
USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

by

Uğur Koç

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

January 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

https://core.ac.uk/display/32328267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

Approved by:

Asst. Prof. Dr. Cemal Yılmaz

(Thesis Supervisor)

Assoc. Prof. Dr. Berrin Yanıkoğlu

Assoc. Prof. Dr. Bülent Çatay

Assoc. Prof. Dr. Erkay Savaş

Asst. Prof. Dr. Hüsnü Yenigün

Date of Approval:

© Uğur Koç 2014

All Rights Reserved

USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

Uğur Koç

Computer Science and Engineering, MS Thesis, 2014

Thesis Supervisor: Asst. Prof. Cemal Yılmaz

Keywords: Software quality assurance, combinatorial interaction testing,

covering arrays, test case-aware covering arrays, simulated annealing

Abstract

Exhaustive testing of highly configurable software systems is generally infeasible in prac-

tice. For this reason, efficient sampling of the configuration space is important to improve

the coverage of testing. A t-way covering array is a list of systematically selected con-

figurations covering all value combinations for every t-way option combinations and it

aims to discover faults caused by interactions of configuration options. Despite its many

successes, it can be difficult to use covering arrays in practice.

Once a traditional t-way covering array is constructed, the system is then tested by running

its test cases in all the selected configurations. By doing so, traditional covering arrays

assume that all test cases can run in all configurations of covering array.

Recent studies, however, show that test cases of configurable systems are likely to have

assumptions about the underlying configurations, i.e., they are like to have some test

case-specific inter-option constraints. When a configuration does not satisfy the test case-

specific constraints of a test case, that test case simply skips the configuration, which

iv

prevents the test case from testing all valid combinations of option settings appearing in

the configuration an effect called a masking effect. A harmful consequence of masking

effects is that they can make the developers to believe that they have tested certain option

setting combinations while they in fact have not.

A solution approach is to use test case-aware covering arrays a novel type of combinato-

rial objects for testing that has been recently introduced. Test case-aware covering arrays

take test case-specific inter-option constraints into account when computing combinato-

rial interaction test suites, such that no masking effects caused by overlooked constraints

occur. Given a configuration space model augmented with test case-specific constraints, a

test case-aware covering array is not just a set of configurations as is the case in traditional

covering arrays, but a set of configurations each of which is associated with a set of test

cases, indicating the test cases scheduled to be executed in the configuration.

Although it has been empirically demonstrated that test case-aware covering arrays, com-

pared to traditional covering arrays, can significantly improve the quality of combina-

torial interaction testing by avoiding masking effects, there is no efficient and effective

algorithms to compute them, except for a couple of proof-of-concept algorithms. We

conjecture that this greatly hurts the adaptation of test case-aware covering arrays in prac-

tice.

In this thesis, we have developed simulated annealing-based, efficient and effective al-

gorithms to compute test case-aware covering arrays and a tool implementing these al-

gorithms. We, furthermore, compare and contrast the performance of our algorithms

by conducting large-scale experiments in which we used two highly configurable large

software systems. The results of our empirical studies strongly suggest that the proposed

algorithms are an efficient and effective way of computing test case-aware covering arrays

and that they perform better than existing approaches.

v

BENZETİLMİŞ TAVLAMA ALGORİTMASINI
KULLANARAK TEST DURUMLARINI DİKKATE ALAN

KAPSAYAN DİZİLER HESAPLAMA

Uğur Koç

Bilgisayar Bilimleri ve Mühendisliği, Yükseklisans Tezi, 2014

Tez Danışmanı: Yar. Doç. Cemal Yılmaz

Anahtar Kelimeler: Yazılım kalite güvencesi, kombinatoryal etkileşim

testi, kapsayan diziler, test durumlarını dikkate alan kapsayan diziler,

benzetilmiş tavlama

Özet

Yapılandırılabilirliği yüksek yazılım sistemlerinin eksiksiz bir şekilde test edilmesi pratikte

olanaksızdır. Bu nedenle, konfigürasyon uzayının verimli bir şekilde örneklendirilmesi

testlerin kapsamını artırmak için önemlidir.

Bu amaca yönelik geliştirilen t-yollu kapsayan diziler (t-way covering arrays) (KAD),

konfigürasyon seçeneklerinin bütün t-yollu kombinasyonları için bütün değer kombinasy-

onlarını kapsamak üzere sistematik bir şekilde oluşturulmuş bir konfigürasyon kümesidir.

KAD’lar konfigürasyon seçeneklerinin etkileşimlerinden kaynaklanan hataları keşfetmeyi

hedeflemektedir. Günümüzde, elde ettikleri birçok başarıya rağmen, pratikte KAD’ları

kullanmak zor olabilir.

Bir t-yollu KAD oluşturduktan sonra, diziye seçilmiş tüm konfigürasyonlar sistemin her

bir test durumu (test case) için test edilir. Böyle yaparak, geleneksel KAD’lar, test du-

rumlarının hepsinin seçilmiş bütün konfigürasyonlarda çalışabileceğini varsayar.

vi

Ancak yapılan son çalışmalar, yapılandırılabilirliği yüksek yazılım sistemlerinin test du-

rumlarının üzerinde çalışacakları konfigürasyon hakkında varsayımlarının (kısıtlama) ol-

masının muhtemel olduğunu göstermektedir. Eğer bir konfigürasyon bir test durumunun

varsayımlarına uymazsa, o test durumu o konfigürasyonu atlar ve bu da sadece o kon-

figürasyonda görünen değerlerinin o test durumunu tarafından test edilememesi sorununa

yol açar. Bu soruna maskeleme etkisi denmektedir.

Bu sorunu çözmenin bir yöntemi, son zamanlarda geliştirilen test durumlarını dikkate alan

kapsayan diziler (test-case-aware covering arrays) (T-KAD) kullanmaktır. T-KAD’lar test

durumlarının konfigürasyon seçeneklerinin aldıkları değerlerle ilgili olan kısıtlamalarını

hesaba katarak bu kısıtlamalarından kaynaklanan maskeleme etkilerinin oluşmasını önler.

Test durumlarının kısıtlarıyla zenginleştirilmiş bir konfigürasyon uzay modeli icin hesa-

planmıs bir T-KAD, geleneksel kapsayan dizilerde olduğu gibi sadece bir konfigürasyon

kümesi değil, her bir konfigürasyonun bir dizi test durumuyla ilişkilendirildiği bir kon-

figürasyon kümesidir. Bu yapıda, bir konfigürasyonla ilişkilendirilmiş test durumları

kümesi, o konfigürasyonda çalıştırılması gereken test durumlarını ifade eder.

Yapılan araştırmalarda, KAD’lar ile karşılaştırıldığında, T-KAD’ların maskeleme etki-

lerini ortadan kaldırarak kombinatoryal etkileşim testinin kalitesini önemli ölçüde arttırdığı

gösterilmiş olmasına rağmen, kavram ispatı olarak geliştirilen birkaç algoritma haricinde,

T-KAD hesaplamanın etkili ve verimli bir yöntemi yoktur. Bu sorunun, T-KAD’ların

kombinatoryal etkileşim testine adapte olmasını engellediğini öngörmekteyiz.

Bu tezde, benzetilmiş tavlama-tabanlı etkili ve verimli T-KAD hesaplama algoritmaları

ve bu algoritmaları uygulayan bir yazılım geliştirdik. Ayrıca, iki yapılandırılabilirliği

yüksek yazılım sistemi kullanarak büyük çaplı deneyler yaparak geliştirdiğimiz algo-

ritmaların performanslarını karşılaştırdık ve değerlendirdik. Deneylerimizin sonuçları,

önerilen algoritmaların T-KAD hesaplamada verimli ve etkili bir yol olduğunu ve mevcut

yaklaşımlara göre performansının daha yüksek olduğunu göstermektedir.

vii

To the scientists who have ostracized or punished for seeking the truth.

viii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Cemal Yılmaz

for the continuous support of my master study and research, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor

for my master study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Berrin

Yanıkoğlu, Prof. Bülent Çatay, Prof. Erkay Savaş, and Prof. Hüsnü Yenigün for their

encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Gülşen Demiröz for her great research cooperation in

thesis project, insightful comments and support of my master study.

I thank my fellow labmates in Software Research Group: Hanefi Mercan, Arsalan Javeed,

Yusuf Külah, for the stimulating discussions, and research cooperations. Also I thank

my friends in Sabanci University: Mehmet Ahat, Salim Sarımurat, Gizem Gezici, Zeynep

Doğmuş, and Rahim Dehkharghani for all the fun we have had in the last two years.

