

SEQUENTIAL TESTING OF SERIES PARALLEL SYSTEMS

by

GÜRKAN IŞIK

Submitted to the Graduate School of Engineering and Natural Sciences

 in partial fulfillment of

the requirements for the degree of

Master of Science

Sabanci University

January 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/32328466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©Gürkan Işık 2013

All Rights Reserved

iv

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisor Tonguç Ünlüyurt for their enthusiasm,

inspiration, guidance, patience and motivation. Without their invaluable suggestions

it would be impossible to complete this thesis.

 I am grateful to my friends for their continuous guidance, emotional and

academic support.

v

ABSTRACT

 In this thesis, we study the sequential testing problem of 3-level deep Series

Parallel systems (SPS). We assess the performance of depth-first permutation (DFP)

algorithm that has been proposed in the literature. DFP is optimal for 1-level deep, 2-

level deep SPSs and 3-level deep SPSs that consist of identical components. It can be

used to test general SPSs. We report the first computational results regarding the

performance of DFP for 3-level deep SPSs by comparing its performance with a

dynamic version of DFP and a hybrid simulated annealing-tabu search algorithm that

we developed. In order to implement the algorithms, we propose an efficient method

to compute the expected cost of a permutation strategy. The results of computational

experiments for this algorithm and other algorithms proposed in the literature are

reported.

vi

ÖZET

 Bu tezde 3 seviyeli seri-paralel sistemlerde (SPS) ardışık test problemi

üzerine odaklanılmıştır. Literatürde önerilen derin öncelikli (DFP) algoritmanın

performansı değerlendirilmiştir. Bu algoritma 1 seviyeli ve 2 seviyeli sistemler ve 3

seviyeli özdeş bileşenli sistemler için en iyi çözümü vermektedir. DFP algoritması

genel SPS’leri test etmek için kullanılabilir. Bu çalışma, DFP algoritmasının

performansını değerlendiren ilk hesaplamalı çalışmadır. DFP algoritmasının

performansı, dinamik versiyon DFP algoritması ve geliştirdiğimiz melez tavlama

benzetimi-tabu araması algoritması ile karşılaştırmalı olarak sunulmuştur. Bu

algoritmaların uygulanabilmesi için permütasyon stratejilerin beklenen maliyetini

etkin hesaplayan bir metot önerilmiştir. Hesaplamalı deneyler gerçekleştirilmiş ve

sonuçları sunulmuştur.

vii

TABLE OF CONTENTS

Acknowledgements ... iv
Abstract .. v
Özet ... vi
Table of Contents ... vii

Lıst of Abbrevıatıons... viii
List of Figures ... ix

List of Tables.. x
Notation ... xi
1. Introduction ... 1

1.1. Sequential Testing Problem ... 1

1.2. Series-Parallel Systems .. 1
2. Problem Definition .. 6

2.1. Solution Strategies .. 8
2.1.1. Permutation Strategies... 8
2.1.2. Nonpermutation Strategies .. 9

2.2. Properties .. 10
3. Literature Review .. 12

4. Solution Approaches ... 14
4.1. Depth First Permutation (DFP) .. 14

4.2. Depth first Dynamic (DF-D) .. 19
4.3. Dynamic Programming Algorithm (DYNPROG) .. 26

5. Improved Solution Method ... 27

5.1. Cost of Permutation Strategies ... 27
5.2. SAPATS Algorithm ... 30

5.2.1. Simulated Annealing Algorithm ... 30
5.2.2. Tabu Search Algorithm ... 31
5.2.3. Improved Algorithm .. 31

5.2.4. Parameter Selection ... 34
6. Application .. 37

6.1. Experimental Design .. 37

6.1.1. Instance generator-1 .. 38
6.1.2. Instance generator-2 .. 40

6.2. Results .. 42
7. Conclusion and Future Research ... 45
Bibliography ... 47

viii

LIST OF ABBREVIATIONS

DFP: Depth-First-Permutation

SA: Simulated Annealing

SAPATS: Simulated Annealing with Post Analysis Tabu Search

SPS: Series-Parallel Systems

TS: Tabu Search

BDT: Binary Decision Tree

ix

LIST OF FIGURES

Figure 1. Simple parallel and simple series systems .. 2

Figure 2. An example series system ... 3

Figure 3. An example parallel system generated from the SPS given in Figure 2 3

Figure 4. An example 3-level deep SPS... 4
Figure 5. Tree representation of the SPS given in Figure 4 ... 4
Figure 6. (a) a simple series system (b) A feasible strategy (c) BDT representation of

the strategy ... 6
Figure 7. An inspection strategy for the SPS shown in Figure 4 7

Figure 8. BDT representation of inspection steps of a permutation strategy 9
Figure 9. BDT representation of inspection steps of a nonpermutation strategy 9
Figure 10. A non series-parallel system ... 10
Figure 11. Dual of the SPS given in Figure 4 .. 11

Figure 12. An example 3-level deep parallel system ... 17
Figure 13. BDT representation of DFP solution for the SPS shown in Figure 12 18

Figure 14. An example 3-level deep parallel system ... 22
Figure 15. BDT representation of DFP solution for the SPS shown in Figure 14 23

Figure 16. BDT representation of DF-D solution for the SPS shown in Figure 14 ... 25
Figure 17. BDT representation of a nonpermutation solution for the SPS shown in

Figure 14 .. 25
Figure 18. Basic flow of SAPATS algorithm ... 32
Figure 19. An example SPS having a single component of main system 38

Figure 20. An example randomly generated SPS .. 40

x

LIST OF TABLES

Table 1. Candidate values of algorithm parameters ... 35

Table 2. Scores of best designs .. 36

Table 3. Instance generator-1 parameters .. 39

Table 4. SAPATS results based on component numbers ... 42
Table 5. DF-D results based on component numbers .. 43
Table 6. Scenario Summary ... 43
Table 7. SAPATS results based on scenarios .. 44
Table 8. DF-D results based on scenarios .. 44

xi

NOTATION

𝑐𝑖 : cost of testing component i

𝑝𝑖 : working probability of component i

𝑞𝑖 : failing probability of component i

˄: logical AND

˅: logical OR

1

1. INTRODUCTION

1.1. Sequential Testing Problem

Sequential Testing problem involves finding a minimum expected cost strategy to

evaluate a Boolean function when learning the values of the variables are costly. The

variables assume values independent of each other and the probabilities of each

variable taking a value of 1 or 0 are also known.

Sequential testing problem arises in different application areas such as query

optimization in databases [9], medical diagnosis [15], project management [4],

inspection in manufacturing [11] etc.

In this particular study, we concentrate on a special class of Boolean functions that

correspond to Series-Parallel systems. We will define the Sequential Testing problem

in a precise manner in the context of Series-Parallel systems in the next section. First

we define Series-Parallel systems in this section.

To the best of our knowledge this is the first computational study on 3-level deep

SPSs (Level concept is presented in Section 1.2). We show that the expected cost of

any permutation strategy can be computed efficiently for 3-level deep SPSs. This

efficient cost calculation method provides us to apply metaheuristic methods for

sequential testing problem. Our contributions are presented as detailed at the end of

Section 2.

1.2. Series-Parallel Systems

A Series-Parallel system (SPS) is a special multi-component system where each of

the components can be in working or failing state. The state of the SPS depends on

the states of the components via a special Boolean function. We will refer to this

Boolean function as the structure function of the SPS. The structure function of an

SPS is the Boolean function that maps the states of the components to the state of the

system. The variables of the Boolean function correspond to the components of the

2

system, and the value of the Boolean function will represent the state of the SPS. The

simplest SPS is a simple series system or a simple parallel system. A simple series

system is in working state if all of its components are working and dually a parallel

system is in working state if at least one of its components is working. The structure

function of a simple series system and simple parallel system are as follows:

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1˄𝑥2˄…˄𝑥𝑛 (simple series system)

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1˅𝑥2˅…˅𝑥𝑛 (simple parallel system)

where ˄ is the logical AND and ˅ is the logical OR operator.

We can depict the simple series and simple parallel systems graphically as shown in

Figure 1.

1

2 1 2

Simple Parallel System Simple Series System

n

n

Figure 1. Simple parallel and simple series systems

More complicated SPSs can be constructed by a series or parallel connection of other

SPSs. These other SPSs are called the sub-systems of the SPS. The structure function

of a series (parallel) connection of some SPSs is the AND (OR) of the structure

function of these SPSs.

For instance, the SPS shown in Figure 2 is a series connection of a component and

two simple parallel systems whereas the second SPS is a parallel connection of four

components.

3

1

2

4

5

6

7

3

Figure 2. An example series system

The SPS shown in Figure 3 is generated by connecting a simple series system

consisting of components 8 and 9, with the SPS given in Figure 2, in parallel. SPS

shown in Figure 2 is a “subsystem” of the SPS shown in Figure 3.

1

2

4

5

6

7

8

3

9

Figure 3. An example parallel system generated from the SPS given in Figure 2

Definition 1: An SPS has “𝑙” level deep if the maximum number of reductions is

“𝑙 − 1” to reach a simple series/parallel system.

