
1

Seer: A Lightweight Online Failure Prediction
Approach

Burcu Ozcelik and Cemal Yilmaz

Abstract—Online failure prediction approaches aim to predict the manifestation of failures at runtime before the failures actually
occur. Existing approaches generally refrain themselves from collecting internal execution data, which can further improve the
prediction quality. One reason behind this general trend is the runtime overhead incurred by the measurement instruments that
collect the data. Since these approaches are targeted at deployed software systems, excessive runtime overhead is generally
undesirable. In this work we conjecture that large cost reductions in collecting internal execution data for online failure prediction
may derive from pushing the substantial parts of the data collection work onto the hardware. To test this hypothesis, we present a
lightweight online failure prediction approach, called Seer, in which most of the data collection work is performed by fast hardware
performance counters. The hardware-collected data is augmented with further data collected by a minimal amount of software
instrumentation that is added to the systems software. In our empirical evaluations conducted on three open source projects,
Seer performed significantly better than other related approaches in predicting the manifestation of failures.

Index Terms—Online failure prediction, hardware performance counters, software quality assurance, software reliability

✦

1 INTRODUCTION

Software system do fail in the field [1], [2]. By follow-
ing this pragmatic line of thought, many online failure
prediction approaches have been developed to predict
the manifestation of failures at runtime, i.e., while the
system is running and before the failures occur, so
that preventive measures, such as system reboots, or
protective measures, such as checkpointing, can be
proactively taken to improve software reliability [3].

At a high level, online failure prediction approaches
operate in a similar manner. The system under obser-
vation is augmented with failure prediction models.
As the augmented system runs, specific types of exe-
cution data, called system spectra, are collected and fed
to the models. The models then make predictions at
runtime about whether the execution will fail or not.

Prediction models are often trained by using his-
torical executions. In particular, these models attempt
to capture patterns that are correlated with the ex-
pected behavior of the system (e.g., as observed
in successful executions) and/or correlated with the
manifestation of failures (e.g., as observed in failed
executions). A fundamental assumption of these and
similar approaches is that there are identifiable and
repeatable patterns in the behavior of successful and
failed executions and that similarities and deviations
from these patterns are highly correlated with the

• B. Ozcelik was with the Faculty of Engineering and Natural Sciences,
Sabanci University, Istanbul, Turkey, at the time of the work.
E-mail: burcuoz@sabanciuniv.edu

• C. Yilmaz is with the Faculty of Engineering and Natural Sciences,
Sabanci University, Istanbul, Turkey.
E-mail: see http://people.sabanciuniv.edu/cyilmaz

presence or absence of failures. Previous efforts, in
fact, strongly support this assumption, successfully
applying a variety of system spectra for online failure
prediction [4]–[31].

Many online failure prediction approaches treat the
system under observation as a black box and collect
specific types of execution data that are either directly
reported by the system, such as failure and error
logs [4]–[16], or directly observable from outside the
system, such as CPU and memory utilization of the
system [17]–[31]. Although these approaches have
been shown to be effective in predicting failures, we
believe that the quality of predictions can further be
improved by treating the system under observation
as a white box and collecting internal execution data,
i.e., by collecting data from inside executions. For
example, not all failure-inducing errors may leave
externally detectable traces, which can reduce the
prediction accuracy of black-box approaches. Even if
some traces are present, due to the often noisy nature
of external measurements, it may take time for these
traces to become externally detectable, which can
cause black-box approaches to issue late warnings for
failures, rather than early ones. Therefore, being close
to the sources of failures by collecting and analyzing
internal execution data, can improve the quality of
failure predictions.

Collecting internal execution data, however, re-
quires to instrument the system under observation;
the data is collected every time the instrumentation
code is executed. One reason as to why existing
approaches generally refrain themselves from collect-
ing internal execution data is the runtime overhead
incurred by the collection process, i.e., the runtime
overhead of executing the instrumentation code. Since

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/32328411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

these approaches are targeted at deployed software
systems, excessive runtime overhead is generally un-
desirable. Therefore, if internal execution data is to be
collected for online failure prediction, it must be done
in a way that limits the runtime overhead as much as
possible, while still supporting the highest levels of
prediction quality.

In this work we conjecture that large cost reductions
in collecting internal execution data for online failure
prediction may derive from pushing the substantial
parts of the data collection work onto the hardware.
To test this hypothesis, we have designed and evalu-
ated a lightweight online failure prediction approach,
called Seer, in which most of the data collection work
is performed by fast hardware performance counters
– CPU resident counters that record various low level
events occurring on a CPU. The hardware-collected
data is augmented with further data collected by a
minimal amount of software instrumentation that is
added to the systems software. In the remainder of
the paper, the internal execution data collected by
combining hardware and software instrumentation,
is referred to as hybrid spectra, whereas the internal
execution data collected by using software instrumen-
tation only, is referred to as software spectra.

In earlier work we introduced a number of different
types of hybrid spectra for failure detection, which
aim to determine whether the hybrid spectra collected
from a deployed system comes from a failed or a
successful execution [32]. The results of the aforemen-
tioned work strongly suggest that hybrid spectra can
reliably distinguish failed executions from successful
executions at a fraction of the runtime overhead of
using software spectra. This work differs from our
earlier work in that the earlier work analyzes hybrid
spectra in an offline manner to detect failures after
they have occurred (i.e., after the executions have ter-
minated), whereas this work analyzes hybrid spectra
in an online manner to predict the manifestation of
failures before they actually occur. This required us to
develop significantly different types of hybrid spectra
as well as significantly different types of analysis
techniques than the ones used in [32].

We have evaluated Seer by conducting a series of
experiments on three widely-used software systems in
the presence of both single and multiple defects. At
the lowest level of runtime overheads attained in the
presence of single defects, Seer predicted the failures
about 54% way through the executions1 with an F-
measure of 0.77 (computed by giving equal impor-
tance to precision and recall) and a runtime overhead
of 1.98%, on average. At the highest level of prediction
accuracies attained in the presence of multiple defects,
Seer predicted the failures about 56% way through the
executions1 with an F-measure of 0.88 and a runtime

1. when the duration of an execution is measured as the number
of function calls made in the execution, see Section 4 for more
information.

overhead of 2.67%, on average. To demonstrate how
much additional information the hardware-collected
data provided towards predicting the failures over
and above the software-collected data in our hybrid
spectra, we compared the performance of the hybrid
spectra to that of two correlated software spectra.
The empirical results show that the data collected by
hardware performance counters was a significantly
influential factor in successfully predicting the mani-
festation of failures. We also compared Seer with six
different types of fault screeners – an alternative state-
of-the-art online failure prediction approach that also
uses internal execution data. Seer performed signifi-
cantly better then the fault screeners.

The contributions of this work can be summarized
as follows:

• A novel approach for combining hardware and
software instrumentation for online failure pre-
diction and three different types of hybrid spectra
produced by using this approach.

• A lightweight online failure prediction approach
that uses the proposed hybrid spectra.

• A series of experiments evaluating the perfor-
mance of the proposed approach and comparing
it to that of other related approaches.

The remainder of the paper is organized as follows:
Section 2 presents Seer; Section 3 evaluates the feasi-
bility of Seer; Section 4 evaluates Seer in the presence
of single defects; Section 5 compares Seer with six
different types of fault screeners; Section 6 evaluates
Seer in the presence of multiple defects; Section 7
discusses threats to validity; Section 8 discusses the
related work; and Section 9 presents concluding re-
marks and future work.

2 APPROACH

Seer tracks internal execution data at the function
level and is composed of two phases: an offline train-
ing phase and an online monitoring phase. The training
phase takes as input historical data that is comprised
of passing and failing executions. First, functions
implemented by the system under observation, are
filtered out to determine the candidate functions that
can potentially be monitored at runtime. Then, hybrid
spectra are collected from the historical executions
on a per candidate function basis. Next, the spec-
tra collected are used to identify the functions that
can predict failures. To this end, for each candidate
function, a prediction model in the form of a bi-
nary classifier is trained. Then, the best performing
functions, i.e., the ones that best distinguish failing
executions from passing executions, are determined
and marked as seer functions. Finally, the seer functions
are augmented with their prediction models and the
instrumented system is deployed for the monitoring
phase.

3

for each function,

collect hybrid

spectra

passing

executions

failing

executions

historical data

apply

global filtering

apply

frequency filtering

filtering

. . .

instrument and

deploy the system

candidate functions

function tables

. . .for each function,

create a binary

classification model

pick the ones whose

score !"seer cutoff

identify seer functions

compute the best window

length and window cutoff pair

for sliding window approach only

Monitoring Phase

after every call, seer

functions make a binary

prediction: P or F

P P F P F F ...

health index

after every prediction, health

index is analyzed

Prediction
issue a failure

warning

F P

Training Phase

!"#$%&'()*'%+%*,'-%%*'(./$0)/1'2)345/%-'67%'$)./6-'$)""%$6%&'4,'3)/56)*5/8'9*)4%-'#/&'

3#:%-'9*%&5$0)/-'#4).6'67%'(.6.*%')('67%'%;%$.0)/'4,'539"%3%/0/8'%567%*'67%'

9)5/6<5-%')*'67%'-"5&5/8'<5/&)<'#99*)#$71

Prediction probe

For a seer function, placed at the call sites of the callee functions. Measures the
total number of hardware events of interest occurring in a callee.

Monitoring probe

Window cutoff 2.6)='+#".%'.-%&'()*'5--.5/8'#'(#5".*%'<#*/5/8'5/'67%'-"5&5/8'<5/&)<'#99*)#$71

Window score >.3')('67%'-$)*%-')('67%'-%%*'(./$0)/-'67#6'3#&%'#/'?'9*%&5$0)/'5/'67%'<5/&)<'@67%'

-$)*%'5-'#&&%&'()*'%+%*,'?'9*%&5$0)/'3#&%'4,'#'-%%*'(./$0)/A1

Window length B%/867')('67%'<5/&)<-'.-%&'5/'67%'-"5&5/8'<5/&)<'9*%&5$0)/'#99*)#$71

C-%-'D;%&E"%/867'-"5&5/8'<5/&)<-')('-%%*'9*%&5$0)/-'#/&'5--.%-'#'(#5".*%'<#*/5/8'#F%*'

%/$)./6%*5/8'67%'D*-6'<5/&)<'<7)-%'-$)*%'G'<5/&)<'$.6)=1

Sliding window
prediction approach

H--.%-'#'(#5".*%'<#*/5/8'#F%*'*%$%5+5/8'67%'D*-6'!'(*)3'#'-%%*'(./$0)/1Pointwise prediction
approach

health index >%I.%/$%')('-%%*'9*%&5$0)/-'3#&%'-5/$%'67%'4%85//5/8')('67%'%;%$.0)/1

seer prediction J'45/#*,'9*%&5$0)/'@"')*'!A'3#&%'4,'#'-%%*'(./$0)/1

J'(./$0)/'<7)-%'(./$0)/'-$)*%'G'-%%*'$.6)=1seer function

2.6)='+#".%'.-%&'()*'5&%/0(,5/8'-%%*'(./$0)/-1seer cutoff

?E3%#-.*%')('67%'9*%&5$0)/'3)&%"'6*#5/%&'()*'#'(./$0)/1'function score

J'45/#*,'$"#--5D$#0)/'3)&%"'6*#5/%&'()*'#'(./$0)/1prediction model

DescriptionTerm

?5"6%*5/8').6'(./$0)/-'67#6'7#/&"%'#"*%#&,'&%6%$6%&'(#5".*%-1global filtering

?5"6%*5/8').6'(*%I.%/6",'5/+):%&'(./$0)/-1frequency filtering

K,4*5&'-9%$6*#'$)""%$6%&'()*'#'(./$0)/'.-5/8'67%'6*#5/5/8'-%61function table

Fig. 1: Seer in a nutshell.

In the monitoring phase, after every invocation of a
seer function, the hybrid spectra collected during the
invocation, is fed to the prediction model of the seer
function, such that a binary prediction (i.e., passing or
failing) about the future of the execution is made. The
sequence of seer predictions made in a fixed-length
window, are then analyzed at runtime to predict the
manifestation of failures. If the execution is predicted
to fail, a warning for a possible impending failure is
issued. Once a warning is issued, proactive measures
can be taken. However, such measures are beyond
the scope of this work. Furthermore, we are mainly
concerned with functional failures in this work, rather
than non-functional ones.

