
A SECURITY AND PRIVACY INFRASTRUCTURE FOR CLOUD
COMPUTING USING GROUP SIGNATURES

by

Fırat Tahaoğlu

Submitted to the Graduate School of Sabancı University
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

February, 2012



A SECURITY AND PRIVACY INFRASTRUCTURE FOR CLOUD
COMPUTING USING GROUP SIGNATURES

Approved by:

Assoc. Prof. Dr. Albert Levi ..............................
(Dissertation Supervisor)

Assoc. Prof. Dr. Erkay Savaş ..............................

Assoc. Prof. Dr. Berrin Yanıkoğlu ..............................

Assist. Prof. Dr. Cemal Yılmaz ..............................

Prof. Dr. Alev Topuzoğlu ..............................

Date of Approval: ...................



c© Fırat Tahaoglu 2012

All Rights Reserved



A SECURITY AND PRIVACY INFRASTRUCTURE FOR CLOUD
COMPUTING USING GROUP SIGNATURES

Fırat Tahaoğlu

Computer Science and Engineering, Master’s Thesis, 2012

Thesis Supervisor: Albert Levi

Keywords: Group Signatures, Cloud Computing, Cloud Security, Access Rights.

Abstract

New software applications are being developed every day by software development
groups, ranging from the most professional to smaller amateur ones. The structures of the
software development groups are very diverse, and a development environment should
satisfy the needs of different kinds of group structure. Considering the advantages of
low resource requirement, accessibility through mobile devices with restricted resources,
and compatibility with collaborative working environments, Cloud computing is a perfect
match for software developers, especially for the groups. However, since Cloud comput-
ing operates on insecure Internet, security against malicious third parties is a crucial issue.
Files should be kept safe in the Cloud, and should only be accessed by those who have
the authorization. Revocation and addition of the group members, and the organization
of the access rights should also be performed in an efficient and robust way, fulfilling the
needs of different groups.

In this thesis, we propose a security and privacy infrastructure for a software devel-
opment environment running in the Cloud. We propose to solve the security issues using
the anonymous credential system, idemix, provided by IBM Research which relies on the
Camenisch-Lysyanskaya group signature scheme. Group signatures can provide flexibil-
ity in the groups’ inner organization and are also helpful for handling the access rights.
Moreover, using an anonymous credential system also provides to the group members
the ability to keep their anonymity while interacting with Cloud. In this way, we aim

iv



to provide an infrastructure to serve the groups with different inner organizations by not
compromising their privacy. In order to evaluate the performance of the proposed system,
we develop a simulation environment using M/D/m/m queues and analyze the proposed
system under different scenarios and access control structures. Our results show that the
proposed system is an efficient one and can serve up to 1000 concurrent users with re-
sponse time under one second using four servers.

v



BULUT BİLİŞİM İÇİN GRUP İMZA YAPILARI KULLANAN BİR
GÜVENLİK VE MAHREMİYET ALTYAPISI

Fırat Tahaoğlu

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2012

Thesis Supervisor: Albert Levi

Keywords: Grup İmzalari, Bulut Bilişim, Güvenlik

Özet

Yazılım geliştirme grupları tarafından her geçen gün yeni yazılımlar üretilmektedir.
Bu gruplar, en amatöründen en profesyoneline, nitelik açısından çok değişik özelliklere
sahip olabilmektedirler. Bir geliştirme ortamı, iç yapısından bağımsız olarak her farklı
gruba hizmet edebilme özelliğini taşımak durumundadır. Bulut bilişimin sağladığı düşük
işlem güçlü mobil araçlarla çalışabilme kapasitesi, yardımlaşmalı çalışma ortamlarıyla
uyumu gibi kolaylıklar, bulut bilişimi yazılım geliştirme grupları için çok uygun bir alter-
natif haline getirmektedir. Ancak, bulut bilişimin güvensiz internet ortamında çalışması,
güvenlik sorunlarını da önemli kılmaktadır. Dosyalar bulut içerisinde güvenli bir biçimde
tutulmalı ve ancak erişim izni olanlar tarafından erişilebilir kılınmalıdır. Grup üyelerinin
eklenmesi ve çıkarılmasının ve grup içindeki erişim izni haklarının her grubun iç organi-
zasyonuna uyumlu olarak güvenli ve verimli olması gerekmektedir.

Bu tezde bulut içerisinde çalışan bir güvenlik ve mahremiyet altyapısı önerilmektedir.
Güvenlik problemleri IBM’in geliştirdiği anonim bir kimlik sistemi olan ve Camenisch ve
Lysyanskaya tarafından geliştirilmiş grup imza yapısına dayanan idemix kütüphanesiyle
çözülmektedir. Grup imza yapıları, özellikleri itibariyle grupların iç organizasyonlarında
esneklik sağlamakta ve grup içi erişim izinlerini idare etmekte oldukça yardımcı olmak-
tadırlar. Bunun yanısıra anonim kimlik sistemleri kullanılarak, grup üyelerinin servis

vi



sağlayıcıya karşı anonimlikleri ve dolayısıyla mahremiyetleri korunmaktadır. Böylelikle,
iç yapılarında değişik özellikler barındıran gruplara mahremiyetlerine ve güvenliklerine
zarar vermeden hizmet verecek bir altyapı sunulşmuştur. Sistemin verimliliğini ölçmek
için, M/D/m/m kuyruk modellerini kullanarak bir simulasyon ortamı geliştirilmiştir. Bu
simulasyon ortamında değişik senaryolar ve erişim hakları yapıları kullanarak sistemin
verimliliği analiz edilmiştir. Sonuçlarımız, önerdiğimiz sistemin verimli bir sistem olduğunu
ve 1000 eşzamanlı kullanıcıya, dört sunucuyla, bir saniyenin altında kalan cevap süreleriyle
hizmet edebildiğini göstermiştir.

vii



Acknowledgements

I would like to thank my family for their endless love and support throughout my life.

I would also like to thank my supervisor Albert Levi for his support, guidance and
understanding during my research and more importantly my whole academic life.

The support of Aysu and Mr. Karakulak should not go unnoticed. I could not have
done all this work without their love and incredible sense of humor.

I appreciate the valuable feedbacks of my thesis jury members.

I will never forget my time on FENS 2014 and I would like to thank all people there
for being such great friends and making a regular lab a great environment.

Last, but not least, I would like to thank Esra Erdem for her guidance throughout my
undergraduate years.

viii



Contents

1 Introduction 1

2 Background Information 3
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Cloud Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Group Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Zero Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 The CL Signature Scheme . . . . . . . . . . . . . . . . . . . . . 12

2.4 The idemix Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Proposed System 16
3.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Issuer Key Generation . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Issuance Protocol (User Registration) . . . . . . . . . . . . . . . 20
3.1.4 Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4.1 Building a Proof . . . . . . . . . . . . . . . . . . . . . 23
3.1.4.2 Verifying a Proof . . . . . . . . . . . . . . . . . . . . 25

3.1.5 File Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.6 User Revocation Process . . . . . . . . . . . . . . . . . . . . . . 26

4 Implementation Details 29
4.1 Adoption of idemix Library . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Implementation of the protocols . . . . . . . . . . . . . . . . . . 30

4.2 Client - Server Architechture . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Performance Evaluation 36
5.1 Unit Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



5.2.2 Simulation Parameters and Performance Metric . . . . . . . . . . 39
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Worst Case Average Response Time Analysis . . . . . . . . . . . 40
5.3.2 Ratio Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2.1 Throughput Analysis . . . . . . . . . . . . . . . . . . 42
5.3.3 Worst Case Average Response Time Analysis Using Different

Number of Required Permissions . . . . . . . . . . . . . . . . . 43
5.3.4 Average Response Time Analysis Using Authenticated Sessions . 44
5.3.5 Average Response Time Analysis In Case of Revocation . . . . . 46

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion and Future Work 51

x



List of Figures

2.1 Zero Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 idemix Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 A specific application of the proposed system . . . . . . . . . . . . . . . 18
3.3 Overview of the Issue protocol . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 File Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 System parameters file . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Group parameters file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 A sample proof specification structure . . . . . . . . . . . . . . . . . . . 32
4.4 A sample Proof file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 An example of a nonce file . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 The simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Response time analysis w.r.t. number of clients for different proof com-

plexities, m = 1, t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Response time analysis w.r.t. number of clients for different mean inter-

arrival times using medium complexity proofs, m = 2 . . . . . . . . . . . 42
5.4 Comparative response time analysis w.r.t. number of clients for different

servers using medium complexity proofs, t = 1 . . . . . . . . . . . . . . 43
5.5 [Response time / Unit time] ratio analysis w.r.t. number of clients for

different proof complexities, cm, m = 4, t = 1 . . . . . . . . . . . . . . . 44
5.6 Throughput analysis w.r.t. number of clients for different proof complex-

ities, m = 4, t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.7 Worst Case Average response time analysis w.r.t. number of clients for

different number of required permissions using medium complexity proofs,
m = 4, t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 Average response time analysis w.r.t. number of clients for different ses-
sion durations, cm, m = 4, t = 1 . . . . . . . . . . . . . . . . . . . . . . 47

xi



5.9 Average response time analysis w.r.t. number of clients for different proof
complexities, session = 10min, m = 4, t = 1 . . . . . . . . . . . . . . 48

5.10 Average response time analysis w.r.t. system time for different sizes of
groups using medium complexity proofs, m = 1, t = 1 . . . . . . . . . . 49

5.11 Average response time analysis w.r.t. system time for different sizes of
groups, using medium complexity proofs, m = 1, t = 3 . . . . . . . . . . 50

xii



List of Tables

3.1 The system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 The number of attributes in proofs . . . . . . . . . . . . . . . . . . . . . 36
5.2 The execution times for unit operations . . . . . . . . . . . . . . . . . . 37
5.3 Groups and Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 The distribution of permission shares . . . . . . . . . . . . . . . . . . . . 46

xiii



Chapter 1

Introduction

Cloud computing is a new concept, which offers delivery of computing as a service rather
than a product. Cloud providers aim to deliver applications, or various services, which
can be accessed from desktop or mobile applications via the Internet. There are various
kinds of Cloud services that Cloud providers offer ranging from simple applications to
complex infrastructures. The main motivation is to enhance mobility, collaboration and
easy maintainability due to the centralization of the services. Cloud applications are get-
ting more and more widespread, thanks to their low resource requirements, accessibility
through mobile devices with restricted resources, and compatibility with collaborative
working environments such as GoogleDocs [7] and Dropbox [3].