Figure 4 shows a 3-level deep SPS which consists of parallel connection of a 2-level

deep subsystem and component 4. The 2-level deep subsystem consists of a 1-level

deep parallel subsystem and component 3.

4

1

2

3

4

Figure 4. An example 3-level deep SPS

The structure function of the SPS given in Figure 4 in logical form can be written as;

𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑥1˅𝑥2 ˄𝑥3 ˅𝑥4

Every SPS can be represented as an AND-OR tree. The leaves of the AND-OR tree

are indexed by the components of the SPS. The internal nodes describe the type of

the connection of its children (series or parallel). The length of the longest path from

the root to a leaf node is the depth of SPS. The AND-OR tree representation of the

SPS in Figure 4 is given in Figure 5. The simple series and simple parallel systems

have deep 1.

1 2

3

4

Parallel

Series

Parallel

Figure 5. Tree representation of the SPS given in Figure 4

The structure function of any SPS is a special type of Boolean function referred to as

Read-Once function. The function is called Read-Once since the Boolean function

can be represented in a form where each variable appears exactly once. For instance

the structure function of the SPS shown in Figure 3 can be written as;

5

𝑓 𝑥1, 𝑥2, 𝑥3 , 𝑥4, 𝑥5 , 𝑥6, 𝑥7, 𝑥8, 𝑥9 = 𝑥1˄ 𝑥2˅𝑥3˅𝑥4˅𝑥5 ˄ 𝑥6˅𝑥7 ˅ 𝑥8˄𝑥9

Read-Once functions have been extensively studied in the literately for other reasons

[9].

6

2. PROBLEM DEFINITION

As indicated in Section 1, Sequential Testing problem for an SPS requires finding a

strategy that finds out the correct state of the SPS with the minimum expected cost.

Given the structure function of an SPS, a cost vector C, where 𝑐𝑖 is the cost of

learning the correct state of component 𝑖, and a probability vector P where 𝑝𝑖 is the

probability that components is in working state, a feasible strategy outputs the next

component to test given the states of previously tested components. Testing a

component is used interchangeable with learning the value of the corresponding

variable in the structure function.

For a simple series system a feasible strategy is just a permutation of the components

since we stop testing if any component is in failing state or all components are tested.

Graphically we can show a feasible solution as in Figure 6.

1 2 3 4

1

2

3

4

1

1

1

0

0

0

0 1A feasible solution: 1-2-3-4

: Fail

: Work

A simple series system

a. c.

b.

Figure 6. (a) a simple series system (b) A feasible strategy (c) BDT representation of

the strategy

Expected cost of the strategy in Figure 6 can be written as follows.

𝐸 𝐶𝑜𝑠𝑡 = 𝑐1 + 𝑝1 𝑐2 + 𝑝1𝑝2 𝑐3 + 𝑝1𝑝2𝑝3 𝑐4

7

In general, a strategy can be represented as a binary decision tree (BDT). Each

internal node corresponds to a variable or component. The right (left) branch of a

node corresponds to the case when the variable is 1(0) or the component is in

working state. The leaves of the BDT correspond to the state of the SPS or the value

of the structure function. For instance, the strategy 3-1-2-4 for the SPS in Figure 4 is

shown in Figure 7.

3

4 1

2

4

0 1

1 0

0 1

1

0

0

1 : Fail

: Work

Figure 7. An inspection strategy for the SPS shown in Figure 4

We can compute the expected cost of a strategy in two ways. One is finding the

probability of a component being tested and summing up the expected testing costs

of all components. The other is to sum up the expected costs of all root-to-leaf paths

of the BDT. We illustrate these two methods for the strategy shown in Figure 7 as

follows.

𝐸 𝐶𝑜𝑠𝑡 = 𝑝3 𝑐1 + 𝑝3𝑞1 𝑐2 + 𝑐3 + 𝑞3 + 𝑝3𝑞1𝑞2 𝑐4

We can also write the following recursive equation in order to compute the expected

cost of this strategy.

𝐸 𝐶𝑜𝑠𝑡 = 𝑐3 + 𝑞3𝑐4 + 𝑝3 𝑐1 + 𝑞1 𝑐2 + 𝑞2𝑐4

In fact, we don’t need to have the whole tree at hand in order to execute the strategy.

An algorithm that tells us which component to test next given the states of the

previously tested components suffices to execute the strategy.

8

In general an optimal BDT describing the whole strategy can have exponential size

in terms of the input size. Obviously, for simple series and parallel systems this is

not the case there are also exceptions to this for systems other than SPSs. For

instance, it is shown in [18] that an optimal strategy for testing k out of n systems can

be stored in O(n
2
) space. Although we don’t need to have the whole strategy tree to

execute the strategy but we need to know which component to test next given the

states of tested components, in order to compute the expected cost of the tree, we

may need the whole tree.

On way to avoid this exponential growth is to consider a subset of the strategies that

are easy to describe. One example is permutation strategies where we test the

components according to a permutation as long as they can affect the state of the

system. Although, the whole strategy can be described efficiently in this case, the

computation of the expected cost may still be a problem. We will refer to a strategy

that cannot be described by a permutation strategy non-permutation (or dynamic)

strategy.

In this thesis, distinction between permutation and dynamic strategies will be

important so we describe these concepts in detail via examples.

2.1. Solution Strategies

2.1.1. Permutation Strategies

Permutation strategies are static solutions. It means that, the testing order of

components does not alter during the inspection. These types of strategies can be

described a permutation of the components. So it is easy to store and execute these

strategies.

Inspection steps of an example permutation strategy 1-2-3-4 for the SPS in Figure 4

are given in Figure 8. This is a permutation strategy because testing order does not

differ during inspection. For example component 3 is tested before component 4 in

all paths. If component 1 turns out to be in failing condition, component 2 becomes

redundant and has no effect on the state of the SPS. So in this case, we continue

testing the next component in the permutation which is component 3.

9

1

23

43

4

1

0

10

1 0 1

0

4

1

0

1

0

0

1

: fails

: works

Figure 8. BDT representation of inspection steps of a permutation strategy

2.1.2. Nonpermutation Strategies

Nonpermutation strategies are dynamic solutions. It means that, the testing order of

components depends on the results of the tests performed. These types of strategies

can be represented as a BDT. Inspection steps of an example nonpermutation

strategy for the SPS in Figure 4 are given in Figure 9. This is a nonpermutation

strategy because component 4 is tested before component 3 if component 1 fails; on

the other hand component 3 is tested before component 4 if component 1 works.

: fails

: works

1

4 2

43

4

3

0

1

0 1 0 1

0 1 0 10 1

0

1

Figure 9. BDT representation of inspection steps of a nonpermutation strategy

10

2.2. Properties

Observation 1: Combining more than one SPS does not always generate a deeper

SPS.

Let’s explain Observation 1 with an example. Assume that we have two SPSs having

structure functions 𝑓𝐴 𝑥1, 𝑥2, 𝑥3 = 𝑥1˄𝑥2 ˅𝑥3 and 𝑓𝐵 𝑥4, 𝑥5 = 𝑥4˄𝑥5 .

If we create a new parallel system by combining A and B, the new system C will

have 2-level deep (same with system A). The function will be 𝑓𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5 =

 𝑥1˄𝑥2 ˅𝑥3˅ 𝑥4˄𝑥5 . Alternatively, if we create a new series system by

combining A and B, the new system C will have 3-level deep (larger than A and B).

The function will be 𝑓𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5 = 𝑥1˄𝑥2 ˅𝑥3 ˄𝑥4˄𝑥5 .

An SPS is a connection of smaller SPSs and can be represented with Read Once

structure functions [16]. For instance, the system given in Figure 10 is not an SPS

[6].

1

4

2

5

3

Figure 10. A non series-parallel system

Duality concept is described in [6]. Dual system can be derived by switching the

parallel and series signs in any representation. If the SPS is parallel (series) then the

dual system is series (parallel). The SPS and the dual system are same level. Let’s

show the dual of the SPS in Figure 4. Dual system will be obtained

as 𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑥1˄𝑥2 ˅𝑥3 ˄𝑥4 . Figure 11 shows dual system.

11

1 2

3

4

Figure 11. Dual of the SPS given in Figure 4

Duality provides us a very important feature; algorithms and results of a sequential

testing problem for an SPS can be easily translated for its dual system. It means that

when we solved a sequential testing problem of an SPS, we have already solved the

sequential testing problem of dual system [6].

In this work, we concentrate on general 3-level deep SPSs and try to analyze the

performance of various approaches from a computational point of view.

Our contributions can be summarized as follows:

 To the best of our knowledge this is the first computational study on 3-level

deep SPSs.

 We show that the expected cost of any permutation strategy can be computed

efficiently for 3-level deep SPSs.

 We compare the performance of DFP by an extension of DFP that is dynamic

in nature and never produces strategies that are worse than DFP in terms of

expected cost.

 We develop a special simulated annealing-tabu search based algorithm by

using properties of 3-level deep SPSs and analyze how much improvement

can be made starting at a DFP solution.