Figure 1 presents a high level view of Seer together
with a list of dedicated terms describing it. Next, we
discuss the components of Seer in detail in an order
that would make the best sense to the reader, i.e., not
necessarily in the order in which these components
interact with each other.

2.1 Collecting Hybrid Spectra

Seer uses hardware performance counters to reduce
runtime overheads, while still supporting acceptable
levels of prediction quality. In particular, we use
fast hardware performance counters to collect raw
execution data, but also use lightweight software in-
strumentation to associate subsets of the hardware-
collected data with specific program entities.

Hardware performance counters are hardware-
resident counters that record various events occurring
on a processor. Today’s general-purpose CPUs include
a fair number of such counters, which are capable of
recording events, such as the number of instructions
executed, the number of branches taken, the number
of cache hits and misses experienced, etc. To activate
these counters, programs issue instructions indicating
the type of event to be counted and the physical
counter to be used. Once activated, hardware counters
count events of interest and store the counts in a set

4

body f66 f120 ... status

8650 4511 779725 ... P
9429 4512 779724 ... P
10783 -1 779994 ... P
9426 4511 779725 ... F
9780 -1 779993 ... F
...

(a)

body > 9765

F T

body > 9425

F T

P body > 9427

F T

PF

body > 10781

F T

PF

leaf A

leaf B

leaf C

(b)

if (body > 9765){
if (body > 10781) return P
else return F

}
else {

if (body > 9425){
if (body > 9427) return P
else return F

}
else return P

}

(c)

Fig. 2: For function check options (f19) implemented in flex, a) the function table created, b) the
prediction model trained, and c) the prediction code constructed.

of special purpose registers. These registers can also
be read and reset programmatically at runtime.

One challenge we encountered when first using
hardware performance counters was that the counters
do not distinguish between the instructions issued
by different processes [32]. To deal with this, we
used a kernel driver in this work, called perfctr

(linux.softpedia.com), which implements virtual hard-
ware counters that can track hardware events on a
per-process basis.

A second challenge was that hardware performance
counters have limited visibility into the programs
being executed, e.g., by themselves they do not know,
for example, to which program function the current
instruction belongs. In earlier work, we empirically
demonstrated that data collected only from hardware
performance counters is generally too coarse to be
useful for any software quality assurance activity [32].

To improve this situation, we chose to associate the
hardware-collected data with function invocations.
That is, we use traditional software instrumentation
to indicate which function is currently executing so
that different subsets of the hardware-collected data
are properly associated with that function. While we
opted to track program execution data at the function
level, the techniques are equally applicable to other
granularity levels.

Thus, our hybrid spectra in its simplest form is
collected as follows: First, a hardware performance
counter counting the events of interest is activated at
the beginning of a program execution. Next, the value
of the counter is read before and after an invocation
of a function of interest. The difference between these
two readings is the number of events occurred during
the execution of the function. We further itemize this
event count to reflect the number of events occurred in
the body of the function and in each callee function of
interest. The event count for the body is computed by
subtracting the total number of events occurred in the
callee functions of interest from the total number of
events occurred in the function. If a callee is invoked
multiple times during the execution of the function,
the event count for the callee is accumulated over

all its invocations. Finally, the hardware performance
counter is deactivated at the end of the program
execution. In this instrumentation scheme, everything
except for counting the events, such as reading the
value of a counter, associating event counts with func-
tion invocations, and itemizing the event counts as de-
scribed above, is performed using simple, traditional
software instrumentation. The events are counted by
hardware performance counters, which are always
active during program executions.

Figure 2a depicts an example hybrid spectra we col-
lected in a study conducted on flex – a lexical scanner
used as a subject application in our experiments.
In this spectra we count the machine instructions
executed in function check options (f19). Each row
in the table corresponds to an invocation of f19 in
an execution. The last column indicates the status
of the execution. The rest of the columns present
the number of machine instructions executed in the
body of f19 and in each callee function (e.g., f66
and f120). Sentinel value -1 indicates that the callee
function in the column was not called during the
respective invocation of f19. For example, the first
row corresponds to an invocation of f19 that occurred
in a successful execution. In this invocation, a total
of 8650, 4511, and 779725 machine instructions were
executed in the body of f19 and in the callee functions
f66 and f120, respectively. In the remainder of the
paper these tables are referred to as function tables.

The roots of this type of system spectra stem from
an earlier work, in which we successfully modeled
function execution times in a similar way for fault
localization [33]. The rationale can be summarized
as follows: Each callee performs a portion of the
caller’s functionality. Therefore, the way we itemize
the event counts in a caller function, reflects how
much computation each callee carries out to perform
a particular functionality. This provides valuable in-
formation, since “suspicious” amount of activities in a
function can help predict the manifestation of failures.

5

2.2 Applying Filtering

To further control the functions that can potentially be
monitored at runtime, we have developed two filter-
ing mechanisms: global filtering and frequency filtering.

Global filtering filters out functions that han-
dle already detected failures, e.g., error(...) and
fatal(...). Such functions are called only when
failures are internally detected by the system under
observation. We chose to ignore them because, al-
though such functions are a good indicator of failures,
i.e., they appear only in failing executions, they are
not a good predictor of failures in the sense that they
are called after programs have already failed to grace-
fully terminate the executions. Thus, such functions
provide almost no warning times for failures.

Frequency filtering, on top of global filtering, filters
out functions that are invoked more than a prede-
termined number of times, called frequency filtering
cutoff (in our case cutoff=50). Note that collecting
our hybrid spectra requires to read the value of a
hardware performance counter before and after every
function invocation. One observation we made in our
earlier studies is that even though the cost of reading
a hardware performance counter is low (about 45
clock cycles on our experiment platform), the cost is
paid every time the counter is read [32]. Therefore,
frequency filtering aims to further reduce the runtime
overhead by reducing the number of times hardware
performance counters are read.

Once a function is filtered out by a filtering mech-
anism, the function is completely ignored. That is,
no software instrumentation is performed for the
function in either the training phase or the monitoring
phase. All the remaining functions are candidates for
becoming a seer function.

2.3 Identifying Seer Functions

Among all the candidate functions, seer functions are
the ones that best distinguish failing executions from
passing executions. To identify the seer functions, we
first create a function table for each candidate function
using the historical data, such as the one given in
Figure 2a. We then train a prediction model by feeding
the function table to a classification tree algorithm
(in our case Weka’s J48 algorithm [34]). For each
candidate function, the result is a binary classification
model that attempts to distinguish failing executions
from passing ones.

Figure 2b, as an example, presents a prediction
model computed for function f19 given its function
table in Figure 2a. This model tells us that the number
of machine instructions executed in the body of f19,
in short body, is strongly correlated with the mani-
festation of failures. That is, if 9765 < body ≤ 10781
or 9425 < body ≤ 9427, then the execution is likely
to fail. Otherwise, the execution is likely to be a
successful execution. It turned out that this model was

indeed quite effective in predicting failures. An in-
depth analysis of what this model actually captured
and how it helped predict the failures can be found
in Appendix A.

While creating the prediction models, we take sev-
eral steps to prevent overfitting the data. One stan-
dard technique we use is to create the models using n-
fold stratified cross-validation (in our case n=5) [34].
This approach builds multiple classification models
from different subsets of the input data, and uses
the results to identify candidate models that are not
overly influenced by a few individual data points.

Once a prediction model is computed for a candi-
date function, we assign a score to the function, quan-
tifying the success of the function in distinguishing
failing executions from passing executions. The score
is the F-measure obtained from the cross-validation
of the classification model trained for the function. F-
measure is a well-known metric, which is computed
by giving equal weights to two standard metrics:
precision and recall (Section 4.2). It ranges between 0
and 1, inclusive. The higher the F-measure, the better
the classification model is.

Not all functions may equally be reliable in distin-
guishing failures. For this paper, a function is consid-
ered to be a seer function, iff, its score is greater than
or equal to a predetermined cutoff value, called seer
cutoff (in our case seer cutoff=0.8, 0.9, or 0.95).

2.4 Predicting Failures

Once seer functions are identified, they are instru-
mented such that after every call to a seer function,
the hybrid spectra collected from the call is fed to the
seer’s prediction model (see Section 2.5 for details).
The model then makes a binary prediction about the
future of the execution (P for passing and F for fail-
ing). Consequently, the sequence of seer predictions
made in an execution can be considered as a string of
P s and F s. We call this sequence the health index of
the execution.

Figure 1 presents an example health index. Each
literal in a health index represents prediction made by
a seer function. If a seer function is not called in an
execution, it does not make any predictions. If a seer
function is invoked multiple times, one prediction is
made after every invocation. Consequently, as seer
functions are invoked, the health index grows.

After every prediction made by a seer, we analyze
the current health index at runtime to predict the
manifestation of failures. To this end, we have de-
veloped two approaches: point-wise prediction approach
and sliding window prediction approach.

In the point-wise prediction approach, an execution
is predicted to fail after receiving an F prediction
from a seer function. In the sliding window prediction
approach, on the other hand, failure predictions are
based on a sequence of predications made by seer

6

functions, rather than a single prediction. In partic-
ular, this approach uses fixed-length sliding windows
of predictions with a slide of one prediction. That is,
given window length l, the last l predictions made
by seer functions are used for analysis. When a new
prediction is received, the window is shifted right by
one prediction, such that the newly received predic-
tion becomes the last prediction in the window.

The rationale behind the sliding window approach
stems from Zeller’s simple failure model [35]. When
a defect is exercised in a program execution, it causes
an infection, e.g., an erroneous state occurs. The infec-
tion propagates over time as the infectious program
states are involved in computations, creating even
more infectious program states. The infection finally
manifests itself as a failure. We conjecture that using
a sequence of predictions made over a period of
time can improve prediction accuracy, because, in
the presence of errors, deviations from normality are
likely to increase as time passes.

In the sliding window approach, we dynamically
assign a score to every window encountered dur-
ing an execution. To compute the score, for every
F prediction in the window, we add the score of
the seer function responsible for the prediction. An
execution is predicted to fail after an occurrence of
a window whose score is greater than or equal to a
pre-determined cutoff value, called window cutoff.

Materializing this approach requires to determine
the optimal values for the window length and the
window cutoff parameters. For that, we have devel-
oped a simple approach, in which we take as input the
historical data and a range of possible window lengths
(in our case the range=[1..10]). For each window
length in the given range, we determine and score the
windows present in the historical data. We then feed
the results to a classification tree algorithm (in our
case Weka’s J48 algorithm with 10-fold stratified cross-
validation) to compute a classification tree of depth 1.
For each window length, the result is a window cutoff
value that best distinguishes failing executions from
passing ones. Finally, among all the window length
and window cutoff value pairs trained, we pick the
one with the best classification accuracy (i.e., with the
best F-measure) and use it in the monitoring phase.

2.5 Instrumenting the System Under Observation

Seer uses two types of probes to instrument the
system under observation: monitoring probes and pre-
diction probes. For a given seer function, monitoring
probes are placed at the call sites of the callee func-
tions that are referenced in the prediction model of
the seer. The monitoring probe for a callee function,
reads the value of the hardware performance counter
before and after an invocation of the callee, attributes
the difference to the invocation, and accumulates the
count over all the invocations of the callee.

Prediction probes, on the other hand, are responsi-
ble for making predictions and issuing failure warn-
ings (if necessary). One prediction probe is placed for
every seer function. To create the prediction probe for
a seer function, we compile the prediction model of
the seer into a simple (and possibly nested) if-then-
else statement, called prediction code. Figure 2c, as an
example, presents the prediction code created for the
model in Figure 2b.

After every invocation of a seer function, the predic-
tion probe processes the data collected by the moni-
toring probes and computes a vector of event counts.
Each count in this vector represents the number of
events observed in the body of the seer function or
in a callee function. The vector is then fed to the
seer’s prediction code. In the point-wise approach, the
prediction code simply returns P or F (as shown in
Figure 2b). In the sliding window approach, on the
other hand, more information is returned in order
for the window scores to be computed. In particular,
if the prediction is F , the score of the respective
seer function is returned. Otherwise, 0 is returned,
indicating that the prediction is P . Since the scores
of the seer functions are determined in the training
phase, they are all hard coded in the prediction codes
to reduce the runtime overhead.

After executing the prediction code, the prediction
probe applies either the point-wise or the sliding
window approach (depending on the configuration).
In the point-wise approach, a failure warning is issued
after receiving an F prediction from a seer function.
In the sliding window approach, the predictions made
by seer functions are stored in an array of length
l, where l is the window length being used. This
array is used in a circular manner to store the last
l predictions. If the sum of the scores stored in the
array (i.e., window score) is greater than or equal to
the window cutoff value determined in the training
phase, a failure warning is issued.