New software applications are being developed every day by software development
groups, ranging from the most professional to smaller amateur ones. This diversity also
shows itself in the inner hierarchies of these development groups. While there is a flat
organization in some of them, some others have rigid hierarchical structures. Moreover,
members of these groups may be located in different countries, and have no personal
interaction. In other words, the structures of the software development groups are very
diverse, and a development environment should satisfy the needs of different kinds of
group structures.

Since Cloud computing operates on insecure Internet, security against malicious third
parties is a crucial issue. Files should be kept safe in the Cloud, and should only be
accessed by those who have the authorization. Revocation and addition of the group
members, and the organization of the access rights should also be performed in a robust
way, while fulfilling the needs of different groups.

What we propose in this thesis is to utilize the advantages of low resource require-
ment and easy accessibility of Cloud computing in order to come up with a security and

1



privacy infrastructure for a software development environment running in the Cloud. Our
main focus is to create a generic environment that can serve differently organized software
development groups. For this purpose, we make use of the group signature structure in-
troduced by Chaum and van Heyst [21], which allows us to free the development groups
in their inner organization, while being useful for interacting with the Cloud securely
against malicious third parties. Moreover, since we outsource the data and the computita-
tons to Cloud, the Cloud provider should be working in need-to-know basis. Therefore, it
is essential to achieve authentication with only the information the groups want to reveal.
Hence, we implement the protocols of Camenisch and Lysyanskaya Signature Scheme
[16] using idemix primitives. Camenisch and Lysyanskaya Signature Scheme [16] relies
on Zero-Knowledge proofs, which are essential to achieve mutual authentication with-
out exchanging any critical knowledge. This way, we secure the anonimity of the users
against the Cloud service provider.

To summarize, we propose a security and privacy infrastructure for a software devel-
opment environment running in the Cloud. Considering the advantages of easy accessi-
bility, high computing power and support for collaborative features, Cloud computing is
a perfect match for software developers, especially for the groups. We propose to solve
the security issues using group signatures, which can provide flexibility within the groups
and can be modified for handling the access rights. In this way, we aim to serve the groups
with different organizations: flat or hierarchical.

We also develop a simulation environment using M/D/m/m queuing model in order
to evaluate the performance of the proposed system. Our results show that the proposed
system is an efficient one and can serve up to 1000 concurrent users with four servers.
We also analyze the system assuming the worst case, where every action requires authen-
tication. Moreover, we also analyze the behaviour of the system in case of user revocation.

Outline of the thesis is as follows. In Chapter 2, we give an overview of Cloud comput-
ing, Cloud Security, idemix library and the group signature schemes it uses. We elaborate
on possible access right models using the components of idemix with the proposed sys-
tem. In Chapter 3, we take a deeper look into access right issues using idemix and give
insight to protocols used inside the system (namely Issue Protocol, Authentication Proto-
col and File Transfer Protocol). Chapter 4 explains the implementation details, message
structures within the protocols, the role of idemix library and how it was used. Chapter 5
deals with the time measures for atomic operations and discusses how the performance
evaluation was achieved, in addition to presenting the results. Finally, in Chapter 6, we
summarize the results, and propose some future work on the subject.

2



Chapter 2

Background Information

In this section, we provide background information about the underlying technologies
and literature used in the proposed system. Firstly, we give the definition of Cloud com-
puting, its characteristics and the deployment models. After that, we present the current
state of art in Cloud security. Since we used the idemix [33] library in the proposed sys-
tem, we also provide background information about it and its underlying cryptographic
foundations, namely the group signatures. We firstly provide an introduction and back-
ground information about group signatures, then give the mathematical background about
Camenisch-Lysyanskaya signature scheme [16], which is the building block of the idemix

library. Lastly, we provide information about the idemix library, which has been used
intensively in the proposed system.

2.1 Cloud Computing

Cloud computing has recently attracted a great interest from both simple users and large-
scale companies. Amazon Web Services [2], GoogleAppEngine [5], GoogleDocs [7],
Microsoft Azure [8], Dropbox [3] are some of the famous examples of Cloud comput-
ing, which emerged with wide use and increasing speed of Internet. It is a widely used
technology for flexible on-demand access and is adopted by more and more people and
companies. NIST (National Institute of Standards and Technology) defines Cloud com-
puting as follows [31]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.

3



While this definition captures the meaning of Cloud computing, Armbrust et al. [10] de-
fines Cloud computing as both the applications delivered as services over the Internet and
the hardware and systems software in the datacenters that provide those services.

Even though it is criticized for renovating existing concepts rather than offering a
new concept, the main motivation behind Cloud computing is to promote flexibility and
availability. The Cloud model defined in [31] consists of five essential characteristics:

• On-demand self-service: A user can unilaterally provision computing resources
such as network storage, computing power, server time, etc.

• Broad network access: Capabilities of cloud services are available over the network
and accessed through various platforms, such as mobile phones, laptops, etc.

• Resource pooling: Resources like storage, processing, memory, virtual machines
are pooled to serve multiple users using a multi-tenant model, meaning that they
are dynamically assigned and reassigned according to demand.

• Rapid elasticity: Cloud services can be rapidly provisioned and should be able to
quickly scale out or in.

• Measured Service: Resource usage can be controlled, monitored, and reported, pro-
viding transparency for both the users and the provider.

It is widely accepted that Cloud computing is not a new concept, however it is clearly
a new paradigm. Software companies offer various Cloud services ranging from data
outsourcing to office software. Since there are varying types of applications, NIST also
defines service models for Cloud computing paradigm.

• Cloud Software as a Service (SaaS): The user is provided with the capability to
use provider’s applications, which run in the Cloud infrastructure. Since the soft-
ware is running in the Cloud, client can use these services regardless of its devices’
computing power. However, the user has limited access to the Cloud and s/he can
interfere with the user-specific application configuration settings. In other words,
she cannot develop her own software, but only the ones which are already permitted
by the provider. GoogleDocs [7] and GMail [4] are some examples of such service
model.

• Cloud Platform as a Service (PaaS): The user has permission to deploy user-created
or permitted applications onto the Cloud infrastructure using programming lan-
guages or tools that provider supports. However, user is not permitted to have
control over the network, servers, operating systems or storage. GoogleCode [6] is
an example of such a service model.

4



• Cloud Infrastructure as a Service (IaaS): Unlike SaaS and IaaS, user has control
over processing, storage, networks, and computing resources. User is permitted to
run arbitrary software, operating systems, applications. The control over underlying
structure is still limited. Amazon EC2 [1] is an example of such a service model.

There are also four different types of deployment models for Cloud infrastructure.
If the Cloud is operated solely for an organization, it is called a private Cloud. If it is
made available to the general public in pay-as-you-go manner, it is called public Cloud.
NIST also defines community Cloud, as the Cloud infrastructure shared by several orga-
nizations, and the hybrid Cloud is defined as the composition of two or more Clouds.
However, Ambrust et al. [10] did not refer to the latter two terms.

Since this thesis focuses on a secure software development in Cloud environment, we
can define our proposed system as Cloud Software as a Service (SaaS) in any Cloud (pri-
vate or public). PaaS and IaaS are out of scope of this thesis; interested reader may find
more in [10] and [31]. The rest of this section discusses the advantages and motivation of
SaaS.

Cloud computing has recently become a widely used technology for on-demand and
collaborative access to shared and configurable computing resources. Applications like
GoogleDocs and DropBox are being adopted by more people day by day. Taking advan-
tage of many useful features of Cloud computing, these applications provide users with
different alternatives for collaborative editing and file sharing.

Since Cloud computing allows us to run the costly computations on the Cloud, users
only need enough processing power to be able to run a simple interface and interact with
the Cloud. In the course of our project, compiling and debugging large-scale projects
are considered as computationally expensive operations especially for mobile devices.
The fact that these operations are to be handled in the Cloud frees the software group
members from the necessity to have powerful and expensive computers. All the group
members need to have is reduced to computers with Internet connection that can run the
interface. Hence, group members are able to use the system via mobile devices that have
very low computing resources, providing the group members with a significant level of
mobility. Moreover, since many software development groups are international ones, such
a centralized system based on Cloud computing is a very suitable medium for working
collaboratively from distant locations.

Furthermore, Cloud computing equips us with the advantage of being able to keep
all files and programs in a single virtual location. From the software development point
of view, this centralized system addresses many issues per se. For instance, when an

5



upgrade is going to be performed on the software development environment, ensuring
that all users have done the upgrade is not a trivial task; some users may upgrade, some
may not and this case may cause inconsistencies. Cloud computing simply solves this
problem. Since upgrading the system on the Cloud is sufficient for all users to access
the upgraded version, they do not need to install the patch individually. This makes the
system maintenance much easier. Moreover, the fact that all files are kept on the Cloud
automatically provides fault tolerance such that data loss by single user mistake becomes
very unlikely.

By keeping all files in a single server, Cloud computing also enables a collaborative
environment. As in the example of GoogleDocs, making it possible for several users to
work on the same file at the same time and to be able to keep track of by whom a change
is made, is a valuable asset for software groups that work collaboratively.

2.2 Cloud Security

Since Cloud applications run on insecure Internet they need to be secured like every client-
server application. Existing literature is focused mainly on security problems for out-
sourcing data [24], virtual machine security [34] and security measurements [23] within
Cloud against malicious users. However, to the best of our knowledge, none of them are
related to a generic security and privacy infrastructure.

Chow et al. [23] focus on new emerging security threats by the rise of the Cloud
computing paradigm. The authors seperate the threats into three types:

• Traditional Security: This category includes traditional security attacks, which
became easier by moving to the Cloud. VM-Level attacks, Cloud provider vulner-
abilities, phishing are identified as such kind of threats. ‘Expanded network attack
surface’, increasing difficulty for forensic investigation in Cloud and fitting existing
authentication and authorization schemes to Cloud paradigm are also pointed out
as new vulnerabilities.

• Availability: Since Cloud computing paradigm offers a centralized system, it raises
problems such as uptime, single point of failure and assurance of computational
integrity.

• Third-Party data control: This category includes the possible security leaks of
outsourced data, such as due dilligence, audability, provider espionage, etc.

