DFP solution and simulating annealing 

algorithm finds an initial solution for TS to improve. Since SA provides a good 

initial solution for TS, diversification is not used.  At each step, we use our efficient 

method described above to compute the expected cost of neighbor permutation 

strategies.   

Basic flow of the SAPATS algorithm is given in Figure 8.  

 

Figure 18.  Basic flow of SAPATS algorithm 
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The pseudo code of SAPATS is as follows. 

Algorithm 

Xnew: an initial solution found by DFP algorithm 

Xbest=Xnew, Xcurrent=Xnew 

Timelim=Initial_time_limit 

T=K*Cost(Xbest) 

WHILE time<Timelim  

  n=0 

  WHILE n<Num_of_accepted AND time<Timelim 

    make a random single element move exchange on Xcurrent  

    and find an Xnew satisfying Theorem 2   

    IF Cost(Xnew)<Cost(Xbest) 

    THEN 

      Xbest=Xnew 

      Xcurrent=Xnew 

      increment n 

      IF time>Timelim-Time_limit_step/2    

        AND Timelim<Global_time_limit         

      THEN 

        Timelim=Timelim+Time_limit_step     

      ENDIF 

    ELSE 

      z=exp(-((Cost(Xnew)-Cost(Xbest))/T)) 

      accept Xnew as Xcurrent with the probability z 

    ENDIF 

  ENDWHILE 

  T=T*α; 

ENDWHILE 

Timelim=Timelim+ Time_limit_step 

Xcurrent=Xbest 

WHILE time<Timelim 

  decrease all positive tabu_list entries 1 unit 

  examine all possible single element move exchanges  

  (which satisfies Theorem 2) of the Xcurrent  

  save the best Candidate_list_size solutions as ordered in  

  candidate_list 

  index=0 

  REPEAT  

    rename candidate_list [index] as Xcandidate 

    IF the move creates Xcandidate is not tabu  
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      OR cost(Xcandidate)<Cost(Xbest) 

    THEN 

 Xnew=Xcandidate  

    ENDIF 

    increment index 

  UNTIL updating the Xnew  

  make the selected move’s tabu_list entry equal to tabu_size 

  ∆Cost = Cost(Xnew) – Cost(Xbest) 

  IF ∆Cost<0 

  THEN 

    Xbest=Xnew  

    IF time>Timelim-Time_lim_step/2   

       AND Timelim<Global_time_limit 

    THEN  

      Timelim=Timelim+Time_limit_step   

    ENDIF 

  ELSE 

    Xcurrent=Xnew  

  ENDIF 

ENDWHILE 

print Xbest and Cost(Xbest) 

5.2.4. Parameter Selection 

In this study, we have used non-deterministic run time strategy for all algorithms and 

all instances. This means that there exist dynamic “time-limit”s which are 

determined by the convergence of the solution. A deterministic maximum 

“time_limit” is also determined in order to prevent too extended runs. This 

mechanism works in this way;  

 A restricted “time_limit” is assigned initially.  

 If the algorithm continues improving the solution when the current solving 

time is close to “time_limit”, the time limit is increased. 

 If the algorithm converges to a local optimal before “time_limit” then the 

“time_limit” will not be increased. 

This mechanism has two advantages. Firstly, the “time_limit” does not restrict the 

algorithm too many so it can perform better.  Secondly, if the algorithm converges to 

a local optimum fast, the algorithm does not consume unnecessary time. 
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We decided on the values of the time parameters as follows.  

 Initial_time_limit = num_of_components seconds 

 Time_limit_step = num_of_components/5 seconds 

 Global_time_limit = 600 seconds 

 Candidate_list_size = Tabu_size +1 

The initial_time_limit and Time_limit_step are the function of component number. 

The values of these two parameters do not alter the solution quality because the 

time_limit is increased as dynamically. 

The parameters used in the SAPATS algorithm are as follows: 

 K  :  a  constant to decide the initial temperature   

 α  :  a  constant to decide the cooling speed  

 num_of_accepted:  number of accepted solutions in each iteration  

 tabu_size:  size of the short-term tabu list  

We have realized some experiments to decide the values of these parameters. The 

candidate values are given in Table 1. Totally 81 designs are tested on 10 randomly 

selected instances.  

Table 1. Candidate values of algorithm parameters 

K Alpha 
Num of 

Accepted 

Tabu 

Size 

0.05 0.95 5 N 

0.01 0.9 3 N/2 

0.005 0.85 1 N/4 

We have solved all instances by using all combinations of the values given in Table 

1. We have ordered the objective function values in non-decreasing order for each 

instance. Best five solutions are scored by using the rating. For example best design 

earns 5 point, second best design earns 4 points, third best design earns 3 points etc. 

