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Abstract–During project execution, especially in a multi-project environment project activities are 

subject to risks that may cause delays or interruptions in the baseline schedules. This paper considers the 

resource constrained multi-project scheduling problem with generalized activity precedence relations 

requiring multi-skilled resources in a stochastic and dynamic environment present in the R&D 

department of a home appliances company and introduces a two-phase model incorporating data 

mining and project scheduling techniques. This paper presents the details of Phase I, uncertainty 

assessment phase, where Phase II corresponds to proactive project scheduling module. In the proposed 

uncertainty assessment approach models are developed to classify the projects and their activities with 

respect to resource usage deviation levels. In doing so, the proposed approach enables the project 

managers not only to predict the deviation level of projects before they actually start, but also to take 

needed precautions by detecting the most risky projects. Moreover, Phase I generates one of the main 

inputs of Phase II to obtain robust baseline project schedules and identifies the risky activities that need 

close monitoring. Details of the proposed approach are illustrated using R&D project data of a leading 

home appliances company. The results support the efficiency of the proposed approach. 
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1. INTRODUCTION 

A major mode of production of goods and services involves projects and hence, project management 

and scheduling. A large number of firms and organizational units are organized as project-based 

organizations such as technology firms,consulting firms and R&D departments among others perform 

almost all their work through projects. These organizations operate generally in a multi-project 

environment operating on more than one project simultaneously. These projects are interrelated since 

the same pool of resources is employed to execute them. Therefore, generating project schedules has 

become more of an issue to better utilize resources to achieve project objectives.Such a schedule helps 

to visualize the project and is a starting point for both internal and external planning and 

communication. Careful project scheduling has been shown to be an important factor to improve the 

success rate of projects. 

Most of the studies in project scheduling literature assume complete information about the problem and 

develop scheduling methodologies for the static and deterministic project scheduling problem (see, e.g., 

Demeulemeester and Herroelen, 2002; Hartman and Briskorn, 2010). However, uncertainty is inherent 

in all project management environments. In reality, the situation is dynamic in the sense that new 

projects arrive continuously and stochastic in terms of inter-arrival times and work content. 

Furthermore, during project execution, especially in a multi-project environment project activities are 

subject to uncertainty that can take many different forms. Activity duration estimates may be off, 

resources may break down, work may be interrupted due to extreme weather conditions, new 

unanticipated activities may be identified, etc. All these types of uncertainties may result in a disrupted 

schedule, which leads in general to the deterioration of the performance measures. Thus, the need to 

protect a schedule from the adverse effects of possible disruptions emerges. This protection is necessary 

because a change in the starting times of activities could lead to infeasibilities at the organizational level 

or penalties in the form of higher subcontracting costs or material acquisition and inventory costs. 

Hence, being able to generate robust schedules becomes essential if one aims at dealing with 

uncertainty and avoiding unplanned disruptions.  

Most widely used approach to handle uncertainty is to attach it into activity durations without explicitly 

considering the sources of risks. In this activity-based approach, uncertainty is attached to activity 

durations using three-point estimates of low, most likely and long activity durations and assuming 

appropriate probability distributions (Hulett, 2009). However, this approach fails to assess the impact of 
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risks individually on the activity durations. Therefore, it is of interest to develop risk integrated project 

scheduling techniques to produce robust baseline schedules, i.e., baseline schedules that are capable of 

absorbing such disruptions. This makes risk-based uncertainty assessment an essential step for project 

scheduling.  

This paper is motivated from a preemptive resource constrained multi-project scheduling problem 

(preemptive-RCMPSP) with generalized activity precedence relations requiring multi-skilled resources 

in a stochastic and dynamic environment present in the R&D department of a home appliances 

company.  A two-phase model is developed incorporating data mining and project scheduling 

techniques to schedule these R&D projects. In this paper, our focus will be limited to the Phase I, 

uncertainty assessment phase, of the developed two-phase framework. Details of Phase II, proactive 

project scheduling phase, can be found in Capa and Ulusoy (2015). Proposed uncertainty assessment 

phaseprovides a systematic approach to assess risks that are thought to be the main factors of 

uncertainty and measuring the impacts of these factors to durations by utilizing the most important data 

mining techniques: feature subset selection, clustering,and classification.  

Next section introduces briefly risk analysis in project scheduling and risk integrated project scheduling 

methods presented in literature.  In Section 3, the problem on hand and the problem environment are 

explained in detail. The details of the uncertainty assessment phase of the developed two-phase 

methodology are presented in Section 4. In Section 5, a real case is introduced andutilized for presenting 

the details of the developed methodology. Finally in Section 6, the paper is concluded with a discussion 

on the results of the case study, final remarks and possible future research agenda. 

2. RISK ANALYSIS AND RISK INTEGRATED METHODS IN PROJECT SCHEDULING 

Risk is defined as an uncertain event or condition that, if it occurs, has a positive or negative effect on a 

project objective (PMI, 2000). The goal of risk analysis is to generate insights into the risk profile of a 

project and use these insights in order to drive arisk response process. In literature, risk analysis process 

is divided into four main sub-processes: risk identification, risk prioritization, quantitative risk 

assessment and quantitative risk evaluation (Herroelen et. al., 2014). A wide body of knowledge on 

quantitative techniques has been accumulated over the last two decades. Monte Carlo Simulation is the 

predominant technique so far both in practice and in literature. Proactive project scheduling has 

recently emerged as another approach of interest. 
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With risk information on hand, proactive project scheduling aims at constructing a stableinitial baseline 

schedule that anticipates possible future disruptions by exploiting statistical knowledge of uncertainties 

that have been detected and analyzed in the project planning phase. Stability is a particular kind of 

robustness that attempts to guarantee an acceptable degree of insensitivity of the initial baseline 

schedule to the disruptions that may occur during the project execution and it represents the degree of 

the difference between the baseline and realized schedule. Although it can be represented by a number 

of ways such as the number of disrupted activities, or the number of times that an activity is re-planned, 

the most widely used measure is the stability cost function which is the expectation of the weighted sum 

of the absolute percent deviation (%deviation) between the planned and realized activity starting times. 