Wei et al. [34] propose an antivirus approach against the possible security breaches,
targeting image repositories that are used commonly for Cloud computing. The main

6



motivation behind this is to identify the risks both the users and the administrators can
face during managing the virtual-machine images that encapsulate each application in the
Cloud. The authors propose an image management system called Mirage. Zhang et al.
[35] focus on security threats to elastic applications and identifies security objectives that
should be provided by the infrastructure. The authors propose an elastic framework in or-
der to achieve authentication and secure communication mechanisms for weblets running
on mobile devices and Cloud concurrently. Christodorescu et al. [24] argue that Cloud se-
curity cannot be degraded only to virtualization security and focuses on how to recognize
malicious code fragments in Cloud and maintain security against them. For that purpose
they propose a framework that enables security services for Cloud environments where
users use a variety of operating systems which need to be quarantined in case of abuse.
The authors develope a novel algorithm for secure introspection which they applied dur-
ing identification of guest operating system and rootkit detection.

2.3 Group Signatures

Group signatures have first been proposed by Chaum and van Heyst in 1991 [21]. The
main motivation behind Group signatures is to combine security and privacy. Group sig-
nature scheme is a cryptographic method that allows a group member to anonymously
sign a message on behalf of the group. The main players are:

• Group Members, who can anonymously issue signatures.

• Group Manager, who has the authority to reveal the identity of the actual signer if
necessary and is responsible for adding and revoking group members.

The Group signature scheme is said to be dynamic if new user registration and user
revocation is possible.

Bresson and Stern [15] identify the security requirements of a group signature scheme.
A group signature scheme allows any user (not necessarily a group member) to be able
to verify that the message has been signed by an actual member of the group. However,
no one, but the group manager, can identify who actually signed the message. Also the
signatures should be unlinkable, that is deciding whether two signatures have been signed
by the same member or not must be infeasible.

A group signature scheme consist of five basic methods as described below [15]:

• Setup: A probabilistic algorithm initializing public parameters and providing a
secret key to the group manager.

7



• Join: An interactive protocol between the group manager and a new user to become
a new group member.

• Sign: The cryptographic operation to compute a group signature share using a mes-
sage and a member’s secret share.

• Verify: An algorithm, which is run by any user, in order to check whether or not a
signature has been produced by an authorized signer.

• Open: An algorithm allowing the group manager to obtain the identity of the mem-
ber who actually signed a given message.

Main properties of a group signature scheme are summarized as follows [15], [17]:

• Correctness: Any signature generated by a group member should be valid.

• Unforgeability of signatures: Only group members are able to sign messages.
Furthermore, they must only be able to sign in such a way that, when the signature
is presented to the group manager, he will be able to reveal the identity of the signer.

• Anonymity of signatures: It is not feasible to find out the group member who
signed a message without knowing the group managers secret key.

• Unlinkability of signatures: It is infeasible to decide whether two signatures have
been issued by the same group member or not.

• No framing: No coalition of the members (including the group manager) can sign
on behalf of a non-involved group member.

• Unforgeability of tracing verification: The manager cannot accuse a signer falsely
of having originated a given signature.

• Coalition resistance: No coalition of members can prevent a group signature from
being opened.

There are several group signature schemes in the literature. Chaum and van Heyst
[21] propose four different schemes. Chen and Pedersen propose two new group signa-
ture schemes [22], based on undeniable signatures [20]. However, some of them are not
dynamic, and all of them are relatively innefficient, due to the reason that the signature
size grows linearly with respect to group size. Camenisch and Stadler propose a scheme
[18], which provided a constant size signature and a constant size public key. The scheme
is enhanced by Bresson and Stern by adding member revocation [15]. Ateniese et al.
[11] propose an interactive and coalition-resistant scheme with enhanced efficiency . Ca-
menish and Lysyanskaya generalize this scheme and propose the Camenish and Lysyan-
skaya Signature Scheme [16], which is the building block of the idemix library. Since

8



CL (Camenish and Lysyanskaya) signature scheme relies on zero-knowledge proofs, we
provide preliminaries for this topic below. Later we will give the details of CL signature
scheme.

2.3.1 Zero Knowledge Proofs

Zero-knowledge proofs were first defined in a draft of “The Knowledge Complexity of
Interactive Proof-Systems” by Goldwasser et al. [29] as the proofs that reveal no addi-
tional knowledge other than the correctness of the proposition in question. This should
be the case even if the verifier does not follow the protocol but tries to cheat and trick the
prover to reveal some information. A zero-knowledge proof should satisfy the following
three properties:

• Completeness: Any true statement can be proven.

• Soundness: Any false statement cannot be proven.

• Zero-knowledge: Any verifier does not learn anything except that a statement is
true.

Informally, a zero-knowledge proof can be explained with a well-known story by
Jean-Jacques Quisquater [32]. Peggy (the prover) and Victor (the verifier) are near a
circle-shaped cave, in which the passage from one end to the other is blocked by a magic
door. Peggy claims to know the secret word that opens the door but Victor says he will
not pay for the word without being sure that Peggy knows it. Peggy, on the other hand,
refuses to tell the secret word before receiving the money. They decide to follow a method
that will prove to Victor that Peggy knows the secret word without revealing the word to
Victor. This is a zero-knowledge proof.

First, Peggy goes in the circle-shaped cave without Victor seeing from which end she
entered. Then, Victor chooses randomly the side he wants Peggy to come out of and
shouts out the name of this side. If it is the same end Peggy entered by, she will be able
to come back no matter she knows the secret word or not, since she does not need to go
through the magic door, if she is already in the side that Victor shouted. However, if it
is the opposite end, she can come out from it only if she knows the secret word. If they
repeat this process many times, and if Peggy does not know the secret word, the probabil-
ity that she would manage to come out from the desired end would be very small. Thus,
if Peggy repeatedly comes out from the end that Victor shouts, it is very likely that she
knows the secret word. Figure 2.1 illustrates the story.

Hence, zero-knowledge proofs are probabilistic rather than deterministic, since there
is a small probability, called the soundness error, that the verifier can be convinced on

9



Figure 2.1: Zero Knowledge Proofs

the correctness of a false statement. However, the soundness error can be decreased to
negligibly small values.

Goldwasser et al. [29] give zero-knowledge proof systems for the languages of quadratic
residuosity and quadratic nonresiduosity. In number theory, an integer x is called a
quadratic residue modulo m if there exists an integer x such that x2 ≡ y mod m The
quadratic residue problem with parameters m ∈ N and x ∈ Z∗m consists of computing
Qm(x), which is 0 if x is a quadratic residue mod m, 1 otherwise. If one knows the
factorization of m, Qm(x) is easy to compute, otherwise it is infeasible.

10



Moreover, Goldreich et al. [28] showed that a zero-knowledge proof system for the
NP-complete graph coloring problem with three colors can be created, assuming unbreak-
able encryption exists. This means that under this assumption, zero-knowledge proofs can
be created for all problems that can be solved in polynomial time in a non-deterministic
Turing machine (NP), since any problem in NP can be efficiently reduced to the graph
coloring problem [28].

Goldreich et al. [12] went further to show that, under the same assumption, any prob-
lem that can be proved by an interactive proof system can be proved with zero knowledge.

Ben-or et al. [13] show that using multiple independent provers that allow the veri-
fier to examine the provers in isolation to avoid being misled, all problems in NP can be
shown to have zero-knowledge proofs without need for any intractability assumptions.

Dwork et al. [25] initiated the research on concurrent zero-knowledge proofs, which
can be used in an Internet-like setting. To this end, witness-indistinguishable protocols
have been proposed, which are like zero-knowledge proofs but not as problematic with
concurrent execution of multiple protocols [26].

We have used the idemix [33] library intensively during the implementation. Now,
we are going to provide some notation that will be used to describe the underlying cryp-
tographic foundation behind the idemix library, namely the Camenish-Lysyanskaya (CL)
signature scheme [16].

• Let S be a set. #S denotes the number of elements in the set S, and x ∈R S means
that the element x is chosen randomly with uniform density from S.

• The concatenation of numbers or strings is denoted by the operator ||.

• Let H : {0, 1}∗ → {0, 1}lH be a hash function. ±{0, 1}l denotes the set of integers
{−2l + 1, ..., 2l − 1}, and {0, 1}l stands for the non negative part of the same set,
i.e. {0, ..., 2l − 1}. Note that the current idemix implementation uses SHA-256 [9]
hash function.

The notation of Camenisch and Stadler [18] is used for zero-knowledge proofs when
presenting protocols. To give an example,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃β ∧ (v < α < u)}

denotes a zero-knowledge Proof of Knowledge of integers α, β, γ satisfying y = gαhβ

and ỹ = g̃αh̃β with v < α < u, where y, g, h, ỹ, g̃, h̃ are elements of some groups

11



G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 =
〈
h̃
〉

. All parameters except for the Greek letters, which
denote the attributes to be proved, are known by the verifier. Only prime order groups
are used in the idemix library [33]. It is well known that in such groups there exists a
knowledge extractor which can extract these attributes denoted by Greek letters from a
successful prover.
In the idemix library [33], all zero-knowledge proofs are implemented as a common
three-move zero-knowledge protocol, made non-interactive using the Fiat-Shamir heuris-
tic [27]. The values of the form t = gr used in the first flow of the protocol will be called
t-values, while the responses computed in the third flow of the form s = r − cα will be
referred to as s-values. The challenge, c, has the hash of the t-values, common inputs, and
also a common string called the context string, consisting of a list of all public parame-
ters and the issuer public key. This way, the values generated during the proof cannot be
re-used in any other context.

2.3.2 The CL Signature Scheme

The CL signature scheme relies on zero-knowledge proofs [16]. Using general zero-
knowledge proofs, it is possible to prove statements such as “I have a signature” without
saying anything more than that. Using this property, the groups have to show no more than
they want, and a verifier can verify the signatures without the need to know any more than
the signer wants to show. Hence, anonymity and security against Cloud is accomplished
using such a structure. The main building block of the idemix library is the CL Signature
scheme [16]. The main definitions and protocols of this scheme are as follows:

• Key generation: On input `n, choose an `n-bit RSA modulus n such that n ←
pq, p ← 2p′ + 1, q ← 2q′ + 1, where p, q, q′ are primes. Choose uniformly at
random, R0, ..., RL−1, S, Z ∈ QRn (quadratic residues mod n). Output the public
key (n,R0, ..., RL−1, S, Z) and the secret key p.

• Message space: Let `m be the size of attributes. The message space is the set

{(m0, ...,mL−1) : mi ∈ ±{0, 1}`m}

• Signing algorithm: On input m0, ...,mL−1, choose a random prime number e of
length `e > `m + 2 and a random number v of length `v ← `n + `m + `r, where `r
is the security parameter required in the proof of security of the credential system.
Compute the ordered set of attributes A such that

A← (
Z

Rm0
0 ...R

mL−1

L−1 Sv
)1/e mod n

The signature on the message (m0, ...,mL−1) consists of (A, e, v).