12

3. LITERATURE REVIEW

The sequential testing problem have a wide area of applications including healthcare

(testing patients against some dangerous disease), telecommunication (testing

stability systems, connectivity of networks), artificial intelligence (finding optimal

derivation strategies in knowledge bases, testing search algorithms), manufacturing

(testing machines before delivery, testing for replacement in technical service

centers), design of screening procedures,. The inspection of the system is usually

repeated many times in real life so it is important to minimize the total cost in the

long run [18].

In this literature review, we don’t intend to provide a complete review of Sequential

Testing applications and solution algorithms. Rather, after describing a couple of

examples, we will review the results for SPS systems in detail.

Doctors determine whether their patients has disease by making some tests, each test

has an associated cost and confidence level. They can diagnose a disease by making

one test or making some combinations of several tests. Minimum expected test cost

can be found by solving a sequential testing problem of [15]. Although many articles

on sequential testing, motivate their problems by using medical diagnosis examples

(see e.g. Greiner [15]), medical diagnosis problem has many different aspects. Still a

diagnosis strategy can be described by a tree.

It is important to protect the functionality of complex systems such as electricity

distribution systems, nuclear power plants etc. from adaptive threats. Attackers can

adapt their strategies by analyzing the defense of possible targets. The defense levels

of possible targets change the expended effort and success probability of attacks.

Investment can increase the defense levels of these points. Investments can be

planned by willing to make the attacks as costly as possible. The defender wants to

increase the minimum expected effort of an attack. Finding the attack having

minimum expected effort can be another motivation for sequential testing problem

[12].

13

In the literature, polynomial time algorithms to find optimal strategies for 1-level, 2-

level deep SPSs and 3-level deep SPSs having identical (testing costs and working

probabilities are the same for all) components are provided. There is no study which

focuses to 3-level deep or more complex SPSs optimally. Solution methods are

proposed for general SPSs and they don’t guarantee high quality solutions.

In literature, precedence constraints are considered as extension of sequential testing

problem. The researchers have examined different classes of testing policies for 1-

level systems under general precedence constraints. Dynamic programming and

branch-and-bound algorithms are suggested for solution. The dynamic programming

has memory limitation, branch-and-bound algorithm does not have the limitation of

memory issues, but it is limited in the size of the instances [20].

Most results in the literature are for the case when we have a simple series or parallel

system. Chiu et al. [17] provide an optimal algorithm for parallel precedence

constraints, for series or parallel systems. Garey in [13] gives a polynomial time

optimal algorithm that works for the series case under forest-type precedence

constraints. Berend et al. [5] also present similar result with Garey for 1-level

systems with general type of precedence by using object detection and acceptance

testing as motivation. They argue the runtime as cost, introduce mathematical models

and give complexity of solution methods. There is no further study to solve 2-level

deep or more complex SPSs under precedence constraints.

There is limited number of studies about sequential testing problem in literature.

Generally theoretical studies have made and there is no extensive computational

benchmark study. Some solution methods are proposed but the solution qualities are

not analyzed. In this study we have focused to 3-level deep SPSs and implemented

some solution strategies which are offered for general SPSs in the literature. We have

also developed a new method and compared the results on randomly generated

instances.

14

4. SOLUTION APPROACHES

4.1. Depth First Permutation (DFP)

The DFP strategy is an intuitive algorithm generalizing the optimal strategies for

simple series and simple parallel systems and it is proposed by several studies (see

[6][18][15][12][21]) and [10]). DFP produces a strategy for any SPS. The strategy

produced by DFP is a permutation strategy and it is optimal for 1-level, 2-level deep

SPSs and 3-level deep SPSs with identical components. A strategy for a 1-level deep

SPS is simply a permutation of the components since for instance for a series system

testing stops as soon as a failing component has been found. The optimal

permutation is the non-decreasing order of ci/qi which is quite intuitive. We would

like to test component that are more likely to fail and cheap to test first. That is

quantified by the ratio ci/qi. This can be proved by a simple exchange argument.

(Similarly an optimal permutation for a parallel system is the non-decreasing order of

ci/pi) DFP is an intuitive generalization of this strategy for more general SPSs.

Mainly, DFP recursively replaces the subsystem at the lowest level of the SPS

(which is a simple series or simple parallel system) by a single component whose

testing cost is the optimal expected cost of testing that subsystem and whose

probability of functioning is the probability that the subsystem functions. When a

subsystem is replaced by a component, this means that the components of that

subsystem will be tested one after another. At the end of this recursive process, we

end up with a simple parallel system or simple series system whose components

correspond to some subsystems of the SPS. Then the DFP strategy is to test these

subsystems one by one in the corresponding optimal order.

Theorem 1: DFP is optimal for 1-level deep SPSs, 2-level deep SPS and 3-level

deep SPSs that consist of identical (testing costs and working probabilities are the

same for all) components. See [6][18][15][21] for the proof of the theorem.

DFP solution is not optimal for general 3-level deep SPSs and 4-level deep SPSs

with identical components [6]. There are SPS instances where this algorithm can

15

behave very badly. For instance, [19] reports a construct where the algorithm misses

the optimal solution by any constant. A similar result is presented in [15] for 3-level

deep small sized SPSs. In this strategy, once we start testing a subsystem, we never

switch to another subsystem before we determine the former subsystem is working or

failing. We refer to this algorithm Depth first Permutation (DFP) since it starts

testing the subsystem with the best ratio and switches to the next subsystem after

determining the state of the current subsystem.

Figure 8 shows a depth-first permutation strategy (1-2-3-4) because it tests the

component 3 after determining the state of 1-level deep parallel system (1˅2) and

tests component 4 after determining the state of 2-level deep series system

((1˅2)˄3). On the other hand the strategy shown in Figure 7 is permutation because

it can be represented as 3-4-2-1 but not depth-first. It starts with component 3 but

tests component 4 while the state of 2-level deep series system ((1˅2)˄3) is not

determined.

Some properties of the strategy produced by DFP can be summarized as follows:

 The DFP algorithm produces a permutation strategy [15].

 DFP produces a strategy that has the lowest cost among all depth-first

strategies [15].

 These strategies do not switch from one subsystem to another before the

current subsystem has been resolved.

 It is very easy to obtain these strategies and to compute their expected cost.

In the literature different pseudo-codes can be found for DFP (see [6][15][12]), we

present the one which we implemented for 3-level deep SPSs, since this study

concentrates on 3-level deep SPSs. The pseudo-code of DFP is as follows.

Definitions

𝐸 𝐶 : Expected cost of testing given 3-level SPS

𝑃: Working probability of given SPS

S: permutation solution found by algorithm

c: cost vector

p: working probability vector

q: failing probability vector (q = 1-p)

16

Algorithm

partial sequence(*) of component i is 𝜋𝑖 = 𝑖

L = 1

WHILE L <= 3

 label L level deep subsystems with the index j

 REPEAT

 IF subsystem j is a parallel system

 THEN

 label all elements of system j with the index i

 sort components in non-decreasing order of 𝑐𝑖/𝑝𝑖

 relabel components according to order with the index

 𝑖’ ∈ 𝑘1 , 𝑘2, … , 𝑘𝑡

 calculate 𝑐𝑗 = (𝑞𝑘1
…𝑞𝑘𝑎−1

𝑐𝑘𝑎
)𝑡

𝑎=1 and 𝑝𝑗 = 1 − 𝑞𝑗 = 𝑞𝑘1
𝑞𝑘2

…𝑞𝑘𝑡

 find sequence 𝜋𝑗 = 𝜋𝑘1
, 𝜋𝑘2

, … , 𝜋𝑘𝑡

 ELSE

 label all elements of system j with the index i

 sort components in non-decreasing order of 𝑐𝑖/𝑞𝑖

 relabel components according to order with the index

 𝑖’ ∈ 𝑘1 , 𝑘2, … , 𝑘𝑡

 calculate 𝑐𝑗 = (𝑝𝑘1
…𝑝𝑘𝑎−1

𝑐𝑘𝑎
)𝑡

𝑎=1 and 𝑝𝑗 = 𝑝𝑘1
𝑝𝑘2

…𝑝𝑘𝑡

 find sequence 𝜋𝑗 = 𝜋𝑘1
, 𝜋𝑘2

, … , 𝜋𝑘𝑡

 ENDIF

 convert system j to the equivalent component i’’ having cost

 𝑐𝑖 ′′ = 𝑐𝑗, working probability 𝑝𝑖 ′′ = 𝑝𝑗 and partial sequence 𝜋𝑖 ′′ = 𝜋𝑗

 UNTIL all the L level deep subsystem j’s are examined

 IF L = 3

 THEN

 𝐸 𝐶 = 𝑐𝑗 , 𝑃 = 𝑝𝑗 and S = 𝜋𝑗

 ENDIF

 increment L

ENDWHILE

PRINT 𝐸 𝐶 , 𝑃 and S.

(*) Partial sequence: It implies the scheduled part of the solution. For example if we

decided to test the components i and j in the order i-j, the partial sequence is {i,j}.

The final solution consists of partial sequences. In order to initialize the algorithm,

partial sequences are defined for all components.

17

The time complexity of DFP algorithm is polynomial in number of components and

number of subsystems so it can solve big instances in reasonable time. We have tried

to solve randomly generated instances having 100 components and having

subsystems between 35 and 49. The DFP algorithm solves an instance in less than

one second.