3 EVALUATING FEASIBILITY

To evaluate Seer, we conducted a series of experi-
ments, which we discuss in the next four sections
(including this one). The first study (this section) eval-
uates the feasibility of Seer. The second study (Sec-
tion 4) evaluates the performance of Seer. The third
study (Section 5) compares Seer with fault screeners.
While the first three studies (Sections 3-5) apply the
proposed approach to systems with single defects,
the fourth study (Section 6) applies it to systems
with multiple defects. For each study, we present
the research questions, experimental setup, evalua-
tion framework, data and analysis, and a discussion.
Furthermore, the data we obtained from these ex-
periments can be found at http://people.sabanciuniv.
edu/cyilmaz/seer.

7

TABLE 1: Statistics about the data set used in the experiments.

subject number of number of total total passing total failing
application LOC dev. versions faulty versions test runs test runs test runs

grep 10068 4 6 3660 2886 774
flex 10459 4 24 14458 10435 4023
sed 14427 5 18 6714 5425 1289

An initial question we had is whether seer functions
that are capable of reliably distinguishing failing ex-
ecutions from passing executions, exist. If they don’t,
then the proposed approach will clearly suffer. If they
do, then the next question is how much runtime
overhead it would impose to use them for failure
prediction. In this study we conducted a set of ex-
periments to address these questions at a high level.
The results of this study will help us better interpret
the detailed results obtained in Sections 4 and 5.

To conduct the study, we used three different types
of hybrid spectra: TOT INS, BRN TKN, and LST INS.
TOT INS counts the number of machine instructions
executed. BRN TKN counts the number of branches
taken. LST INS counts the number of load and store
memory instructions executed.

These three hardware events were culled from a list
of 133 different types of events that could have been
monitored on our experiment platform. Clearly, not
all these 133 event types may equally be predictive
of failures and the predictive power of an event may
vary from one type of failure to another. However, it
was infeasible for us to evaluate all these events, each
of which can indeed be further configured in many
different ways, because of the sheer volume of the
implied experiment space. Instead, we experimented
with only the three events given above. We specif-
ically chose these events because the results of our
earlier studies strongly suggest that they can distin-
guish failing executions from passing executions [32].
One approach to choose the hybrid spectra in practice
could be to evaluate different types of hybrid spectra
on the historical data and pick the best-performing
one.

3.1 Experimental Setup

In the experiments we used three widely used ap-
plications as our subject applications: flex, grep, and
sed. Flex is a lexical scanner that generates fast lexical
analyzers. Grep is a command line text search utility
that prints lines matching a pattern or a regular
expression. Sed is a stream editor that filters and
transforms texts.

All the subject applications were taken from a
widely used defect repository, called SIR [36]. SIR pro-
vided us with a set of versions for each application, a
set of known defects for each version (each of which
can separately be activated at will), and a test suite per
version together with a test oracle for each test case in
the suite. For each version of our subject applications,

we first individually activated all the defects known
for the version on a one defect at a time basis to
create faulty versions with a single defect each (the
performance of the proposed approach in the presence
of multiple defects is studied in Section 6). We then
executed the test suites on the faulty versions of our
subject applications and used the test oracles to label
the executions as passing (P) or failing (F).

The data set we obtained was comprised of 24, 832
total test runs (18, 746 passing and 6, 086 failing runs)
across 48 faulty versions of our subject applications.
By following a similar approach used in [32], these 48
faulty versions were culled from a set of 166 faulty
versions using the criteria that the ratio of failing to
passing runs was between 0.03 and 1.8. We did this
because classification techniques themselves either
perform poorly or need special enhancement when
one class is much more common than the other. Since
our goal is not to evaluate classification techniques
themselves, we ignored these cases in our analysis.
Table 1 provides some descriptive statistics about the
data set we used.

To conduct the experiments, we divided this data
set into a training set and a test set. For each faulty
version of our subject applications, this was done
by using stratified sampling (i.e., the proportion of
passing and failing test runs were maintained), such
that about 70% of all the test runs ended up in the
training set and the rest (about 30%) ended up in
the test set. Overall, the training set had 17, 339 runs
and the test set had the remaining 7, 493 runs. All the
training activities in this work were carried out on the
training set, whereas all the evaluation activities were
carried out on the test set. That is, we evaluated Seer
on previously unseen executions.

To instrument the system under observation with
monitoring and prediction probes, we used CIL
(sourceforge.net/projects/cil) – a source code trans-
formation tool. For this study, we used mocked probes
that only measured the number of times they were ex-
ecuted. The actual monitoring and prediction probes
are used in Sections 4-6. To program hardware perfor-
mance counters, we used PAPI (icl.cs.utk.edu/papi)
– a platform independent tool to program hardware
counters. To identify seer functions, we used Weka’s
J48 classification tree algorithm with 5-fold stratified
cross validation [34] and with seer cutoff value set to
0.8.

Furthermore, frequency filtering cutoff value was
set to 50. That is, frequency filtering, on top of global

8

filtering grep flex sed
measure type hybrid software hybrid software hybrid software

of candidate functions after filtering
global 61.5 61.5 93.5 93.5 81.4 81.4

frequency 30.9 30.9 53.1 53.1 27.4 27.4

of times the candidate functions invoked
global 5087.8 5087.8 7838.9 7838.9 7694.3 7694.3

frequency 72.4 72.4 255.6 255.6 66.2 66.2

of seer functions identified
global 16.9 3.1 18.9 6.3 10.7 3.5

frequency 9.3 0.8 13.4 2.2 5.6 1.2

of times monitoring probes executed
global 1875.4 945.9 2636.9 1181.2 1324.4 498.5

frequency 20.9 0.9 77.7 7.8 16.1 3.2

of times prediction probes executed
global 26.5 4.7 52.8 29.2 18.8 6.3

frequency 9.2 0.7 16.7 2.8 5.4 1.2

TABLE 2: Some statistics about the seer functions identified.

filtering, filtered out the functions that were invoked
more than 50 times. This cutoff value was chosen
such that functions that accounted for more than
90% of all invocations were filtered. The information
required for this purpose was obtained by analyzing
the histograms of invocation counts observed in the
experiments.

The experiments were conducted on a Pentium D
machine with 1 GB of RAM, running the CentOS 5.2
operating system.

3.2 Evaluation Framework

To evaluate the presence of seer functions, we mea-
sured the number of seer functions identified. To eval-
uate the effect of a filtering mechanism, we applied
the filtering and measured the number of candidate
functions (i.e., unfiltered functions) as well as the
number of times these candidate functions were in-
voked in executions. To get a rough estimate of the
runtime overhead and to study the factors affecting
the overhead, we measured the runtime overhead in
this study in terms of the percentage of function in-
vocations for which monitoring and prediction probes
were executed. In Sections 4-6, on the other hand, we
compute the actual runtime overheads.

3.3 Data and Analysis

For each faulty version of our subject applications
(a total of 48 faulty versions), hybrid spectra type
(3 types of hybrid spectra), and filtering mechanism
(global and frequency filtering), we first identified the
candidate functions as well as the seer functions. We
then measured the number of times the candidate
functions were invoked as well as the number of times
monitoring and prediction probes were executed.

Table 2 presents the average counts we obtained.
Look for the columns titled “hybrid.” The columns
titled “software” will be discussed in Section 4. All the
counts in this table were obtained from only the func-
tions implemented by our subject applications; system
functions, such as printf(...), and their invocations were
not counted.

We first observed that 53% of all functions, the ones
that were filtered out by frequency filtering, accounted

for 98% of all function invocations in the executions,
on average. That is, using frequency filtering, com-
pared to using global filtering, significantly reduced
the number of candidate functions to be possibly
monitored from 79 to 37 (by 53%) and function in-
vocations from 6874 to 131 (by 98%), on average.

We then observed that, when global filtering was
used, hybrid spectra identified at least one seer func-
tion in 99% of the cases (142 out of 144 = 3 hybrid
spectra types x 48 faulty versions). For each of the
48 faulty versions of our subject applications, there
was at least one hybrid spectra type that identified at
least one seer function. An in depth analysis of the
results revealed that, the two cases, in which some
hybrid spectra types were not able to identify any
seer functions, concerned with two different faulty
versions of the same subject application. In one case,
BR TKN could not determine any seer functions,
but TOT INS and LST INS did. In the other case,
LST INS failed to determine any seers, but TOT INS
and BR TKN succeeded.

Using frequency filtering, however, made the iden-
tification of seer functions a slightly more difficult
task. When frequency filtering was used, hybrid spec-
tra identified at least one seer function in 94% (135
out of 144) of the cases. An in depth analysis revealed
that there was only one faulty version out of 48 faulty
versions, for which none of the hybrid spectra types
were able to identify any seer functions. For the rest
of the faulty versions, there was at least one hybrid
spectra identifying at least one seer function.

We believe that the hybrid spectra types used in
the experiments failed to identify any seer functions
for this one faulty version due to the relatively small
number of function invocations present for analysis.
For the aforementioned faulty version, after applying
frequency filtering, the average number of function
invocations present for analysis was 21.4 in passing
executions and 26.5 in failing executions, whereas, for
the rest of the faulty versions, there were 178.7 invo-
cations in passing executions and 184.7 invocations in
failing executions for analysis, on average. Although
we believe that such a situation can be improved by
increasing the cutoff value used in frequency filtering
(i.e., by monitoring more invocations) and/or fine-

9

tuning the classification algorithm, such that it can
work with a small training set, we do not experiment
with these potential solution approaches in this work
and use the data we obtained as it is in the remainder
of the paper.

Regarding the runtime overhead, we first observed
that the seer functions were only a small fraction of
all functions observed in executions (Table 2). The
average number of seer functions was 15.60 (12% of
all functions, on average) when global filtering was
used and 9.98 (8% of all functions, on average) when
frequency filtering was used.

We then observed that, since more seer functions
were identified with global filtering than with fre-
quency filtering, using global filtering required to
execute significantly more probes, suggesting that
frequency filtering can greatly reduce the runtime
overhead of the proposed approach. In particular,
using global filtering required to execute the probes
(either monitoring or prediction) in 31.11% of all func-
tion invocations, whereas using frequency filtering
required to execute them in 2.32% of all invocations,
on average. Furthermore, when frequency filtering
was used, the monitoring probes were executed in
1.68% and the prediction probes were executed in
0.64% of all function invocations, on average.

3.4 Discussion

In this feasibility study, for the subject applications,
their faulty versions, and the test cases used in the
experiments, we observed that 1) seer functions did
exist, except for one case, 2) they were only a small
fraction of all the functions implemented by the sub-
ject applications, and 3) using them for online failure
prediction, especially when frequency filtering was
used, required to execute monitoring and prediction
probes for only a small fraction of all function in-
vocations. These results suggest that the proposed
approach can predict the manifestation of failures
with low runtime overheads.

4 EVALUATING SEER

To test this hypothesis, we conducted a further set
of experiments. In these experiments we measured
the prediction accuracy and the runtime overhead of
the proposed approach as well as the timeliness of
the failure warnings issued, i.e., early predictions are
better than late predictions.

One specific question we had is how much addi-
tional information hardware-collected data in hybrid
spectra provides over and above software-collected
data towards predicting the manifestation of failures.
As discussed in Section 2.1, our hybrid spectra con-
tain both software-collected data, such as caller-callee
information, and hardware-collected data, such as the
number of machine instructions executed in a function

call. Therefore, it is important to factor out the effect of
the software-collected data from the results as much
as possible to demonstrate the additional information
provided by the hardware-collected data.

To this end, we compared the performance of our
hybrid spectra to that of two different types of soft-
ware spectra, which were collected by using software
instrumentation only: Call and Visit. Call keeps track
of the functions invoked. Visit counts the number of
times each function is invoked.

As is the case with the hybrid spectra, the software
spectra were collected at the function level. For each
candidate function, a function table was created. Each
entry in these tables, rather than indicating the num-
ber of hardware events occurred in a callee function,
indicated whether the callee function was invoked
(Call) or the number of times the callee function was
invoked (Visit). The rest of the analysis was the same
for both the hybrid and the software spectra.