12



• Verification algorithm: To verify that the tuple (A, e, v) is a signature on message
(m0, ...,mL−1), check that

≡ AeRm0
0 ...R

mL−1

L−1 Sv(mod n) , mi ∈ ±{0, 1}`m , and 2`e > e > 2`e−1

all hold.

2.4 The idemix Library

idemix was developed at IBM Research Zurich by a research group under the leadership
of Jan Camenisch [19]. It is an anonymous credential system, supporting accountabil-
ity of transactions by performing anonymous authentication between users and/or service
providers.

The issuer issues the idemix credential in accordance with the user’s attributes, which
allows for various protocols such as property proofs, revocation of credentials, verifi-
able encryption, etc. The credential issuance and the show proof protocol are the main
protocols performed. Camenisch-Lysyanskaya signature scheme [16] is used in these pro-
tocols, as it is the building block of the idemix. Therefore, for the successful execution of
these protocols, all participants need to be in the same group and share the same system
parameters, which define, for example, the size of the RSA modulus, or the domain of a
hash function.

The user and the issuer create a credential interactively during the issuance protocol.
To make the credential easily verifiable using the issuer’s public key, the issuer signs the
resulting credential with its private key. The user’s master secret is bound to the credential
by embedding the user’s pseudonym in it [33]. Figure 2.2 illustrates a use-case diagram
of the main protocols of idemix.

Solutions based on idemix send only proofs, providing unlinkable disclosure of selec-
tive credential attributes without revealing others. The user can decide on which attributes
of her digital face to disclose and which to hide herself since she is involved in the dis-
closure process directly [14]. When the user needs to convince another entity that she
possesses an attribute signed by the issuer, several zero-knowledge proofs are performed,
so that the credential itself is never revealed. Hence, the same credential can be shown
repeatedly without the other entity being able to link the information [33].

idemix consists of several components. The most important ones are:

• System Setup: As mentioned before, all participants must share the same system

13



parameters to successfully perform cryptographic protocols. These system param-
eters are defined in two connected files, the SystemParameters file and the Group-
Parameters file.

• Attributes: Attributes can be name, surname, affiliation etc. Formally, they are
tuples, each unique in its scope, consisting of name, value and type (a = n, v, t).
Integer, String, Date and Enumerations are the types of attributes that are allowed.
While proving a set of attributes, user can specify which to reveal and which to hide
to verifier. The attributes can contain all the information about a user. However,
user may only need to show her birth date in a proof. This can be specified in a
ProofSpec. An example of a ProofSpec will be given in the Chapter 4.

• Credentials: A credential is a certificate attesting to some attributes the user pos-
sesses. It consists of a set of attributes together with some cryptographic informa-
tion. The credential is obtained from the issuer using the issuance protocol. It is
used in the computation of statements about the value of the attributes it contains,
when this needs to be proved to another entity. The credential itself, however, is
never revealed.

For implementing the functionalities of the Camenisch - Lysyanskaya group signa-
ture scheme, we use the idemix primitives. We also use the XML structures for nonces,
proofs and credentials, which can be processed by the parser class provided by the idemix

library.

14



Figure 2.2: idemix Overview

15



Chapter 3

Proposed System

This section deals with the general overview of the proposed system in this thesis. The
main entities in the system are groups (consisting of users of different roles), the group
manager (issuer), the verifier and the server. The verifier can be considered as a module
in the server, since the server starts to interact with users after the verifier authenticates
them. The issuer operates in Cloud, like the verifier and the server, but as a different
entity. This frees the verifier and the server to have the responsibility and knowledge
about group structures and users’ details. Groups are software development groups con-
sisting of users with different roles, which can be defined during the group registration.
Each group can have different roles with different hierarchical structures. The issuer also
operates as the group manager, in the sense that it is responsible for user registration /
revocation. It interacts with the server after group registration to inform the server about
the access right scheme, which defines the roles and the hierarchical structure for the reg-
istered group. We use the idemix library for the implementation purposes. Therefore, the
protocols are based on the CL (Camenisch-Lysyanskaya) signature scheme. idemix is an
anonymous credential system developed by IBM Research. As mentioned in Chapter 2
idemix is based on three main components, Issuer (group manager), Verifier (server), and
the Prover (user). Group manager is responsible for issuing credentials to members of the
group (users). Credentials are just like identities hold by users. The attributes credentials
contain are signed digitally by the issuer and user can select any number of attributes to
prove. After that, user can send the created proofs of possession. Created proofs can be
verified by the server, this way server can conclude whether the attributes that the user
claims are approved by the group manager. Since the proofs can only be opened by the
group manager, the implementation also provides anonymity for users against the server.
Moreover, users can authenticate themselves as valid members of the groups by just using
the roles they hold as a group member, this is essential for the system, as in the proposed
system Cloud should work in a need-to-know basis. Proposed system is implemented in
Java since it aims to be a platform-free system to enhance mobility. Users can use devices

16



varying from low-capacity mobile devices to PCs. An overview of the system can be
found in Figure 3.1.

Figure 3.1: System Overview

An particular application of the proposed system can be summarized as follows. Sup-
pose that, there are software development groups, which have any number of members in
any number of roles within a customizable hierarchical structure. A group can consist of
equals or it can have a strong hierarchy between the members. This hierarchy between
the roles is defined in the group registration phase, and reflected to group access rights
scheme. Every file may require different number of permissions for different kind of ac-
tions. A possible use case scenario of the proposed system is the following. Let there be
a group consisting of 10 people. The group has five coders, two testers, two supervisors
and a group manager. Only the group manager can be the Issuer. Hence, she interacts
with each member to issue credentials which contain their roles and group identifiers and
is capable of opening signatures, if necessary. After recieving a credential, whenever a
user wants to interact with the server, she firstly authenticates herself to the verifier by
sending her proof of possession of the attributes in the credential. After the proof is ver-
ified by the verifier, the user is authenticated. From that point on, user can interact with
the Cloud Service, in this case a software development environment. Suppose that a user
requests an action about a file from the server. The server firstly checks the required num-
ber of permissions for the requested action about that file and informs the online members
about the request. Remember that, a coder may have one permission share, whereas the
manager can have three. After a pre-determined time period, if the required number of
permissions are collected, server grants the action. Otherwise, it informs the user about

17



the failure. This idea of possessing different number of permission shares for different
roles is mainly inspired by k out of l group signature schemes and allows us to support
different kind of hierarchies, flat or strict, without interfering with their inner workings.
3.2

Figure 3.2: A specific application of the proposed system

3.1 Protocols

In this section, we provide the mathematical foundation of the CL signature scheme and
present the protocols that we use throughout the implementation of the system.

3.1.1 Setup

The system parameters must be fixed and made public before any group registration.
Group registration means generating group parameters using system parameters. The
system parameters are given in the Table 3.1.

18



Table 3.1: The system parameters
`n size of RSA modulus
`Γ size of the commitment group modulus
`ρ size of the prime order subgroup of Γ
`m size of attributes
`res number of reserved attributes in a certificate

(data items and a digital signature by issuer on the data items)
`e size of e values of certificates
`′e size of the interval the e values are taken from
`v size of the v values of the certificates
`∅ security parameter that governs the statistical zero-knowledge property
`k security parameter
`H domain of the hash function H used for the Fiat-Shamir heuristic
`r security parameter required in the proof of security of the credential system
`pt prime number generation returns composites with probability 1− 1/2`pt

Table 3.2: The symbol table
PUissuer public key of the issuer
PRissuer private key of the issuer
ni nonce with identifier i
attr U defined in Issue Protocol Round 1
P1 The proof generated in Issue Protocol Round 2
P2 The proof generated in Issue Protocol Round 3
U The cryptographic structure which contains attributes

3.1.2 Issuer Key Generation

Issuer key is used during issuance of credentials (user registration). The maximum num-
ber of attributes in a credential is determined by the length in the public key. ` being
the number of attributes a key can contain, every credential can have ` − `res number of
attributes, where `res is reserved for the master secret.

Issuer generates a safe RSA key pair. For this, she generates safe primes p and q where
p = 2p′+1 and q = 2q′+1. The issuer also generates parameters for CL signature scheme
by choosing S ∈R QRn, and Z,R1, .., Rl ∈R 〈S〉. QRn is group of quadratic residues
mod n, 〈S〉 is the subgroup generated by S. The order of S must be #QRn = p′q′.
Furthermore, issuer chooses xX , xR1 , ..., xRl

∈R [2, p′q′ − 1] and computes Z = SxZ ,
Ri = SxR for 1 ≤ i ≤ l.

The issuer’s public key is PUissuer = (n, S, Z,R1, ..., Rl, P ), and the private key is
PRissuer = (p, q).

19



3.1.3 Issuance Protocol (User Registration)

The issuance protocol is performed between the user (in idemix terms, user is called re-
cipient) and the group manager (issuer) interactively. This can be seen as a new user
registration phase of the proposed system. After issuance of a credential a group member
becomes able to use the features of the Cloud service. In that sense, the member is al-
ready registered as a group member, however as a result of this interaction, the user gets
a credential that is issued by the issuer, and hence she is registered as a valid user of the
Cloud service. In the proposed system, the issuer is in the Cloud but it is a different entity
than the verifier. We propose to differentiate between these two entities, since the group
manager is also responsible for member revocation and opening signatures if necessary.
In this way, we aim to keep group management issues of this kind outside of the main
system. For obtaining a new credential, the user needs a credential structure definition,
which can differ from group to group. A credential structure definition defines the at-
tribute structure of the credential to be issued. In our case, credentials contain the roles in
the group (e.g. coder, supervisor, manager, etc.). This can be extended, however, and cre-
dentials can contain more than one attribute in order to enhance the access right scheme.
Both the recipient and the issuer must have the same definition in order to perform the
issue protocol. The protocol flow can be seen in Figure 3.3, and the symbols can be seen
in Table 3.2

The protocol is as follows:

• User (recipient) initiates the protocol by sending a request to the group manager
(issuer).

• Issuer initializes group and system parameters. Then, issuer computes a nonce
(n1) with respect to the initialization and sends it to recipient. For details, see
Algorithm 1.

• Recipient receives the nonce (n1), which she uses to compute a cryptographic mes-
sage with the properties of the desired credential, and sends it to issuer using Algo-
rithm 2.