The activity dependent weights in this stability cost function represent the marginal cost of deviating the 

activity’s starting time from the scheduled starting time and it reflects either the difficulty in shifting the 

booked time window for starting or the importance of on-time performance of the activity. They may 

include unforeseen storage costs, extra organizational costs, costs related to agreements with 

subcontractors or just a cost that expresses the dissatisfaction of employees with schedule changes (Van 

de Vonder et al. (2007)). The objective of the proactive project scheduling is then to minimize the 

expected absolute %deviation between the planned and realized activity start times. Since the analytic 

evaluation of this expected value is burdensome, a natural way out is to evaluate it through simulation, 

which mimics the project execution over a number of scenarios. For more details on stability in project 

scheduling we refer to Leus (2003) and Leus and Herroelen (2004). 

Although there are some efforts to develop risk integrated project scheduling techniques to produce 

robust baseline schedules, the literature on this subject is very scarce. Jaafari (2001), Kirytopoulos et al. 

(2001), Schatteman et al. (2008), Creemers (2011), and Herroelen (2014) are notable examples of the 

risk integrated project scheduling methodologies. Jaafari (2001) presents an integrated and collaborative 

approach, which setsthe life cycle objective functions as the basis of evaluation throughout the project 

life cycle. Kirytopoulos et al. (2001) introduce a knowledge system to identify risks and their 

assessments in project schedules. Expert knowledge,checklists and risk breakdown structure are 

utilizedin the system. Schatteman et al. (2008) present a computer supported risk management system 

that allows identification, analysis, and quantification of the major risk factors and the derivation of their 

probability of occurrence and their impact on the duration of the project activities. Creemers et al. 

(2011) show that a risk-driven approach is more efficient than an activity-based approach when it 

comes to analyzing risks. In addition, the authors propose two ranking indices; one activity-based index 
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that ranks activities and a risk-driven index that ranks risks. These indices allowidentifying the activities 

or risks that contribute most to the delay of a project to assist project managers in determining where to 

focus their risk mitigation efforts.  Herroelen (2014) proposed a risk integrated tabu search methodology 

that relies on an iterative two-phase process. While in phase one, the number of regular renewable 

resources to be allocated to the project and the internal project due date are determined, phase two 

implements a proactive-reactive schedule generation methodology through time and/or resource 

buffers. 

3. PROBLEM DEFINITION AND ENVIRONMENT 

The problem on hand is scheduling of the research and development (R&D) projects with a priori 

assigned resources in a stochastic environment present in the R&D Department of a home appliances 

company.  In the R&D Department, R&D projects related to technologies to be employed for the 

current and future product portfolio are conducted. The problem environment under consideration 

contains multiple projects consisting of activities using multi-skilled renewable resources.  The project 

networks are of activity-on-node (AON) type with finish-to-start (FS) and start-to-start (SS) precedence 

relations with zero and positive time lags. No precedence relation is assumed between projects. All the 

projects are managed with a stage-gate approach.  

The R&D Department is organized in technology departments and these technology departments are 

comprised of technology families, each of which works on a different technology field (Fluid 

Dynamics, Material Science, Thermodynamics, Cleaning, Vibration and Acoustics, Structural Design, 

Power Electronics, and Electronic Assessment). Each technology family has a technology family 

leader, who is responsible for all the researchers and technicians working in the corresponding 

technology family. Prior to the initiation of a project, the activities of the project as well as the 

precedence relations between activities are determined by the project leader and the project team. Since 

it is difficult to make correct estimations on the work content of the activities in the planning phase, they 

are defined as aggregate activities, which might include several subtasks that might be detailed in a later 

time. There are two types of resources in the R&D Department: human resource and equipment. 

Human resources consist of researchers and technicians. All the equipment, machines, mechanisms and 

laboratories are included under the equipment category. Human resources are multi-skilled, i.e., each 

human resource has its own specialty and the degree of that specialty differs from one human resource 

to another. This makes human resources critical for the R&D Department since the human resources are 
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not necessarily substitutable. Each activity requires resources from different departments and different 

technology families for certain working hours. Thus, the projects are conducted in a multi-disciplinary 

environment. Moreover, resources that an activity requires do not need to work together or 

simultaneously. They can even stop working on that activity for a while and then continue later, i.e., the 

work of the resources on activities are pre-emptive leading to pre-emptive activities. The resource 

requirement of activities and hence, the durations of the activities are uncertain. In the literature, the 

activities require a number of resources for certain deterministic or stochastic durations instead of 

requiring working hours, which is the case here. Therefore the project environment considered in this 

paper is different than the project scheduling environments existing in the literature in the sense that it 

has different data requirement. 

The problem on hand can be considered as an extension of the resource constrained multi-project 

scheduling problem (RCMPSP) with generalized precedence relations and multi-skilled resources to 

include pre-emption, stochastic activity duration and resource availabilities, and dynamic arrival of 

projects. The objective is, by considering the possible activity %deviations beforehand, generating 

stable baseline project schedules with an acceptable makespan.  

4. PROPOSED METHODOLOGY FOR UNCERTAINTY ASSESSMENT 

The main purpose of this study is topresent the uncertainty assessment phase of an integrated 

methodology for robust project scheduling. The uncertainty assessment phaseprovides a systematic 

approach to assess uncertainty by identifying the most important factors of uncertainty, measuring the 

impacts of these factors to the resource usage %deviation levels of projects and their activities and 

generating activity %deviation distributions. This phase is designated as Phase I of a two-phase model 

for robust project scheduling. In Phase II, proactive project scheduling phase, we use a bi-objective GA 

employing two different chromosome evaluation heuristics to generate robust baseline schedules. This 

bi-objective GA provides a set of robust non-dominated baseline schedules for scheduled activities to 

the decision maker. The decision maker can then choose one of these non-dominated robust baseline 

schedules to be used as the main baseline plan for the activities considering the dynamics of the current 

project management environment. This baseline plan is then used as a reference point in the 

implementation and monitoring phase of the projects and can be revised, if needed. Basic framework of 

the two-phase approach is given in Figure 1. 
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analysis of projects and (ii) %deviation analysis of activities. Framework of the uncertainty assessment 

phase is given in Figure 2. 

 

Figure 2. Framework of the uncertainty assessment phase 

The details of the proposed uncertainty assessment approach are presented in the following subsections. 

We kindly suggest the interested readers to refer to Tan et al. (2006), and Du (2010) for detailed 

information on the data mining tools we use throughout the paper. 

4.1. Step I: %Deviation Analysis of Projects 

The objective of the first step is to establisha classification model based on completed projects (projects 

in the sample project set) in the Department in order to classify newly initiated projects with respect to 

their %deviation levels. The input of this step consists of various features that are thought to be relevant 

for determining the %deviation levels of projects and the values that these features take for each project. 