Example 1: Let’s find the DFP solution for the SPS given in Figure 12.

1

2

3

4

5

6

c=1

p= 1/2

c=1

p= 1/5

c=1

p= 1/3

c=1

p= 1/7

c=1

p= 1/4

c=1

p= 1/6

Figure 12. An example 3-level deep parallel system

Iteration 1: Let’s label the 1-level subsystems. Label the parallel subsystem as A

which includes components 1 and 2 (𝐴 = 1˅2). Label the parallel subsystem as B

which includes components 5 and 6 (𝐵 = 5˅6).

Subsytem A:

𝑐1 𝑝1 = 2 and 𝑐2 𝑝2 = 3 so non-decreasing 𝑐𝑖/𝑝𝑖 order is: B-3. Hence,

𝜋𝐴 = 1,2 , 𝑐𝐴 = 1 + 1 2 × 1 = 3 2 and 𝑝𝐴 = 1 − 2 3 × 1 2 = 2 3

Subsytem B:

𝑐5 𝑝5 = 6 and 𝑐6 𝑝6 = 7 so non-decreasing 𝑐𝑖/𝑝𝑖 order is: 5-6. Hence,

𝜋𝐵 = 5 , 6 , 𝑐𝐵 = 1 + 5 6 × 1 = 11 6 and 𝑝𝐵 = 1 − 5 6 × 6 7 = 2 7

Iteration 2: All 1-level subsystems was evaluated so continue with 2-level

subsystems. Label the series subsystem as C which includes subsystem A and

18

component 3 (𝐶 = 𝐴˄3). Label the series subsystem as D which includes

component 4 and subsystem B (𝐷 = 4˄𝐵).

Subsytem C:

𝑐𝐴 𝑞𝐴 = 9 2 and 𝑐3 𝑞3 = 4 3 so non-decreasing 𝑐𝑖/𝑞𝑖 order is: 3-A. Hence,

𝜋𝐶 = 3 , 1 − 2 , 𝑐𝐶 = 1 + 1 4 × 3 2 = 11 8 and 𝑝𝐶 = 2 3 × 1 4 = 1 6

Subsytem D:

𝑐4 𝑞4 = 5 4 and 𝑐𝐵 𝑞𝐵 = 77 30 so non-decreasing 𝑐𝑖/𝑞𝑖 order is: 4-B. Hence,

𝜋𝐷 = 4 , 5 − 6 , 𝑐𝐷 = 1 + 1 5 × 11 6 = 41 30 and 𝑝𝐷 = 1 5 × 2 7 =

2 35

Iteration 3: All 2-level subsystems was evaluated so continue with 3-level system

and label as E (𝐸 = 𝐶˅𝐷).

System E:

𝑐𝐶 𝑝𝐶 = 66/8 and 𝑐𝐷 𝑝𝐷 = 1435/60 so non-decreasing 𝑐𝑖/𝑝𝑖 order is: C-D.

Hence, 𝜋𝐸 = 3 , 1 − 2 , 4 , 5 − 6 , 𝑐𝐸 = 11/8 + 5 6 × 41/30 = 2.51 and

𝑝𝐸 = 1 − 5 6 × 32 35 = 0.24

Solution: The DFP solution is 3-1-2-4-5-6 and the expected cost of this strategy is

2.51. The BDT representation of the steps of this solution is given in Figure 13.

3

4 1

25

6 4

5

6

Figure 13. BDT representation of DFP solution for the SPS shown in Figure 12

19

4.2. Depth first Dynamic (DF-D)

Depth first Dynamic (DF-D) algorithm is the dynamic version of DFP algorithm. As

a matter of fact, one could improve the DFP algorithm by recomputing all ratios after

determining the next component to test [19]. It can give the same strategy and result

with DFP for some instances but it has a potential to give better results. For the

cases that DF-D will improve on DFP, we know that the strategy produced by DF-D

will not be a permutation startegy. This is because in order for DF-D to produce a

different strategy than DFP, it should be the case that we switch from one subsystem

to another after recomputing all ratios in some step of the algorithm.

The results of DF-D algorithm may not be given as permutation so they should be

represented in BDT representation. This algorithm updates the current SPS at each

node, it calculates the ratios and tests the component having smallest ratio.

The DF-D algorithm can give better results than DFP but it needs more computing

effort and time than DFP. Moreover, executing the strategy found by DF-D is less

convenient than executing the strategy found by DFP.

Observation 2: DF-D finds same solution with DFP for 1-level, 2-level SPSs and 3-

level SPSs having identical components.

Observation 3: DF-D finds permutation solutions for 1-level, 2-level SPSs and 3-

level SPSs having identical components.

The pseudo-code of implemented algorithm is as follows:

Definitions

𝐸 𝐶 : Expected cost of testing given SPS

𝑃: Working probability of given SPS

c: cost vector

p: working probability vector

q: failing probability vector (q = 1-p)

TREE: list of nodes which are not examined

Node: a solution element which consist of an “SPS”, “cost”,

“probability”, and “tested” fields

20

Algorithm

Create node 𝑁0

Assign given SPS to 𝑁0.SPS

Run DFP for 𝑁0.SPS

𝑁0.tested = id of component which is tested first by DFA

𝑁0.cost = tested component’s cost

𝑁0.probability = 1

Add 𝑁0 to TREE

𝐸 𝐶 = 𝑁0.cost

P=0

WHILE TREE is not empty

 Label the first node of TREE as 𝑁0

 BLOCK

 Create a node and label it as 𝑁1 for 𝑁0.tested fails

 𝑁1.probability = 𝑁0.probability * 𝑞𝑁0 .𝑡𝑒𝑠𝑡𝑒𝑑

 Update 𝑁0.SPS when 𝑁0.tested fails and assign this SPS to 𝑁1.SPS

 IF 𝑁1.SPS is not empty

 THEN

 Run DFP for 𝑁1.SPS

 IF level of 𝑁1.SPS is less than or equal to 2

 THEN

 𝑁1.cost = 𝑁1.probability * cost of DFP solution

 𝑁1.probability = 𝑁1.probability * working probability of DFP

 solution

 P = P + 𝑁1.probability

 ELSE

 𝑁1.tested = The component’s id which is tested first by DFA

 𝑁1.cost = 𝑁1.probability * 𝑁1.tested

 Insert 𝑁1 to TREE at just behind of 𝑁0

 ENDIF

 𝐸 𝐶 = 𝐸 𝐶 + 𝑁1.cost

 ENDIF

 ENDBLOCK

 BLOCK

 Create a node and label it as 𝑁2 for 𝑁0.tested works

 𝑁2.probability = 𝑁0.probability * 𝑝𝑁0 .𝑡𝑒𝑠𝑡𝑒𝑑

 Update 𝑁0.SPS when 𝑁0.tested works and assign this SPS to 𝑁2.SPS

 IF 𝑁1.SPS is empty

 THEN

21

 P = P + 𝑁2.probability

 ELSE

 Run DFP for 𝑁2.SPS

 𝑁2.tested = The component’s id which is tested first by DFA

 IF level of 𝑁2.SPS is less than or equal to 2

 THEN

 𝑁2.cost = 𝑁2.probability * cost of DFP solution

 𝑁2.probability = 𝑁2.probability * working probability of DFP

 solution

 P = P + 𝑁2.probability

 ELSE

 𝑁2.tested = The component’s id which is tested first by DFA

 𝑁2.cost = 𝑁2.probability * 𝑁2.tested

 Insert 𝑁2 to TREE at just behind of 𝑁1

 ENDIF

 𝐸 𝐶 = 𝐸 𝐶 + 𝑁2.cost

 ENDIF

 ENDBLOCK

 Delete 𝑁0 from TREE

ENDWHILE

PRINT 𝐸 𝐶 and 𝑃

The DF-D algorithm requires too much space and time. In order to implement a

more efficient algorithm, we utililize some properties of the problem. We are able to

solve the instances having 50-60 components rather than 10-12 components by

utilizing these properties. Some of these properties/observations are given below;

 DF-D needs to run DFP and update current SPS for each node of the BDT.

We have checked the updated SPSs level for each node and if the depth of

SPS is less than or equal to 2 then new node is not created. DFP’s solution is

accepted as cost of this node, since DFP produces optimal solutions for 1 and

2-level deep SPSs.

 In order to reduce memory requirement, we used depth first search in BDT.

We have erased each node after branched on.

 In order to reduce memory requirement and accelerate the algorithm we have

calculated the cost cumulatively. When a node is created, global cost and

probability variables are updated by using this node’s cost and probability.

22

Example 2: (See [15] for similar examples)

1

2

3

4

5

p=0.41 p=0.61

p=0.34 p=0.13

p=0.16

c=1 for all components

Figure 14. An example 3-level deep parallel system

DFP solution of the SPS shown in Figure 14 is 1-2-3-4-5 and expected cost of this

strategy is 3.035. Calculation steps;

Iteration 1: Evaluate 1-level SPSs.