• Issuer receives the message sent in round 2, uses it to create the cryptographic part
of the credential (by signing it with the master key), and sends it to recipient as
described in Algorithm 3.

• Recipient receives the credential, and saves it by following the steps in Algorithm 4.

20



Figure 3.3: Overview of the Issue protocol

Algorithm 1 Issue Protocol - Round 0
ISSUER chooses a random nonce n1 ∈R {0, 1}`∅
Load attribute structures from S to A (both ISSUER and RECIPIENT)
ISSUER→ RECIPIENT : n1

Algorithm 2 Issue Protocol - Round 1
RECIPIENT chooses a random integer v′ ∈R ±{0, 1}`n+`∅

RECIPIENT computes: U := Sv
′∏

j∈AR
mj

j mod n, for j ∈ A
computes a non-interactive proof to verify U is computed correctly.
U ≡ ±Sv′

∏
k∈AR

mk
k mod n

Choose m̃j ∈R ±{0, 1}`m+`∅+`H+1

RECIPIENT computes: Ũ := S ṽ
′∏

j∈AR
m̃j

j mod n

RECIPIENT computes: c := H(context||U ||Ũ ||n1)
RECIPIENT responses to the challenge:
v̂′ := ṽ′ + cv′

sA := (m̂j := m̃j + cmj)j∈A
P1 := (c, v̂′, sA)

RECIPIENT chooses n2 ∈R {0, 1}`∅
RECIPIENT→ ISSUER : U, P1, n2

RECIPIENT stores Ak, v′, context.

3.1.4 Authentication Protocol

Whenever a user is connected to the system, she must authenticate herself in order to begin
her interaction with the Cloud as a registered user. For that, she has to have a credential,

21



Algorithm 3 Issue Protocol - Round 2
ISSUER verifies P1:
Û := U−c(S v̂

′
)
∏

j∈AR
m̂j

j mod n

ĉ := H(context||U ||Û ||n1)
if ĉ 6= c then

verification fails.
end if
ISSUER checks
v̂′ ∈ ±{0, 1}`n+2`∅+`H+1

m̂′i ∈ ±{0, 1}`m+`∅+`H+2, for all, i ∈ A
if length check fails then

verification fails.
end if
ISSUER generates a CL Signature on the attributes:

Choose a random prime : e ∈R [2`e−1, 2`e−1 + 2`
′
e−1]

Choose a random integer ṽ ∈R {0, 1}`v−1, and compute v′′ := 2lv−1 + ṽ
Compute: Q := Z

USv′′ ∏
i∈AR

mi
i

mod n and A := Qe−1 mod p′q′ mod n

ISSUER stores: Q,Ak, v′′,context
ISSUER creates the following proof of correctness:
SPK{(e−1) := A ≡ ±Qe−1

mod n}(n2):
Compute Ã := Qr( mod n), for r ∈R Z∗p′q′
Compute c′ := H(context||Q||A||Ã||n2)
Compute se := r − c′e−1( mod p′q′)
P2 := (se, c

′)
ISSUER→ RECIPIENT: (A, e, v′′), P2, (mi)i∈A

Algorithm 4 Issue Protocol - Round 3
RECIPIENT computes: v := v′′ + v′

RECIPIENT verifies (A, e, v) using CL-signature verification:
Checks e is a prime and e ∈ [2`e−1, 2`e−1 + 2`

′
e−1]

Computes Q := Z
Sv

∏
i∈S R

mi
i

mod n

Computes Q̂ := Ae mod n
if Q 6≡ Q̂ mod n then

abort
end if
RECIPIENT verifies P2

Computes Â := Ac
′+seeSv

′se mod n
Computes ĉ = H(context||Q||A||Â||n2)

if ĉ 6= c′ then
abort

end if
Store the credential: (mi)i∈A, (A, e, v)

containing her group ID and role. Any messages before a user has been authenticated is
discarded by the server and user receives a notification to properly authenticate herself.
The protocol can be summarized as follows. A user with a valid credential creates a

22



proof using that credential (buildProof). Then, she sends it to verifier (server) and if the
verifier decides the proof is valid (verifyProof), the user becomes authenticated. The user
needs a proof specification to specify which attributes she likes to prove to the verifier.
The verifier also needs the proof specification to know which attributes the proof proves.
Therefore, they need to share the proof specification beforehand. The overview of the
Authentication Protocol can be found in the Figure 3.4.

Figure 3.4: Authentication Protocol

The subprotocols are explained in the next sections.

3.1.4.1 Building a Proof

The input is m1, {cred}, S, n1

{cred} is the credential. The nonce n1 is provided by the VERIFIER and sent to the

23



PROVER. Let V = {v1, ..., vt} be the set of values in the credentials held by the prover. In
the setup phase, the PROVER generates v̂i ∈R {0, 1}`m+`∅+`H for each hidden identifier
in V . Then, it computes t-values:

SPK{(e, {mi : i ∈ Ah}, v) :
Z∏

i/∈Ah
Rmi
i

≡ ±AeSv
∏
i∈Ah

Rmi
i (mod n)

∧ mi ∈ {0, 1}`m+`∅+`H+2 ∀i ∈ Ah
∧ e− 2`e−1 ∈ {0, 1}`′e+`∅+`h+2} (n1)

After that, the PROVER chooses rA ∈R {0, 1}`n+`∅ and computes the randomized CL
signature (A′, e, v′), where

A′ := ASrA (mod n),

v′ := v − erA (in Z).

It additionally computes e′ := e− 2`e−1. To compute t-values, PROVER chooses random
integers

ẽ ∈R ±{0, 1}`′e+`∅+`H ,

ṽ′ ∈R ±{0, 1}`v+`∅+`H .

For each identifier i ∈ I , it recovers the corresponding random value m̃i, computed in
step 0.1 of buildProof. Then it computes

Z̃ := (A′)ẽ
(∏

i∈I

Rm̃i
i

)
(S ṽ

′
) mod n.

The output is t-value Z̃ and common value A′.
Next, the PROVER computes the challenge: c := H(context, Common, T, n1). To com-
pute the responses, it computes the following s-values in Z.

ê := ẽ+ ce′ (= ẽ+ c(e− 2`e−1)),

v̂′ := ṽ′ + cv′,

m̂i := m̃i + cmifori /∈ Ar.

The output is the proof :(c, s, Common,R).

24



3.1.4.2 Verifying a Proof

The input is S, P = (c, s, Common), n1.
To compute t̂− values 1, the VERIFIER computes

T̂ :=

(
Z

(
∏

i∈Ar
Rmi
i (A′)2`e−1

)−c
(A′)ê

( ∏
i∈Ar̄

Rm̂i
i

)
S v̂
′

mod n

Then it verifies the lengths:

m̂i ∈ ±{0, 1}`m+`∅+`H+1, fori ∈ Ar̄
ê ∈ ±{0, 1}`m+`∅+`H+1

If the length checks do not fail, VERIFIER computes the verification challange:

c := H(context, Common, T̂ , n1)

After that, it verifies the equality of challenge and if c ≡ ĉ, it accepts the proof P .

3.1.5 File Access Protocol

Once a user is authenticated, the server knows which group the user belongs to, and the
root directory for the user is already initialized. From that point on, the user can request
directory listing or an action on a file (read, write, execute, compile). Group managers
can define which access requires how many permissions in the group registration phase.
For example, a readme file can be read without requiring any other permissions than the
request, whereas a classified document may need five permissions in order to be compiled.

As mentioned in the Section 3, users may have different number of shares about files
according to their roles and the access right scheme. Groups can have a different inner
hierarchies, and they are free to express it in their access right schemes during registra-
tion. After a file is requested, server informs the other members of the group, and waits
for permissions until the pre-determined time is over or required number of permissions
are collected. After that, server responds to the request. The file access protocol takes
place between all online members of the group and the server and can be summarized as
follows:

• Round 0 An authenticated user (uk ∈ Ga) requests an action over a file F .

• Round 1 Server informs online members (ui ∈ Ga, i 6= k) about the request.

1The values of the form t = gr used in the first flow of the protocol will be called “t-value”, while the
responses computed in the third flow of the form s = r − cα will be reffered to as “s-values”.

25



• Round 2 (ui ∈ Ga, i 6= k) respond with permission, or not.

• Round 3 After required number of permissions are collected, or the time threshold
is exceeded, server responds to uk.

The sequence diagram for the file access protocol can be seen in Figure 3.5:

Figure 3.5: File Access Protocol

3.1.6 User Revocation Process

We also develop a user revocation process. Revocation works as explained below Is-
suer basically changes the list of valid credentials, which is a part of her public key, and
shares it in the Group paramaters, which are public. Since the member to be revoked
cannot update her credential, her existing credential can no more produce valid proofs.
As a result, the owner of the credential becomes revoked. The non-revoked members can
update their credentials, based on the new public key, following the update protocol as
described below and the details can be found in Algorithm ??.

Firstly, Issuer loads Ak, (mi)Ak
, Q and v′′ from the non-revoced members credential,

and the generates a CL signature on the attributes. For that she computes a random integer

26



Algorithm 5 Credential Update
ISSUER loads Ak, (mi)Ak

, Q and v′′ from the credential, it wants to update
ISSUER reads previously saved elements from update file.
ISSUER generates a CL signature on the attributes.

Chooses a random prime : e ∈R [2le−1, 2le−1 + 2l
′
e−1].

Chooses a random integer: ṽ ∈R {0, 1}lv−1

ISSUER computes:
v̄
′′

:= 2lv−1 + ṽ and ∆v
′′

:= v̄
′′ − v′′ .

ISSUER computes:
Q̄ := Q

(
∏

i∈AKN
R

∆mi
i )S∆v

′′ mod n and Ā := Q̄e−1mod p′q′ mod n.,

where (m̄i)Ak
are the updated values, and ∆mi = m̄i −mi

Q := Q̄, v
′′

:= v̄
′′
, mi := m̄i and A := Ā.

ISSUER creates the proof of correctness: P2 := SPK{(e−1) : A ≡ ±Qe−1

mod n}(n2)
ISSUER updates the following elements in file (for use in credential update).
Q
v
′′

{mi : i ∈ Ak}

ISSUER sends (A, e, v
′′
), P2, and (mi)i∈Ak

to the RECIPIENT.

RECIPIENT verifies P2

Compute Q and Q̂ = Ac
′
Qse .