First, the most important features are determined with the help of feature subset selection algorithms, 

and then clustering is applied to the numerical values of %deviations in order to generate nominal 
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%deviationclass labels for each project. Afterwards, these nominal and numerical%deviationlevels 

(outputs) are used in the learning stage of the classification model construction. For each feature subset 

and output combination, a classification model is constructed and %deviation classes of projects are 

predicted. All these prediction results are then used to give a probabilistic membership to the projects in 

the sample project set. Note that when a project is completed in the system, it should be added to the 

sample data set and Step I should be repeated for better accuracy. The output of this step is various 

classification models that give probabilistic membership to newly initiated projects. Thus, by using 

these classification models, in the planning phase, i.e., before the projects actually start, predicting their 

%deviation levels will be possible and needed precautions can be taken accordingly. Moreover, this 

stepgives the relations between important features that determine the %deviation level of projects, 

which enables the project managers to have a better understanding of the system and make fine-tuning 

on these feature values in order to bring the projects’ %deviation to a desired level.  

4.1.1. Feature Subset Selection 

Construction of the classification model starts with determining the features that can have a positive or 

negative effect on the %deviation level of projects and finding the best subset of these features in terms 

of prediction. In our approach, for the feature subset selection, we suggest utilizing an open source data 

mining software, namely WEKA, developed by Hall et al. (2009), comparing the performances of 

different feature subset selection algorithms that the software supports and select the best ones in terms 

of prediction accuracy. 

4.1.2. Clustering 

The next step after feature subset selection is to cluster the projects in the sample project set to generate 

nominal %deviation levels that will be used along with numerical %deviation levels. The main reason 

of this nominal %deviation level determination is that most of the classification algorithms work with 

nominal output values. 

The aim of clustering in general terms isto divide the data set into mutually exclusive groups such that 

the members of each group are as close as possible to one another, and different groups are as far as 

possible from one another, where distance is measured with respect to all available features. In this 

paper, we employ for clustering the K-means algorithm developed by MacQueen (1967) to obtain the 

nominal output values for each project from the numeric output values. The basic idea of the K-means 
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algorithm is to divide the data into K partitions with an iterative algorithm that starts with randomly 

selected instances as centers and then assigns each instance to its closest center. Closeness is often 

measured by the Euclidean distance but can also be measured by some other closeness metric.  Given 

those assignments, the cluster centers are re-determined and each instance is again assigned to its closest 

center. This procedure is repeated until no instance changes its cluster. The sum of squared errors 

metric is the most preferred evaluation measure of clustering algorithms. For a detailed discussion on 

clustering methods, we refer to Berkhin (2006) and Jain (2010). 

4.1.3. Classification 

After obtaining nominal output values, next step is to develop classification models. In that stage, we 

propose the use of both numeric and nominal output that both represent the %deviations of projects 

from their mean. In doing so, we will have more than one classification model, one model for each 

output type-feature subset combination, each having a different performance on the data. 

In this step, instead of selecting the classification model that performs best on the given data, we 

propose using prediction results of several classification algorithms that give reasonable accuracy and 

produce probabilistic predictions for the %deviation levels of the projects. This is made possible by the 

various classification algorithms currently available in WEKA (Hall et al., 2009). By doing so, we will 

be providing probabilistic memberships to the projects in the sample set that represent %deviation level 

classes. This approach is considered to be more robust than selecting a single classification model and 

making deterministic predictions accordingly, since providing a probabilistic prediction precludes 

missing the actual %deviation class of a project and tolerates the error caused by model selection. In 

fact, instead of making a class prediction, giving a closeness value to each %deviation class is more 

understandable by the project managers. Thus,this approach makes sense both in terms of convenience 

of perception and correctness. 

4.2. Step II: %Deviation Analysis of Activities 

In Step I we develop a model to predict the %deviation level of a newly arrived project based on its 

various input features. Using this information, in Step II, we develop a model to predict the 

%deviationlevel of the “activities” of this new project. The aim of Step II is to obtain %deviation 

distributions for each project %deviation class - activity class combination to be used in Phase II of the 

proposed solution approach for robust project scheduling. Therefore, Step II of the uncertainty 
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assessment phase starts with the classification of all project activities, thus forming a number of activity 

subsets. Forming a distribution requires sufficient number of replications. Since we are dealing with 

R&D projects and the activities of R&D projects are usually unique with characteristic work contents, 

such an aggregation and classification is considered to be compulsory.  

For each activity class of a newly arrived project, using the %deviation information of already 

completed activities in the corresponding activity class and the %deviation class prediction of this 

newly arrived project, we form a %deviation distribution. Note that, the %deviation classes of already 

completed projects are determined in previous steps, thus we already know the frequency and 

%deviation level information for the activities in each project %deviation class - activity class 

combination. To form the %deviation distribution for an activity class, we set a minimum and 

maximum value on the %deviationlevel that an activity can take and then this relatively large range is 

divided into smaller intervals. After that, for each activity class, frequency information for each project 

class and %deviationinterval is obtained. In this case, since the project’s %deviation prediction is 

probabilistic, we cannot directly use either the frequency distribution for the activity class or the 

frequency distribution for the activity class-project %deviation class combination. We need to adjust 

the frequency distribution regarding activity classes using the%deviation class of the projects. In each 

interval, we knowthe number of activities (# activities)completed and the allocation of these activities to 

the project’s% deviation classes. Thus, adjusted frequency information for an interval is obtained by 

summing the multiplications of # activities in each project %deviation class with the probability of the 

%deviation level membership of the newly arrived project. As an illustration, assume that we have two 

%deviationclasses for the projects (Class1 and Class2) and the newly arrived project is predicted to be a 

member of Class1 and Class2 with probabilities 50% each. Also, assume that the %deviationrange in 

each class is divided into four intervals and there are 40 completed activities in Class1 and 80 

completed activities in Class2 that lie within the range of the first %deviation interval. Then the 

adjusted frequency of an activity having a %deviation level in the first interval equals 60(=40 x 0.50 + 

80 x 0.5) for this case. 

After obtaining these adjusted frequency distributions, the probabilities for an activity having a 

%deviation level in each interval is calculated and the piecewise linear %deviation distributions are 

formed for each activity class in the newly arrived project. This distribution is then used to assign 

%deviation level to the to-be-scheduled activities in Phase II of the proposed two-phase methodology. 
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Step I of the uncertainty assessment phase is called whenever a project is completed from Phase II and 

whenever a new project enters the project management system. Step II of the uncertainty assessment 

phase isused whenever robust project schedules need to be obtained. 