𝑐1 𝑝1 = 2.44 𝑎𝑛𝑑 𝑐2 𝑝2 = 2.94 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1 − 2

𝑐12 = 1 + 0.59 = 1.59 𝑎𝑛𝑑 𝑝12 = 1 − 0.59 × 0.66 = 0.6106

𝑐3 𝑝3 = 1.64 𝑎𝑛𝑑 𝑐4 𝑝4 = 7.69 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 3 − 4

𝑐34 = 1 + 0.39 = 1.39 𝑎𝑛𝑑 𝑝34 = 1 − 0.39 × 0.87 = 0.6607

Iteration 2: Evaluate 2-level SPSs.

𝑐12 𝑞12 = 4.083 𝑎𝑛𝑑 𝑐34 𝑞34 = 4.088 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1,2 − 3,4

𝑐1234 = 1.59 + 0.6106 × 1.39 = 2.4387 𝑎𝑛𝑑 𝑝1234 = 0.6106 × 0.6607 = 0.4034

Iteration 3: Evaluate 3-level SPSs.

𝑐1234 𝑝1234 = 6.0453 𝑎𝑛𝑑 𝑐5 𝑝5 = 6.25 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 1,2,3,4 − 5

𝑐12345 = 2.4387 + 0.5966 = 3.0353

23

Figure 15 shows BDT representation of this strategy.

1

2

5

3

4

5

3

4

5

0

0

0 1

1

0

0

0

1

1

1

1

10
10

10

: Fail

: Work

Figure 15. BDT representation of DFP solution for the SPS shown in Figure 14

The BDT representation can be used to verify the expected cost of this strategy. The

expected cost is as follows.

𝐸 𝐶𝐷𝐹𝑃 = 𝑐1 + 𝑞1 𝑐2 + 𝑞2 𝑐5 + 𝑝2 𝑐3 + 𝑞3 𝑐4 + 𝑞4𝑐5 + 𝑝1 𝑐3 + 𝑞3 𝑐4 + 𝑞4𝑐5

 = 1 + 0.59 1 + 0.66 + 0.34 1 + 0.39 1 + 0.87

+ 0.41 1 + 0.39 1 + 0.87 = 3.0353

Let’s find DF-D solution for the SPS given in Figure 14.

Iteration 1:

 Find DFP solution for the current SPS. DFP solution is found as 1-2-3-4-5

above. Component 1 will be tested.

 Create two nodes for failing and working states of component 1. Update the

SPSs of these nodes.

1

N1 N2

0 1

3

4

55

2

3

4

24

Iteration 2:

 Find DFP solution for the N1’s SPS.

o 𝑐34 𝑞34 = 4.088 𝑎𝑛𝑑 𝑐2 𝑞2 = 1.515 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 2 − 3,4

o 𝑐234 𝑝234 = 6.562 𝑎𝑛𝑑 𝑐5 𝑝5 = 6.25 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 5 − 2,3,4

o Node N1 tests component 5.

 Create two nodes for failing and working states of component 1. Update the

SPSs of these nodes.

 Find DFP solution for the N2’s SPS. N2 has 1-level deep so do not create a

new node and use DFP cost.

o 𝑐3 𝑝3 = 1.64 , 𝑐4 𝑝4 = 7.69 𝑎𝑛𝑑 𝑐5 𝑝5 = 6.25

o 𝑐354 = 1.7176

1

5 3,5,4

0 1

N3

1

0

2

3

4

Iteration 3:

 Find DFP solution for the N3’s SPS. N3 has 1-level deep so do not create a

new node and use DFP cost.

o 𝑐34 𝑞34 = 4.088 𝑎𝑛𝑑 𝑐2 𝑞2 = 1.515 𝑟𝑎𝑡𝑖𝑜 𝑜𝑟𝑑𝑒𝑟 2 − 3,4

o 𝑐234 = 1.4726

 𝐸 𝐶𝐷𝐹−𝐷 = 𝑐1 + 𝑞1 𝑐5 + 𝑞5𝑐234 + 𝑝1𝑐354

 = 1 + 0.59 1 + 0.84 × 1.4726 + 0.41 × 1.7176 = 3.024

Figure 16 shows BDT representation of DF-D strategy. Dashed lines show DFP

solution for the SPSs having less than or equal to 2-level deep.

25

1

5

2

3

5

43

4

0

0

0 1

1

0

1

1

10
10

10

: Fail

: Work

0
1

2

3

4

3

4

5

Figure 16. BDT representation of DF-D solution for the SPS shown in Figure 14

Example 2 shows that DF-D can find better solutions than DFP. However DF-D is

not necessarily find optimal solution for 3-level deep SPSs. Figure 17 shows a better

strategy than DF-D having expected cost 2.993. (See [15])

3

5 1

0

1

1

2

0

1

5

0

0 1

1

4

0

0

1

1

1

2

0

0 1

1

2

5
4

1

2

: Fail

: Work

Figure 17. BDT representation of a nonpermutation solution for the SPS shown in

Figure 14

26

4.3. Dynamic Programming Algorithm (DYNPROG)

DYNPROG is a dynamic programming method which is developed by Greiner et al.

[15]. This algorithm can solve 3-level or deeper SPSs optimally but time complexity

and memory requirement of this algorithm is high.

Theorem 2: In any optimal strategy the components that are in the same 1 level deep

sub-system should be in the correct order on any path from root to leaf in the strategy

tree, meaning that components that belong to the same parallel sub-system should be

in non-decreasing order of ci/pi in all paths. (They do not need to be one after another

though) [15]

DYNPROG uses Theorem 2 so the time complexity is a function of number of

subsystems and number of components. Hence it is a dynamic programming method,

it makes enumeration; it cannot be used for large instances in a computational study.

27

5. IMPROVED SOLUTION METHOD

5.1. Cost of Permutation Strategies

We mentioned about the expected cost calculation methods in Section 2. We need to

create BDT to calculate cost of any random permutation or dynamic/nonpermutation

strategy. Only exception is depth first permutation strategies; we don’t need to create

BDT for calculating the cost of these strategies. Creating a BDT for a given SPS

having “n” components have a time and space complexity O(2
n
).

Cost calculation is a time consuming operation so it is hard to solve the SPSs having

more than 10-20 components. Moreover, metaheuristic methods cannot be applied to

Sequential Testing problem because they have to search for a solution many times as

subroutine. And the expected costs of many solutions need to be evaluated.

In this study we focused 3-level deep parallel SPSs and developed an algorithm for

calculating the expected cost faster for permutation strategies. This new method

enables to apply metaheuristics for 3-level deep SPSs. It also increases the solvable

instance size. When we solve parallel systems, we can find solution for series

systems by using duality.

Input: A permutation of the components δ

Output: The expected cost of testing with respect to the

permutation.

Algorithm

ci: cost of testing component i

Pj: working probability of series subsystem j

Qjk: failing probability of subsystem k of series system j

Initially 𝑃𝑗 , 𝑄𝑗𝑘 = 1 for all j and k , TotalCost = 0

Renumber components as i' according to permutation δ.

FOR i’=1 to number of components

 Let j’ is the index of the series system including component i’

 J is the set of series systems which can give result(*)

 Kj is the set of parallel subsystems of series system j

28

 𝑃 = 1 − 𝑃𝑗 1 − 𝑄𝑗𝑘

𝑘∈𝐾𝑗

𝑗∈𝐽 , 𝑗≠𝑗 ′

 IF i’ is element of a series system

 THEN

 TotalCost = TotalCost + 𝑐𝑖 ′ × 𝑃𝑗 ′ × 𝑃

 𝑃𝑗 ′ = 𝑃𝑗 ′ × 𝑝𝑖 ′

 ELSE

 Let k’ is the index of 1-level parallel system including

 component i’

 TotalCost = TotalCost + 𝑐𝑖 ′ × 𝑃𝑗 ′ × 𝑄𝑗 ′ 𝑘 ′ × 𝑃

 𝑄𝑗 ′ 𝑘 ′ = 𝑄𝑗 ′ 𝑘 ′ × 𝑞𝑘 ′

 IF all tests are realized in system k’

 THEN

 𝑃𝑗 ′ = 𝑃𝑗 ′ × 1 − 𝑄𝑗 ′ 𝑘 ′

 ENDIF

 ENDIF

ENDFOR

(*) A 3-level deep parallel SPS functions if we have a series system that functions.

In other words, if all of the single components and individually at least one

component of each parallel subsystem of a series system are tested and working then

this system is in working state. For example: In Figure 12, if we test component 1

and 3 and they are working, we can declare that the SPS is working state without

testing any other component.

Example 3. Let’s calculate the cost of permutation strategies 3-1-2-4-5-6 and 1-3-5-

4-2-6 for the SPS shown in Figure 12.