Compute ĉ = H(context||Q||A||Q̂||n2)
if ĉ 6= c′ then

abort
end if
RECIPIENT computes and stores v = v′ + v

′′

RECIPIENT verifies (A, e, v)
if e is prime and e ∈ [2le−1, 2le−1 + 2l

′
e−1] then

abort
end if
if Z ≡ AeRm1

1 ...Rml
l Sv mod n then

abort
end if
output: credential (m1, ...,ml, (A, e, v))

ṽ and a random prime e:
e ∈R [2le−1, 2le−1 + 2l

′
e−1]

ṽ ∈R {0, 1}lv−1

Then she computes:

Q̄ :=
Q

(
∏

i∈AKN
R∆mi
i )S∆v′′

mod n and Ā := Q̄e−1mod p′q′ mod n

27



Then she creates the proof of correctness:

P2 := SPK{(e−1) : A ≡ ±Qe−1

mod n}(n2)

where (m̄i)Ak
are the updated values, and ∆mi = m̄i−mi,Q := Q̄, v

′′
:= v̄

′′
, mi := m̄i,

A := Ā. Then she sends the CL Signature, P2 and updated attributes (mi ∈ A) to recipi-
ent.

After recipient recieves the message, firstly she verifies P2, by computing Q ,Q̂ and
the challenge, where:

Q̂ = Ac
′
Qse

ĉ = H(context||Q||A||Q̂||n2)

Then recipient verifies the CL signature and if the signature is correct, similar to Algo-
rithm 4, saves the updated credential (m1, ...,ml, (A, e, v)) .

28



Chapter 4

Implementation Details

In this chapter we provide a detailed explanation of the implementation. Firstly, we give
information about how we achieved the adoption of the idemix library to implement the
procedures in the CL signature scheme. Later, we discuss how the client-server architec-
ture is implemented and details about the message structures that are used in the protocols.

We develop the proposed system in Java, in order to achieve independency from oper-
ating systems and platforms. The implementation has been done in Intel Core i7-2670QM
quad-core (2.20GHz / 3.10GHz3 with Turbo Boost4) with 8GB (4GB x2) DDR3-SDRAM-
1333, with the operating system Windows 7 Professional 64 bit. Eclipse has been used as
the developing environment.

4.1 Adoption of idemix Library

We used the idemix library for implementing the protocols, namely member addition /
revocation and authenticaton. However, since we want an interactive environment, we
have to modularize the functions and make them suitable for a client-server architecture.
In this section, we present how we achieved the adoption of idemix library and show some
examples of used structures.

4.1.1 System Setup

The idemix library requires having general parameters to be used in the system, which are
seperated into two:

• System Parameters: These are public parameters containing bit lenghts and prob-
abilities that the generated primes are truly primes, and are used to generate group
parameters during group registration. An example of a system parameters file can
be seen in Figure 4.1. The related list of the parameters can be found in Table 3.1

29



Figure 4.1: System parameters file

• Group Parameters Group parameters are generated from system parameters and
used to generate the Issuer Key and the Master Key for further interactions, using
CL signature scheme. An example can be seen in Figure 4.2.

During group registration, the group manager also indicates the roles and the corre-
sponding number of permission shares for the roles, which defines the group hierarchy
for further interactions.

4.1.2 Implementation of the protocols

The idemix library contains test cases to show how the library can be used for authenti-
cation purposes. However, the test cases do not contain any implementations which can
be used directly in a Client - Server architecture. The main challange is to modularize
the code so that the building blocks for protocols work properly and do not use unneces-
sary capabilites. We apply the same process to user registration, group registration and
most importantly, the authentication (signing and verification). The generation of group
parameters and the issuance protocol are quite the same regardless of the complexity of

30



Figure 4.2: Group parameters file

the credentials or proofs. The main focus in adopting the library is in the authentica-
tion process. We modularize the functions of the idemix library into smaller functions as
we describe in the protocols. The details of signing and verifying functions are as follows:

• Client Side:

– beginSigning : This function is used in the client side and starts the signing
process. Firstly, it initializes the system parameters and recieves the credential
and the proofSpec from the interface, and then, returns a HashMap containing
attributes. An example of a proof specification file of idemix can be found in
Figure 4.3.

– finalizeSigning: This function takes the nonce (see Figure 4.5), the hashMap

of attributes, the proofSpec and the master key as parameters. Then, it creates

31



Figure 4.3: A sample proof specification structure

a new prover using these parameters, and builds and returns proof p (see Fig-
ure 4.4), which is a cryptographic file containing the attributes issued before.

• Server Side:

– sendNonce: After receiving the request and a group identification number,
verifier initializes the system parameters, generates a nonce, stores it as a tuple
with thread number and sends the nonce file back to client.

– verifySignature: This function takes a proof file, the related nonce and proof-
Spec as parameters and returns the set of revealed values. Using the revealed

32



Figure 4.4: A sample Proof file

values, it confirms the group identification number and determines the role of
the connected client.

33



Figure 4.5: An example of a nonce file

4.2 Client - Server Architechture

We need to use socket programming in order to connect the clients to the server. We use
the OCSF (The Object Client-Server Framework) provided in [30]. The client side of
OCSF consists of an abstract class called AbstractClient. This class provides the facilities
needed to connect to and exchange objects with servers. The method handleMessage-
FromServer is modified so that the client takes appropiate action for the received message.
The server side consists of two classes, namely AbstractServer and ConnectionToClient.
AbstractServer is responsible for listening to incoming connections and the threads for
each connection, whereas ConnectionToClient handles the connections to clients.

We implement handleMessageFromServer functions so that both sides can process
the protocols we use properly. We also apply a few modifications to the existing Connec-
tionToClient scheme. Every connection now holds a ClientProperties file, which keeps
record of the current ProofSpec, the current nonce, the current proof of authentication and
the group identification number. Once a client is connected, during the first step of the
authentication, she informs the server about her group id. From that point on, the verifier
knows which ProofSpec to use and keeps it in the current ProofSpec. The current nonce
holds the last sent nonce which is used during the third step of authentication. The cur-
rent Proof keeps the information of last sent proof. This is checked periodically before
any interaction since in case of user revocation, server can confirm whether the proved
attributes of a credential are still valid or not.

Once the server starts to listen, whenever a new connection arrives, the server starts a
thread. Before authentication, no messages from that thread are accepted, and all af them
are replied with a message informing the user that she needs to authenticate herself. If a
message with proper header arrives, the authentication protocol begins. After a successful
authentication, the client starts to interact with the server, requesting actions for files and
recieving permission requests from the server.

34



4.3 Messages

Since we use the OCSF for client server architechture, we need to define a message struc-
ture, which can be easily upcasted to class Object and downcasted from it. Object is the
root of the class hierarchy in Java. Every class has Object as a superclass. So we im-
plement our own MessageStruct, which consists of a header, a file and a string, called
”details”. We use the header part to distinguish between messages. File part keeps the
cryptographic file (nonce, proof etc). ”details” differ from message to message and hold
necessary information in order to progress through protocols.

35



Chapter 5

Performance Evaluation

To evaluate the performance of the system, we perform a simulation based analysis so that
we see how the system behaves when the number of connected clients increases. In this
section, we provide information about the simulation and a discussion about its results.
We firstly give the unit times for the main operations, and then present our simulation
model. Lastly, we discuss the results via performance graphs.

All unit times are measured in Intel Core i7-2670QM quad-core (2.20GHz / 3.10GHz3
with Turbo Boost4) with 8GB (4GB x2) DDR3-SDRAM-1333, with the operating system
Windows 7 Professional 64 bit. Every measurement, including the stress tests and unit
time measurements have been done 50 times and the average values are reported. For the
simulation based analyse, simulation time has been taken as 360 minutes.

5.1 Unit Operations

There are three main unit operations in the protocols. In the Issue Protocol, the unit op-
eration is issuing a credential. In the Authentication Protocol, creating the proof, and
validating the sent proof are unit operations. We consider three types of proofs, ‘sim-
ple’, ‘medium’, and ‘complex’, Table 5.1 shows the revealed and unrevealed number of
attributes in each proof. The measured unit times can be found in the table 5.2.

Table 5.1: The number of attributes in proofs

Revealed Attributes Unrevealed Attributes Total Attributes
Simple Proof 2 0 2
Medium Proof 4 0 4
Complex Proof 16 16 32

36



Group registration can also be considered as a unit operation. In order to register a
group, we have to fix the public system parameters, as mentioned in previous sections,
and generate group parameters using the system parameters. This process has to be done
once for each group, and it is not dependent on how complex the credentials to be issued
are. We also measured unit times for updating a credential, which is used in user revo-
cation. The unit time for updating a credential is dependent on the number of attributes
to be updated. In our case, since we use credential updates just for user revocation, up-
dating a single value will be sufficient. Therefore, the number of attributes for different
complexities do not affect the unit times as in issuance. Moreover, upon closer inspec-
tion one can see that the increase in unit times for validating the proofs as the number
of attributes increase is slower compared to proving the same number of attributes. This
has two reasons. Firstly, validating attributes requires a constant setup time, which is the
reason behind the fact that validating a simple proof is harder than proving one. Secondly,
after the setup, the impact of the number of attributes on the compututation in validation
process is less than the impact of them on the proving process. Therefore, the unit times
of validation process are increasing slowlier compared to the proving process.

Table 5.2: The execution times for unit operations

Simple Medium Complex
Issue Credential 0.84 seconds 1.14 seconds 2.04 seconds
Prove Attributes 0.07 seconds 0.18 seconds 0.56 seconds
Validate Attributes 0.13 seconds 0.18 seconds 0.52 seconds
Group Registration 16.4 seconds 16.4 seconds 16.4 seconds
Update Credential 0.65 seconds 0.65 seconds 0.65 seconds

5.2 Stress Tests

We applied simulations in order to test the efficiency of the entire system given the times
of the unit operations. Since user registration takes place between the user and the group
manager (issuer), and we aim to measure the performance of the verifier, we considered
credential issuance (user registration) and group registration outside of the stress tests. As
can be seen in Figure 3.1 the verifier and the issuer are different entities in the system and
hence their load is not necessary dependent on each other.

As mentioned in previous chapters, we want to develop an environment that can run
on mobile devices with low processing power. In the developed system, the Cloud will
perform the computationally expensive tasks and leave as little work as possible to the

37



client side. Client has to perform computations in two cases only: During the interac-
tion with the issuer when creating credentials, and while creating proofs using the issued
credentials. The issuance takes place only once and the client side does not perform less
expensive computations compared to the issuer. The unit times for creating basic and
medium proofs are also promising in the sense that they can be used in mobile devices
with low-processing power. Moreover, considering the fact that client side cannot be used
by more than one user at a time, performing a stress test to client side is unnecessary.