Last but not the least, I would like to thank my family: my parents Ahmet Koç and Emine

Sönmez, for giving birth to me at the first place, my brother and sisters Suat Alışkan,

Aslı Filya and Suna Alışkan for supporting spiritually me throughout my life and my

dear darling Meryem Yılmaz for being in my life and empowering me with her great

love.

ix

TABLE OF CONTENTS

1 Introduction 1

2 Background Information 6

2.1 Combinatorial Interaction Testing . 6

2.2 Traditional Covering Arrays . 7

2.3 Masking Effects . 8

2.4 Test Case-Aware Covering Arrays . 9

2.5 Simulated Annealing . 12

3 Related Work 14

3.1 Covering Array Generation . 14

3.2 Constraint Handling . 15

3.3 Test Case-Aware Covering Array Generation 16

4 Algorithm 3: Minimizing Number of Test Runs 17

4.1 Proof of Optimality . 18

5 Approach 19

5.1 Architectural Design . 19

5.2 Binary Search for The Outer Search . 20

5.3 Simulated Annealing for The Inner Search 21

5.4 Initial Set Generation Strategies . 23

5.5 Neighbor Generation Strategies . 25

5.5.1 Change a Random Index - CRI 26

5.5.2 Change a Random t-Tuple - CRT 27

x

5.5.3 Schedule More Test Cases - SMT 28

5.5.4 Cover At Least One Missing t-Pair - CMP 29

5.5.5 Alter Violating Option - AVO 30

6 Experiments 31

6.1 Subject Applications . 31

6.2 Operation Model . 34

6.3 Independent Variables . 34

6.4 Evaluation Framework . 35

6.4.1 Dependent Variables . 36

6.5 Data and Analysis . 37

6.5.1 Study 1: Comparing Initial Set Generation Strategies 38

6.5.2 Study 2: Comparing Neighbor Generation Strategies 54

6.5.3 Study 3: Overall Comparison 71

6.6 Discussion . 79

7 Threats to Validity 80

8 Conclusion and Future Work 82

Appendices 84

Appendix A Empirical Results 84

xi

LIST OF FIGURES

1.1 Input (a) and output (b) of CIT. 3

1.2 Input (a) and output (b) of test case-aware CIT. 4

2.1 Four Phases of CIT . 6

6.1 Sample box plot . 38

6.2 Comparing initial missing t-pair counts for initialization strategies at strength

level . 39

6.3 Comparing initial missing t-pair counts for initialization strategies at SUT

by strength level . 40

6.4 Comparing initial missing t-pair counts for initialization strategies de-

tailed for Apache configuration space models 41

6.5 Comparing initial missing t-pair counts for initialization strategies de-

tailed for MySQL Configuration space models 42

6.6 Comparing initial missing t-pair percentages for initialization strategies

overall . 43

6.7 Comparing initial missing t-pair percentages for initialization strategies

at strength level . 44

6.8 Comparing initial missing t-pair percentages for initialization strategies

at SUT level . 45

6.9 Comparing initial missing t-pair percentages for initialization strategies

at SUT by strength level . 46

6.10 Comparing initial missing t-pair percentages for initialization strategies

detailed for Apache configuration space models 47

xii

6.11 Comparing initial missing t-pair percentages for initialization strategies

detailed for MySQL Configuration space models 48

6.12 Comparing initialization times for initialization strategies at strength level 49

6.13 Comparing initialization times for initialization strategies at SUT by strength

level . 50

6.14 Comparing initialization times for initialization strategies detailed for Apache

configuration space models . 51

6.15 Comparing initialization times for initialization strategies detailed for MySQL

Configuration space models . 52

6.16 Comparing the ineffectiveness of initialization strategies 53

6.17 Comparing TCA sizes for neighboring strategies overall 55

6.18 Comparing TCA sizes for neighboring strategies at strength level 56

6.19 Comparing TCA sizes for neighboring strategies at SUT level 57

6.20 Comparing TCA sizes for neighboring strategies at SUT by strength level 58

6.21 Comparing TCA sizes for neighboring strategies detailed for Apache con-

figuration space models and t = 2 . 59

6.22 Comparing TCA sizes for neighboring strategies detailed for Apache con-

figuration space models and t = 3 . 60

6.23 Comparing TCA sizes for neighboring strategies detailed for MySQL

Configuration space models and t = 2 61

6.24 Comparing TCA sizes for neighboring strategies detailed for MySQL

Configuration space models and t = 3 62

6.25 Comparing annealing times for neighboring strategies overall 63

6.26 Comparing search times for neighboring strategies strength level 64

6.27 Comparing annealing times for neighboring strategies SUT level 65

6.28 Comparing annealing times for neighboring strategies SUT by strength

level . 66

6.29 Comparing annealing times for neighboring strategies detailed for Apache

configuration space models and t = 2 . 67

6.30 Comparing annealing times for neighboring strategies detailed for Apache

configuration space models and t = 3 . 68

xiii

6.31 Comparing annealing times for neighboring strategies detailed for MySQL

Configuration space models and t = 2 69

6.32 Comparing annealing times for neighboring strategies detailed for MySQL

Configuration space models and t = 3 70

6.33 Comparing search times and TCA sizes of neighboring strategies for Apache

configuration space models and t = 2 . 72

6.34 Comparing search times and TCA sizes of neighboring strategies for Apache

configuration space models and t = 3 . 73

6.35 Comparing search times and TCA sizes of neighboring strategies for MySQL

Configuration space models and t = 2 74

6.36 Comparing search times and TCA sizes of neighboring strategies for MySQL

Configuration space models and t = 3 75

6.37 Comparing search times and TCA sizes for AVO strategy and Algorithm

2 at SUT by strength level . 76

6.38 Comparing search times and TCA sizes for AVO strategy and Algorithm

2 for t = 2 . 77

6.39 Comparing search times and TCA sizes for AVO strategy and Algorithm

2 for t = 3 . 77

xiv

LIST OF TABLES

6.1 Initial configuration space model for Apache. 32

6.2 Initial configuration space model for MySQL. 33

6.3 Initialization time, annealing time, and time percentages 78

A.1 Statistics and improvements for HISxAVO combination 85

A.2 Statistics and improvements for HISxCMP combination 86

A.3 Statistics and improvements for HISxCRI combination 87

A.4 Statistics and improvements for HISxCRT combination 88

A.5 Statistics and improvements for RISxAVO combination 89

A.6 Statistics and improvements for RISxCMP combination 90

A.7 Statistics and improvements for RISxCRI combination 91

A.8 Statistics and improvements for RISxCRT combination 92

A.9 Statistics and improvements for TISxAVO combination 93

A.10 Statistics and improvements for TISxCMP combination 94

A.11 Statistics and improvements for TISxCRI combination 95

A.12 Statistics and improvements for TISxCRT combination 96

A.13 Statistics and improvements for TCISxAVO combination 97

A.14 Statistics and improvements for TCISxCMP combination 98

A.15 Statistics and improvements for TCISxCRI combination 99

A.16 Statistics and improvements for TCISxCRT combination 100

xv

LIST OF SYMBOLS

φt t-tuple.
Φt set of all valid t-tuples.
λt t-pair.
Λt set of valid t-pairs.
τ test case.
T test suit (set of test cases).
Q set of test case-specific constraints.
Ωt t-way covering array.∏

covering array generator.
Ψt t-way test case-aware covering array.

xvi

LIST OF ABBREVIATIONS

CS Computer Science.
SA Simulated Annealing.
CIT Combinatorial Interaction Testing.
CA Covering Array.
TCA Test Case-Aware Covering Array.
BS Binary Search.
NS Neighboring Strategy.
IS Initialization Strategy.
SUT Software Under Test.
SQA Software Quality Assurance.
HIS Hamming Distance Initial Set.
TIS Traditional Covering Array as Initial Set.
RIS Random Initial Set.
TCIS Test Case-Aware Covering Array as Initial Set.
CRI Change a Random Index.
CRT Change a Random Tuple.
SMT Schedule More Test Cases.
CMP Cover at least one Missing t-Pair.
AVO Alter Violating Option.

xvii

1

INTRODUCTION

Software is a fundamental component of modern life. People engage with software to

overcome many tasks of daily life such as driving car, watching TV, shopping and learn-

ing. In many application domains, variety of requirements and diversity of environments

force software systems to be highly configurable. For example, Apache Web Server has

172 user-configurable options to support customization for different requirements and en-

vironments.