5. SAMPLE APPLICATION IN A CASE STUDY 

In the implementation of uncertainty assessment phase of the proposed two-phase approach for robust 

R&D project scheduling, R&D project data of a home appliances company is used.The problem 

environment under consideration contains multiple projects, which are managed with a stage-gate 

approach and most of them are research-based projects that are subject to considerable amount of 

uncertainty. Human resources in the department are multi-skilled, i.e., each human resource has its own 

specialty and the degree of that specialty differs from one human resource to another. This makes 

human resources very critical for the R&D Department since the human resources are not necessarily 

substitutable. In the remainder of the text, the only resource type considered is human resource. This is 

due to the relatively high importance of human resource as well as the relatively unrestricted availability 

of other resources such as laboratory facilities and equipment. This section first introduces the data used 

in the implementation and its analysis, and then gives the implementation steps of uncertainty 

assessment phase on real data with the findings and results. 

5.1. Data Analysis 

In the implementation, first a set of completed projects are analyzed and sample project set to be usedin 

both phases of the proposed two phase approach is determined. Then, relevant input features that might 

have a positive or negative effect on the %deviation levels of projects are determined and the values all 

these features take for each project are obtained. After that, the most important features are determined 

through feature subset selection. Then, the activities of the projects in the project set are classified into 

six categories to develop a better activity %deviation level prediction procedure for the activities of a 

newly arrived project. Data section ends with the presentation of the activity data analysis results. Note 

that in the feature subset selection WEKA (Hall et al, 2009) is utilized. 

5.1.1. Determining the Project Set 

To determine the sample project set, first a sample project (project p) pointed by the R&D department 

manager of the firm is considered. The reason why projectp is pointed is that all the six resources that 
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are considered to be the most critical ones in terms of the total workloads of them in the R&D 

Department are the resources that also worked in the activities of p. To obtain the sample project set, all 

the other projects in which these resources work during the execution of projectp(during time range ���) 

are filtered from the project database of the firm. Since total number of projects obtained after this 

filtering process was 117, a reduction process is applied. In this reduction process, the first and last three 

months of  ��� are excluded from consideration yielding a new time range ���, then a total of 33 projects 

whose execution time does not lie in  ��� are removed from the sample project set resulting in a total of 

84 remaining projects. From these 84 projects, all the projects starting before 2007 are also removed 

since the project plans was not detailed enough. Consequently, a project set comprised of 43 interrelated 

projects in terms of the resources used is obtained. 

5.1.2. Determining the Projects’ %deviation Class Labels 

In order to consider the %deviations of the projects as a risk measure, in the proposed uncertainty 

assessment approach, we suggest utilizing both numeric output (actual %deviation), and nominal 

output (class labels representing actual %deviation). In the determination of the nominal output labels, 

the aim is to classify the projects into four %deviation levels (Negative High %deviation-NHD, 

Negative Low %deviation-NLD, Positive Low %deviation-PLD and Positive High %deviation-PHD). 

In this approach, first four clusters are obtained through the implementation of the simple K-Means 

algorithm and then labeling is performed based on the resulting clusters. Resulting threshold values in 

this labeling approach are -%20, %0, and +%25),which are similar to those provided by the R&D 

Department (-%20, %0, and +%20). Therefore, the results indicate that the projects with %deviation 

level less than or equal to -%20 are in the class of NHD; those with %deviation between -%20 and %0 

are in the class of NLD; those with %deviation between %0 and +%25are in the class of PLD; and those 

with %deviation more than +%25 are in the class of PHD. 

5.1.3. Determining the Relevant Features that Affect %deviation Level of Projects 

After several interviews with the project managers of the firm, the factors that might affect %deviation 

level of projects through time and resource overruns and underruns are determined and the values that 

these features take for each project is obtained. Determined input features and the minimum and 

maximum values that these features take for the projects in the sample project set are listed in Table 1. 
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Table 1. Determined Input Features 

Feature ID Feature Name Type Min. Max. 

F1 Existence of the technology family Fluid Dynamics binary 0 1 

F2 Existence of the technology family Material Science binary 0 1 

F3 Existence of the technology family Thermodynamics binary 0 1 

F4 Existence of the technology family Cleaning binary 0 1 

F5 Existence of the technology family Vibration and Acoustics binary 0 1 

F6 Existence of the technology family Structural Design binary 0 1 

F7 Existence of the technology family Power Electronics binary 0 1 

F8 Existence of the technology family Electronic Assessment binary 0 1 

F9 Number of collaborative internal plants  integer 0 5 

F10 Number of technology families involved in the project integer 2 9 

F11 Required size of project team in numbers integer 5 27 

F12 Number of required equipment and machine type integer 0 5 

F13 Number of collaborations integer 0 3 

F14 First usage of infrastructure binary 0 1 

F15 Existence of similar projects worked on before binary 0 1 

F16 Planned man-months needed double 6.1 88.69 

F17 Planned equipment-months needed double 0 119.97 

F18 Expected cost of the project integer 32064 506825 

F19 Technology maturity of the project integer 1 25 

F20 Position of the project in the r&D-R&d spectrum integer 1 3 

 

Note that F20 specifies the position of the project in the r&D - R&d spectrum where r&Drepresents the 

solely development-based projects and R&d represents solely research-based projects. 

5.1.4. Activity Classification 

As stated previously, the aim of Step II of the uncertainty assessment phase is to obtain %deviation 

distributions to be used in Phase II of the robust project scheduling model. Since we are dealing with 

R&D projects and the activities of R&D projects are unique and the work content is characteristic 

among all the activities, in order to obtain sufficiently large amount of data for valid activity %deviation 

distributions, we have categorized the activities of projects in the project set in six activity classes. The 

list of activity classes determined is as follows: 

1. Meeting and Reporting Activity Class  
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2. Designing, Modeling and Visualizing Activity Class 

3. Test, Measurement and Analysis Activity Class 

4. Prototyping/Production Activity Class 

5. Literature and Patent Search Activity Class  

6. Others Activity Class 

The classification of the activities is not only based on the work contents but also the density of required 

resource types (human resource or equipment) of the activities. 