We chose to use Call and Visit spectra for three
reasons. First, they collect internal execution data,
which is either directly collected by our hybrid spectra
or correlated with the data collected by them. In par-
ticular, both hybrid spectra and Call spectra use caller-
callee information. The only difference between them
is the presence of event counts collected by hardware
performance counters. Moreover, Visit spectra collect
internal execution data which is correlated with the
data collected by hybrid spectra. For example, the
total number of machine instructions executed in a
callee function (as is the case in TOT INS spectra)
is generally correlated with the number of times the
callee function is invoked. Therefore, the difference
between the success of these types of hybrid and
software spectra in predicting failures, can safely be
attributed to the hardware-collected data. Second, Call
and Visit spectra represent two of the most inexpen-
sive types of system spectra that can be collected
at the function level. Therefore, they help us better
evaluate the runtime overhead of using hybrid spectra
by comparing it to some of the lowest overheads
that can be achieved in practice. Finally, the same or
similar types of software spectra have been used in the
past for fault localization [33], [37], [38], suggesting
that these types of software spectra can distinguish
failing executions from passing executions, which is
a prerequisite for predicting failures. From this per-
spective, we use Call and Visit spectra in a novel way
for online failure prediction in this work.

4.1 Experimental Setup

To conduct the experiments, we used the seer func-
tions identified in Section 3 and automatically created
the monitoring and prediction probes as described in
Section 2.5. The prediction probes, depending on the
configuration used in the experiment, implemented

10

either the point-wise or the sliding window approach.
To compute the optimal window length and cutoff
value pairs to be used with the sliding window ap-
proach, we experimented with the window lengths
in [1..10] (see Section 2.4 for more details). We used
CIL to instrument the subject applications with the
monitoring and the prediction probes and evaluated
Seer on the test set (Section 3.1), i.e., on previously
unseen executions.

4.2 Evaluation Framework

The evaluations were performed in a multifaceted
manner.

4.2.1 Evaluating prediction accuracy
We used several standard metrics to evaluate the
prediction accuracy. First, we computed true positives
(TP ; the number of correctly predicted failures), true
negatives (TN ; the number of correctly predicted suc-
cessful executions), false positives (FP ; the number
of successful executions incorrectly predicted to fail),
and false negatives (FN ; the number of failed execu-
tions incorrectly predicted to be successful). Then, we
computed false positive rate FPR = FP/(FP + TN)
and false negative rate FNR = FN/(FN + TP).
Finally, we computed precision P = TP/(TP + FP),
recall R = TP/(TP + FN), and F-measure by giving
equal importance to precision (P) and recall (R) as
F -measure=2PR/(P +R).

An execution was predicted to fail after receiving
the first failure warning, in which case the rest of the
predictions were ignored. Otherwise, the execution
was predicted to be successful.

4.2.2 Evaluating warning times
In online failure prediction approaches, it is not only
about correctly predicting failures, but also about
predicting them as early as possible, so that necessary
measures against the failures can be taken in time.
Therefore, early predictions are better than late pre-
dictions.

To evaluate the proposed approach from this per-
spective, we computed the warning time for a failure
as the percentage of the function calls made before
the prediction. The lower the warning time, the better
the proposed approach is. For example, having a
warning time of 25% for a failing execution, in which
a total of 80 function calls occurred, indicates that the
execution was predicted to fail after the 20th function
call, i.e., quarter way through the execution when the
duration of the execution is measured as the number
of function calls made in the execution. We chose to
measure the duration of an execution in this way, be-
cause function calls provide more information about
the execution context than execution times, which in
turn can help take better actions against impending
failures.

Comparing the Accuracy of Point−wise and Siliding Window
Prediction Approaches (Global Filtering)

Approach

F
−

m
ea

su
re

0.0

0.2

0.4

0.6

0.8

1.0

BR_TKN

PW SW

LST_INS

PW SW

TOT_INS

PW SW

Call

PW SW

Visit

PW SW

Fig. 3: Comparing the accuracy of point-wise (PW)
and sliding window (SW) prediction approaches
with global filtering.

Furthermore, when computing warning times, we
counted only the calls made to the functions im-
plemented by our subject applications. The rest of
the calls, such as the ones made to the functions
implemented by the underlying programming lan-
guage, were not counted. Moreover, each test case
used in the experiments was designed to produce an
output at the end of the execution. The test oracles
that came with the subject applications, determined
whether a failure had occurred in an execution or not,
only after the output had been produced, i.e., only
after the execution was terminated. Therefore, when
computing warning times, failures were considered to
occur at the end of the executions.

4.2.3 Evaluating runtime overheads

We computed the runtime overhead as ((P ′ − P)/P) ∗
100, where P and P ′ represent the execution time of
the original program and that of the instrumented
version of the program, respectively, when both pro-
grams are executed with the same input.

When measuring the overheads, regardless of the
predictions made at runtime, the monitoring and
prediction probes were always active during the ex-
ecutions. That is, even if an execution was predicted
to fail, all the probes continued to execute. We did
this to compute the runtime overheads independently
of warning times. Had we deactivated the probes
after receiving the first failure warning, then runtime
overheads would have depended on warning times.

11

spectra filtering average average average average average warning
type type FPR FNR F-measure overhead (%) time (%)

BR TKN
global 0.07 0.14 0.82 26.69 38.72

frequency 0.11 0.23 0.76 2.05 57.15

LST INS
global 0.08 0.13 0.83 15.55 53.65

frequency 0.12 0.18 0.78 1.85 55.69

TOT INS
global 0.07 0.11 0.84 29.21 36.09

frequency 0.14 0.16 0.78 2.05 47.62

Call
global 0.33 0.38 0.57 1.59 80.42

frequency 0.47 0.64 0.36 0.66 73.36

Visit
global 0.42 0.54 0.72 12.42 59.13

frequency 0.16 0.22 0.46 0.77 71.83

TABLE 3: Summary of the results obtained from the sliding window prediction approach.

4.3 Data and Analysis

We first observed that the software spectra identified
fewer seer functions than the hybrid spectra (Table 2),
suggesting that the hybrid spectra were better at
capturing patterns in program executions than the
software spectra. The hybrid and software spectra
identified an average of 15.60 and 4.83 seer functions,
respectively, when global filtering was used, and an
average of 9.98 and 1.67 seer functions, respectively,
when frequency filtering was used. Furthermore, the
hybrid spectra were more resilient to frequency fil-
tering. When frequency filtering was used, compared
to using global filtering, the hybrid spectra identified
36% fewer seer functions, whereas the software spec-
tra identified 65% fewer seer functions, on average.

4.3.1 Comparing point-wise and sliding window pre-
diction approaches

We then compared the prediction accuracy of the
point-wise (PW) and sliding window (SW) ap-
proaches when they were used with global filter-
ing. Figure 3 presents the results we obtained. In
this figure, the horizontal axis denotes the prediction
approach used and the vertical axis denotes the F-
measures obtained. Each box illustrates the distribu-
tion of F-measures obtained from a spectra type and
prediction approach pair. The lower and the upper
ends of boxes represent the first and the third quar-
tiles, respectively. The horizontal bars inside the boxes
depict the median F-measures, whereas the diamond
shapes depict the average F-measures. The larger the
F-measure, the better the approach is.

We first observed that, for the hybrid spectra, the
sliding window approach performed significantly bet-
ter than the point-wise approach in predicting fail-
ures. Sliding window approach, compared to point-
wise approach, improved the average F-measure from
0.68 to 0.83 (by 22%) for the hybrid spectra. A
Kruskal-Wallis test revealed that the difference was
statistically significant with a p-value of less than
2.2e − 16. For the software spectra, on the other
hand, sliding window approach provided similar
F-measures to point-wise approach; an average F-

measure of 0.64 for the sliding window approach and
0.63 for the point-wise approach.

We believe that, the sliding window approach im-
proved the prediction accuracy for the hybrid spectra
more than it improved the accuracy for the software
spectra, because the average window length for the
hybrid spectra was 2.6, whereas that for the software
spectra was 1.6. As the window length got closer
to 1, which is the default window length used in
the point-wise approach, the difference between the
sliding window and the point-wise approaches di-
minished. Using the hybrid spectra produced larger
window lengths on average, because the hybrid spec-
tra identified more seer functions than the software
spectra. Typically, the more seer functions identified,
the longer the health indices were, and the longer the
health indices, the larger the optimal window lengths
were.

Overall, the sliding window approach provided
similar or significantly better prediction accuracies
than the point-wise approach. Therefore, in the re-
mainder of the paper, we solely focus on the sliding
window approach.

4.3.2 Comparing hybrid and software spectra

Table 3 presents the summary of the results obtained
from the sliding window approach. When the sliding
window approach was used with global filtering, the
hybrid spectra provided significantly better prediction
accuracy than the software spectra. The average F-
measure obtained from the hybrid spectra was 0.83,
whereas that obtained from the software spectra was
0.64. The difference was statistically significant with
a p-value of less than 7.6e− 07.

Comparing the runtime overhead of using hybrid
spectra to that of using software spectra, we, on the
other hand, observed that hybrid spectra improved
the prediction accuracy at the cost of increased run-
time overhead (Figure 4). The runtime overhead of
using the hybrid spectra was 24%, whereas that of
using the software spectra was 7%, on average. The
primary source of this difference was that, since the
hybrid spectra identified more seer functions than the
software spectra, using the hybrid spectra required

12

Runtime Overhead of Sliding Window Prediction Approach
 (Global Filtering)

System Spectra

R
un

tim
e

O
ve

rh
ea

d
(%

)

1
5

10

20

40

60

80

100

120

BR_TKN LST_INS TOT_INS Call Visit

Fig. 4: Runtime overhead of sliding window predic-
tion approach when used with global filtering.

to execute significantly more monitoring and predic-
tion probes (Table 2), which in turn incurred more
overhead. When global filtering was used, the hybrid
spectra required to execute the monitoring probes
in 29.54% and the prediction probes in 1.57% of all
function invocations, whereas the software spectra
required to execute them in 12.87% and 0.60% of all
invocations, on average, respectively.

To reduce the number of times monitoring and pre-
diction probes were executed, thus to reduce the run-
time overhead, we used the sliding window approach
with frequency filtering. Figure 5 presents the runtime
overheads we obtained. We observed that frequency
filtering significantly reduced the runtime overhead
from 24% to 1.98% (by 92%) for the hybrid spectra and
from 7% to 0.72% (by 90%) for the software spectra,
on average. Overall, monitoring probes accounted for
the 44% and prediction probes accounted for the 56%
of the total overhead cost, on average (Figure 6).

Comparing the prediction accuracy of the sliding
window approach with frequency filtering to that
of with global filtering (Figure 7), we first observed
that, with frequency filtering, as was the case with
global filtering, the hybrid spectra performed signif-
icantly better than the software spectra. The average
F-measure obtained from the hybrid spectra was 0.77,
whereas that obtained from the software spectra was
0.41. The difference was statistically significant with
a p-value of less than 6.3e− 12.

We then observed that using frequency filtering
made a trade-off between the accuracy and the run-
time overhead of the predictions. For the hybrid spec-
tra, frequency filtering, while reducing the average

Runtime Overhead of Sliding Window Prediction Approach
(Frequency Filtering)

System Spectra
R

un
tim

e
O

ve
rh

ea
d

(%
)

1

2

4

6

8

BR_TKN LST_INS TOT_INS Call Visit

Fig. 5: Runtime overhead of sliding window predic-
tion approach when used with frequency filtering.

Percentage of the Runtime Overhead Incurred by
Monitoring and Prediction Probes (Frequency Filtering)

System Spectra

P
er

ce
nt

ag
e

of
 th

e
R

un
tim

e
O

ve
rh

ea
d

0

20

40

60

80

100

BR_TKN LST_INS TOT_INS Call Visit

monitoring prediction

Fig. 6: Percentage of the runtime overhead incurred
by the monitoring and prediction probes.

runtime overhead by 92%, reduced the average F-
measure by 7.8% (from 0.83 to 0.77). For the software
spectra, frequency filtering, while reducing the aver-
age runtime overhead by 90%, reduced the average
F-measure by 36% (from 0.64 to 0.41).

The hybrid spectra were more resilient to frequency
filtering than the software spectra; a drop of 7.8% vs.
36% in the average F-measure. We believe that this
was because the hardware counters were still active

13

Prediction Accuracy of Sliding Window Approach

Filtering

F
−

m
ea

su
re

0.0

0.2

0.4

0.6

0.8

1.0

BR_TKN

frequency global

LST_INS

frequency global

TOT_INS

frequency global

Call

frequency global

Visit

frequency global

Fig. 7: Prediction accuracy of sliding window ap-
proach.

during the execution of unmonitored functions (i.e.,
the ones that were filtered out by frequency filtering);
the hardware-collected data was just associated with
the functions that called these unmonitored functions.
On the other hand, the software spectra were not
able to collect any information about the unmonitored
functions.