While having highly configurable system promotes customization, it introduces testing

problems with regret. Number of possible configurations grows exponentially with num-

ber of configurable factors; therefore, exhaustive testing of all possible configurations

becomes practically infeasible. For example, with 172 configuration options, Apache

Web Server has 1.8×1055 unique configurations. Testing all possible configurations for

such a system takes longer than the age of universe, thus infeasible. For this reason, to

improve the coverage of software testing, efficient sampling from the configuration space

is a vital problem for software quality assurance.

1

Combinatorial interaction testing (CIT) is an effective method that has been commonly

studied for this purpose [33]. CIT aims to improve the coverage of testing by revealing

failures that are caused by the interactions of various system input parameters. As input,

CIT approaches take a configuration space model which includes a set of configurable

factors, their possible settings, and a set of system-wide inter-option constraints that ex-

plicitly or implicitly invalidate some configurations. They then systematically sample the

configuration space based on some coverage criteria.

In CIT, a common criteria is to cover all t-way combinations of configuration options,

where t is referred to as the coverage strength. Typically, this criteria is satisfied through

the use of a combinatorial structure called t-way covering array (CA). A t-way CA is a set

of systematically selected configurations covering all value combinations for every t-way

option combinations. The goal is to discover faults that are caused by interactions of t

(and fewer) configuration options. The results of many empirical studies strongly suggest

that a majority of such failures in practice, are caused by the interactions of only a small

number of configuration options. Thus, t-way covering arrays, where t is much smaller

than the number of possible configurable factors, are an effective and efficient way of

revealing such failures [2, 9, 13, 14]. CAs are currently being used in many application

domains, and a wide variety of free and commercial tools exist to generate them. Despite

its many successes, practical application is challenging for it.

Once a t-way CA is constructed, the system is then tested by running its test cases in all

configurations of the covering array. By doing so, it is assumed that all test cases can run

in all configurations of the CA. However, test cases of configurable systems are likely to

have assumptions about the underlying configurations. Thus, it is not enough to satisfy

the system-wide constraints to execute each test case for each configuration of the CA.

When a configuration does not satisfy the assumptions of a test case, that test case simply

skips that configuration and which causes the masking effects [15].

Figure 1.1 illustrates masking effects on a system that has four binary configuration op-

tions (o1, o2, o3, and o4) and a test suite containing three test cases (t1, t2 and t3, as in

Figure 1.1(a)). In this example, there is no system-wide constraint. However, test cases

t1 and t2 have some self-specific constraints: t1 can run only in configurations in which

o1=0, and t2 can run only in configurations in which o1=1. Test case t3, on the other hand,

2

Configuration Space Model
option settings

o1 {0, 1}
o2 {0, 1}
o3 {0, 1}
o4 {0, 1}

(a)

3-way CA
o1 o2 o3 o4 t1 t2 t3

1 1 1 1 S E E
1 1 0 0 S E E
1 0 1 0 S E E
1 0 0 1 S E E
0 1 1 0 E S E
0 1 0 1 E S E
0 0 1 1 E S E
0 0 0 0 E S E

(b)

Figure 1.1: Input (a) and output (b) of CIT.

has no test case-specific constraints. For this configuration model, a 3-way covering array

is created and then all the test cases are executed in all configurations of the covering array

(Figure 1.1(b)). The literal E indicates that the test is executed, and the literal S indicates

that the test skipped the configuration because of the unsatisfying option setting(s).

There are twenty valid 3-tuples to be tested by each of t1 and t2 and 32 valid 3-tuples for

t3. Now consider t1; since t1 skipped the first 4 configurations, the 3-way option setting

combinations for options o2, o3, and o4 that appear in the first four configurations, were

actually not tested by t1. These 4 combinations appear nowhere else in the covering array,

thus t1 never had a chance to test them. Similarly, t2 never had a chance to test the four

valid 3-way combinations that appear in the configurations skipped by t2. As a result,

eight out of 72 (11%) valid 3-way option setting combination-test case pairs were not

tested at all, masked.

In order to avoid this kind of masking effects caused by existence of test case-specific

constraints, a new combinatorial object -test case-aware covering array (TCA)- is intro-

duced by Yilmaz et al. [32] and CIT became aware of the test case-specific constraints.

As input, test case-aware CIT takes a configuration space model which includes a set

of configurable factors, their possible settings, and a set of system-wide and test case-

specific inter-option constraints that explicitly or implicitly invalidate some configura-

tions system-widely or on test case bases (such as Figure 1.2(a)). Then, systematically

sample the configuration space based on satisfying some coverage criteria and create a

test case-aware covering array.

3

A test case-aware covering array is not just a set of configurations as is the case in tradi-

tional covering array, but a set of configurations, each of which is associated with a set of

test cases, indicating that the test cases are scheduled to be executed in the configuration.

Figure 1.2(b), as an example, presents a 3-way test case-aware covering array constructed

for our hypothetical scenario.

Configuration Space Model
option settings

o1 {0, 1}
o2 {0, 1}
o3 {0, 1}
o4 {0, 1}

test suit: t1, t2, t3

test constraint
t1 o1=0
t2 o1=1

(a)

3-way TCA
o1 o2 o3 o4 scheduled tests
0 1 1 1 {t1}

1 1 1 1 {t2, t3}

0 1 0 0 {t1}

1 1 0 0 {t2, t3}

0 0 1 0 {t1}

1 0 1 0 {t2, t3}

0 0 0 1 {t1}

1 0 0 1 {t2, t3}

0 1 1 0 {t1, t3}

1 1 1 0 {t2}

0 1 0 1 {t1, t3}

1 1 0 1 {t2}

0 0 1 1 {t1, t3}

1 0 1 1 {t2}

0 0 0 0 {t1, t3}

1 0 0 0 {t2}

(b)

Figure 1.2: Input (a) and output (b) of test case-aware CIT.

A t-way test case-aware covering array has the following properties:

1. For each test case, every valid t-way combination of option settings occurs at least

once in the set of configurations in which the test case is scheduled to be executed,

2. No test case is scheduled to be executed in a configuration which violates the test

case-specific constraints of the test case, or the system-wide constraints.

Having stated the improvements of awareness of test case-specific constraints, except for

a couple of proof-of-concept algorithms introduced by Yilmaz et al. [32], there is no

effective algorithm or tool to generate test case-aware covering arrays. Although, CA and

TCA generation problems are similar, since TCAs are more complex objects with test

case-specific constraints, generating them is a more challenging problem compared to

4

generating a traditional CA. For example, for a configuration space model with 65 binary

configuration options and 30 distinct test case-specific constraints, conventional greedy

algorithms take seventeen days to generate a 3-way test case-aware covering array [32],

whereas generating a 3-way CA for the same model is just a matter of minutes.

In this thesis, we focused on test case-aware covering array generation problem. We have

assessed existing covering array generation methods and investigated their weaknesses

to solve this problem. Finally, we focused on simulated annealing algorithm, which has

been commonly used for covering array generation task as well, to compute TCAs.

We have developed simulated annealing-based, efficient and effective algorithms to com-

pute test case-aware covering arrays and a tool implementing these algorithms. We, fur-

thermore, compare and contrast the performance of our algorithms by conducting large-

scale experiments in which we used two highly configurable large software systems. The

results of our empirical studies strongly suggest that the proposed algorithms are an ef-

ficient and effective way of computing test case-aware covering arrays and that they per-

form better than existing approaches.

Our contribution can be summarized as follows:

• design of a new methodology to compute test case-aware covering arrays,

• a tool for test case-aware (and also traditional) covering array generation,

• discovery of new bounds for test case-aware covering array sizes, and

• significant cost reduction in test case-aware covering array generation.

The remainder of this article is organized as follows: chapter 2 provides background in-

formation; chapter 3 discusses the related work; chapter 4 presents the proof of optimality

for Algorithm 3 introduced in [32]; chapter 5 introduces the proposed approach to com-

pute test case-aware covering arrays; chapter 6 presents the empirical studies; chapter 7

discusses the potential external threats to validity; and chapter 8 presents concluding re-

marks and possible directions for future work.

5

2

BACKGROUND INFORMATION

This chapter provides background information about traditional covering arrays, masking

effects, test case-aware covering arrays, and simulated annealing algorithm.

2.1. Combinatorial Interaction Testing

Combinatorial interaction testing aims to improve the coverage of testing by revealing

failures that are caused by the interactions of various system input parameters. At a high

level, CIT can be broken down into four major phases as shown in Figure 2.1.