Label the first series system ((1˅2) ˄3) as A and parallel subsystem (1˅2) as Aa

Label the second series system (4˄ (5˅6)) as B and parallel subsystem (5˅6) as Ba

Permutation: 3-1-2-4-5-6

Initialization: 𝐶 = 0 , 𝑃𝐴 , 𝑃𝐵 , 𝑄𝐴𝑎 , 𝑄𝐵𝑎 = 1

29

Iteration 1: Test 3

𝑃 = 1
𝐶 = 𝐶 + 𝑐3 = 1
𝑃𝐴 = 𝑝3

Iteration 2: Test 1

𝑃 = 1
𝐶 = 𝐶 + 𝑐1𝑃𝐴 = 𝐶 + 𝑐1𝑝3 = 1.25
𝑄𝐴𝑎 = 𝑞1

Iteration 3: Test 2

𝑃 = 1
𝐶 = 𝐶 + 𝑐2𝑃𝐴𝑄𝐴𝑎 = 𝐶 + 𝑐2𝑝3𝑞1 = 1.375
𝑄𝐴𝑎 = 𝑞1𝑞2
𝑃𝐴 = 𝑝3(1 − 𝑞1𝑞2)

Iteration 4: Test 4

𝑃 = 𝑞3 + 𝑝3𝑞1𝑞2
𝐶 = 𝐶 + 𝑐4𝑃 = 𝐶 + 𝑐4 𝑞3 + 𝑝3𝑞1𝑞2 = 2.208
𝑃𝐵 = 𝑝4

Iteration 5: Test 5

𝑃 = 𝑞3 + 𝑝3𝑞1𝑞2
𝐶 = 𝐶 + 𝑐5𝑃𝐵 = 𝐶 + 𝑐5𝑝4 𝑞3 + 𝑝3𝑞1𝑞2 = 2.375
𝑄𝐵𝑎 = 𝑞5
𝑃𝐵 = 𝑝4

Iteration 6: Test 6

𝑃 = 𝑞3 + 𝑝3𝑞1𝑞2
𝐶 = 𝐶 + 𝑐6𝑃𝐵𝑄𝐵𝑎 = 𝐶 + 𝑐6𝑝4𝑞5 𝑞3 + 𝑝3𝑞1𝑞2 = 2.514

Permutation: 1-3-5-4-2-6

Initialization: 𝐶 = 0 , 𝑃𝐴 , 𝑃𝐵 , 𝑄𝐴𝑎 , 𝑄𝐵𝑎 = 1

Iteration 1: Test 1

𝑃 = 1
𝐶 = 𝐶 + 𝑐1 = 1
𝑄𝐴𝑎 = 𝑞1

Iteration 2: Test 3

𝑃 = 1
𝐶 = 𝐶 + 𝑐3 = 2
𝑃𝐴 = 𝑝3

30

Iteration 3: Test 5

𝑃 = 1 − 𝑝1𝑝3
𝐶 = 𝐶 + 𝑐5𝑃 = 𝐶 + 𝑐5(1 − 𝑝1𝑝3) = 2.875
𝑄𝐵𝑎 = 𝑞5

Iteration 4: Test 4

𝑃 = 1 − 𝑝1𝑝3
𝐶 = 𝐶 + 𝑐4𝑃 = 𝐶 + 𝑐4(1 − 𝑝1𝑝3) = 3.750
𝑃𝐵 = 𝑝4

Iteration 5: Test 2

𝑃 = 1 − 𝑝4𝑝5
𝐶 = 𝐶 + 𝑐2𝑃𝐴𝑄𝐴𝑎𝑃 = 𝐶 + 𝑐2𝑝3𝑞1(1 − 𝑝4𝑝5) = 3.871
𝑄𝐴𝑎 = 𝑞1𝑞2
𝑃𝐴 = 𝑝3(1 − 𝑞1𝑞2)

Iteration 6: Test 6

𝑃 = 𝑞3 + 𝑝3𝑞1𝑞2
𝐶 = 𝐶 + 𝑐6𝑃𝐵𝑄𝐵𝑎 = 𝐶 + 𝑐6𝑝4𝑞5 𝑞3 + 𝑝3𝑞1𝑞2 = 4.01

5.2. SAPATS Algorithm

5.2.1. Simulated Annealing Algorithm

The Simulated Annealing algorithm simulates the heating and cooling process of

solids. Annealing is a physical process where a solid heated to high temperature,

cools slowly and tends to state with least internal energy. The SA begins with

some initial solution and temperature and operates until the temperature reaches

critical value. If the cooling process is slow, particles of the solid will be close to

each other, and the solid have high resistance. If the cooling process is fast, the solid

will be hard but fragile. Because some particles will be close to each other but some

particles will not. If we heat a solid and refrigerate too fast than the particles of this

solid select the first good position as destination point. They don’t have enough

chance to search better points. These are local optimal points. If they find enough

time to search, they can find better destination points. The simulated annealing

heuristic is based on this fact [2][8][14].

31

There exist different variations of SA in literature but the main procedure is as

follows [14];

 Start with an initial solution and an initial temperature

 Find a neighbor of this solution

 If the new solution improves the objective function value then accept this

solution

 If the new solution does not improve the objective function value then

accept this solution according to a probability (which depends on the

current temperature and the difference between current solution and best

solution’s objective function value.)

 If a solution is accepted then update/decrease the temperature (cooling)

 Repeat this procedure (continue with finding a neighbor of accepted solution)

until termination conditions.

The acceptance probability of bad solutions is calculated as follows;

𝑝 = 𝑒 −∆𝐶 𝑇

∆𝐶 shows the difference between current solution and best solution’s objective

function value and 𝑇 shows the current temperature. If the temperature decreases or

∆𝐶 increases then acceptance probability decreases. The cooling process provides

that the algorithm converges to a local optimum with the passing of iterations.

5.2.2. Tabu Search Algorithm

The tabu search employs restrictions to block certain moves, and aspiration criteria to

allow very good solutions to overcome any tabu status. Tabu restrictions are used to

prevent moving back to previously analyzed solutions. The aspiration criteria

determines when a move produces a solution better than the best known solution it is

accepted as new solution even if tabu [7]. This structure is used to prevent cycling

and search for good solutions and reach a local optimal.

5.2.3. Improved Algorithm

The SA can find good solutions quickly but it converges to a local (or global)

optimum in a short time period so it may not improve the solution in a long time. On

32

the other hand, the Tabu Search may not find a good solution quickly but it can

improve this solution in a long time and can find better solutions than SA. This

means that, SA can find better solutions than TS in short time limits [8]. The results

which are reached by Hussin and Stützle [14] confirm this situation. They compares

the different SA and TS algorithms’ performances.

Thanks to the method given in section 3.2 a metaheuristic method can be applied to

this problem. In the light of the above comparison we decided to develop a hybrid

metaheuristic method to solve sequential testing problem. We want to combine the

advantages and reduce the disadvantages of these two algorithms. This hybrid

algorithm works faster than TS and it finds better solutions than SA [2][8].

We use the fast cost calculation method presented in section 3.2 and Theorem 2 to

develop a simulated annealing with post analysis tabu search (SAPATS) algorithm.

A similiar structure is proposed by Misevicius [2] and it is compared with SA, TS

and different hybrid SA-TS algorithms. This algorithm performs better than other

algorithms both in terms of solving time and solution quality.

 The SAPATS algorithm starts with a DFP solution and simulating annealing

algorithm finds an initial solution for TS to improve. Since SA provides a good

initial solution for TS, diversification is not used. At each step, we use our efficient

method described above to compute the expected cost of neighbor permutation

strategies.

Basic flow of the SAPATS algorithm is given in Figure 8.

Figure 18. Basic flow of SAPATS algorithm

33

The pseudo code of SAPATS is as follows.

Algorithm

Xnew: an initial solution found by DFP algorithm

Xbest=Xnew, Xcurrent=Xnew

Timelim=Initial_time_limit

T=K*Cost(Xbest)

WHILE time<Timelim

 n=0

 WHILE n<Num_of_accepted AND time<Timelim

 make a random single element move exchange on Xcurrent

 and find an Xnew satisfying Theorem 2

 IF Cost(Xnew)<Cost(Xbest)

 THEN

 Xbest=Xnew

 Xcurrent=Xnew

 increment n

 IF time>Timelim-Time_limit_step/2

 AND Timelim<Global_time_limit

 THEN

 Timelim=Timelim+Time_limit_step

 ENDIF

 ELSE

 z=exp(-((Cost(Xnew)-Cost(Xbest))/T))

 accept Xnew as Xcurrent with the probability z

 ENDIF

 ENDWHILE

 T=T*α;

ENDWHILE

Timelim=Timelim+ Time_limit_step

Xcurrent=Xbest

WHILE time<Timelim

 decrease all positive tabu_list entries 1 unit

 examine all possible single element move exchanges

 (which satisfies Theorem 2) of the Xcurrent

 save the best Candidate_list_size solutions as ordered in

 candidate_list

 index=0

 REPEAT

 rename candidate_list [index] as Xcandidate

 IF the move creates Xcandidate is not tabu

34

 OR cost(Xcandidate)<Cost(Xbest)

 THEN

 Xnew=Xcandidate

 ENDIF

 increment index

 UNTIL updating the Xnew

 make the selected move’s tabu_list entry equal to tabu_size

 ∆Cost = Cost(Xnew) – Cost(Xbest)

 IF ∆Cost<0

 THEN

 Xbest=Xnew

 IF time>Timelim-Time_lim_step/2

 AND Timelim<Global_time_limit

 THEN

 Timelim=Timelim+Time_limit_step

 ENDIF

 ELSE

 Xcurrent=Xnew

 ENDIF

ENDWHILE

print Xbest and Cost(Xbest)

5.2.4. Parameter Selection

In this study, we have used non-deterministic run time strategy for all algorithms and

all instances. This means that there exist dynamic “time-limit”s which are

determined by the convergence of the solution. A deterministic maximum

“time_limit” is also determined in order to prevent too extended runs. This

mechanism works in this way;

 A restricted “time_limit” is assigned initially.