Comparing the warning times obtained from hybrid
and software spectra when sliding window approach
was used with frequency filtering (Figure 8), we ob-
served that the hybrid spectra significantly improved
the warning times by 26%, on average. The difference
was statistically significant with a p-value of less than
4.992e− 07. The average warning time for the hybrid
spectra was 53.48%, whereas that for the software
spectra was 72.60%. That is, when the duration of
a program execution is measured as the number of
function calls made in the execution (Section 4.2.2), the
hybrid spectra predicted the failures about half way
through the executions, whereas the software spectra
predicted the failures about three-fourth way through
the executions, on average.

Comparing the warning times obtained from the
sliding window approach with frequency filtering to
those obtained with global filtering (Figure 8), we
observed that frequency filtering, while reducing the
runtime overhead by 92% for the hybrid spectra and
by 90% for the software spectra, degraded the average
warning time from 42.82% to 53.48% for the hybrid
spectra and from 69.77% to 72.60% for the software
spectra. Although the hybrid spectra suffered from
frequency filtering more than the software spectra,

Warning Times Obtained from Sliding Window Approach

Filtering
W

ar
ni

ng
 T

im
e

(%
)

20

40

60

80

100

BR_TKN

frequency global

LST_INS

frequency global

TOT_INS

frequency global

Call

frequency global

Visit

frequency global

Fig. 8: Warning times obtained from sliding window
approach.

the hybrid spectra still provided significantly earlier
warnings for failures, on average.

4.3.3 An integrated view of prediction quality and
runtime overhead

We now provide an integrated view of the prediction
quality and runtime overhead. We observed that using
the hybrid spectra with sliding window approach and
global filtering provided the best overall prediction
quality (Table 3). More specifically, this approach cor-
rectly predicted the failures 42.82% way through the
executions and with an F-measure of 0.83, on average.
However, this was all done at the cost of 24% runtime
overhead. Although this approach provided the best
prediction quality, we leave it out of the analysis in
this section due to its unacceptable runtime overhead.

Figure 9 plots the average runtime overheads
against the average F-measures and warning times
obtained from the rest of the experiments. One ob-
servation is that, for comparable runtime overhead
levels, the hybrid spectra provided significantly better
prediction accuracies and warning times than the
software spectra. For example, the hybrid spectra
with frequency filtering and CALL spectra with global
filtering have comparable average runtime overheads:
1.98% for the hybrid spectra and 1.59% for Call
spectra. However, the hybrid spectra in this setup
improved the F-measure by 35% (from 0.57 to 0.77)
and the warning time by 34% (from 80.42% to 53.48%),
on average, compared to Call spectra.

Alternatively, for comparable accuracy levels, the
hybrid spectra incurred significantly less runtime
overheads and provided better warning times. For

14

An Integrated View of
Prediction Quality and Runtime Overhead

R
un

tim
e

O
ve

rh
ea

d
(%

)

2

4

6

8

10

12

F−measure

0.4 0.5 0.6 0.7

Warning Time (%)

50 55 60 65 70 75 80

BR_TKN (w/ frequency filtering)

LST_INS (w/ frequency filtering)

TOT_INS (w/ frequency filtering)

Call (w/ frequency filtering)

Visit (w/ frequency filtering)

Call (w/ global filtering)

Visit (w/ global filtering)

Fig. 9: An integrated view of the prediction quality
and runtime overhead of the sliding window ap-
proach.

example, the hybrid spectra with frequency filtering
and Visit spectra with global filtering have similar
F-measures; 0.77 for the hybrid spectra and 0.72 for
Visit spectra. However, the hybrid spectra achieved
this at a fraction of the overhead compared to Visit
spectra. The runtime overhead of the hybrid spectra
was 1.98%, whereas that of Visit spectra was 12.42%,
on average. This corresponds to a more than 5-fold
reduction in the runtime overhead. Furthermore, the
hybrid spectra improved the warning times by 10%
(from 59.13% to 53.48%) on average, compared to Visit
spectra.

Overall, when sliding window prediction approach
was used with frequency filtering, the hybrid spec-
tra predicted the failures 53.48% way through the
executions with an F-measure of 0.77 and a runtime
overhead of 1.98%, on average.

4.4 Discussion

In this study we identified a trade-off between the
prediction quality and the runtime overhead of the
proposed approach. This trade-off generally is to be
expected. Typically, the more internal execution data
present for analysis, the better the patterns in program
executions can be identified, which can in turn im-
prove the prediction quality. However, typically, the
more internal execution data to be collected, the more
runtime overhead is incurred. In the experiments we
observed that Seer limited the runtime overhead as
much as possible while still supporting acceptable
levels of prediction quality and that the data collected

by hardware performance counters was a significantly
influential factor in achieving this.

Seer also offers two tuning parameters to further
balance the trade-off between prediction quality and
runtime overhead: seer cutoff and frequency filtering
cutoff (Section 2). In the presence of excessive number
of seer functions, which typically increases the num-
ber of times the prediction probes are executed, one
can be more selective by increasing the seer cutoff
value, so that only the most predictive subset of
the candidate functions are selected as seer functions
(see Section 6 for a related analysis). In the presence
of excessive number of times monitoring probes are
executed, one can decrease the frequency filtering
cutoff value, so that fewer functions are monitored.
In the absence of any seer functions, on the other
hand, one can increase the frequency filtering cutoff
value to collect more data for analysis and/or reduce
the seer cutoff value to be less selective in the seer
identification process. Another approach to balance
the aforementioned trade-off can be to change the
level of monitoring granularity. Although we tracked
execution data at the function level in this work, the
proposed approach can readily be applicable to finer
level monitoring, such as monitoring at the level of
code segments, as well as to coarser level monitoring,
such as monitoring at the level of components and
subsystems.

We also observed that it took about 34 minutes
for flex, 15 minutes for grep, and 8 minutes for
sed (19 minutes on average) to train Seer after the
system spectra for training had been collected. At
a high level, the training time grows linearly with
the number of functions implemented by the system
under observation; a binary classifier is trained for
every unfiltered function (Section 2.3). It also increases
linearly with the number of historical executions in
the training set and with the range of possible win-
dow lengths; for each window length and historical
execution pair, all windows present in the execution
are determined and scored to compute the window
length as well as the window cutoff value to be used
for predictions (Section 2.4). Therefore, the training
time may vary from one system to another. However,
one advantage of the Seer’s training scheme is that
it is embarrassingly parallel in the sense that com-
puting the classification trees for functions as well as
performing the operations required for every window
length and historical execution pair can all be done
in parallel, improving the scalability of the proposed
approach. The training times we report above were
obtained from a sequential implementation of the
Seer’s training scheme.

Next, we compare Seer with fault screeners – an
alternative online failure prediction approach.

15

5 COMPARING SEER WITH FAULT SCREEN-
ERS

Fault screeners are simple software constructs that
predict the manifestation of failures by detecting the
presence of “suspicious” values in program execu-
tions [39]–[41]. In this approach, values that variables
and function arguments take on as well as the values
returned from functions are captured to compute
likely value invariants – a type of invariants that
specify the correctness of data values. In the training
phase, the invariants are relaxed to accommodate
the new values observed. In the monitoring phase,
violations of these invariants are flagged as errors.

Fault screeners differ from each other in the types of
invariants they use [41]. We in this work distinguish
between three types of fault screeners: single range
screeners, multiple range screeners, and Bloom screeners.

Single range screeners maintain a tight range that
accommodates all the values observed in the training
phase [39]. In the monitoring phase, if a value outside
this range occurs, then a failure warning is issued.

Multiple range screeners maintain a predetermined
number of ranges, rather than a single range. When
a new value is observed, the ranges are updated
such that the valid range is increased by the least
amount [40].

Bloom screeners, on the other hand, use Bloom
filters [42] to have a compact representation of the
history of variables [41]. A Bloom screener can be
considered to be a hash table that is implemented as
an array of n bits and that uses k different hash func-
tions. Each hash function maps an element, which is
a combination of a value together with the instruction
address in the program at which the value is read or
written, to one of the n array positions. To add an
element in the training phase, the element is fed to
each of the k hash functions, k array positions are
computed, and the bits at these positions are set to
1. To query for an element in the monitoring phase,
the element is fed to the hash functions to get k array
positions. If any of the bits at these positions are 0,
then it is guaranteed that the element has not been
seen before, i.e., the value at the given instruction
address was not seen in the training phase. In such a
case, a failure warning is issued. On the other hand,
if all the bits at the k positions computed by the hash
functions, are 1, then either the element was seen in
the training phase, or we have a false positive. In
either case, no failure warning is issued.

In this work we opted to empirically compare Seer
to fault screeners because among all the related works
we discuss in Section 8, fault screeners are the most
related to our work. This is because they collect
internal execution data for online failure prediction
and are developed with runtime overhead concerns
in mind [39]–[41].

5.1 Experimental Setup

We have implemented single range screeners, mul-
tiple range screeners, and Bloom screeners as de-
scribed in [39]–[41] using LLVM (llvm.org) – a com-
piler infrastructure providing a collection of modular
and reusable compiler and toolchain technologies.
In particular, we have implemented a source code
transformation pass in LLVM to instrument the source
code of our subject applications, such that all accesses
to variables (including pointers), function arguments,
and return values of primitive types together with
the locations of these accesses in the source code, are
captured.

In the training phase, all these accesses were
recorded to train the screeners. For the single range
screeners, we computed a single range for each vari-
able and location pair. For the multiple range screen-
ers, we computed 3 ranges for each variable and
location pair, rather than a single range. The number
of ranges used in the experiments, i.e., 3, was chosen
arbitrarily. For the Bloom screeners, we trained a
Bloom filter of size 9, 592, 955, which used 7 different
hash functions. As is the case in [41], all variable
and location pairs shared the same filter. To create
the 7 different hash functions, we used the SHA-
1 cryptographic hash function with input salting.
Furthermore, the size of the filter and the number of
hash functions to be used, were determined such that
a false positive rate of 0.01 is obtained for a capacity
of about one million entries.

In the monitoring phase, the subject applications
were augmented with the screeners computed in the
training phase. In particular, for every variable and
location pair of interest, a software probe was injected.
The probe simply captures the value accessed at the
location and passes the value and location pair to the
respective screener, so that a binary prediction, i.e., P
or F , is made at run time. After receiving the first F
prediction from a screener, a failure warning is issued.
Otherwise, the execution is predicted to be successful.

To train and test the fault screeners, we used the
same training and test set that we used in Sections 3-
4. We first monitored every possible variable and
location pair, which is the default behavior of fault
screeners [39]–[41]. Then, to further reduce the run-
time overhead incurred by fault screeners, we identi-
fied and monitored only those pairs that best distin-
guished failing executions from passing executions.
We call such pairs able pairs and the screeners that
use them able screeners. To find the able pairs, we
used the screeners computed in the training phase
and measured the individual performance of every
variable and location pair on the test set. In particular,
we computed an F-measure for every pair and then
picked only those pairs whose F-measure is greater
than or equal to 0.8. After finding the able pairs, we

16

screener FPR FNR F-measure overhead (%) # of probes injected # of times probes executed

Regular Single Range 0.09 0.55 0.38 194.40 1534.29 89141.84
Able Single Range 0.01 0.57 0.46 4.07 34.40 2811.26
Regular Multiple Range 0.16 0.46 0.39 221.88 1534.29 89141.84
Able Multiple Range 0.02 0.50 0.52 6.60 43.67 3428.69
Regular Bloom 0.72 0.03 0.45 61499.55 1534.29 89141.84
Able Bloom 0.03 0.41 0.57 14201.67 72.98 3845.39

TABLE 4: Summary of the results obtained from the fault screeners.

trained the able screeners from scratch only for the
selected pairs.

Note that the experiments we set up in this section
represent an optimal scenario for the fault screeners,
in which the test set was made available to the screen-
ers to identify the able pairs. Seer, on the other hand,
was evaluated by using previously unseen executions,
i.e., by using the previously unknown test set.

5.2 Evaluation Framework

To compare the fault screeners with each other and to
reason about their runtime overheads, we measured
the number of probes injected into the source code
of our subject applications as well as the number of
times these probes were executed. To compare the
performance of Seer to that of fault screeners, we
used the F-measure and the runtime overhead metrics
(Section 4.2).