CIT
SAMPLING

TESTING ANALYZING

1

2

3 4

Parameter
MODELING

WHAT?!
(static)

HOW?!
(dynamic)

Figure 2.1: Four Phases of CIT

6

The first two of these phases, modeling and sampling, basically address the ’WHAT’ of

testing - what are the characteristics of the SUT, and what are the inputs against which

it should be tested? Modeling involves determining what aspect of the system to model

(i.e., input parameters, configuration options, sequences of operations). Sampling refers

to the process or algorithm by which we determine a means to cover the model generated

in the first phase (e.g., all pairs of all factors, etc.). Currently, these phases are typically

static, done once at the beginning of the process.

The last two phases, testing and analysis, typically address the ’HOW’ of testing actu-

ally running the tests and then examining the test results. These phases tend to be more

process-driven than the first two phases, unfolding over a more extended period of time.

In testing, developers may test in a batch mode, or test more incrementally or adaptively.

And finally, developers analyze the test results, at a minimum to understand which test

cases have passed and which have failed. In some cases, developers can use the testing

and analysis phases to provide feedback to improve and refine later modeling and sam-

pling activities.

2.2. Traditional Covering Arrays

CIT approaches take a configuration space model M=<O,V,Q> as input. The model

includes a set of configuration options O = {o1, o2, . . . , on}, their possible settings V =

{V1,V2, . . . ,Vn}, and a system-wide inter-option constraint Q (if any). In effect, the con-

figuration space model implicitly defines a valid configuration space for testing.

Each option oi (1 ≤ i ≤ n) in the configuration space model takes a value from a finite

set of ki distinct values Vi={v1, v2, . . . , vki} (ki=|Vi|). Let si j be an option-value tuple of the

form <oi, v j>, indicating that option oi is set to value v j ∈ Vi. Furthermore, let S i be the

set of all possible option-value tuples for option oi, i.e., S i={<oi, v j>: v j ∈ Vi}.

Definition 1. A t-tuple φt={si1 j1 , si2 j2 , . . . , sit jt} is a set of option-value tuples for a combi-

nation of t distinct options, such that 1 ≤ t ≤ n, 1 ≤ i1 < i2 < · · · < it ≤ n, and sip jp ∈ S ip

for p=1, 2, . . . , t.

7

Let Φ̂t be the set of all t-tuples for some 1≤t≤ n. Not all the t-tuples in Φ̂t may be valid

due to the system-wide constraint Q. Assume a deterministic function valid(φt,Q), such

that valid(φt,Q) is true, if and only if, φt is a valid t-tuple under constraint Q. Otherwise,

valid(φt,Q) is false. The set of all valid t-tuples Φt under constraint Q is then defined as:

Φt={φt : φt ∈ Φ̂t ∧ valid(φt,Q)}.

Definition 2. Given a configuration space model M=<O,V,Q>, a valid configuration c

is a valid n-tuple, i.e., c ∈ Φn, where n = |O|.

Note that, in a valid configuration, each option defined in the configuration space model

takes a valid value and the configuration (i.e., n-tuple) does not violate Q.

Definition 3. Given a configuration space model M=<O,V,Q>, the valid configuration

space C is the set of all valid configurations, i.e., C={c : c ∈ Φn}.

CIT approaches systematically sample the valid configuration space and test only the

selected configurations. The sampling is carried out by computing a t-way covering ar-

ray [9], where t is often referred to as the strength of the covering array.

Definition 4. A t-way covering array CA(t,M=<O,V,Q>) is a set of valid configurations

in which each valid t-tuple appears at least once, i.e., CA(t,M=<O,V,Q>)={c1, c2, . . . , cN},

such that ∀ φt ∈ Φt ∃ ci ⊇ φt, where ci ∈ C for i=1, 2, . . . ,N.

Once a covering array is computed, the system under test is validated by running its test

suite in all the selected configurations. Since the amount of resources required for testing

is a function of the covering array size (i.e., N), covering arrays are constructed so that all

valid t-tuples are covered in minimum number of configurations.

2.3. Masking Effects

Definition 5. A masking effect is an effect that prevents a test case from testing all valid

combinations of option settings appearing in a configuration, which the test case is nor-

mally expected to test.

8

The concept of masking effects has been introduced by Dumlu et al. [15]. A harmful

consequence of masking effects is that they cause developers to develop false confidence

in their test processes, believing them to have tested certain option setting combinations,

when they in fact have not. One simple example of a masking effect (besides the ones

caused by overlooked test case-specific constraints) would be an error that crashes a pro-

gram early in the programs execution. The crash then prevents some configuration depen-

dent behaviors, that would normally occur later in the programs execution, from being

exercised. Unless the combinations controlling those behaviors are tested in a different

configuration, or unless the error is fixed and the faulty configuration is re-tested, we

cannot conclude that those configuration dependent behaviors have been tested.

Masking effects can be caused by many factors. System failures, unaccounted control

dependencies among configuration options (i.e., option setting combinations that effec-

tively cancel other option setting combinations), and incomplete or incorrect inter-option

constraints can all perturb program executions in ways that prevent other configuration

dependent behaviors from being tested.

2.4. Test Case-Aware Covering Arrays

Definition 6. An inter-option constraint is a constraint among option settings, which

explicitly or implicitly invalidates some combinations of option settings.

System-wide inter-option constraints apply to all test cases and define the set of valid ways

the system under test can be configured. A test case-specific constraint, on the other hand,

applies only to the test case that it is associated with and determines the configurations in

which the test case can run.

It is important to note that expressing test case-specific constraints as system-wide con-

straints and then generating traditional covering arrays, is not an adequate solution for

handling test case-specific constraints. One reason is that constraints for different test

cases may conflict with each other, in which case no solution will be found. For example,

in our hypothetical scenario discussed in Chapter 1, the constraints of t1 and t2 conflict;

9

t1 cannot run when the binary option o1 has one setting and t2 cannot run when the same

option has the other setting. Globally enforcing these conflicting constraints will not gen-

erate any covering arrays. Another reason is that, even if the test case-specific constraints

do not conflict, enforcing them on all test cases can prevent the test cases from exercising

some valid option setting combinations that are invalidated by other test cases. For exam-

ple, in our hypothetical scenario given in Chapter 1, enforcing the constraint of t1 on t3

prevents t3 from testing any combinations with o1=1, which are valid for t3.

For these reasons, we need to account the test case-specific constraints individually. Test

case-aware covering arrays have been introduced for this purpose by Yilmaz et al. [32].

As is the case with traditional covering arrays, test case-aware covering arrays take as

input a configuration space model M. The model contains a set of configuration options

O={o1, . . . , on}, their settings V={V1, . . . ,Vn}, and a system-wide inter-option constraint

Qs. Unlike traditional covering arrays, the configuration space model of test case-aware

covering arrays additionally includes a set of test cases T={τ1, τ2, . . . }. Each test case

τ ∈ T, in addition to implicitly inheriting the system-wide constraint Qs, can have a test

case-specific constraint Qτ. In the remainder of the paper, the collection of all test case-

specific constraints is referred to as QT.

In the presence of test case-specific constraints, we define the set of valid t-tuples on a

per-test case basis, since a valid t-tuple for a test case may be invalid for another test case.

Let Φτ
t ={φt : φt ∈ Φ̂t ∧ valid(φt,Qs ∧ Qτ)} be the set of all valid t-tuples for a test case

τ.

Definition 7. A valid configuration cτ for a test case τ ∈ T is a valid n-tuple for τ, i.e.,

cτ ∈ Φτ
n, where n = |O|.

Definition 8. The valid configuration space Cτ for a test case τ ∈ T is the set of all valid

configurations for τ, i.e., Cτ={c : c ∈ Φτ
n}.

Test case-aware covering arrays aim to ensure that each test case has a fair chance to

test all of its valid t-tuples. To this end, each test case is scheduled to be executed only in

configurations which are valid for the test case so that no masking effects can occur.

Definition 9. A t-pair is a pair of the form λt=<φt, τ>, such that φt ∈ Φτ
t and τ ∈ T.

10

Definition 10. A t-way test case-aware covering array TCA(t,M=<O,V,T,Qs,QT>) =

{<c1,T1>, . . . , <cN ,TN>} is a set of rows of the form <ci,Ti>, where ci ∈ C and Ti ⊆ T

for i = 1, 2, . . . ,N, such that each valid t-pair appears at least once, i.e., ∀ τ ∈ T ∧ φt ∈

Φτ
t ∃<ci,Ti> :φt ⊆ ci ∧ τ ∈ Ti and τ ∈ Ti → ci ∈ Cτ.