5.1.5. Analysis of Data 

Before starting the implementation, activity data is analyzed in order to be more familiar with the data 

In this part, we give some statistics concerning the activities in our project set. While Figure 3 shows the 

number of projects of each project’%deviation class, Figure 4 shows the number of activities in each 

project %deviation class. 

 

Figure 3. Number of Projects in Each Project %deviation Class 

It is seen from Figure 3 that the numbers of projects in each type of project %deviation class are very 

similar to each other indicating that we almost have a homogeneous project set in terms of project 

%deviation classes. 

9
11

13
10

0

5

10

15

NHD NLD PLD PHD



16 

 

 

Figure 4. Distribution of Activities in Each Project %deviation Class 

Figure 4 indicates while number of activities having negative %deviations is noticeably higher 

thanthose with positive %deviations in the project classes of NHD and NLD, this difference is not that 

much for the project %deviation classesPLD and PHD.Table 2 shows the number of activities 

(#activity), number of activities with positive and negative deviations (#positive and #negative) in each 

activity class along with probabilities of them (%negative and %positive). 

Table 2. Activity Statistics 

Activity Class  #activity #negative #positive %negative %positive 

1. Meeting and Reporting 237 134 103 57 43 

2. Test Measurement and Analysis 609 364 245 60 40 

3. Literature and Patent Search 27 17 10 63 37 

4. Design Modeling and 57 33 24 58 42 

5. Prototyping/ Production 56 34 22 60 40 

6. Others 19 9 10 47 53 

 

Table 3 reveals that the activities in all classes except in “others” have a tendency of having negative 

%deviation. This shows that the project managers are generally overestimating the resource usages of 

the activities and adopt a risk-averse strategy not to be blamed in case unforeseen events. Similar 

analysis is done for the activities in each project %deviation class. Since all the projects dealt with are 

completed projects, we know the actual project %deviation class of them. Table 3 demonstrates the 

activity statistics for each %deviation class. 
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Table 3.Project %deviation Class Based Activity Statistics 

Project 

%deviation 

# 

projec

# 

activity 

# 

negative 

# 

on-time 

# 

positive 

% 

negative 

% 

on-time  

% 

positive 

NHD 9 179 129 2 48 72 1 27 

NLD 11 195 127 5 62 65 3 32 

PLD 13 338 179 17 139 53 5 41 

PHD 10 296 159 5 131 54 0 44 

 

Table 4 indicates that the activities in the projects’ %deviation classNHD and NLD have the tendency of 

having negative %deviation as expected. On the contrary, the activities in the projects’ %deviation class 

PHD and PLD have also the tendency of having negative %deviation with a lower probability. This can 

be explained by the dominance of the activities with negative %deviation in the activity set. 

Table 4 shows the number of the activities completed on time, with negative %deviation and with 

positive %deviation together with their project %deviation classes and the probability of being in these 

project % deviation classes. 

Table 4.Activities’ Project %deviation Class Statistics Based on Their %deviation Type 

    %activities 

  #projects NHD NLD 
Total 

%negative 
PLD PHD 

Total 

%positive 

%negative 594 22 21 43 30 27 57 

%on-time  29 7 17 24 59 17 76 

%positive 380 13 16 29 37 34 71 

 

Table 4 reveals that among the activities having negative %deviation, about half of them are in the class 

of NHD and NLD, among the activities on time, 75% of them belongs to the class of NLD and PLD, 

and among the activities having positive %deviation 71% of them belongs to the class of PLD and 

PHD.  
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5.2. Step I: Projects’%Deviation Analysis 

5.2.1. Feature Subset Selection 

Not only missing some of the significant input features but also the existence of ample number of 

irrelevant features makes it difficult to establish the relation between the inputs and the output. 

Therefore, feature subset selection is an essential step in data mining process and directly influences the 

classification performance. In the analysis reported here, determined 20 input features (���� and 11 

input features (���� resulting in exclusion of the features regarding to existence of various technology 

families in the projects are utilized with two types of numeric output: percentage human resource 

%deviations of the projects (%deviation) and absolute percentage human resource %deviations of the 

projects (|%deviation|). Various different feature subset selection algorithms supported in WEKA are 

utilized. In these algorithms, a subset of the data instances are used as a training set, while the remaining 

instances are used as test instances to evaluate the performance of the algorithm on these test instances. 

Note that different training and test combinations yield different subsets of significant inputs hence a 

threshold value of 70% is set in order to make a final decision for inclusion of a feature for the further 

analysis. The results of the feature subset selection analysis are given in Table 5. 

Table 5. Results of Feature Subset Selection Analysis 

Feature Subset Results for 	
� Results for 	
� 

Output Type %deviation |%deviation| %deviation |%deviation| 

Selected 

Feature 

Subsets 

F1, F6, F13, F14, 

F15 

F1, F4, F8, F14, 

F15 

F10, F13, F14, 

F15, F19 

F10, F11, F13, F14, 

F15 

 

As a result of the analysis, four different feature subsets are determined as significant: {F1, F6, F13, 

F14, F15} (	

), {F1, F4, F8, F14, F15} (	
�), {F10, F13, F14, F15} (	
�), and {F10, F11, F13, F14, 

F15} (	
�). Notice that F14 and F15 (First usage of infrastructure and Existence of similar projects 

worked on before) is included in all determined feature subsets which indicates the high importance of 

the experience level of the resources on the subject of the projects. We also see that F13 (Number of 

collaborations) is included in three of the determined feature subsets and when ��� is (Effect of various 

technology families’ existence) considered, F1 replaces F10 indicating the relative importance of 
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existence of the technology family Fluid Dynamics over the number of total technology families 

involved. All these results enable the project managers to see the relations of these various features 

between each other and on the expected performance of the project. In order to evaluate the influence of 

the feature subset selection stage to the classification performance, two additional feature sets are also 

included in further analysis: ��� and ���. 

5.2.2.Classification 

In this step, for each feature subsetconsidered in the previous subsection, classification analysis is 

performed on both numeric and nominal output values. 

Table 6. Classification Results for Numeric Output 

Method 

Perf. 

Metric 

Input Feature Subset 

	
� 	
� 	

 	
� 	
� 	
� AVG. 