All other solutions earn 0 point. Each design is scored for all instances and total 

scores of all design are calculated. Overall scores of best 5 designs are given in Table 

2. N is the component number in Table 2. 
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Table 2. Scores of best designs 

Design 

No 
K Alpha 

Num of 

Accepted 

Tabu 

Size 
Score 

66 0.005 0.95 3 N/4 23 

52 0.05 0.85 1 N/2 21 

48 0.005 0.95 1 N/2 21 

65 0.01 0.95 3 N/4 21 

23 0.01 0.9 1 N 20 

2 0.01 0.95 5 N 20 

We have decided to use the design 66 because it has the largest score. The selected 

parameters are as follows: 

Parameters 

 K= 0.005 

 α=0.95 

 Num_of_accepted= 3 

 Tabu_size = num_of_components/4
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6. APPLICATION 

6.1.  Experimental Design 

In our experimental design, we decided to generate 3-level deep SPS instances with 

certain number of components. This is not a straightforward task. As one forms the 

subsystems the number of remaining components decrease and the generated SPS 

could be biased in terms of the sizes of the subsystems. An alternative method would 

be to fix the number of subsystems and randomly determine the size of the sub-

subsystems. If the random instances are generated in this way, there would be a wide 

range for the total number of components in each instance and it would be difficult to 

analyze the results with respect to the number of components. 

We generated random instances with 10, 20, 30, 40, 50 and 100 components of 3-

level parallel systems. We only work with parallel systems because algorithms and 

results of a sequential testing problem for an SPS can be easily translated for its dual 

system [6]. We randomly determine the number of subsystems and the number of 

parallel systems for each subsystem for each value of the number of components. We 

use different parameters for different values of the number of components. Then we 

try to assign the corresponding number of components to the parallel systems such 

that the whole SPS has the required number of components. We have some steps to 

avoid extreme cases and we also have a mechanism to determine the appropriate 

parameters for different values of the number of components. 

At the end we obtain 200 random instances for each value of number of components 

so we have 1200 instances in total. 120 of 200 instances are created by Instance 

generator-1 in three clusters and 80 of instances are created by Instance generator-2 

in two clusters. For each instance, we run DFP, DF-D, and SAPATS and compute 

the expected cost of the strategy produced by these algorithms. We have used two 

different structures to create random SPSs. 
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6.1.1. Instance generator-1 

This structure generates parallel systems having known number of components (n) 

and 3-level deep. Here, single components are not allowed as an element of main 

system; see Figure 9.  

It is not allowed  

Figure 19. An example SPS having a single component of main system 

We group the parameters in three different clusters. First class is named as Strategy 1 

creates SPSs having a few number of subsystems. Each subsystem has many 

components. Strategy 3 creates SPSs having many subsystems but the subsystems 

have fewer components.  Strategy 2 creates SPSs having subsystems more than 

Strategy 1’s and less than Strategy 3.  

The above clustering method is used to create different instance groups having 

different hardness levels. 

Parameters: 

𝑎: number of level 2 systems 

 𝑎 can take value in the interval  2,  
𝑛

2
− 𝜖          𝜖 is a very small number. 

𝑏𝑖 : number of series subsystems in system i (system i is a 2-level system) 

 for 𝑏0 = 0 and 𝑖 = 1, … , 𝑎  

𝑏𝑖  can take value in interval  2,   𝑛 − 1 −  𝑏𝑗
𝑖−1
𝑗 =0 − 2(𝑎 − 𝑖)    

𝑎𝑚𝑖𝑛 : it is a parameter which limits the minimum value of 𝑎 is decided by user. 

𝑎𝑚𝑎𝑥 : it is a parameter which limits the maximum value of 𝑎 is decided by user. 