In other words, for a given configuration space model, a t-way test case-aware covering

array is a set of configurations, each of which is associated with a set of test cases, indi-

cating the test cases scheduled to be executed in the configuration, such that 1) none of

the selected configurations violate the system-wide constraint, 2) no test case is scheduled

to be executed in a configuration that violates the test case-specific constraint of the test

case, and 3) for each test case, every valid t-tuple appears at least once in the set of con-

figurations in which the test case is scheduled to be executed. Figure 1.2b, as an example,

presents a 3-way test case-aware covering array created for our hypothetical scenario de-

picted in Figure 1.1. Since none of the test case-specific constraints are violated in this

covering array, each test case has a chance to test all of its valid 3-tuples; no masking

effects caused by test skips can occur.

Compared to traditional t-way covering arrays, handling test case-specific constraints is

likely to increase the number of configurations required, as the t-tuples being masked in

traditional arrays may need to be covered in additional configurations. However, this does

not necessarily imply an increase in the number of test runs required, as the test cases are

executed only in configurations that contribute to the coverage. For example, comparing

the 3-way test case-aware covering array in Figure 1.2b to the traditional 3-way covering

array in Figure 1.1b, we observe that, while the number of configurations doubles, the

number of test runs stays the same as each array requires a total of 24 test runs.

Therefore, when the goal is to test all valid t-pairs, then traditional t-way covering arrays

will not guarantee the coverage in the presence of test case-specific constraints, whereas

t-way test case-aware covering arrays, while guaranteeing a full coverage, will do so at the

possible cost of increased number of configurations, but not necessarily increased number

of test runs.

11

2.5. Simulated Annealing

Simulated Annealing (SA) is a stochastic optimization method emulated from metal an-

nealing process [8, 19]. Physical annealing is the process of cooling high temperature

molten metal at a significant rate to have frozen metal with minimum potential energy

at the end. There are three control points in physical annealing process; beginning tem-

perature T0, cooling rate Cr and stopping temperature Ts. All of these parameters are

important to reach to the minimum potential energy, and they also affect the annealing

time.

At high temperatures particles are more susceptive to movement. Therefore, more drastic

changes and high energy releases are likely to occur at early phases of annealing. As the

process goes on, particles get stabilized and it becomes difficult to happen big structural

changes. The process terminates when the temperature reaches to Tend or potential energy

becomes 0. If Cr is not small enough frozen metal will contain imperfections caused by

unreleased energy. Or vice versa, if the cooling rate is too small then the frozen metal will

be too softened to work with.

SA mimics this process to solve optimization problems. Energy corresponds to cost and

the state of metal with minimum potential energy corresponds to the optimal solution with

minimum cost. T0, Cr, and Ts are referred as annealing parameters and they are used to

control the search process. Annealing parameters should be determined by the needs of

the problem domain.

To avoid stacking in local minimums, SA algorithm applies some probability to create

a chance for accepting the states that are worse that the current state. If the newly gen-

erated neighbor S ′ is more costly than S , SA invokes bolzman probability distribution

function;

B(T) = −kb
∆E
T

(2.1)

and check for the following condition (5th line of Algorithm 1);

Rand(0, 1) < eB(T) (2.2)

12

Algorithm 1 Simulated Annealing
Input T0, Cr, Ts: Annealing Parameters

1: T ← T0 S ← S 0 S best ← S 0

2: while E(S best) , 0 and Ts < T do
3: S ′ ← neighbour(S) # generate a neighbour S ′

4: ∆E ← E(S ′)−E(S) # E(S) energy o f state S
5: if ∆E < 0 or Rand(0, 1) < e−k∆E/T then
6: S ← S ′ # change the state
7: if E(S) < E(S best) then
8: S best ← S # save to the S best

9: end if
10: end if
11: T− ← (T ×Cr) # cool the system
12: end while
13: return S best

If the condition holds, SA continues with S ′ otherwise rejects S ′ and continues with S .

This probabilistic decision keeps SA to get stacked in local minimums.

Since the temperature is higher at the early phases of the search, the condition (2.2) is

more likely to hold, means, SA is more open to accept worse states. Therefore the tem-

perature interval, (Ts, T0), is important to effectively scan the search space. Cr helps to

cool the system which will effect the acceptance of worse states.

Finally, if the optimum solution cannot be found, SA stops when T = Ts. In this case,

which is the wort case for complexity analysis, there will be

(T0 − Ts)/Cr (2.3)

iterations with decreasing temperature and at the end the system will be cold.

Although, SA is not a deterministic and complete algorithm which exhaustively scan the

entire search space, in practice it achieves to find the optimum solution and commonly

used to solve NP-hard problems.

13

3

RELATED WORK

Traditional covering arrays aim at revealing interaction-related failures. The results of

many empirical studies strongly suggest that a majority of such failures in practice are

caused by the interactions of only a small number of configurable factors or input param-

eters and that traditional t-way covering arrays, where t is much smaller than then the

number of possible configurable factors, are an effective and efficient way of revealing

such failures [2, 9, 13, 14].

3.1. Covering Array Generation

Nie et al. classify the methods for generating covering arrays, which is an NP-hard prob-

lem, into 4 main categories [23]: random search-based methods [24], heuristic search-

based methods [6,10,12,17,25], mathematical methods [18,20,30,31], and greedy meth-

ods [3, 5, 7, 9, 13, 21, 27, 29].

Random search-based methods employ a random selection without replacement strat-

egy [24]. Valid configurations are randomly selected from the configuration space in an

iterative manner until all the required t-tuples have been covered by the selected configu-

rations.

14

Mathematical methods for constructing covering arrays have also been studied [20,30,31].

Some mathematical methods are based on recursive construction methods, which build

covering arrays for larger configuration space models (i.e., the ones with a larger number

of configuration options) by using covering arrays built for smaller configuration space

models [20, 30]. Other mathematical methods leverage mathematical programming, such

as integer programming, to compute covering arrays [31].

Greedy algorithms operate in an iterative manner [3,5,7,9,13,21,27,29]. At each iteration,

among the sets of configurations examined as candidates, the one that covers the most

previously uncovered t-tuples is included in the covering array. The iterations terminate

when all the required t-tuples have been covered.

Heuristic search-based methods, on the other hand, employ heuristic search techniques,

such as hill climbing [12], tabu search [6], and simulated annealing [10, 28], or AI-based

search techniques, such as genetic algorithms [17] and ant colony algorithms [25]. These

methods maintain a set of configurations at any given time and iteratively apply a series of

transformations to the set until the set constitutes a t-way covering array. These methods

do not search all the search space exhaustively. Therefore, theoretically they are not

sound. However, in practice some of these methods achieve to find a covering array in

reasonable construction cost and size.

3.2. Constraint Handling

Handling system-wide inter-option constraints in the construction of traditional covering

arrays have also been of interest. Cohen et al. study the nature of such constraints in

configurable software systems and empirically demonstrate that ignoring such constraints

leads to wasted testing efforts [11]. Mats et al. propose various techniques to efficiently

handle system-wide constraints [22]. Bryce et al. introduce the concept of “soft con-

straints” to mark option setting combinations that are permitted, but undesirable to be

included in a covering array [4].

15

Traditional covering arrays, while handling system-wide constraints, do not account for

test case-specific constraints. In this work we, on the other hand, take test case-specific

constraints into account when constructing combinatorial interaction test suites.

Seeding mechanisms in CIT approaches have been used to guarantee the inclusion of

certain configurations in traditional covering arrays [9, 13, 16]. In this work, we use the

seeding mechanism to construct test case-aware covering arrays.

3.3. Test Case-Aware Covering Array Generation

Since, test case-aware covering arrays have been introduced recently, there are only 3

proof-of-concept algorithms that also have been introduced with the object [32].

• Algorithm 1: Maintaining a separate configuration space model for each test case,

• Algorithm 2: Maintaining a single configuration space model,

• Algorithm 3: Minimizing number of test runs.

These algorithms fall into the category of greedy algorithms. However, while the exist-

ing greedy algorithms compute traditional covering arrays, they compute test case-aware

covering arrays and each has different objective.

16

4

ALGORITHM 3: MINIMIZING NUMBER OF TEST RUNS

The algorithm presented in this section is introduced by Yilmaz et al. [32] and it aims to

minimize the number of test runs.

Algorithm 2 Minimizing the number of test runs required.
Input M=<O,V,T,Qs,QT>: Config. space model
Input t: Covering array strength

1: ΨM
t ← ∅

2: for each test case τ in T do
3: Sτ ← ∅
4: Ω

Mτ
t ←

∏
(t,Mτ, Sτ)

5: ΨM
t ← ΨM

t •Ω
Mτ
t

6: end for
7: return ΨM

t

Given a configuration space model M=<O,V,T,Qs,QT>, strength t, and using an existing

traditional covering array constructor
∏

, this algorithm generates a t-way test case-aware

covering array, Ψt, by concatenating |T| number of t-way covering arrays, Ω
Mτ
t , each of

which is created for Mτ where τ ∈ T ∧ ∀ τ ∈ T and Mτ=<O,V, {τ},Qτ, ∅> only has one

system-wide constraint which is originally the test case specific constraint of τ. Therefore,

there is only one test case scheduled to execute for each configuration (row) of Ψt.