 If the algorithm continues improving the solution when the current solving

time is close to “time_limit”, the time limit is increased.

 If the algorithm converges to a local optimal before “time_limit” then the

“time_limit” will not be increased.

This mechanism has two advantages. Firstly, the “time_limit” does not restrict the

algorithm too many so it can perform better. Secondly, if the algorithm converges to

a local optimum fast, the algorithm does not consume unnecessary time.

35

We decided on the values of the time parameters as follows.

 Initial_time_limit = num_of_components seconds

 Time_limit_step = num_of_components/5 seconds

 Global_time_limit = 600 seconds

 Candidate_list_size = Tabu_size +1

The initial_time_limit and Time_limit_step are the function of component number.

The values of these two parameters do not alter the solution quality because the

time_limit is increased as dynamically.

The parameters used in the SAPATS algorithm are as follows:

 K : a constant to decide the initial temperature

 α : a constant to decide the cooling speed

 num_of_accepted: number of accepted solutions in each iteration

 tabu_size: size of the short-term tabu list

We have realized some experiments to decide the values of these parameters. The

candidate values are given in Table 1. Totally 81 designs are tested on 10 randomly

selected instances.

Table 1. Candidate values of algorithm parameters

K Alpha
Num of

Accepted

Tabu

Size

0.05 0.95 5 N

0.01 0.9 3 N/2

0.005 0.85 1 N/4

We have solved all instances by using all combinations of the values given in Table

1. We have ordered the objective function values in non-decreasing order for each

instance. Best five solutions are scored by using the rating. For example best design

earns 5 point, second best design earns 4 points, third best design earns 3 points etc.

All other solutions earn 0 point. Each design is scored for all instances and total

scores of all design are calculated. Overall scores of best 5 designs are given in Table

2. N is the component number in Table 2.

36

Table 2. Scores of best designs

Design

No
K Alpha

Num of

Accepted

Tabu

Size
Score

66 0.005 0.95 3 N/4 23

52 0.05 0.85 1 N/2 21

48 0.005 0.95 1 N/2 21

65 0.01 0.95 3 N/4 21

23 0.01 0.9 1 N 20

2 0.01 0.95 5 N 20

We have decided to use the design 66 because it has the largest score. The selected

parameters are as follows:

Parameters

 K= 0.005

 α=0.95

 Num_of_accepted= 3

 Tabu_size = num_of_components/4

37

6. APPLICATION

6.1. Experimental Design

In our experimental design, we decided to generate 3-level deep SPS instances with

certain number of components. This is not a straightforward task. As one forms the

subsystems the number of remaining components decrease and the generated SPS

could be biased in terms of the sizes of the subsystems. An alternative method would

be to fix the number of subsystems and randomly determine the size of the sub-

subsystems. If the random instances are generated in this way, there would be a wide

range for the total number of components in each instance and it would be difficult to

analyze the results with respect to the number of components.

We generated random instances with 10, 20, 30, 40, 50 and 100 components of 3-

level parallel systems. We only work with parallel systems because algorithms and

results of a sequential testing problem for an SPS can be easily translated for its dual

system [6]. We randomly determine the number of subsystems and the number of

parallel systems for each subsystem for each value of the number of components. We

use different parameters for different values of the number of components. Then we

try to assign the corresponding number of components to the parallel systems such

that the whole SPS has the required number of components. We have some steps to

avoid extreme cases and we also have a mechanism to determine the appropriate

parameters for different values of the number of components.

At the end we obtain 200 random instances for each value of number of components

so we have 1200 instances in total. 120 of 200 instances are created by Instance

generator-1 in three clusters and 80 of instances are created by Instance generator-2

in two clusters. For each instance, we run DFP, DF-D, and SAPATS and compute

the expected cost of the strategy produced by these algorithms. We have used two

different structures to create random SPSs.

38

6.1.1. Instance generator-1

This structure generates parallel systems having known number of components (n)

and 3-level deep. Here, single components are not allowed as an element of main

system; see Figure 9.

It is not allowed

Figure 19. An example SPS having a single component of main system

We group the parameters in three different clusters. First class is named as Strategy 1

creates SPSs having a few number of subsystems. Each subsystem has many

components. Strategy 3 creates SPSs having many subsystems but the subsystems

have fewer components. Strategy 2 creates SPSs having subsystems more than

Strategy 1’s and less than Strategy 3.

The above clustering method is used to create different instance groups having

different hardness levels.

Parameters:

𝑎: number of level 2 systems

 𝑎 can take value in the interval 2,
𝑛

2
− 𝜖 𝜖 is a very small number.

𝑏𝑖 : number of series subsystems in system i (system i is a 2-level system)

 for 𝑏0 = 0 and 𝑖 = 1, … , 𝑎

𝑏𝑖 can take value in interval 2, 𝑛 − 1 − 𝑏𝑗
𝑖−1
𝑗 =0 − 2(𝑎 − 𝑖)

𝑎𝑚𝑖𝑛 : it is a parameter which limits the minimum value of 𝑎 is decided by user.

𝑎𝑚𝑎𝑥 : it is a parameter which limits the maximum value of 𝑎 is decided by user.

𝑏𝑚𝑎𝑥 : it is a parameter which limits the maximum value of 𝑏 is decided by user.

39

Different 𝑎𝑚𝑎𝑥 𝑎𝑛𝑑 𝑏𝑚𝑎𝑥 values are decided for creating different shaped level 3

systems. These values are chosen as follows:

Table 3. Instance generator-1 parameters

Component
Number

Strategy 1 Strategy2 Strategy 3

amin amax bmax amin amax bmax amin amax bmax

10 2 3 4 3 3 5 3 4

N
o

t
lim

it
ed

 20 2 4 6 4 7 7 7 9

30 2 5 8 5 10 10 10 14

40 2 6 9 6 14 12 14 19

50 2 7 10 7 18 14 18 24

100 2 12 16 12 35 22 35 49

Algorithm

get input parameters n, amin , amax and bmax , pmin , pmax , cmin , cmax,

from user

generate a random “a” in interval [amin , amax]

create a two-dimensional “Array” having “a” rows

b0=0; bsum=0; i=0;

WHILE i< size of Array

 generate a random “bi” in interval 2, min bmax , n − 1 − bsum − 2a + 2i

 create “bi” columns in row i of “Array” and write 1 in every

cells.

 bsum = bsum + bi;

ENDWHILE

calculate the number of remaining components “remaining”=(𝑛 − 𝑏𝑠𝑢𝑚)

give id to all systems from 1 to bsum

REPEAT

 select a system randomly and add one component to this system.

UNTIL all components are assigned

REPEAT

 give id for component

 assign p in interval [pmin , pmax]

 assign c in interval [cmin , cmax]

UNTIL “n” components are finished

40

Example: A sample output for the above algorithm when component number is 10

can be such that:

Array=(1,2,2)(3,2) and this array represents the system given in Figure 10.

1

2

3

4

5

6

7

8

9

10

Figure 20. An example randomly generated SPS

6.1.2. Instance generator-2

This structure allows single components as an element of main system. It means that

it creates 3-level SPSs which may consist of some 2-level systems and components.

For example the SPS given in Figure 9 can be created by this generator. It generally

creates SPSs having more than one single components as element of main system.

Hence, it generally creates SPSs which are easier than generator-1’s instances to be

solved by DFP and DF-D. We created instances in two clusters; the number of single

components in main system is reduced in second cluster. The pseudo code for

Instance generator-2 is presented associate for two clusters as follows:

Algorithm

get input parameters n, amin , amax and bmax , pmin , pmax , cmin , cmax,

REPEAT

 give id for component

 assign p in interval [pmin , pmax]

 assign c in interval [cmin , cmax]

UNTIL “n” components are finished

add the id of all components to “candidate_list”

REPEAT

 create a new system as “created_system”

 assign a system id for “created_system”

 select status of “created_system” ramdomly (series or parallel)

 select two elements from “candidate_list”, add to “created_system”

41

 delete these two elements from “candidate_list”

 calculate the level of “created_system” by using elements and status

 add the “created_system” to “systems_list”

 add the id of “created_system” to “candidate_list”

UNTIL size of “candidate_list”=0 OR level of “created_system”=3

IF size of “candidate_list”>0

THEN

 REPEAT

 select a random element “a” from “candidate_list”

 IF “ a” is component

 THEN

 select a system “b” from “systems_list” randomly (for first

 cluster)

 select a system “b” randomly from “systems_list” which

 excludes main system (for second cluster)

 add “a” to elements of “b”

 delete “a” from “candidate_list”

 ELSE

 select a system “b” from “systems_list”

 IF “a” and “b” have same status and level

 OR “b” has higher level than “a”

 THEN

 add “a” to elements of “b”

 delete “a” from “candidate_list”

 ENDIF

 ENDIF

 UNTIL size of “candidate_list”=0

ENDIF

REPEAT

 IF a system and an element of this system have same status and level

 THEN

 merge these two systems

 revise the “systems_list”

 ENDIF

UNTIL all systems in “systems_list” are checked

42

6.2. Results

We have implemented the algorithms in C++ and solve the instances which are

generated by Instance generator-1 and Instance generator-2. We analyze the

improvement in the expected cost with respect to DFP since the solution obtained by

DFP is used as an initial solution for SAPATS and we know that DF-D can only be

better than DFP. We analyze the improvements by the number of components and by

some properties of the random instances.