LR 

%Correct 21% 49% 40% 37% 40% 28% 36% 

MSE 94 54 57 63 64 66 66 

Used 

Features 

F1,F4,F6,F11, 

F13,F16,F18,F9 

F11,F13, 

F14,F19 

F10,F14, 

F19 
F11,F13 F1,F6,F13 F1,F4 

LMSLR 

%Correct 23% 40% 40% 37% 47% 56% 40% 

MSE 93 34 37 47 42 34 48 

Used 

Features 
ALL ALL ALL ALL ALL ALL 

PR 

%Correct 49% 40% 50% 37% 42% 51% 45% 

MSE 37 44 36 45 42 39 41 

Used 

Features 

F1,F4,F6,F11, 

F13,F9,F19 

F10,F11,F13, 

F14,F19,F20 

F10,F13, 

F14,F19 
ALL ALL ALL 

M5P 

%Correct 56% 47% 44% 37% 40% 28% 42% 

MSE 49 35 36 45 64 55 47 

Used 

Features 
F6,F11,F13,F19 

F11,F13,F16, 

F19,F20 

F10,F13, 

F14,F19 
F11,F133 F1,F6,F13 F1,F4 

AVG. 
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Classification with Numeric Output 

In classification with numeric output, only regression based classification algorithms supported by 

WEKA are used: Linear Regression (LR), Least Median Squared Linear Regression (LMSLR), Pace 

Regression (PR) and M5P Algorithm. Table 6 shows the predictive performance of these algorithms 

based on two metrics (Accuracy Rate (%Correct) and the Mean Squared Error (MSE)) for each of the 

six input feature subsets determined previously. Note that, for the numerical output case #Correct are 

based on the previously determined nominal output labels (NHD, NLD, PLD, and PHD). In order to 

calculate the MSE of classification methods number-based labels as 1, 2, 3, and 4 corresponding NHD, 

NLD, PLD, and PHD, respectively are used. Thus, the error is simply calculated as the difference 

between the corresponding number-based prediction label and number-based label. Table 6 also 

presents the features the performance results for each feature subset used in the analysis.  

Notice that, since the classification algorithms have embedded feature selection mechanisms, Table 6 

also includes a row that shows the selected features in the implementation of the mentioned 

classification algorithms. The results show that the best average %Correct and MSE values are obtained 

with PR. 

Classification Analysis with Nominal Output 

The classification algorithms applied to the data set with nominal output were J48 Decision Tree (J48) 

classification method and Naive Bayes (NB) classification method. Again the same predictive 

performance metrics are used. The results for the data set with nominal output are presented in Table 7. 

 

Table 7. Classification Results for Nominal Output 

Method 

Perf. 

Metric 

Input Feature Subset 

	
� 	
� 	

 	
� 	
� 	
� AVG. 

J48 

%Correct 84% 84% 65% 67% 63% 50% 69% 

MSE 20 12 30 20 41 45 28 

Used 

Features 

F1,F3,F4,F5, 

F6,F12,F13,F14, 

F15,F17,F20 

F11,F12,F13, 

F14,F18,F19 

F10,F11, 

F13,F14 

F1,F1, 

F14 

F1,F13, 

F14 

F1,F4, 

F8,F14 

NB 
%Correct 67% 60% 54% 54% 56% 50% 57% 

MSE 22 29 44 38 33 45 35 
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Table 7 shows that on average J48 and NB, which work on nominal output values, generate better 

accurate results than the regression based methods. Moreover, best average %Correct and MSE values 

are obtained with J48 Decision Tree Method. Notice that when all the features determined are used, 

accuracy rate rises up to 84%.  

 

Further Results 

In this part, we suggest two further ways of producing classification results. In addition tooption of 

selecting a feature subset and a classification method, which gives the best accuracy (J48 with FS1), 

another option is to use all the analysis done so far and producing probabilistic results. Using the 

prediction results obtained with each feature subset and classification model combination, we can 

provide probabilistic %deviation estimations for each project by simply counting each label assigned to 

projects and dividing this number to the number of prediction methods. For the numeric and nominal 

%deviation, we have 36 predictionsin total for each project. By using probabilistic results the aim is to 

decrease the prediction error arising from the selected feature subset and classification method. The 

probabilistic results for a subset of projects are shown in Table 8. 

Table 8. Probabilistic Classification Results for Numeric Output 

  Prediction Count Probability 

Project 

ID 
NHD NLD PLD PHD NHD NLD PLD PHD 

10-015 28 8 0 0 78% 22% 0% 0% 

09-045 24 12 0 0 67% 33% 0% 0% 

08-054 15 15 6 0 42% 42% 17% 0% 

09-018 9 8 10 9 25% 22% 28% 25% 

09-023 13 18 5 0 36% 50% 14% 0% 

09-036 4 20 12 0 11% 56% 33% 0% 

11-009 5 12 16 3 14% 33% 44% 8% 

10-049 9 15 12 0 25% 42% 33% 0% 

08-040 3 21 7 5 8% 58% 19% 14% 

08-022 3 18 11 4 8% 50% 31% 11% 
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Table 9 shows the performances of classification analysis for prediction of the classes using 

probabilistic results in terms of the number of projects estimated to be in NLD and NHD, in PLD and 

PHD and in terms of the number of exact class prediction. 

Table 9. Performances of Probabilistic Results for the %deviation Level Prediction 

Output 

Type 

#negative 

match 

#positive 

match 

#exact 

match 

%negative 

match  

%positive 

match 

%exact 

match 

Numerical 15 16 22 35% 37% 51% 

Nominal 19 13 29 44% 30% 67% 

 

Table 9 shows that the proposed probabilistic approach performs well for the prediction of %deviation 

level classes of projects but performs much betterwhen only negative and positive class labels are 

considered together, i.e., only two classes are considered as negative %deviation class and positive 

%deviation class. Table 9 also shows that compared classification predictions made with nominal 

output provide better results. 

Another way of prediction of the %deviation levels of projects could be adopting a one-take-out 

procedure. In this iterative one-take-out procedure, in each iteration one project is disregarded from the 

analysis and the learning stage of the classification algorithm is performed from the remaining 42 

projectsresulting accuracy for each project. Accuracy of the method is then the average accuracy of the 

results for all projects. 

5.2.3. Comparisons of Classification Approaches 

In the previous sub-sections we have provided the classification accuracy results using each of output 

and feature subset combinations. To make a better decision on selecting the classification approach, 

considering solely accuracy results and selecting the method giving the best accuracy might not be 

reliable enough. In this part, we will suggest further ways of comparing classification methods used in 

the previous sections.  