17

4.1. Proof of Optimality

Assuming that,
∏

computes covering array that are optimum in size proof of optimality

of this algorithm can be done as follows;

Statement; Algorithm 3 is optimum in the number of test runs.

1. Basis |T| = 1; constructed N × k covering array is optimum minimum in N. There

will be

N × 1 = N (4.1)

test runs, so number of test runs is also N which is optimum, statement holds for

|T| = 1.

2. Inductive step; assuming that the statement holds for |T| = n. For each test case

τ ∈ T,
∏

will construct Ni × k covering array meaning Ni × 1 = Ni test runs. In

total;
n∑

i=1

Ni (4.2)

is the number of test runs, which is optimum.

Then, for |T| = n + 1;  n∑
i=1

Ni

 + Nn+1 (4.3)

The first term is optimum from (4.2) and the second term is optimum from (4.1).

Thus, (4.3) is also optimum in number of test run, statement also holds for |T| =

n + 1.

18

5

APPROACH

This chapter presents architectural design, search levels, and initialization and neighbor-

ing strategies of the proposed approach.

5.1. Architectural Design

In order to generate test case-aware covering arrays, we have designed a nested search

process with two levels. The outer level, referred to as the outer search, is the search of

the minimal size for the test case-aware covering array. The inner level on the other hand,

referred to as the inner search, is the actual search of the test case-aware covering array

for the size determined by the outer search.

As input, the approach takes a configuration space model, M=<O,V,T,Qs,QT>, coverage

strength, t, and optionally a seed to start with. The output is a t-way test case-aware

covering array.

The following two sections elaborate on the search levels of the approach.

19

5.2. Binary Search for The Outer Search

Many covering array generation approaches, which use heuristics, generate covering ar-

rays for a given size. There are known array size bounds for a large number of configura-

tion space models published by Nist [1]. However, no work has been done to discover test

case-aware covering array size bounds yet. Indeed, since the test case-specific constraints

are application specific, sizes for test case-aware covering arrays cannot be generalized as

in the case of traditional covering arrays. Therefore, the array size cannot be given as an

input. Due to this reason, we have designed the outer search.

We used binary search algorithm for the outer search (in Algorithm 3). The interval

(lower and upper bounds, Bl and Bu) of the search is determined relatively to the published

covering array sizes [1].

Algorithm 3 Binary Search for TCA size
Input M=<O,V,T,Qs,QT>: Configuration space model
Input t: Covering array strength
Input <Bl, Bu>: Lower and upper bounds
Input S 0: Seed

1: N ← (Bl + Bu)/2
2: S 0 ← initialize(M,N, t, S 0) S ← S 0

3: while Bu ≥ Bl do
4: S ← run(M,N, t, S) # running the inner search f or Ψt o f size N
5: if E(S) = 0 then
6: Ψt ← S # keep as the best so f ar
7: Bu ← N − 1
8: else
9: Bl ← N + 1

10: end if
11: N ← (Bl + Bu)/2 # new size
12: end while
13: return Ψt

First, the initial array size is computed as the average of the bounds. Then, the system

is initialized as in the 2nd line of Algorithm 3. This initialization operation is a crucial

component of the approach which will affect the computation cost. Therefore, we have

developed several initialization strategies which will be elaborated in Section 5.4.

20

Then, iterative search starts. At each iteration, first an inner search is performed for the

computed array size, N (4th line of Algorithm 3). For the next iteration, if the inner search

can find the Ψt, then, N is the new upper bound, otherwise N is the new lower bound. The

function, E(S), computes the number of missing t-pairs as the cost of S. Finally, the outer

search terminates when Bu ≥ Bl and returns the best found Ψt (e.g. E(Ψt) = 0).

5.3. Simulated Annealing for The Inner Search

The inner search is developed to compute test case-aware covering array, Ψ. We first

assessed existing covering array generation methods which are also mentioned in Sec-

tion 3.1.

Mathematical methods are not effective in constraint handling and they put unrealistic re-

quirements for configuration space model, such as, having prime number of configuration

options or having the same setting count for each option [23].

Random search-based methods are more flexible compared to mathematical methods and

they have been commonly used to compute covering arrays [24]. However, compared to

greedy or local search algorithms they are less effective.

Greedy algorithms work faster than local search algorithms but they produce covering

arrays that are larger in size [23]. Throughout the search, greedy methods complete the

array gradually. They make decisions only with the current local information of the se-

lected configurations and do not account the needs of the proceeding steps. However,

having a complete solution object and being aware of the needs of the system are impor-

tant for the test case-aware covering array generation task.

Local search-based methods on the other hand, work with a complete solution object and

are aware of the needs of the system. Compared to other methods, they are also more

suitable and effective for constraint handling. Therefore among the others, local search-

based methods are the most suitable ones for the task.

21

Stardom et al. [26] compared the performance of tabu search, genetic algorithm and sim-

ulated annealing, on the covering array generation task. Their empirical study have sug-

gested that simulated annealing algorithm, which is a commonly used local search algo-

rithm, was more effective in finding covering arrays that are smaller in size. For these

reasons, we used simulated annealing (SA) algorithm, described in Chapter 2.5, to com-

pute test case-aware covering arrays.

In our use of SA algorithm, components of the (inner) search are defined as follows:

The state, S, is a set of configurations each of which is associated with a set of test cases,

indicating that the test cases are scheduled to be executed in the configuration.

S = {< c1,T1 >, . . . , < cN ,TN >}

where ci ∈ C and Ti ⊆ T for i = 1, 2, . . . ,N.

The cost of S , E(S), is the number of t-pairs, λt, that are not covered by S (missing

t-pairs).

E(S) = |Λ
missing
t | (5.1)

where

Λ
missing
t = {λt =< φt, τ >: τ ∈ T ∧ φt ∈ Φτ

t ∧ ¬∃ < ci,Ti > ∈ S : φt ⊆ ci ∧ τ ∈ Ti}.

The action, is a transition performed on S (will be elaborated in Section 5.5).

Finally, the goal is to find an S with E(S)=0 which is a Ψt.

SA algorithm works with a complete solution in an iterative manner. At each iteration,

a new state S ′, called neighbor of S , is generated by applying a simple transition to S .

Then, if the cost of S ′ is smaller than the cost of S , S ′ is accepted to continue with.

if E(S ′) < E(S), then S = S ′ (5.2)

Otherwise, the decision (accept or reject) is made based on the probability criteria of the

SA algorithm as described in Chapter 2.5.

22

In the inner search, the neighbor generation operation is the second crucial component

of the approach which affects the construction cost as well as the size of Ψt. There-

fore, we have developed several neighboring strategies which will be elaborated in Sec-

tion 5.5

5.4. Initial Set Generation Strategies

Choosing a reasonable initial state, S 0, that covers higher number of t-pairs will shorten

the search (construction) time. Because there will be lower number of t-pairs left to search

for. Therefore, we have developed 4 initialization strategies (IS) each of which is applying

different methods to cover more t-pairs.

If there is no seed given, each of the following initialization strategies starts with an

initially empty set S 0 and perform configuration selection based on their objective until

S 0 has N configurations each of which is associated with a set of test cases. However, if

there is a seed provided as input, then the initialization strategies perform future selection

for (N−N0) times where N0 is the size of the given seed. None of them allow system-wide

constraint violations to occur.

Random Initial Set (RIS): Let a random configuration be a random assignment of each

option value. Then, this initialization strategy fills S 0 as follows;

1. Generate a system-wide valid configuration ci at random,

2. Schedule all valid test cases Ti to ci,

3. Add the <ci,Ti> to S 0,

4. Repeat from step 1 until S 0 has N configurations each having scheduled test cases.

RIS does not depend on t, and other than system-wide constraint validation check, it does

not apply any criteria for configuration selection. For these reasons, required time for

RIS is always negligible compared to search time. RIS has been commonly-used for the

covering array generation problem [10, 12, 23, 26, 28].

23

Hamming distance Initial Set (HIS): This initialization strategy fills S 0 using hamming

distance formula as follows:

Definition 11. Hamming distance in between two objects is the number of elements in

which they differ.