5.3 Data and Analysis

Table 4 summarizes the results we obtained. We first
observed that monitoring only the able pairs, com-
pared to monitoring all pairs, increased the average
F-measures and significantly reduced the average run-
time overheads. The improvements on the runtime
overheads were due to the significant reductions in
the number of times the probes were executed. Able
single, multiple, and Bloom screeners, compared to
regular single, multiple, and Bloom screeners, in-
creased the average F-measures by 21% , 33%, and
27%, respectively, while reducing the average runtime
overheads by 98%, 97%, and 77%, the average num-
bers of probes injected by 98%, 97%, and 95%, and
the average numbers of times the probes executed by
97%, 96%, and 96%, respectively.

We furthermore observed that, among all the fault
screeners, the able Bloom screeners provided the best
average F-measure, but they did so at the cost of
unacceptable levels of runtime overheads. The aver-
age F-measure was 0.57 while the average runtime
overhead was about 14202% (Table 4). The excessive
overhead was mainly due to cost of computing the
hash functions as well as the frequency in which
these computations were carried out. Able single
range screeners, on the other hand, provided the best
runtime overheads among the fault screeners, but they
did so at the cost of unacceptable levels of F-measures.

The average runtime overhead was 4.07% while the
average F-measure was 0.46 (Table 4).

We then compared the performance of fault screen-
ers to that of Seer (Figures 10-11). We observed that,
compared to the able Bloom screeners, i.e., the best
performing fault screeners in terms of prediction ac-
curacy, Seer statistically significantly (with a p-value
of less than 0.004) increased the F-measure by 35%,
on average (Figure 10). Compared to the able single
range screeners, i.e., best performing fault screeners
in terms of runtime overhead, Seer statistically signifi-
cantly (with a p-value of less than 4.311e−10) reduced
the runtime overhead by 51%, on average (Figure 11).

5.4 Discussion

The results obtained from fault screeners in this sec-
tion as well as the ones obtained from the software
spectra used in Section 4, suggest that the failures
studied in our experiments were not trivial at all
to predict with low runtime overheads. This further
emphasizes the importance of the results obtained by
Seer.

6 EVALUATING SEER WITH MULTIPLE DE-
FECTS

We have so far evaluated Seer on systems with
single defects. In this study, we apply the proposed
approach to systems with multiple defects.

6.1 Experimental Setup

To conduct the study, for each version of our subject
systems, we first determined all 2-way and 3-way
combinations of the single defects used in Sections 3-
4. For each combination, we then created a faulty
version by activating the respective defects, resulting
in faulty versions with 2 or 3 defects each. After
filtering these faulty versions based on their fail/pass
ratio as described in Section 3.1, we had a total of 165
faulty versions to work with; 78 versions each with 2
defects and 87 versions each with 3 defects.

We then evaluated Seer on each of these faulty
versions. In particular, we used the sliding window
prediction approach with frequency filtering, where
the frequency cutoff value was set to 50, and ex-
perimented with three different seer cutoffs: 0.8, 0.9,
and 0.95. The first cutoff value was used to compare

17

Regular Screeners Able Screeners Seer

0.00

0.25

0.50

0.75

1.00

Single
Range

Multiple
Range

Bloom Single
Range

Multiple
Range

Bloom BR_TKN LST_INS TOT_INS

Type

F
−

m
ea

su
re

Comparing Seer with Fault Screeners

Fig. 10: Comparing the F-measures obtained from
Seer to those obtained from fault screeners.

the results obtained from multiple defects to those
obtained from single defects in Sections 3-4. The rest
of the cutoff values, on the other hand, were used to
study how Seer was affected by increasing the cutoff.

6.2 Evaluation Framework

For the evaluations, we used the F-measure, runtime
overhead, and warning time metrics (Section 4.2). To
further reason about the Seer’s performance, we used
the number of seer functions identified, the window
length computed, and the percentage of the function
invocations, for which the monitoring and prediction
probes were executed (Section 3.2).

6.3 Data and Analysis

We first compared the performance of Seer on mul-
tiple defects to that on single defects when the seer
cutoff value was set to 0.8. Figures 12-14 summarize
the data we obtained in the presence of multiple
defects (look for seer cutoff=0.8). We observed that
Seer achieved a similar performance in the presence
of multiple defects to that in the presence of single
defects. The hybrid spectra correctly predicted the
failures 56% way through the executions and with
an F-measure of 0.88 and a runtime overhead of
2.67%, on average. Compared to the software spectra,
the hybrid spectra, improved the F-measure by 66%
(the difference was statistically significant with a p-
value < 2.2e− 16) and the warning time by 19% (the
difference was statistically significant with a p-value
< 4.215e− 14), on average. In particular, the software
spectra correctly predicted the failures 69.07% way

Regular Screeners Able Screeners Seer

1

2

4

7

200

1000

14000

60000

Single
Range

Multiple
Range

Bloom Single
Range

Multiple
Range

Bloom BR_TKN LST_INS TOT_INS

Type
R

un
tim

e
O

ve
rh

ea
d

(%
, l

og
 s

ca
le

)

Comparing Seer with Fault Screeners

Fig. 11: Comparing the runtime overheads of Seer
to those of fault screeners.

through the executions and with an F-measure of 0.53
and a runtime overhead of 1.73%, on average.

We then examined how the performance of hybrid
spectra was affected by the number of defects in
the systems under observation. Table 5 presents the
results we obtained (look for seer cutoff=0.8). We
observed that, as the number of defects increased, the
prediction accuracy increased as well. The average F-
measures obtained from the hybrid spectra were 0.77,
0.86, and 0.90 in the presence of 1, 2, and 3 defects,
respectively. We believe that this was because, as the
number of defects increased, the number of seer func-
tions identified tended to increase, suggesting that
it was easier to distinguish failing executions from
passing ones in the presence of multiple defects. The
average numbers of seer functions were 9.98, 14.89,
and 16.57, respectively. We then observed that the
warning time tended to also increase as the number
of defects increased. We believe that this was because
the window length tended to increase, following the
rise in the number of seer functions identified. The
average window lengths were 1.95, 2.18, and 2.23 in
the presence of 1, 2, and 3 defects, respectively. The
average warning times, however, were still between
50 and 60%. Interestingly enough, in the presence of
multiple defects, as the number of defects increased
from 2 to 3, although the number of seer functions
as well as the window length increased, the runtime
overhead tended to decrease (Table 5). The average
runtime overheads were 2.75 and 2.61, respectively.
An in-depth analysis revealed that this was because
both the monitoring and the prediction probe invo-
cation percentages tended to decrease, which can be

18

seer cutoff = 0.8 seer cutoff = 0.9 seer cutoff = 0.95

0.2

0.4

0.6

0.8

0.85

0.9

1

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

System Spectra

F
−

m
ea

su
re

Prediction Accuracy in the Presence of Multiple Defects

Fig. 12: Prediction accuracies obtained from the
sliding window approach with frequency filtering
in the presence of multiple defects.

attributed to the faulty versions of our subject systems
as well as the test cases used in the experiments.
The percentages of function invocations, for which
the monitoring and prediction probes were executed,
were 2.27 and 1.98 in the presence of 2 and 3 defects,
respectively.

Comparing the runtime overhead of the proposed
approach for single and multiple defects, we observed
that the overhead was slightly larger in the presence
of multiple defects. The average overhead was 1.98%
for single defects and 2.67% for multiple defects. We
attribute this to the increase in the percentage of
function invocations for which the monitoring and
prediction probes were executed, which in turn was
caused by an increase in the number of seer functions
identified. In the case of single defects, the average
number of seer functions was 9.98 and the probes
were executed in 2.32% of all function invocations
on average. In the case of multiple defects, on the
other, the average number of seer functions was 15.78
and the probes were executed in 2.11% of all function
invocations on average.

To further reduce the runtime overhead and to
further study the tradeoff between the prediction
quality and the seer cutoff value, we repeated our
multiple-defects experiments by increasing the cutoff
value from 0.8 to 0.9 and then to 0.95. The results can
be found in Table 5 and Figures 12-14 (look for seer
cutoff > 0.8). We observed that as the cutoff value
increased from 0.8 to 0.95 the average number of seer
functions and the average window length decreased.
The average numbers of seer functions were 15.78,

seer cutoff = 0.8 seer cutoff = 0.9 seer cutoff = 0.95

40

50

60

70

80

90

100

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

System Spectra
W

ar
ni

ng
 T

im
e

(%
)

Warning Time in the Presence of Multiple Defects

Fig. 13: Warning times obtained from the sliding
window approach with frequency filtering in the
presence of multiple defects.

seer cutoff = 0.8 seer cutoff = 0.9 seer cutoff = 0.95

0

1

2

3

4

5

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

B
R

_T
K

N

LS
T

_IN
S

TO
T

_IN
S

C
all

V
isit

System Spectra

R
un

tim
e

O
ve

rh
ea

d
(%

)

Runtime Overhead in the Presence of Multiple Defects

Fig. 14: Runtime overheads obtained from the slid-
ing window approach with frequency filtering in
the presence of multiple defects.

11.30, and 8.62, and the average window lengths were
2.21, 1.33, and 1.07, for the seer cutoff value of 0.8,
0.9, and 0.95, respectively. We further observed that,
while the average runtime overhead decreased, the
average F-measure decreased and the average warn-
ing time increased. The average runtime overheads
were 2.67%, 2.41%, and 2.22%, the average F-measures

19

seer cutoff = 0.8 seer cutoff = 0.9 seer cutoff = 0.95
of defects # of defects # of defects

measure 1 2 3 2 3 2 3

F-measure 0.77 0.86 0.90 0.81 0.86 0.73 0.81
Warning Time (%) 53.48 53.36 58.36 56.55 60.09 66.27 66.83
Runtime Overhead (%) 1.98 2.75 2.61 2.47 2.36 2.25 2.19
of seer functions identified 9.98 14.89 16.57 10.71 11.84 8.16 9.04
Window length 1.95 2.18 2.23 1.29 1.38 ≈ 1 1.17
Monitoring probe invocation percentage 1.68 1.65 1.47 1.08 0.92 0.69 0.63
Prediction probe invocation percentage 0.64 0.62 0.51 0.43 0.35 0.29 0.25

TABLE 5: Summary of the results obtained from the hybrid spectra when used with the sliding window
approach and frequency filtering for different number of defects as well as different seer cutoff values.

were 0.88, 0.84, and 0.77, and the average warning
times were 56%, 58.42%, and 66.56%, respectively.

An interesting observation is that when seer
cutoff=0.9 in the presence of multiple defects, more
seer functions (an average number of 11.30 vs. 9.98)
were identified than in the presence of single de-
fects with the cutoff=0.8, as a result of which better
prediction accuracies were obtained (an average F-
measure of 0.84 vs. 0.77). When the cutoff=0.95 in the
presence of multiple defects, although slightly fewer
seer functions (an average number of 8.62 vs. 9.98)
were identified than in the presence of single defects
with the cutoff=0.8, similar prediction accuracies were
obtained (the average F-measure was 0.77 in both
cases).

6.4 Discussion

All these results suggest that, although some quality
assurance activities, such as fault localization, may
suffer in the presence of multiple defects, online
failure prediction approaches in general and Seer in
particular may not get affected as much (or even
perform better), because in the presence of multiple
defects, executions are likely to deviate more from
normality.

7 THREATS TO VALIDITY

All empirical studies suffer from threats to their in-
ternal and external validity. For this work, we were
primarily concerned with threats to external validity
since they limit our ability to generalize the results of
our studies to industrial practice.

One threat concerns the representativeness of the
subject applications used in the experiments, namely
grep, flex, and sed. Although they are all widely
used applications, they only represent three data
points. A related threat concerns the representative-
ness of the defects used in the experiments. Although
all the faulty versions of our subject applications were
taken from SIR [36] – a defect repository that has been
used by many related studies in the literature, they
represent only a subset of all defects. To address this
threat, we have evaluated the proposed approach in
the presence of both single and multiple defects.

The representativeness of the test cases used in
the experiments is also of concern. Although all the
test cases were taken from SIR, they often had a
short life span. With regard to the accuracy of the
proposed approach, long running test cases pose no
theoretical problems. Typically, the longer the execu-
tion, the more internal execution data is collected,
which in turn can help identify the patterns better.
With regard to the runtime overhead, long running
test cases pose no theoretical problems either. The
runtime overhead incurred by Seer primarily depends
on the ratio of function invocations for which monitor-
ing and prediction probes are executed. Therefore, as
long as this ratio is kept under control (and different
ways to achieve this have already been discussed in
Section 4.4) the overhead can be kept under control.