5.2.1 Simulation Model

We use M/D/m/m queueing system for the performance evaluation of the system. The
first letter indicates that the nature of the arrival process is memoryless, which is a Poisson
process. The second letter indicates the nature of the service times, which is deterministic
in our case and can be found in the Table 5.2. The third letter indicates the number of
servers, which differs from scenario to scenario. The last letter indicates that we use a
finite queue. We consider a single queue with a new incoming request added at the end.
Whenever a server becomes idle, it takes the the request at the top of the queue. The
Figure 5.1 depicts our simulation model.

Figure 5.1: The simulation model

38



5.2.2 Simulation Parameters and Performance Metric

In this section, we present the variables in the simulation model and introduce the perfor-
mance metric. The parameters considered are as follows.

• Number of clients : Number of clients that are connected to the server, denoted by
Nc.

• Number of servers : Number of servers that are online, denoted by m. Since we
perform a stress test on the verifier, throughout the section we will refer to server
as a computer responsible for performing the duties of a verifier, unless specified
otherwise.

• Interarrival time of requests : Interarrival time of requests is a exponentially dis-
tributed random variable. We denote the mean interarrival time of requests for each
user by t, which is expressed in minutes. For example, if t = 3, each client makes
one request in three minutes on average.

• Complexity of proofs : As mentioned in the Section 5.1, we consider three types
of credentials which are ‘simple’, ‘medium’, and ‘complex’. We denote them by
c1, c2, and c3 respectively. The type of a proof depends on how many attributes it
contains and how many it reveals. The details can be seen in Table 5.1.

• Number of permissions required : Number of permissions in order to access
Cloud service, it can take values one, three and six.

• Session Duration : The parameter specifying the duration of sessions in terms of
minutes. When the specified number of minutes pass after a successful authentica-
tion, the user becomes unauthenticated.

We consider the response time as the main performance metric. We define response

time as the time passed between the arrival of a request and its successful execution by the
server. We do not consider any network delays in the model. However, in case a request
becomes pending, we take into account the time spent in queue and the execution time. If
the action indirectly requires authentication of some other members, we take as response
time the time passed until all these processes are completed and approved.

In a probable use case scenario, once the user is authenticated, she needs no more
cryptographic operations unless her authentication expires for some reason. We analyze
three different scenarios. Firstly, we consider a variation of a worst case scenario, where
every file needs only one permission share to be accessed, in order to see how the verifier
behaves under increasing number of validation requests. For that, we assume that every

39



request requires users to authenticate themselves. We perform various comparisons to see
the full effects of changes in the number of servers, the mean interrival time of requests
and the complexity of proofs. In addition to these performance evaluations, we limit the
size of the queue and examine the throughput of the proposed system. In the second ex-
periment, we assume that even the users that are required to give the permissions are not
authenticated. Therefore, every request requires as many authentications as the number
of permissions. In the third scenario, we consider a more realistic case and assume that
every authentication lasts for a period of time. Whenever a request is sent by a group
member, members are randomly chosen from the group until the minimum required num-
ber of shares are gathered. During this process, if any chosen member is unauthenticated,
she goes through the authentication process first. In addition to these scenarios, we also
examine the effect of user revocation on the average response time.

5.3 Simulation Results

In this section we provide the results of the simulation and performance analysis via
performance charts.

5.3.1 Worst Case Average Response Time Analysis

Firstly, we measure the difference between the complexities of the proofs. In Figure 5.2,
one can see differences between the response times for simple, medium and complex
proofs, using one server and fixing the interarrival time to one minute. The figure shows
that a single server can serve up to approximately 500 concurrent users with simple or
medium complexity proofs with a response time less than one second. However, with
complex proofs, the response time grows much faster with respect to the number of con-
current clients compared to simple and medium complexity proofs. Another observation
is that the response times with simple and medium proofs behave linearly with respect to
the number of concurrent clients, whereas the complex proofs have exponential behavior.
If a provider wants to serve more than 200 concurrent clients using complex proofs, it has
to use more than one server to achieve a response time under one second as we shall see
later.

In Figure 5.3, we compare the average response times using different interarrival
times: 20 seconds, one minute and three minutes. We apply the simulation with the
medium credential using four servers. As expected, as the interarrival time decreases,
the number of requests in a given time period increases and hence the response time gets
longer. This shows the importance of scaling the number of servers with respect to user

40



Figure 5.2: Response time analysis w.r.t. number of clients for different proof complexi-
ties, m = 1, t = 1

behaviour at the given time. Even with medium complexity proofs, if the users tend to
send requests very frequently, the delay in response times increases up to more than one
second after exceeding approximately 500 concurrent users.

We also comparatively analysed average response time when using different number
of servers: 1, 2, 4, 8. Figure 5.4 shows the results of this analysis with the interarrival time
of one minute using medium complexity proofs. The average response time decreases
linearly with respect to the number of servers. As can be seen in Figure 5.4, using one
server would delay the verification up to one second after 500 users. By using two servers,
approximately 900 concurrent users can be handled with average response time under one
second. The average response times when using four or eight servers are quite slowly
increasing with respect to number of concurrent clients. Using four servers, a provider
can serve up to 1000 concurrent users with quite acceptable response times, however the
marginal gain is not so significant.

5.3.2 Ratio Comparison

As mentioned, the unit times are the measured times for indivisible operations. When we
divide the actual time spent by the system by the unit time, we acquire the ratio between

41



Figure 5.3: Response time analysis w.r.t. number of clients for different mean interarrival
times using medium complexity proofs, m = 2

the actual times and the unit times. When there is only one user the actual times are
equal to the unit times, so the ratio is equal to one. Hence, the ratio shows us the effect
of serving concurrent users on the average response time. In Figure 5.5 one can see the
difference between average ratios (response time / unit time) while using simple, medium
and complex proofs. The average ratios tend to increase with a similar rate even though
the number of attributes are different 5.1. Thus, we conclude that the unit times for
validation of a proof are the primary factors in determining the average response time,
since the average ratios under different complexities tend to behave similarly, while the
average response times under different complexities increase at different rates, as can be
seen in Figure 5.2.

5.3.2.1 Throughput Analysis

As mentioned before, we consider an infinite queue throughout the simulation. How-
ever, we also examine the effect the queue size would have in case it is finite. We define
throughput as the proportion of successful jobs to total number of jobs. To examine the
throughput of the system, we try different queue sizes and calculate the expected through-
put of the system using different proof complexities when there are 1000 concurrent users

42



Figure 5.4: Comparative response time analysis w.r.t. number of clients for different
servers using medium complexity proofs, t = 1

with the mean interarrival time of one minute . As expected, when using complex proofs,
throughput is approaching one slowlier compared to the simpler proofs. The Figure 5.5
shows the throughput reaches one, even with the clients using complex proofs, when using
a queue of size larger than 100.

5.3.3 Worst Case Average Response Time Analysis Using Different
Number of Required Permissions

Once an action request arrives, the verifier waits until the required number of permissons
are gathered in order to take the requested action. In this case, we assume the worst, mean-
ing that every action requires an authentication every time. Doing so, we examine the
system performance in the worst case. Figure 5.7 shows the comparison between differ-
ent number of required permissions, when it takes values one, three and six respectively.
When the number of required permissions is six, the increase in the average response time
with respect to the number of concurrent clients is exponential, and the average response
time becomes larger than one second with 800 concurrent clients. Figure 5.7 also shows
that the verifier can serve up to 1000 clients with four servers with an average response

43



Figure 5.5: [Response time / Unit time] ratio analysis w.r.t. number of clients for different
proof complexities, cm, m = 4, t = 1

time under one second, when required number of permissions is equal to three.

5.3.4 Average Response Time Analysis Using Authenticated Sessions

Table 5.3: Groups and Roles

Small Medium Large
Junior Programmers 0 0 7
Senior Programmers 5 8 5
Testers 3 5 7
Supervisors 1 1 5
Managers 1 1 1
Total 10 15 25

We also consider a realistic scenario, where users need to authenticate themselves
once and during a pre-determined session they do not need to authenticate themselves
again. After the authentication expires, they have to renew the authentication. During au-
thentication, the user directly communicates with the Cloud service provider, and hence

44



Figure 5.6: Throughput analysis w.r.t. number of clients for different proof complexities,
m = 4, t = 1

has no cost to the verifier other than a simple authentication check (whether she has an
active session or not). In this scenario, we also consider different groups with varying
number of members and roles. The distribution of the roles and the number of users can
be found in Table 5.3. Moreover, we take into account that the actions may require dif-
ferent number of permissions in order to be executed. The shares held by the members
according to their roles can be found in Table 5.4.

As expected, the average response times are very low compared to the worst case
analyses. This is very promising and shows that the system is very efficient even with
a session duration of 10 minutes. The Figure 5.9 shows the comparison between the
different proof complexities, and the Figure 5.8 shows the comparison between sessions
with different durations. The required number of shares are fixed to six in both cases.
However, the results also show that the effect of this constraint is very small. Since the
users tend to request actions at least once in a minute, the authentication required in File
Access Protocol lasts also for at least ten minutes and hence, does not have an extra cost.

45



Figure 5.7: Worst Case Average response time analysis w.r.t. number of clients for differ-
ent number of required permissions using medium complexity proofs, m = 4, t = 1

Table 5.4: The distribution of permission shares

Number of Shares
Junior Programmers 1
Senior Programmers 2
Testers 1
Supervisors 4
Managers 6

5.3.5 Average Response Time Analysis In Case of Revocation

Since the revocation process concerns groups, we analyze the change in response times
group by group instead of considering all the clients together. The change in average
response time for a single group is marginal compared to the overall average. Hence,
considering all the clients hide the actual increase in the average response time for single
groups. We evaluate the change in average response time with respect to the system time
and analyse how the average response times behave in case of revocation. As expected,
the average response times increase as the first request arrives. In Figure 5.10 the first

46



Figure 5.8: Average response time analysis w.r.t. number of clients for different session
durations, cm, m = 4, t = 1

request after a revocation arrives at 90th second, and in Figure 5.11 at 150th second. From
that point on, it starts to decrease, since the group members, who already updated their
credentials, have no more expensive operations. In Figure 5.10, the mean interarrival time
is one minute, therefore, after one and a half minutes, the group members will have fin-
ished their update processes and the system reaches steady state. Figure 5.11 shows the
case when the mean interarrival time is three minutes. When we compare two figures, we
can observe that the time spent to reach steady state behaves linearly with respect to mean
interarrival time, which is an expected result since only the first operation after revoca-
tion is expensive and the mean interarrival time dictates the arrival of the first operation.
Another observation is that the average response time decreases quicklier in small groups
compared to the large groups. This is the result of the fact that in large groups, it is more
probable that there is at least one user that has not yet issued any requests up until a certain
point in time.