Let E = {e1, e2, . . . , en} be the set of elements for the objects, then;

h(o1, o2) =

|E|∑
i=1

d(o1(i), o2(i)) (5.3)

where o(i) is the ith element of o, and

d(e1, e2) =

 1 if e1 , e2

0 otherwise

Perform following steps;

1. Generate the first configuration at random and add it to S 0.

2. Generate 2 candidate system-wide valid configurations c1, c2 at random,

3. Pick one of the candidate configurations c1, c2 that has larger overall hamming

distance according to

hoverall(c) =

|S 0 |∑
j=1

h(S (j), c) (5.4)

where S (j) is the jth configuration of S 0,

4. Schedule valid test cases Ti to ci,

5. Add the <ci,Ti> to S 0,

6. Repeat from step 2 until S 0 has N configurations.

This strategy has also been used by Torres et al. [28] in combination with RIS. HIS

does not depend on t and therefore required time for it is negligible compared to search

time.

24

t-way covering array as Initial Set (TIS): This initialization strategy generates a t-way

covering array with a published array size [1], N′. Then it schedules all valid test cases

for each configuration and completes the remaining (N − N′) configurations as in HIS

strategy.

Generating traditional covering array means ignoring the test case-specific constraints.

By doing so, TIS first aims to cover all the t-pairs that are not constrained. Once a t-way

covering array is generated and all the valid test cases are scheduled, what remain are the

masked t-pairs which will be covered in the search process. Required time for TIS is not

negligible and depends on t and the configuration space model.

Ψt−1 as Initial Set (TCIS): This initialization strategy generates a Ψt−1 with size N′ and

completes the remaining (N − N′) configurations as in HIS strategy.

The relation stated below, implies that; Ψt also covers all valid λt−1. TCIS aims to take the

advantage of this relation by starting with an initial solution that is a subset of Ψt.

Ψt−1 ⊂ Ψt (5.5)

Required time for TCIS is not negligible and depends on t, test case-specific constraints,

and the configuration space model on overall.

The following section describes each of the neighboring strategies.

5.5. Neighbor Generation Strategies

Neighbor generation operation of the inner search is crucial for the effectiveness of the

approach. Unsuitable neighboring strategies may keep the algorithm converging to the

optimum solution and last in cold termination of annealing, whereas some intelligent

strategies may reduce the construction cost drastically.

25

For this reason, we have also developed 5 neighboring strategies (NS) which differ in in-

telligence levels. Each of the following neighboring strategies performs some transition

based on their objectives to generate a neighbor form S . They do not let constraint viola-

tions to happen. Therefore, all the scheduled test and configurations are valid at any point

of the search.

5.5.1. Change a Random Index - CRI

This strategy changes the value of a randomly chosen option in a randomly chosen con-

figuration to another randomly chosen valid value from the domain of the option as in

Algorithm 4.

CRI steps can be summarized as follows: 1) randomly pick a configuration, 2) randomly

pick a option of that configuration, 3) change the value of the option to another valid value

from the domain, 4) check for system-wide constraint violation for the altered configura-

tion and if there is a constraint violation, then turn back to step 1 otherwise, 5) update the

scheduled test case list for the altered configuration, and 6) return S ′, which contains the

altered configuration as the neighbor.

Algorithm 4 Changing a Random Index - CRI
Input M=<O,V,T,Qs,QT>: Configuration space model
Input S : Current Solution

1: Random.shu f f le(S) # to avoid picking the same con f iguration again in the loop
2: for all c : c∃ S do
3: idx← Random.nextInt(0,O.size)
4: c.getOption(idx).value← Random.Pick f rom{v : v ∈ Vidx}

5: if valid(Qs, c) then
6: Tc ← scheduleTestCases(c,T,QT)
7: S ′ ← keep(S , <c,Tc>)
8: return S ′

9: end if
10: Rollback(c)
11: end for
12: return S # no valid neighbor f ound

26

5.5.2. Change a Random t-Tuple - CRT

This strategy aims at inserting a randomly chosen missing t-tuple, φmissing
t , into S by

changing the values of referred options to the values of missing t-tuple in a randomly

chosen configuration.

φ
missing
t ∈ Φ

missing
t

where

Φ
missing
t = {φt : λt =< φt, τ > ∧ λt ∈ Λ

missing
t }

CRT steps can be summarized as follows: 1) randomly pick a φmissing
t , 2) randomly pick a

configuration, 3) insert φmissing
t into the selected configuration, 4) check for system-wide

constraint violation for the altered configuration and if there is constraint violation, then

turn back to step 1, 5) update scheduled test case list for the altered configuration and

return S ′, which contains the altered configuration, as the neighbor.

Algorithm 5 Change a Random t-tuple - CRT
Input M=<O,V,T,Qs,QT>: Configuration space model
Input S : Current Solution

1: Random.shu f f le(S) # to avoid picking the same con f iguration again in the loop
2: for all φt : φt ∈ Φ

missing
t do

3: for all c : c ∈ S do
4: c.changeTuple(φt)
5: if valid(Qs, c) then
6: Tc ← scheduleTestCases(c,T,QT)
7: S ′ ← keep(S , <c,Tc>)
8: return S ′

9: end if
10: Rollback(c)
11: end for
12: end for
13: return S # no valid neighbor f ound

The altered configuration may not satisfy the test case-specific constraints of any of the

test cases, such as <φmissing
t , τ>. In that case, the update operation will not provide any

benefit.

27

5.5.3. Schedule More Test Cases - SMT

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, φmissing
t ,

into S by changing the values of referred option to the values of missing t-tuple in a

randomly chosen configuration. Unlike CRT, SMT also requires the altered configuration

to have a larger scheduled test case list after the update.

SMT steps can be summarized as follows: 1) randomly pick φmissing
t , 2) randomly pick

a configuration, 3) insert φmissing
t into the selected configuration, 4) update scheduled test

case list for the altered configuration, 5) checks for system-wide constraint violation for

the altered configuration, if there is, then turn back to step 2, 6) compare the sizes of old

and new scheduled test case lists, and if new test case list has smaller size turns back to

step 1, 7) return the S ′, which contains the altered configuration, as the neighbor.

Algorithm 6 Schedule More Test Cases - SMT
Input M=<O,V,T,Qs,QT>: Configuration space model
Input S : Current Solution

1: Random.shu f f le(S) # to avoid picking the same con f iguration again in the loop
2: for all φt : φt ∈ Φ

missing
t do

3: for all c : c ∈ S do
4: c.changeTuple(φt)
5: T′c ← scheduleTestCases(c,T,QT)
6: if valid(Qs, c) and |T′c| > |Tc| then
7: S ′ ← keep(S , <c,T′c>)
8: return S ′

9: end if
10: Rollback(c)
11: end for
12: end for
13: return S # no valid neighbor f ound

28

5.5.4. Cover At Least One Missing t-Pair - CMP

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, φmissing
t ,

into S by changing the values of referred option to the values of missing t-tuple in a

randomly chosen configuration. Unlike CRT, CMP requires the altered configuration to

cover at least one missing pair, λmissing
t .

λ
missing
t ∈ Λ

missing
t

CMP steps can be summarized as follows: 1) randomly pick a φmissing
t , 2) randomly pick

a configuration, 3) insert φmissing
t into the selected configuration, 4) find the test cases that

are not covered for φmissing
t , 5) updates scheduled test case list for the altered configuration,

6) checks for system-wide constraint violation for the altered configuration and if there is

turn back to step 1, 7) intersect the new scheduled test case list with missing test case list,

and if the intersection is empty set turn back to step 1, 7) return the S ′, which contains the

altered configuration, as the neighbor.

Algorithm 7 Cover At Least One Missing t-Pair - CMP
Input M=<O,V,T,Qs,QT>: Configuration space model
Input S : Current Solution

1: Random.shu f f le(S) # to avoid picking the same con f iguration again in the loop
2: for all φt : φt ∈ Φ

missing
t do

3: Tmissing ← {τ : λt =<φt, τ> ∧ λt ∈ Λ
missing
t }

4: for all c : c ∈ S do
5: c.changeTuple(φt)
6: Tc ← scheduleTestCases(c,T,QT)
7: if valid(Qs, c) and Tc ∩ Tmissing , ∅ then
8: S ′ ← keep(S , <c,Tc>)
9: return S ′

10: end if
11: Rollback(c)
12: end for
13: end for
14: return S # no valid neighbour f ound

29

5.5.5. Alter Violating Option - AVO

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, φmissing
t ,

into S by changing the values of referred option to the values of missing t-tuple in a

randomly chosen configuration. Unlike CRT, AVO alters the selected configuration to

schedule one randomly chosen uncovered test case.