Another potential threat concerns the representa-
tiveness of the types of hybrid spectra we used and
the approaches against which we benchmarked the
proposed approach. The justification for the choice of
the three types of hybrid spectra we used in this work,
can be found in Section 3. The reasons for choosing the
two types of software spectra and the fault screeners
we used for benchmarking, are discussed in Section 4
and Section 5, respectively.

According to the taxonomy proposed by Salfner
et al. [3], Seer is a symptom monitoring-based on-
line failure prediction approach that uses classifiers
(Section 8). The performance of all classifier-based
approaches [21]–[23] is bounded by the representa-
tiveness of the passing and failing executions used
for training the classifiers. Seer is no exception.

We, however, strongly believe that classifier-based
approaches in general and Seer in particular are of
great practical importance. One reason is that on-
line failure prediction is not concerned with isolating
the defects causing failures (i.e., root cause analysis).
Rather, it aims to detect failure inducing program
states. As different defects can lead to the same or
similar failure inducing states, a classifier trained to
detect a particular failure inducing state can be used
to predict the failures caused by different defects
leading to the same or similar failure inducing state.

For example, consider a program that processes a
sequence of transactions. After receiving a transaction,

20

the program carries out some complex computations
and stores the result in a buffer for later processing.
Once the end of the sequence has been reached, the
results stored in the buffer are processed to com-
pute the final output. Now consider a scenario in
which the result buffer does not get populated after
processing a transaction. The execution reaches to
a failure inducing state, in which the result of the
transaction is lost. Therefore, the execution is destined
to fail. If this failure inducing state can be detected at
runtime, the failure can be predicted as soon as the
first transaction producing this failure inducing state
is observed, without even waiting for the subsequent
transactions. Note that there could be many different
defects scattered through the program that prevent
the result buffer from being populated properly. How-
ever, to predict the manifestation of the failures, all we
need is to detect a single failure inducing program
state, in which a transaction is processed, but the
result buffer is not populated. Therefore, a training
set that helps us identify this failure inducing state is
sufficient to predict the failures caused by all known
as well as unknown defects leading to the same or
similar states, demonstrating that not all defects must
be known a priori in order to train classifier-based
failure prediction models.

Obtaining a representative sample to identify fail-
ure inducing program states can still be a difficult
task, though. In such cases, Seer can be geared
towards predicting the manifestation of particular
types of failures rather than attempting to predict all
failures. For example, with automated error report-
ing tools, such as Windows Error Reporting (msdn.
microsoft.com), and public bug repositories, such
as Bugzilla@Mozilla (bugzilla.mozilla.org), becoming
mainstream, developers are not only informed about
their system’s failures faster but also able to collect
more data about the failures than it is used to be.
The data collected, besides being used as a debugging
aid, is often used to prioritize the failures according
to their impact on end users [43]. Even with all the
data that developers have about the failures, it may
still take an undesirable amount of time for them to
pinpoint and fix all the defects. In such cases, Seer
can be trained with the failure data collected from the
field to predict the manifestation of specific failures
that affect the end users the most. With the proactive
measures for the impending failures in place, this
approach can greatly improve the reliability of the
system by making the end users suffer less until the
defects are pinpointed and fixed.

8 RELATED WORK

Online failure prediction differs from reliability pre-
diction [44] in that reliability predictions, such as pre-
dicting the failure rates of software components, are
long-term predictions made in an offline manner with

no regard to the runtime state of the system, whereas
online failure predictions are short-term predictions
made at runtime on the basis of information obtained
by monitoring a running system.

Online failure prediction approaches. Salfner et
al. [3] classify the existing online failure predic-
tion approaches into three main categories: failure
tracking-based [4]–[6], error reporting-based [7]–[16],
and symptom monitoring-based approaches [17]–[31].

Failure tracking-based approaches analyze the oc-
currences of previous failures to reason about future
failures. Pfefferman et al. analyze the time-instants
at which earlier failures occurred to estimate the
probability distribution of the time to next failure [4].
Liang et al. use both temporal and spatial correlations
between previously reported failures for online failure
prediction [5]. Fu et al. present a method for quantify-
ing temporal and spatial correlations between failure
events [6].

While failure tracking-based approaches analyze
failure logs, error reporting-based approaches analyze
error logs to predict the manifestation of failures.
These approaches differ from each other in that errors,
such as unexpected system states, may not always
cause failures, which are externally observable unex-
pected system behaviors. Hatonen et al. [9], Vilalta
et al. [12], and Weiss [11], mine error logs to identify
simple, yet predictive rules, such as “if errors A and B
occur within 5 seconds of each other, then the system
is likely to crash.” The rules are then checked at
runtime and failure warnings are issued accordingly.
Nassar et al. [7], Lin et al. [8], Lal et al. [10], and Levy
et al. [14] analyze temporal and spatial correlations
between errors to predict failures. Vilalta et al.[13],
Salfner et al. [15], and Salfner and Malek [16] use
pattern recognition techniques to identify the patterns
in error logs that are predictive of failures.

Symptom monitoring-based approaches, on the
other hand, attempt to identify error symptoms lead-
ing to failures. Vaidyanathan et al. [17], Li et al.[45],
Andrzejak et al. [18], Kapadia et al. [20], and Hoff-
mann [19] use function approximation techniques to
compute a function that maps the values of monitored
system variables to values of target variables that are
capable of predicting failures. Although the current
values of target variables can be measured at run-
time, function approximation is used to extrapolate
the target values into the future to predict failures.
Hamerly et al. [21], Murray et al. [22], and Bodik et
al. [23] train classifiers to identify a boundary between
failure-prone and non-failure-prone system states. To
make a prediction, the current system state is checked
against the boundary to determine which side of the
boundary the state belongs to. Hughes et al. [24],
Murray et al. [22], Gross et al. [46], and Cassidy
et al. [25], on the other hand, compute observed
behavior models that capture the behavior of the
system as observed in successful executions. Then,

21

in previously unseen executions, the deviations from
these models are quantified to predict failures. Garg
et al. [26], Cheng et al. [27], Shereshevsky et al. [28],
Hellerstein et al. [29], and Meng et al. [30] use time
series analysis techniques for online failure prediction.
Fault screeners we have studied in Section 5, are also
a type of symptom monitoring-based online failure
prediction approach [39]–[41].

Architecture-based self-adaptation, which falls into
the category of symptom monitoring-based ap-
proaches, has also been studied [47], [48]. These
approaches typically take as input an abstract ar-
chitectural model of the system, use this model to
monitor the system’s runtime properties, evaluate the
model for violations of predetermined correctness
constraints, and perform adaptions at the level of
architectural elements (if needed). Casanova et al.
introduce an online architecture-based fault localiza-
tion approach, which is generally geared towards
quality-of-service-related non-functional failures [49],
[50]. Given an architectural model of the system and a
set of manually-developed oracles that detect system
errors, this approach produces a ranked list of suspi-
cious architectural elements that might have caused
the errors.

According to the taxonomy given above, Seer is
a symptom monitoring-based online failure predic-
tion approach that uses classifiers. It differs from
the existing symptom monitoring-based approaches
discussed above in that these approaches (except
for architecture-based self-adaptation approaches and
fault screeners) treat the system under observation as
a black-box and use only the data which is directly
observable from outside executions, such as CPU
and memory utilization, latency and throughput of
the system, and the number of active threads and
processes, etc. Seer, on the other hand, treats the
system under observation as a white box and collects
data from inside executions. Seer is also different
from architecture-based self-adaptation approaches
and fault screeners, which collect internal execution
data. The differences between fault screeners and Seer
have been extensively studied in Section 5. Seer differs
from architecture-based approaches discussed above
in that it predicts the manifestation of functional fail-
ures, rather than non-functional failures, and does so
without requiring an abstract model of the system or a
set of predetermined oracles. Finally, Seer differs from
failure tracking- and error reporting-based approaches
in that these approaches operate only on the data
collected by the system under observation and require
the system to internally detect its own failures or
errors. Seer, on the other hand, decides what needs
to be collected, which may not spontaneously be
collected by the system under observation, and does
not expect the system to internally detect its own
failures or errors.

Hardware performance counters. Hardware per-
formance counters have been used for performance
debugging [51], offline failure detection [32], failure
classification [52], and fault localization [53]. Seer, on
the other hand, uses them for online failure prediction.
Racunas et al. implement special-purpose hardware
components to identify “suspicious” changes in the
values computed by static machine instructions to de-
tect and recover from hardware-caused failures [54].
Seer is different in that we use general-purpose hard-
ware (i.e., hardware performance counters) to predict
software-caused failures.

Data-driven approaches for improving software
quality. In recent years, numerous researchers have
proposed data-driven approaches based on collecting
and analyzing internal execution data to improve the
quality of software systems. At a high level, these
techniques typically follow the general approach of
instrumenting the system under test, collecting data
every time the instrumentation code is executed, an-
alyzing the resulting data, and then acting on the
analysis results. Some example applications of this
general approach include failure detection, failure
classification, and fault localization [33], [43], [55]–
[61]. We believe that many types of software spectra
used in these approaches, can also be used for online
failure prediction. Elbaum et al. partially evaluate this
hypothesis [31]. However, their work is primarily con-
cerned with prediction accuracy and do not address
the issues regarding runtime overhead. Therefore,
the tradeoff between the prediction quality and the
runtime overhead of using existing software spectra
to predict the manifestation of failures, is still of great
practical concern and yet to be evaluated. In this
work we, on the other hand, combine hardware and
software instrumentation for online failure prediction.

9 CONCLUDING REMARKS AND FUTURE
WORK

In this work we developed a lightweight online failure
prediction approach, in which most of the data collec-
tion work is performed by fast hardware performance
counters. The hardware-collected data is augmented
with further data collected by a minimal amount of
software instrumentation that is added to the systems
software. In particular, we introduced three different
types of hybrid spectra for online failure prediction.

We then conducted a series of experiments to eval-
uate the proposed approach. In these experiments,
we used three widely used open source applications
as our subject applications. At the lowest level of
runtime overheads attained in the presence of single
defects, Seer predicted the failures about 54% way
through the executions with an F-measure of 0.77
and a runtime overhead of 1.98%, on average. At
the highest level of prediction accuracies attained in
the presence of multiple defects, Seer predicted the

22

failures about 56% way through the executions with
an F-measure of 0.88 and a runtime overhead of
2.67%, on average.

To demonstrate how much additional information
the hardware-collected data provided towards pre-
dicting the failures over and above the software-
collected data in our hybrid spectra, we compared
the performance of our hybrid spectra to that of two
correlated software spectra that are collected by using
software instrumentation only. For comparable run-
time overhead levels, hybrid spectra provided signifi-
cantly better prediction accuracies and warning times.
Alternatively, for comparable prediction accuracy lev-
els, hybrid spectra incurred significantly less runtime
overheads and provided better warning times. These
results strongly suggest that the data collected by
hardware performance counters was a significantly
influential factor in predicting the manifestation of
failures.

We also compared the proposed approach with six
different types of fault screeners. Compared to the
best performing fault screener in terms of predic-
tion accuracy, the proposed approach significantly im-
proved the prediction accuracy. Compared to the best
performing fault screener in terms of runtime over-
head, the proposed approach significantly reduced the
runtime overhead.

All these results support our basic hypothesis that
large cost reductions in collecting internal execution
data for online failure prediction may derive from
pushing the substantial parts of the data collection
work onto the hardware, while still supporting ac-
ceptable levels of prediction quality.

We believe that this line of research is novel and
interesting. We are therefore continuing to investi-
gate how combining hardware and software instru-
mentation can improve software quality. One pos-
sible avenue for future research is to use multiple
hardware performance counters simultaneously for
online failure prediction, rather than using a single
counter in isolation. Another avenue is to enhance the
existing online failure prediction approaches with the
data collected by hardware performance counters. Yet
another possible direction is to design special-purpose
hardware components for online failure prediction.

10 ACKNOWLEDGMENTS

This research was supported by a Marie Curie Inter-
national Reintegration Grant within the 7th European
Community Framework Programme (FP7-PEOPLE-
IRG-2008), and by the Scientific and Technological
Research Council of Turkey (109E182).