𝑏𝑚𝑎𝑥 : it is a parameter which limits the maximum value of 𝑏 is decided by user. 
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Different 𝑎𝑚𝑎𝑥  𝑎𝑛𝑑 𝑏𝑚𝑎𝑥 values are decided for creating different shaped level 3 

systems. These values are chosen as follows: 

Table 3. Instance generator-1 parameters 

Component 
Number 

Strategy 1 Strategy2  Strategy 3 

amin  amax bmax amin amax bmax amin amax bmax 

10 2 3 4 3 3 5 3 4 

N
o

t 
lim

it
ed

 20 2 4 6 4 7 7 7 9 

30 2 5 8 5 10 10 10 14 

40 2 6 9 6 14 12 14 19 

50 2 7 10 7 18 14 18 24 

100 2 12 16 12 35 22 35 49 

Algorithm 

get input parameters n, amin , amax  and bmax , pmin , pmax , cmin , cmax, 

from user 

generate a random “a” in interval [amin , amax] 

create a two-dimensional “Array” having “a” rows 

b0=0; bsum=0; i=0; 

WHILE i< size of Array 

  generate a random “bi” in interval  2,  min bmax  ,  n − 1 − bsum − 2a + 2i      

  create “bi” columns in row i of “Array” and write 1 in every 

cells.  

  bsum = bsum + bi; 

ENDWHILE 

calculate the number of remaining components “remaining”=(𝑛 − 𝑏𝑠𝑢𝑚 ) 

give id to all systems from 1 to bsum 

REPEAT  

  select a system randomly and add one component to this system. 

UNTIL all components are assigned 

REPEAT 

  give id for component  

  assign p in interval [pmin , pmax] 

  assign c in interval [cmin , cmax] 

UNTIL “n” components are finished 
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Example: A sample output for the above algorithm when component number is 10 

can be such that:  

Array=(1,2,2)(3,2) and this array represents the system given in Figure 10. 

1

2

3

4

5

6

7

8

9

10

 

Figure 20. An example randomly generated SPS 

6.1.2. Instance generator-2 

This structure allows single components as an element of main system. It means that 

it creates 3-level SPSs which may consist of some 2-level systems and components. 

For example the SPS given in Figure 9 can be created by this generator. It generally 

creates SPSs having more than one single components as element of main system. 

Hence, it generally creates SPSs which are easier than generator-1’s instances to be 

solved by DFP and DF-D. We created instances in two clusters; the number of single 

components in main system is reduced in second cluster. The pseudo code for 

Instance generator-2 is presented associate for two clusters as follows: 

Algorithm 

get input parameters n, amin , amax  and bmax , pmin , pmax , cmin , cmax, 

REPEAT 

  give id for component  

  assign p in interval [pmin , pmax] 

  assign c in interval [cmin , cmax] 

UNTIL “n” components are finished 

add the id of all components to “candidate_list” 

REPEAT 

  create a new system as “created_system” 

  assign a system id for “created_system” 

  select status of “created_system” ramdomly (series or parallel) 

  select two elements from “candidate_list”, add to “created_system” 
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  delete these two elements from “candidate_list” 

  calculate the level of “created_system” by using elements and status 

  add the “created_system” to “systems_list” 

  add the id of “created_system” to “candidate_list” 

UNTIL  size of  “candidate_list”=0 OR level of “created_system”=3 

IF size of “candidate_list”>0 

THEN 

  REPEAT 

    select a random element “a” from “candidate_list” 

    IF “ a” is component 

    THEN 

      select a system “b” from “systems_list” randomly (for first  

        cluster) 

      select a system “b” randomly from “systems_list” which  

        excludes main system (for second cluster) 

      add “a” to elements of “b”  

      delete “a” from “candidate_list” 

    ELSE  

      select a system “b” from “systems_list” 

      IF “a” and “b” have same status and level  

         OR “b” has higher level than “a” 

      THEN 

        add “a” to elements of “b”  

        delete “a” from “candidate_list” 

      ENDIF 

    ENDIF 

  UNTIL size of “candidate_list”=0 

ENDIF 

REPEAT 

  IF a system and an element of this system have same status and level 

  THEN 

    merge these two systems 

    revise the “systems_list” 

  ENDIF 

UNTIL all systems in “systems_list” are checked  
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6.2.  Results 

We have implemented the algorithms in C++ and solve the instances which are 

generated by Instance generator-1 and Instance generator-2. We analyze the 

improvement in the expected cost with respect to DFP since the solution obtained by 

DFP is used as an initial solution for SAPATS and we know that DF-D can only be 

better than DFP. We analyze the improvements by the number of components and by 

some properties of the random instances.  

Tables 2 and 3 compare SAPATS and DF-D with DFP with respect to the number of 

components. Max % imp column shows the maximum % improvement with respect 

to DFP solution whereas Mean % imp column shows the average % improvement 

over 200 instances with the same number of components. We observe that the 

improvements are largest for moderate size problem instances. DF-D could be run 

for 8 instances for 100 components. For others, DF–D seems to improve the DFP 

solution better than SAPATS. Yet, DF-D does not provide a permutation strategy. 