One way of comparing classification approaches other than comparing accuracy performance is the 

useof average variability of each classification approach. This variability attribute is specific to each 

feature subset - classification method combination and can be calculated using the number-based 
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labelsassociated with the projects used in calculationof MSE. The variability of a project for feature 

subset - classification method combination is simply the sum of the squared differences between the 

predicted number-based label for the combination in question and predicted number-based labels 

obtained for the remaining (feature subset - classification method) combinations. The average 

variability of a combination is then obtained summing these variability values for all projects and 

simply taking the average. Since the number of combinations for each output type is different (due to 

number of algorithms used in the analysis for the corresponding output type) in order to make the 

comparisons consistent we have also divided the average variability values to the number of 

combinations. In doing so, we were able to compare the (feature subset - classification method) 

combinations between each other. Results showing the average variability of the combinations are 

demonstrated in Table 10. 

Table 10. Average Variability Results of the Classification Approaches 

 Feature 

Subset 

Classification 

Method 

Average 

Variability 

 Feature 

Subset 

Classification 

Method 

Average 

Variability 

 ��� 

LR 1.76 

  ��� 

LR 1.01 

LMSLR 1.89 LMSLR 0.78 

PR 0.73 PR 0.90 

MP5 1.00 MP5 1.01 

J48 0.71 J48 0.66 

NB 0.86 NB 0.59 

 ���  

LR 0.94 

 ���  

LR 1.80 

LMSLR 0.94 LMSLR 0.99 

PR 0.80 PR 0.97 

MP5 0.73 MP5 1.80 

J48 0.64 J48 1.02 

NB 0.86 NB 0.52 

 ���  

LR 1.14 

 ���  

LR 1.26 

LMSLR 0.78 LMSLR 0.76 

PR 1.02 PR 0.88 

MP5 0.98 MP5 1.48 

J48 0.53 J48 0.69 

NB 0.65 NB 0.70 
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Table 10 indicates that among the classification methods PR, J48 and NB give the lowest average 

variability results for ���, ��� and���, and ���, ��� and ���; respectively. In parallel with the 

accuracy results, the use of classification methods that usenominal labels obtained by applying the 

simple K-Means clustering algorithm, obtains better variability values for all feature subsets. 

Another consideration we need to take into account while comparing classification approaches is the 

interpretability of the results. Since the Naive Bayes classification method is a black box only giving the 

classes of the given projects, it might be hard to convince the decision-maker about the reliability of the 

method. Decision tree based algorithms are better for interpretability, since they also provide the tree as 

a rule of classification to the decision maker for the newly added data point (i.e., a new project in our 

case). When selecting a classification approach, another consideration is the number of features used in 

the classification and the ease of obtaining them. 

5.3. Step II: Activities’%deviationAnalysis 

In Step I, we develop a model to predict %deviation level of a newly arrived project based on its various 

input features. Using this information along with activity class information in Step II,we develop a 

model to predict %deviation of the activities of this newly arrived project. In this section, first, we 

present activities’ %deviation analysis results for a project whose %deviation class is deterministically 

predicted, and then for a project whose project %deviation class is probabilistically predicted. 

5.3.1. Activity %deviationPrediction with Deterministic Project %deviation Class Prediction 

Using the classification model that gives the best accuracy rate, for a newly arrived project we predict 

its %deviation class and for each activity class in the corresponding project using the %deviations of 

already completed activities in the associated activity class we form a %deviation distribution. To 

illustrate this distribution forming process, Table 11 shows the frequency information for NHD Project 

Class - Test, Measurement and Analysis Activity Class combination and Figure 5 shows the chart of the 

corresponding %deviation distribution. 
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Table 11. Frequency and Probability Information for the NHD-Test, Measurement and Analysis 

Class Combination 

Activity 

Class 

#activities in NHD 

Project 

%deviation Class 

%deviation 

Range 
#activities 

Probability of Being in the 

Range 

2. Test 

Measurement 

and Analysis 

102 

(-1)-(-0.67) 23 22.55% 

(-0.67)-(-0.33) 30 29.41% 

(-0.33)-(0) 23 22.55% 

0-0.33 14 13.73% 

0.33-0.67 6 5.88% 

0.67-1 1 0.98% 

1-1.33 3 2.94% 

1.33-1.66 0 0.00% 

1.66-2 2 1.96% 

 

 

Figure 5. Distribution the NHD - Test, Measurement and Analysis Combination 

%deviation distributions of the activities belonging to each activity class - project %deviation class 

combinations are obtained following the same procedure and predictions are made for all the activities 
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belonging to the projects in the sample project set in order to make comparisonswith the actual 

%deviation levels.  

5.3.2. Activity %deviation Prediction with Probabilistic Project %deviation Class Prediction 

In this section, the procedure is modified using the probabilistic results obtained in Step I. In doing so, 

we do not ignore the possibility of missing the exact %deviation level of projects. To do so, for each 

activity class, adjusted frequency information is used. Table 12 tabulates the frequency information for 

the activity class “Meeting and Reporting” and Figure 6 illustrates the corresponding frequency chart. 

Table 12. Frequency Information for the Activity Class “Meeting and Reporting” 

Activity 

Class 
#activity 

%deviation 

range 
NHD NLD PLD PHD 

1. 

Meeting 

and 

Reporting 

187 

(-1)-(-0.67) 13 16 7 18 

(-0.67)-(-0.33) 5 5 6 4 

(-0.33)-(0) 10 9 8 6 

0-0.33 6 11 6 7 

0.33-0.67 1 4 4 2 

0.67-1 0 2 6 5 

1-1.33 1 0 2 1 

1.33-1.66 0 1 2 1 

1.66-2 2 2 6 5 
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Figure 6. Frequency Distribution for Activity Class “Meeting and Reporting” 

In this case, since the project’s %deviation prediction is probabilistic, we cannot directly use frequency 

information, we need to adjust it by multiplying the frequency probabilities in each interval with the 

membership probabilities. Figure 7 shows the %deviation distribution for the activities belonging to 

Test and Measurement activity class for a project with a membership 50% each for PHD and PLD 

project %deviation classes. 

 

Figure 7. Probability Distribution for Test and Measurement Activity Class- 50% PHD, 50% PLD 

Project %deviation Class Combination 

0

10

20

30

40

50

60

PHD Count

PLD Count

NLD Count

NHD Count

0,00

0,05

0,10

0,15

0,20

0,25

%deviation probabilities



28 

 

5.3.3. Activities’%deviationPrediction Performance Analysis 

To test our activity %deviation prediction procedure we have used the actual project %deviation class 

information and actual activity %deviations. The performance is measured in terms number of matches 

for activities having negative %deviation, and number of matches for activities having positive 

%deviation. To reduce the effect of randomness, we performed five replications. While Table 13 shows 

the results for the actual %deviation labels are used for projects, Table 14 and 15 show the results when 

projects’ %deviation levels are predicted deterministically and probabilistically.  