REFERENCES

[1] M. Malek, F. Salfner, and G. A. Hoffmann, “Self-rejuvenation:
An effective way to high availability,” in SELF-STAR: Inter-
national Workshop on Self-* Properties in Complex Information
Systems, (Bertinoro, Italy), June 2004.

[2] F. Salfner, G. A. Hoffmann, M. Malek, O. Babaoglu, M. Jelasity,
A. Montresor, C. Fetzer, S. Leonardi, van A., and M. Steen,
“Prediction-based software availability enhancement,” Lecture
Notes in Computer Science, vol. 3460, pp. 143–157, 2005.

[3] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Comput. Surv., vol. 42, pp. 10:1–
10:42, Mar. 2010.

[4] J. D. Pfefferman and B. Cernuschi-Frı́as, “A nonparametric
nonstationary procedure for failure prediction,” IEEE Trans.
Rel., vol. 51, no. 4, pp. 434–442, 2002.

[5] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sa-
hoo, “BlueGene/L failure analysis and prediction models,” in
Proc. 2006 International Conference on Dependable Systems and
Networks (DSN ’06), pp. 425–434, 2006.

[6] S. Fu and C.-Z. Xu, “Quantifying temporal and spatial correla-
tion of failure events for proactive management,” in Proc. 26th
IEEE International Symposium on Reliable Distributed Systems,
pp. 175–184, 2007.

[7] F. A. Nassar and D. M. Andrews, “A methodology for analysis
of failure prediction data,” in Proc. 1985 IEEE Real-Time Systems
Symposium, pp. 160–166, 1985.

[8] T. Lin and D. Siewiorek, “Error log analysis: statistical model-
ing and heuristic trend analysis,” IEEE Trans. on Rel., vol. 39,
no. 4, pp. 419–432, Oct.

[9] K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and
H. Toivonen, “Tasa: Telecommunication alarm sequence ana-
lyzer or how to enjoy faults in your network,” in Proc. 1996
IEEE Network Operations and Management Symposium, vol. 2,
pp. 520–529, 1996.

[10] R. Lal and G. Choi, “Error and failure analysis of a unix
server,” in Proc. 3rd IEEE High-Assurance Systems Engineering
Symposium, pp. 232–239, 1998.

[11] G. M. Weiss, “Timeweaver: A genetic algorithm for identifying
predictive patterns in sequences of events,” in the Proc. of
Genetic and Evolutionary Computation Conf., pp. 718–725, 1999.

[12] R. Vilalta and S. Ma, “Predicting rare events in temporal
domains,” in Proc. 2002 IEEE International Conference on Data
Mining, pp. 474–481, 2002.

[13] R. Vilalta, C. Apte, J. Hellerstein, S. Ma, and S. Weiss, “Pre-
dictive algorithms in the management of computer systems,”
IBM Systems Journal, vol. 41, no. 3, pp. 461–474, 2002.

[14] D. Levy and R. Chillarege, “Early warning of failures through
alarm analysis a case study in telecom voice mail systems,”
in Proc. 14th International Symposium on Software Reliability
Engineering, pp. 271–280, 2003.

[15] F. Salfner, M. Schieschke, and M. Malek, “Predicting failures
of computer systems: A case study for a telecommunication
system,” in Proc. 20th International Parallel and Distributed
Processing Symposium, pp. 8 pp.–, 2006.

[16] F. Salfner and M. Malek, “Using hidden semi-Markov models
for effective online failure prediction,” in IEEE International
Symposium on Reliable Distributed Systems, pp. 161–174, 2007.

[17] K. Vaidyanathan and K. Trivedi, “A measurement-based
model for estimation of resource exhaustion in operational
software systems,” in International Symposium on Software Re-
liability Engineering, pp. 84–93, 1999.

[18] A. Andrzejak and L. Silva, “Deterministic models of soft-
ware aging and optimal rejuvenation schedules,” in Proc.
10th IFIP/IEEE International Symposium on Integrated Network
Management, pp. 159–168, 2007.

[19] G. A. Hoffmann, Failure prediction in complex computer systems:
A probabilistic approach. PhD thesis, 2006.

[20] N. Kapadia, J. A. B. Fortes, and C. Brodley, “Predictive
application-performance modeling in a computational grid
environment,” in Proc. 8th International Symposium on High
Performance Distributed Computing, pp. 47–54, 1999.

[21] G. Hamerly and C. Elkan, “Bayesian approaches to failure
prediction for disk drives,” in Proc. 18th International Conference
on Machine Learning, (San Francisco, CA, USA), pp. 202–209,
Morgan Kaufmann Publishers Inc., 2001.

[22] J. Murray, G. Hughes, and K. Kreutz-Delgado, “Hard drive
failure prediction using non-parametric statistical methods,”
in Int’l Conf. on Artificial Neural Networks and Int’l Conf. on
Neural Information Processing, 2003.

[23] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea,
K. Patel, G. Tolle, J. Hui, A. Fox, M. Jordan, and D. Patterson,
“Combining visualization and statistical analysis to improve

23

operator confidence and efficiency for failure detection and
localization,” in Proc. 2nd International Conference on Autonomic
Computing, pp. 89–100, 2005.

[24] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan,
“Improved disk-drive failure warnings,” IEEE Trans. Rel.,
vol. 51, no. 3, pp. 350–357, 2002.

[25] K. Cassidy, K. Gross, and A. Malekpour, “Advanced pattern
recognition for detection of complex software aging phenom-
ena in online transaction processing servers,” in Int’l Conf. on
Dependable Systems and Networks, pp. 478–482, 2002.

[26] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
methodology for detection and estimation of software aging,”
in Proc. 9th International Symposium on Software Reliability En-
gineering, pp. 283–292, 1998.

[27] F.-T. Cheng, S.-L. Wu, P.-Y. Tsai, Y.-T. Chung, and H. C. Yang,
“Application cluster service scheme for near-zero-downtime
services,” in Proc. 2005 ICRA, pp. 4062–4067, 2005.

[28] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and
Y. Liu, “Software aging and multifractality of memory re-
sources,” in Proc. 2003 International Conference on Dependable
Systems and Networks, pp. 721–730, 2003.

[29] J. Hellerstein, F. Zhang, and P. Shahabuddin, “An approach
to predictive detection for service management,” in Proc. 6th
IFIP/IEEE International Symposium on Integrated Network Man-
agement, pp. 309–322, 1999.

[30] H.-N. Meng, Y. Qi, D. Hou, and Y. Chen, “A rough wavelet
network model with genetic algorithm and its application
to aging forecasting of application server,” in Int’l Conf. on
Machine Learning and Cybernetics, vol. 5, pp. 3034–3039, 2007.

[31] S. Elbaum, S. Kanduri, and A. Amschler, “Anomalies as pre-
cursors of field failures,” in Proc. 14th International Symposium
on Software Reliability Engineering, pp. 108–118, 2003.

[32] C. Yilmaz and A. Porter, “Combining hardware and software
instrumentation to classify program executions,” in Int’l Sym-
posium on Foundations of Software Engineering, pp. 67–76, 2010.

[33] C. Yilmaz, A. Paradkar, and C. Williams, “Time will tell:
fault localization using time spectra,” in Proc. 30th International
Conference on Software Engineering (ICSE ’08), pp. 81–90, 2008.

[34] I. H. Witten and E. Frank, Data Mining: Practical Machine Learn-
ing Tools and Techniques (Second Edition). Morgan Kaufmann
Publishers, 2005.

[35] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.

[36] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Soft. Eng., vol. 10, no. 4,
pp. 405–435, 2005.

[37] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, pp. 595–604.

[38] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect
localization for java,” in ECOOP 2005 - Object-Oriented Pro-
gramming (A. Black, ed.), vol. 3586 of Lecture Notes in Computer
Science, pp. 733–733, Springer Berlin / Heidelberg, 2005.

[39] R. Abreu, A. González, P. Zoeteweij, and A. J. C. van Gemund,
“Automatic software fault localization using generic program
invariants,” in Proceedings of the 2008 ACM Symposium on
Applied Computing, pp. 712–717, 2008.

[40] J. Santos and R. Abreu, “Lightweight automatic error detection
by monitoring collar variables,” in Testing Software and Systems,
vol. 7641 of Lecture Notes in Comp. Sci., pp. 215–230, 2012.

[41] R. Abreu, A. González, P. Zoeteweij, and A. J. Van Gemund,
“On the performance of fault screeners in software develop-
ment and deployment,” Proceedings of the 3rd International Con-
ference on Evaluation of Novel Approaches to Software Engineering
(ENASE’08), pp. 123–130, 2008.

[42] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, pp. 422–426, July
1970.

[43] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang, “Automated support for classifying software
failure reports,” in Proc. 25th International Conference on Soft-
ware Engineering (ICSE ’03), pp. 465–475, 2003.

[44] M. R. Lyu, ed., Handbook of software reliability engineering.
Hightstown, NJ, USA: McGraw-Hill, Inc., 1996.

[45] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for esti-
mation of software aging in a web server,” in Int’l Symposium
on Empirical Software Engineering, pp. 91–100, 2002.

[46] K. Gross, V. Bhardwaj, and R. Bickford, “Proactive detection
of software aging mechanisms in performance critical com-
puters,” in Proc. 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, pp. 17–23, 2002.

[47] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” Computer, vol. 37, pp. 46–54, Oct.
2004.

[48] J. Cmara, R. de Lemos, M. Vieira, R. Almeida, and R. Ventura,
“Architecture-based resilience evaluation for self-adaptive sys-
tems,” Computing, vol. 95, no. 8, pp. 689–722, 2013.

[49] P. Casanova, B. Schmerl, D. Garlan, and R. Abreu,
“Architecture-based run-time fault diagnosis,” in Software
Architecture, vol. 6903 of Lecture Notes in Computer Science,
pp. 261–277, 2011.

[50] P. Casanova, D. Garlan, B. Schmerl, and R. Abreu, “Diagnos-
ing architectural run-time failures,” in Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pp. 103–112, 2013.

[51] N. Smeds, “OpenMP application tuning using hardware per-
formance counters,” in Proc. 2003 International Conference on
OpenMP Shared Memory Parallel Programming, (Berlin, Heidel-
berg), pp. 260–270, Springer-Verlag, 2003.

[52] B. Ozcelik, K. Kalkan, and C. Yilmaz, “An approach for
classifying program failures,” in Int’l Conf. on the Advances in
System Testing and Validation Lifecycle, pp. 93–98, 2010.

[53] C. Yilmaz, “Using hardware performance counters for fault
localization,” in Proc. 2010 International Conference on the Ad-
vances in System Testing and Validation Lifecycle, pp. 87–92, 2010.

[54] P. Racunas, K. Constantinides, S. Manne, and S. Mukherjee,
“Perturbation-based fault screening,” in Int’l Symposium on
High Performance Computer Architecture, pp. 169–180, Feb 2007.

[55] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of
test information to assist fault localization,” in Int’l Conf. on
Software Engineering, pp. 467–477, ACM, 2002.

[56] G. Hoglund and G. McGraw, Exploiting software: How to break
code. Addison-Wesley Publishing Company, 2004.

[57] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug iso-
lation via remote program sampling,” SIGPLAN Not., vol. 38,
no. 5, pp. 141–154, 2003.

[58] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing failure:
the distribution of program failures in a profile space,” in Proc.
9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 246–255, September 2001.

[59] W. Dickinson, D. Leon, and A. Podgursky, “Finding failures by
cluster analysis of execution profiles,” in Int’l Conf. on Software
Engineering, pp. 339–348, May 2001.

[60] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Applying
classification techniques to remotely-collected program execu-
tion data,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 146–
155, 2005.

[61] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning
for automatic classification of software behavior,” in Int’l
Symp. on Software Testing and Analysis, pp. 195–205, July 2004.

Burcu Ozcelik received the BS and MS de-
grees in computer science and engineering
from Sabanci University, Istanbul, Turkey, in
2009 and 2012, respectively. She is currently
working as a freelance software developer.

24

Cemal Yilmaz received the BS and MS de-
grees in computer engineering and informa-
tion science from Bilkent University, Ankara,
Turkey, in 1997 and 1999, respectively. In
2005, he received the PhD degree in com-
puter science from the University of Maryland
at College Park. Between 2005 and 2008,
he worked as a post-doctoral researcher at
IBM Thomas J. Watson Research Center,
Hawthorne, New York. He is currently an
assistant professor of computer science on

the Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey. His current research interests include software
engineering and software quality assurance.