Table 4. SAPATS results based on component numbers 

SAPATS 

No of 

Comps Max % imp. Mean % imp. 

Number of 

Improved 

Number of 

Solved 

10 3,4% 1,0% 14 200 

20 2,0% 0,5% 8 200 

30 25,3% 3,0% 9 200 

40 12,4% 1,6% 13 200 

50 1,1% 0,4% 9 200 

100 6,8% 0,5% 20 200 
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Table 5. DF-D results based on component numbers 

DF-D 

No of 

Comps Max % imp. Mean % imp. 

Number of 

Improved 

Number of 

Solved 

10 5,1% 1,1% 18 200 

20 6,8% 0,7% 27 200 

30 12,2% 1,1% 22 200 

40 12,4% 1,5% 24 200 

50 4,9% 0,7% 24 200 

100 0,4% 0,1% 5 80 

Tables 5 and 6 provide the same information for different classes of instances that we 

refer as scenarios. Here scenarios correspond to some properties of the instances. 

Scenario 1 consists of instances where single components are allowed in subsystems, 

scenario 2 consists of instances where single components are allowed in subsystems 

but their number is low. The scenarios 3,4 and 5 correspond to instances with no 

single component as a subsystem and the number of subsystems is low, medium and 

high respectively.  Scenarios are summarized in Table 4. 

Table 6. Scenario Summary 

Scenario Properties Generated By 

1 Single components as subsystem  Instance generator-2 

2 Single components as subsystem but number of 

them is reduced 

Instance generator-2 

3 No single components as subsystem and number 

of subsystems is low 

Instance generator-1 

4 No single components as subsystem and number 

of subsystems is medium 

Instance generator-1 

5 No single components as subsystem and number 

of subsystems is high 

Instance generator-1 
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The improvements seem robust among different groups here and as before DF-D 

seems to improve the DFP solutions better than SAPATS. When we examine the 

results in detail, it is not easy to observe what conditions favor each algorithm. 

Table 7. SAPATS results based on scenarios 

SAPATS 

Scenario Max % imp. Mean % imp.  

 Number of 

improved 

Number of 

solved 

1 3,4% 0,8% 17 240 

2 25,8% 1,2% 25 240 

3 0,1% 0,0% 3 240 

4 12,4% 3,5% 5 240 

5 6,8% 0,8% 23 240 

Table 8. DF-D results based on scenarios 

DF-D 

Scenario Max % imp.  Mean % imp  

 Number of 

improved 

Number of 

solved 

1 4,9% 0,4% 23 240 

2 12,2% 1,0% 23 240 

3 8,7% 1,1% 27 200 

4 12,4% 2,0% 15 200 

5 3,0% 0,6% 32 200 
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7. CONCLUSION AND FUTURE RESEARCH 

DFP algorithm was proposed in the literature for sequential testing of SPSs in 

different studies. There are also articles that show that there exist instances where 

DFP performs arbitrarily badly. In this study, we conducted a numerical study to 

compare the performance of DFP with algorithms that we develop to obtain better 

solutions than provided by DFP. Although it is possible to improve to the solution of 

DFP by up to 25% on some instances, on average the % improvements were not that 

large.   

DFP reaches the same solutions with other algorithms for nearly 90% percent of all 

instances. We also observed that permutation strategies (such as one that is produced 

by DFP or SAPATS) that are very easy to represent and implement perform very 

satisfactorily.   

Finding a new solution and calculating cost in each iteration is polynomial time 

operations for SAPATS so the solvable instance size is high. On the other hand DF-

D cannot solve big instances especially the instances created by Instance generator-1. 

The solution quality of SAPATS algorithm is not affected negative from instance 

size. Moreover, solution quality of SAPATS increases when the number of 

subsystems increased. 

The hardness of the sequential testing problem of SPSs and in particular 3-level SPSs 

are open problems. One question is whether there is an efficient algorithm for 

computing the optimal permutation strategy for 3-level SPS. A second question is 

whether there is an efficient algorithm for computing the optimal strategy of 3-level 

SPS. Another direction of research would be to develop and analyze different 

heuristic approaches for more general SPSs rather than 3-level SPSs.  It is also an 

open problem to find optimal solution for 4-level SPSs having identical components. 
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Precedence constraints can be incorporated as in [3]. It is known that the testing 

problem is NP-complete when we have precedence constraints even for 1-level deep 

SPSs. Approximation algorithms can be developed for special cases as in [9] and [1]. 

Literature has solved 1-level SPSs optimally but 2-level SPSs under even line-

precedence is also waits to be solved. 
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