Table 13. %deviationPrediction Results for the Actual Project %deviation Classes 

  Prediction Replication 

AVG.   1 2 3 4 5 

Total #negative Match 377 366 373 365 353 366.8 

Total #positive Match 168 161 183 153 146 162.2 

Total #activity Match 545 516 556 518 498 526.6 

% Negative Match 60.03% 58.28% 59.39% 58.12% 56.21% 58.41% 

%Positive Match 44.21% 42.37% 48.16% 40.26% 38.42% 42.68% 

%Match 54.07% 51.19% 55.16% 51.39% 49.40% 52.24% 

Total #activity 1008 

Total #activity Having Negative %deviation 628 

Total #activity Having Positive %deviation 380 

 

Table 14 indicates that using the procedure that we suggested with deterministic project %deviation 

level prediction, we are able to make correct predictions on the %deviations of activities on the average 

with a probability of 51%. Our predictions are much better to predict the negative %deviations of 

activities than the positive %deviations of activities. Table 15 shows that using the procedure that we 

suggested with probabilistic project %deviation level predictions; we are able to make correct 

predictions on the %deviations of activities on the average with a probability of 52%. Similarly, our 

predictions are much better to predict the negative %deviations than the positive %deviations for 

activities. Notice that the performance of the proposed prediction procedures are almost the same when 

the deviation level of projects are exactly known in advance.  
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Table 14. %deviationPrediction Results with Deterministic Project %deviation Class Prediction 

  Prediction Replication 

AVG. 

  1 2 3 4 5 

Total #negative Match 369 371 375 360 369 368.8 

Total #positive Match 147 143 160 160 140 150 

Total #activity Match 516 514 535 520 509 518.8 

% Negative Match 58.76% 59.08% 59.71% 57.32% 58.76% 58.73% 

%Positive Match 38.68% 37.63% 42.11% 42.11% 36.84% 39.47% 

%Match 51.19% 50.99% 53.08% 51.59% 50.50% 51.47% 

Total #activity 1008 

Total #activity Having Negative %deviation 628 

Total #activity Having Positive %deviation 380 

 

Table 15. %deviationPrediction Results with Probabilistic Project %deviation Class Prediction 

  Prediction Replication 

AVG. 

  1 2 3 4 5 

Total #negative Match 375 362 360 353 379 365.8 

Total #positive Match 160 155 156 159 151 156.2 

Total #activity Match 535 517 516 512 530 522 

% Negative Match 59.71% 57.64% 57.32% 56.21% 60.35% 58.25% 

%Positive Match 42.11% 40.79% 41.05% 41.84% 39.74% 41.11% 

%Match 53.08% 51.29% 51.19% 50.79% 52.58% 51.79% 

Total #activity 1008 

Total #activity Having Negative %deviation 628 

Total #activity Having Positive %deviation 380 

 

To illustrate how the activity %deviation prediction procedure will work for two different projects 

having different %deviation prediction profiles, the probabilities of activities’ tendency of having 

negative and positive %deviations are illustrated in Table 16.  
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Table 16. The Probabilities of Activities’ Having Negative and Positive %deviations for Two 

Different Projects 

  

Project Type    Project Type    

(0.00, 0.10, 0.10, 0.80)*  (0.80, 0.10, 0.10, 0.00)* 

Activity Class 
Negative 

Probability 

Positive 

Probability 

Negative 

Probability 

Positive 

Probability 

1. Meeting and Reporting 56.24% 43.76% 68.58% 31.42% 

2. Test Measurement and Analysis 54.35% 45.65% 71.14% 28.86% 

3. Literature and Patent Search 68.57% 31.43% 53.33% 46.67% 

4. Design Modeling and 40.23% 59.77% 54.97% 45.03% 

5. Prototyping/Production 56.25% 43.75% 75.00% 25.00% 

6. Others 56.00% 44.00% 40.00% 60.00% 

*(%NHD, %NLD, %PLD, %PHD) 

 

Table 16 shows that the activities in the Meeting and Reporting, Test Measurement and Analysis, 

Literature and Patent Search, Prototyping and Production, and Others activity classes belonging to 

mostly to PHD project class and mostly to NHD project class tend to have negative %deviation. On the 

other hand, while the activities in the Design Modeling and Visualizing activity class belonging 

mostlyto PHD project class tend to have positive %deviation, the ones belonging mostly to NHD class 

have the tendency of having negative %deviation. 

6. SUMMARY AND CONCLUSIONS 

In this study, we presentthe uncertainty assessment phase of the proposed two-phase approach for 

robust project scheduling. Using the feature subset selection, clustering and classification tools, we 

develop a two-step uncertainty assessment model to be used to predict the deviation levels of projects 

and their activities. While in Step I we develop classification models to predict the deviation level of a 

newly arrived project, in Step II we develop an activity deviation prediction procedure for the activities 

of a newly arrived project. Step I enables the project managers to predict the deviation level of a project 

before it actually starts and also enables the project managers to take the needed precautions by 

detecting the risky projects. Step II not only constitutes the input for proactive project scheduling to 

obtain robust baseline project schedules by presenting activity deviation distributions but also identifies 
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the risky activities that need close monitoring. In doing so, project managers may focus their attention to 

the risky activities that are expected to have high uncertainty levels and take the needed precautions to 

bring their deviation levels to a desired level by adding additional resources and/or by monitoring the 

progress of these activities more closely.Especially in a multi-project environment, all these supportive 

features of the proposed uncertainty assessment model helps the project managers to make more 

analytical and comprehensive decisions when managing projects. 

We also present a real case application of the uncertainty assessment model using the R&D project data 

of a leading home appliances company. We make predictions on the %deviation of activities that we 

have in the sample project set. Besides this main output, we determine the main features that have an 

effect on the deviations level of projects, and develop classification models to classify the newly arrived 

projects with respect to their deviation level. The results show that, our uncertainty assessment model 

works well on the sample project set.  

It should also be noted that, proposed models are appropriate not only for the specific case of the 

resource constrained project scheduling problem, which was introduced in this paper, but also for all 

project management environments with considerable uncertainty. 
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