Tables 2 and 3 compare SAPATS and DF-D with DFP with respect to the number of

components. Max % imp column shows the maximum % improvement with respect

to DFP solution whereas Mean % imp column shows the average % improvement

over 200 instances with the same number of components. We observe that the

improvements are largest for moderate size problem instances. DF-D could be run

for 8 instances for 100 components. For others, DF–D seems to improve the DFP

solution better than SAPATS. Yet, DF-D does not provide a permutation strategy.

Table 4. SAPATS results based on component numbers

SAPATS

No of

Comps Max % imp. Mean % imp.

Number of

Improved

Number of

Solved

10 3,4% 1,0% 14 200

20 2,0% 0,5% 8 200

30 25,3% 3,0% 9 200

40 12,4% 1,6% 13 200

50 1,1% 0,4% 9 200

100 6,8% 0,5% 20 200

43

Table 5. DF-D results based on component numbers

DF-D

No of

Comps Max % imp. Mean % imp.

Number of

Improved

Number of

Solved

10 5,1% 1,1% 18 200

20 6,8% 0,7% 27 200

30 12,2% 1,1% 22 200

40 12,4% 1,5% 24 200

50 4,9% 0,7% 24 200

100 0,4% 0,1% 5 80

Tables 5 and 6 provide the same information for different classes of instances that we

refer as scenarios. Here scenarios correspond to some properties of the instances.

Scenario 1 consists of instances where single components are allowed in subsystems,

scenario 2 consists of instances where single components are allowed in subsystems

but their number is low. The scenarios 3,4 and 5 correspond to instances with no

single component as a subsystem and the number of subsystems is low, medium and

high respectively. Scenarios are summarized in Table 4.

Table 6. Scenario Summary

Scenario Properties Generated By

1 Single components as subsystem Instance generator-2

2 Single components as subsystem but number of

them is reduced

Instance generator-2

3 No single components as subsystem and number

of subsystems is low

Instance generator-1

4 No single components as subsystem and number

of subsystems is medium

Instance generator-1

5 No single components as subsystem and number

of subsystems is high

Instance generator-1

44

The improvements seem robust among different groups here and as before DF-D

seems to improve the DFP solutions better than SAPATS. When we examine the

results in detail, it is not easy to observe what conditions favor each algorithm.

Table 7. SAPATS results based on scenarios

SAPATS

Scenario Max % imp. Mean % imp.

 Number of

improved

Number of

solved

1 3,4% 0,8% 17 240

2 25,8% 1,2% 25 240

3 0,1% 0,0% 3 240

4 12,4% 3,5% 5 240

5 6,8% 0,8% 23 240

Table 8. DF-D results based on scenarios

DF-D

Scenario Max % imp. Mean % imp

 Number of

improved

Number of

solved

1 4,9% 0,4% 23 240

2 12,2% 1,0% 23 240

3 8,7% 1,1% 27 200

4 12,4% 2,0% 15 200

5 3,0% 0,6% 32 200

45

7. CONCLUSION AND FUTURE RESEARCH

DFP algorithm was proposed in the literature for sequential testing of SPSs in

different studies. There are also articles that show that there exist instances where

DFP performs arbitrarily badly. In this study, we conducted a numerical study to

compare the performance of DFP with algorithms that we develop to obtain better

solutions than provided by DFP. Although it is possible to improve to the solution of

DFP by up to 25% on some instances, on average the % improvements were not that

large.

DFP reaches the same solutions with other algorithms for nearly 90% percent of all

instances. We also observed that permutation strategies (such as one that is produced

by DFP or SAPATS) that are very easy to represent and implement perform very

satisfactorily.

Finding a new solution and calculating cost in each iteration is polynomial time

operations for SAPATS so the solvable instance size is high. On the other hand DF-

D cannot solve big instances especially the instances created by Instance generator-1.

The solution quality of SAPATS algorithm is not affected negative from instance

size. Moreover, solution quality of SAPATS increases when the number of

subsystems increased.

The hardness of the sequential testing problem of SPSs and in particular 3-level SPSs

are open problems. One question is whether there is an efficient algorithm for

computing the optimal permutation strategy for 3-level SPS. A second question is

whether there is an efficient algorithm for computing the optimal strategy of 3-level

SPS. Another direction of research would be to develop and analyze different

heuristic approaches for more general SPSs rather than 3-level SPSs. It is also an

open problem to find optimal solution for 4-level SPSs having identical components.

46

Precedence constraints can be incorporated as in [3]. It is known that the testing

problem is NP-complete when we have precedence constraints even for 1-level deep

SPSs. Approximation algorithms can be developed for special cases as in [9] and [1].

Literature has solved 1-level SPSs optimally but 2-level SPSs under even line-

precedence is also waits to be solved.

47

BIBLIOGRAPHY

[1] A. Deshpande, L. Hellerstein and D. Kletenik. Approximation algorithms for

stochastic boolean function evaluation and stochastic submodular set cover. ArXiv.

2013, 1303.0726.

[2] A. Misevicius. An improved hybrid optimization algortihm for the quadratic

assignment problem. Mathematical Modelling and Analysis. 2004, Vol. 9, pp. 149-

168.

[3] B. Çatay, Ö. Özlük and T. Ünlüyurt. TestAnt: an ant colony system approach

to sequential testing under precedence constraints. Expert Systems with Applications.

November 2011, Vol. 38, 12, pp. 14945-14951.

[4] B. De Reyck and R. Leus. R&D-project scheduling when activities may fail. IIE

Transactions. 2008, Vol. 40, 4, pp. 367-384.

[5] D. Berend, R. Brafman, S. Cohen, S.E. Shimony and S. Zucker. Optimal

ordering of independent tests with precedence constraints. Discrete Applied

Mathematics. 2013, 162, pp. 115–127.

[6] E. Boros and T. Ünlüyurt. Sequential testing of series-parallel systems of small

depth. Computing Tools for Modeling, Optimization and Simulation. Springer US,

2000, pp. 39–73.

[7] E. Rolland, D. A. Schilling and J. R. Current. An efficient tabu search

procedure for the p-Median Problem. European Journal of Operational Research.

1996, 96, pp. 329-342.

[8] G. Paul. Comparative performance of tabu search and simulated annealing

heuristics for the quadratic assignment problem. Operations Research Letters. 2010,

Vol. 38, 6, pp. 577-581.

48

[9] H. Kaplan, E. Kushilevitz and Y. Mansour. Learning with attribute costs. In

STOC. 2005, pp. 356-365.

[10] K. S. Natarajan. Optimizing depth-first search of AND-OR trees. Yorktown

Heights, NY : IBM T.J.Watson Research Center, 1986. Technical Report. 10598.

[11] L. A. Cox Jr., Y. Qui and W. Kuehner. Heuristic least-cost computation of

discrete classsification functions with uncertain argument values. Annals of

Operations Research. 1989, Vol. 21, pp. 1-30.

[12] M. N. Azaiez and V. M. Bier. Optimal resource alocation for security in

reliability systems. European Journal of Operational Research. 2007, pp. 773-786.

[13] M. R. Garey. Optimal task sequencing with precedence constraints. Discrete

Mathematics. 1973, 4, pp. 37-56.

[14] M. S. Hussin and T. Stützle. Tabu search vs. simulated annealing for solving

large quadratic assignment instances. s.l. : IRIDIA – Technical Report Series, 2010.

TR/IRIDIA/2010-020.

[15] R. Greiner, R. Hayward, M. Jankowska and M. Molloy. Finding optimal

satisficing strategies for and-or trees. Artificial Intelligence. 2006, pp. 19-58.

[16] S. Allen, L. Hellerstein, D. Kletenik and T. Ünlüyurt. Evaluation of DNF

formulas. http://arxiv.org/abs/1310.3673. [Online] 2013.

[17] S. Y. Chiu, L.A. Cox Jr. and X. Sun. Optimal sequential inspections of

reliability systems subject to parallel chain precedence constraints. Discrete Applied

Mathematics. 1999, pp. 327-336.

[18] T. Ünlüyurt. Sequential testing of complex systems: a review. Applied

Mathematics. 2004, pp. 189-205.

[19] T. Ünlüyurt and E. Boros. A note on optimal resource allocation for security in

reliability systems. European Journal of Operational Research. 2009, pp. 601-603.

49

[20] W. Wei, K. Coolen and R. Leus. Sequential testing policies for complex

systems under precedence constraints. Expert Systems with Applications. 2013, 40,

pp. 611-620.

[21] Y. Ben-Dov. Optimal testing procedures for special structures of coherent

systems. Management Science. 1981, 27(12), pp. 1410-1420.