47



Figure 5.9: Average response time analysis w.r.t. number of clients for different proof
complexities, session = 10min, m = 4, t = 1

5.4 Discussion

After running simulations with different parameters, we conclude that using complex
credentials is an extra burden for the provider. At least two attributes (group identification
number and role within the group) are necessary to define a proper access right scheme.
However, some groups may want to form the access right scheme in a more detailed
and enhanced way. To achieve this, they need extra attributes, and hence more complex
proofs. Moreover, keeping in mind that the interarrival time can change from time to time
regardless of the group, the server needs to observe the active behaviour in order to adjust
the number of servers. The results are promising and show us that the proposed system can
easily maintain up to 1000 concurrent users with interarrival time of one minute by using
four servers. Moreover, the averager response time analysis using sessions show us the
efficiency of the proposed system is very promising, and shows that with season duration
of 30 minutes can handle 1000 concurrent users with a very quick response time under
tenth of a second. Finally, the average response time analysis in case of revocation shows
the system can maintain revocation efficiently, too. The response times may increase
during credential updates, however after updates are finished, the system reaches steady

48



Figure 5.10: Average response time analysis w.r.t. system time for different sizes of
groups using medium complexity proofs, m = 1, t = 1

state again.

49



Figure 5.11: Average response time analysis w.r.t. system time for different sizes of
groups, using medium complexity proofs, m = 1, t = 3

50



Chapter 6

Conclusion and Future Work

The main motivation of this thesis was to use the advantages of Cloud computing paradigm
in a software development scenario while providing security and a novel approach to ac-
cess right scheme using group signatures. While we achieved to implement a proof-of-
concept application, a more sophisticated version of the same idea may be implemented
for an industrial use. Considering the increasing popularity of Cloud computing, such a
system would be beneficial to software development groups. Using an anonymous cre-
dential system like idemix, and hence using the group signature schemes, seems to be
an efficient way to implement access rights in a secure way. By using the CL signature
scheme, which relies on zero-knowledge proofs, we also provided anonymity for group
members against Cloud. From the Cloud point of view, users have roles that are issued by
their manager and Cloud cannot possess any more knowledge than the roles dealt by the
group manager.

In this thesis, we proposed a secure software development environment in Cloud
which supports software development groups that have different kinds of hierarchies.
We have done simulation-based performance evaluation of the system to measure the
response times under different scenarios. In order to do that, we applied a simulation
using M/D/m/m queues. The main features of the system can be summarized as follows:

• By taking advantage of Cloud computing, we only placed the light cryptographic
operations on the client side. That way, we encouraged the use of the mobile devices
with low processing power, enhancing the mobility of the system.

• We used the idemix library to ensure secure connection between the system users
and the system. By defining roles and adopting an access right scheme approach
during the group registration, we freed the server from dealing with the inner work-
ings of groups. Furthermore, we also preserved the anonymity of the users.

51



• We did a performance evaluation using an M/D/m/m simulation model to figure out
how efficient the system is. The results are promising and shows that the client
side does not have to do expensive computations, and that the server is capable of
maintaining response time under 1 second while serving 1000 clients with 4 servers.
In the scope of the thesis, we have developed a prototype level implementation.

As a future work our proposed system can be implmented as a real SaaS to operated
on Cloud. By utilizing the advantages of Cloud computing, the proposed system also
offers easy maintainability and reduces the risk of data loss by centralizing the data and
processing power. Moreover, it enables easy use of versioning systems. The system can
be easily run in mobile devices, once the dependencies to third parties are removed.

52



Bibliography

[1] Amazon Elastic Compute Cloud. Retreived January 26, 2012, from http://aws.

amazon.com/ec2/.

[2] Amazon Web Services. Retreived January 26, 2012, from aws.amazon.com.

[3] Dropbox. Retreived January 26, 2012, from http://www.dropbox.com.

[4] Gmail. Retreived January 26, 2012, from http://mail.google.com.

[5] GoogleAppEngine. Retreived January 26, 2012, from code.google.com/

appengine.

[6] GoogleCode. Retreived January 26, 2012, from code.google.com.

[7] GoogleDocs. Retreived January 26, 2012, from docs.google.com.

[8] Microsoft Azure. Retreived January 26, 2012, from http://www.

windowsazure.com.

[9] Secure hash standard. National Institute of Standards and Technology, Washington,
1995. Note: Federal Information Processing Standard 180-1.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A Berkeley
view of cloud computing. Technical Report UCB/EECS-2009-28, EECS Depart-
ment, University of California, Berkeley, Feb 2009.

[11] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably se-
cure coalition-resistant group signature scheme. In M. Bellare, editor, Advances in

Cryptology - CRYPTO 2000, volume 1880, pages 255–270. Springer, 2000.

[12] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Ro-
gaway. Everything provable is provable in zero-knowledge. In Proceedings on

Advances in Cryptology, CRYPTO ’88, pages 37–56, New York, NY, USA, 1990.
Springer-Verlag New York, Inc.

53

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
aws.amazon.com
http://www.dropbox.com
http://mail.google.com
code.google.com/appengine
code.google.com/appengine
code.google.com
docs.google.com
http://www.windowsazure.com
http://www.windowsazure.com


[13] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive
proofs: how to remove intractability assumptions. In Proceedings of the 20th Annual

ACM Symposium on Theory of Computing, STOC ’88, pages 113–131, New York,
NY, USA, 1988. ACM.

[14] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty
via group signatures without encryption. In Proceedings of the 7th International

Conference on Security and Cryptography for Networks, SCN’10, pages 381–398,
Berlin, Heidelberg, 2010. Springer-Verlag.

[15] E. Bresson and J. Stern. Efficient revocation in group signatures. In Proceedings of

the 4th International Workshop on Practice and Theory in Public Key Cryptography:

Public Key Cryptography, PKC ’01, pages 190–206, London, UK, 2001. Springer-
Verlag.

[16] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.
In Proceedings of the 3rd International Conference on Security in Communication

Networks, SCN’02, pages 268–289, Berlin, Heidelberg, 2003. Springer-Verlag.

[17] J. Camenisch and M. Michels. A group signature scheme based on an RSA-variant.
Technical Report RS-98-27, BRICS, Dept. of Computer Science, University of
Aarhus, Nov 1998.

[18] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (ex-
tended abstract). In Proceedings of the 17th Annual International Cryptology Con-

ference on Advances in Cryptology, pages 410–424, London, UK, 1997. Springer-
Verlag.

[19] J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proceedings of the 9th ACM Conference on Com-

puter and Communications Security, CCS ’02, pages 21–30, New York, NY, USA,
2002. ACM.

[20] D. Chaum and H. van Antwerpen. Undeniable signatures. In Proceedings on Ad-

vances in Cryptology, CRYPTO ’89, pages 212–216, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

[21] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology - EU-

ROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 257–265.
Springer-Verlag, 1991.

[22] L. Chen and T. P. Pedersen. New group signature schemes (extended abstract). In
Advances in Cryptology - EUROCRYPT’94, volume 950 of Lecture Notes in Com-

puter Science, pages 171–181. Springer-Verlag, 1995.

54



[23] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina.
Controlling data in the cloud: outsourcing computation without outsourcing control.
In Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW
’09, pages 85–90, New York, NY, USA, 2009. ACM.

[24] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and D. Zamboni. Cloud
security is not (just) virtualization security: a short paper. In Proceedings of the

2009 ACM Workshop on Cloud Computing Security, CCSW ’09, pages 97–102,
New York, NY, USA, 2009. ACM.

[25] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–
898, 2004.

[26] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC
’90, pages 416–426, New York, NY, USA, 1990. ACM.

[27] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings on Advances in Cryptology—CRYPTO ’86,
pages 186–194, London, UK, 1987. Springer-Verlag.

[28] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. J. ACM, 38:690–
728, July 1991.

[29] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18:186–208, February 1989.

[30] T. C. Lethbridge and R. Laganiere. Basing software development on reusable tech-
nology. In K. Mosman, editor, Object-Oriented Software Engineering : Practical

Software Development using UML and Java, pages 91–102. McGraw-Hill Educa-
tion, 2005.

[31] P. Mell and T. Grance. The NIST definition of cloud computing. Technical Re-
port SP - 800 - 145, National Institute of Standards and Technology, 2009. [Stand:
16.03.2011].

[32] J. J. Quisquater, L. Guillou, M. Annick, and T. Berson. How to explain zero-
knowledge protocols to your children. In Proceedings on Advances in Cryptology,
CRYPTO ’89, pages 628–631, New York, NY, USA, 1989. Springer-Verlag New
York, Inc.

[33] IBM Research Zurich Security Team. Specification of the identity mixer crypto-
graphic library. IBM Research Report 3730, IBM Research, Apr 2010.

55



[34] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual
machine images in a cloud environment. In Proceedings of the 2009 ACM Workshop

on Cloud Computing Security, CCSW ’09, pages 91–96, New York, NY, USA, 2009.
ACM.

[35] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong. Securing elastic
applications on mobile devices for cloud computing. In Proceedings of the 2009

ACM Workshop on Cloud Computing Security, CCSW ’09, pages 127–134, New
York, NY, USA, 2009. ACM.

56


	Introduction
	Background Information
	Cloud Computing
	Cloud Security
	Group Signatures
	Zero Knowledge Proofs
	The CL Signature Scheme

	The idemix Library

	Proposed System
	Protocols
	Setup
	Issuer Key Generation
	Issuance Protocol (User Registration)
	Authentication Protocol
	Building a Proof
	Verifying a Proof

	File Access Protocol
	User Revocation Process


	Implementation Details
	Adoption of idemix Library
	System Setup
	Implementation of the protocols

	Client - Server Architechture
	Messages

	Performance Evaluation
	Unit Operations
	Stress Tests
	Simulation Model
	Simulation Parameters and Performance Metric

	Simulation Results
	Worst Case Average Response Time Analysis
	Ratio Comparison
	Throughput Analysis

	Worst Case Average Response Time Analysis Using Different Number of Required Permissions
	Average Response Time Analysis Using Authenticated Sessions
	Average Response Time Analysis In Case of Revocation

	Discussion

	Conclusion and Future Work