AVO steps can be summarized as follows: 1) randomly pick a φmissing
t , 2) randomly pick

a configuration, 3) insert φmissing
t into the selected configuration, 4) randomly pick a test

case, τu, that was uncovered for φmissing
t , 5) check for system-wide constraint violation

for the altered configuration, and if there is turn back to step 2, 6) update the scheduled

test case list for the altered configuration, 7) if τu is not in the scheduled test case list,

then alter the row to change the violating options for τu and return S ′, which contains the

altered configuration, as the neighbor.

Algorithm 8 Alter Violating Option - AVO
Input M=<O,V,T,Qs,QT>: Configuration space model
Input S : Current Solution

1: φt ← Random.Pick f rom Φ
missing
t

2: Random.shu f f le(S) # to avoid picking the same
3: for all c : c ∈ S do
4: c.changeTuple(φt)
5: if valid(Qs, c) then
6: τu ← Random.Pick f rom{τ : λt =<φt, τ> ∧ λt ∈ Λ

missing
t }

7: if !valid(Qτu , c) then
8: c.changeViolatingOptions(τu)
9: end if

10: Tc ← scheduleTestCases(c,T,QT)
11: S ′ ← keep(S , <c,Tc>)
12: return S ′

13: end if
14: Rollback(c)
15: end for
16: return S # no valid neighbor f ound

30

6

EXPERIMENTS

This chapter provides information about the experiments we have conducted to evaluate

the proposed approach.

6.1. Subject Applications

In the experiments, we used two highly-configurable widely-used software systems as our

subject applications: Apache v2.3.11-beta and MySQL v5.1. Apache is a HTTP server.

MySQL is a database management system.

We chose these systems for several reasons. First, they share the key characteristics com-

mon to configurable software systems. They are highly configurable with dozens of con-

figuration options supporting a wide variety of features. They have a large code base

and substantial test code. Both systems enjoy a large developer community that actively

updates and tests the systems. Second, like many configurable software systems, devel-

opers of these systems cannot exhaustively test the entire configuration space; the number

of possible configurations is far beyond the resources available to run the test cases in a

timely manner, e.g., for regression testing.

31

For the SUT versions we have used, out of 3789 and 738 test cases examined for Apache

and MySQL respectively, 378 Apache test cases and 337 MySQL test cases had some

test case-specific constraints. These test cases were clustered based on their self-specific

constraints by Yilmaz et al. [32]. There are 17 test clusters for Apache and 30 test clusters

for MySQL.

option settings
case-filter {enable, disable}
ssl {enable, disable}
dav {enable, disable}
echo {enable, disable}
rewrite {enable, disable}
case-filter-in {enable, disable}
bucketeer {enable, disable}
info {enable, disable}
headers {enable, disable}
vhost-alias {enable, disable}
cgi {enable, disable}
proxy-http {enable, disable}
proxy {enable, disable}
test cluster list: {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17 }

system-wide constraint: proxy-http = enable→ proxy=enable
cluster idx test case-specific constraint
t1 ssl=enable ∧ proxy-http=enable
t2 ssl=enable
t3 rewrite=enable
t4 headers=enable
t5 proxy=enable
t6 dav=enable
t7 case-filter=enable
t8 vhost-alias=enable
t9 proxy-http=enable
t10 proxy=enable ∧ rewrite=enable ∧ cgi=enable
t11 echo=enable
t12 ssl=enable ∧ headers=enable
t13 rewrite=enable ∧ proxy=enable
t14 ssl=enable ∧ case-filter-in=enable
t15 case-filter-in=enable
t16 bucketeer=enable
t17 info=enable

Table 6.1: Initial configuration space model for Apache.

32

option settings
log-format {row, statement, mixed}
sql-mode {strict, traditional, ansi}
ext-charsets {disable, complex, all}
innodb {enable, disable}
libedit {enable, disable}
log-bin {enable, disable}
readline {enable, disable}
ndbcluster {enable, disable}
ssl {enable, disable}
archive {enable, disable}
blockhole {enable, disable}
federated {enable, disable}
test cluster list: {t1, t2, t3, t4, t5,t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19,
t20, t21, t22, t23, t24, t25, t26, t27, t28, t29, t30 }

system-wide constraint: ssl=disable ∧ (libedit=enable→ readline=disable)
cluster idx test case-specific constraint
t1 log-bin=enable ∧ sql-mode,ansi
t2 ndbcluster=enable
t3 innodb=enable
t4 log-format,row ∧ log-bin=enable ∧ sql-mode,ansi
t5 sql-mode,ansi
t6 ext-charsets,disable ∧ sql-mode,ansi
t7 log-format,statement ∧ log-bin=enable ∧ ndbcluster=enable
t8 innodb=enable ∧ log-bin=enable ∧ sql-mode,ansi
t9 log-bin=enable ∧ ndbcluster=enable
t10 log-format,row ∧ innodb=enable ∧ log-bin=enable ∧ sql-mode,ansi
t11 log-format,row ∧ ext-charsets,disable ∧ log-bin=enable ∧ sql-mode,ansi
t12 federated=enable ∧ log-bin=enable ∧ sql-mode,ansi
t13 innodb=enable ∧ sql-mode,ansi
t14 ndbcluster=enable ∧ sql-mode,ansi
t15 log-format,statement ∧ innodb=enable ∧ log-bin=enable ∧ sql-mode,ansi
t16 blackhole=enable ∧ log-bin=enable ∧ ndbcluster=enable
t17 archive=enable ∧ log-format,row ∧ log-bin=enable ∧ sql-mode,ansi
t18 federated=enable ∧ innodb=enable ∧ log-bin=enable ∧ sql-mode,ansi
t19 log-format,row ∧ blackhole=enable ∧ log-bin=enable ∧ sql-mode,ansi
t20 log-format,statement ∧ log-bin=enable ∧ ndbcluster=enable ∧ sql-mode,ansi
t21 ext-charsets,disable ∧ log-bin=enable ∧ sql-mode,ansi
t22 log-bin=enable ∧ ndbcluster=enable ∧ sql-mode,ansi
t23 log-format,row ∧ log-bin=enable ∧ ndbcluster=enable
t24 ext-charsets,disable ∧ innodb=enable ∧ sql-mode,ansi
t25 innodb=enable ∧ log-bin=enable ∧ ndbcluster=enable
t26 innodb=enable ∧ ndbcluster=enable
t27 archive=enable ∧ innodb=enable
t28 archive=enable
t29 log-bin=enable
t30 ext-charsets,all

Table 6.2: Initial configuration space model for MySQL.

33

6.2. Operation Model

We used the configuration space models given in Table 6.1 and 6.2. These models only

contain configuration options that are referenced by the system-wide or test case-specific

constraints. A configuration option that is referenced by a constraint (system-wide or

test case-specific) is referred to as a constrained option, e.g., all the options in our initial

configuration models were constrained options (100%). In order to vary the constrained

option percentage (cop in short), we augmented the initial configuration space models by

adding extra unconstrained binary options.

We then run the experiments for each combination of independent variables and strategies.

In total, we have executed 2240 test case-aware covering array generation tasks.

{2 SUTs} × {7 Models} × {4 IS} × {4 NS} × {2 t value} × {5 runs} = 2240

All the experiments were performed on a Casper computer with 31.3 GB of RAM, 8

Intel(R) Xeon(R) E630 @ 2.53GHz CPUs, and running CentOS 6.2 operating system on

64bit Kernel Linux 2.6.32 and GNOME 2.28.2.

6.3. Independent Variables

Strength of the test case-aware covering array, t, is an independent variable that we used

to evaluate the performance of the approach. Test case-aware covering array computation

time grows exponentially with the strength. The results of many empirical studies strongly

suggest that a majority of option-related failures in practice are caused by the interactions

among only a small number of configuration options [23]. Therefore in the experiments,

we used t = 2 and t = 3 to see the behavior of our approach for varying strengths.

34

Subject application (SUT) is an independent variable to evaluate the behavior of the ap-

proach. We used two different subject applications; Apache, MySQL which are described

in Section 6.1. Compared to Apache, MySQL has more constrained configuration space

model (see Table 6.1 and 6.2) which will challenge the task.

Configuration space model of SUT is the last independent variable to evaluate the be-

havior of the approach. Initial configuration space models of the SUTs have 100% con-

strained options (e.g. each of the configuration options is referred at least one constraint).

To vary the percentage of constraint options (constraint option percentage, cop in short),

we augmented the initial configuration space models by adding extra unconstrained binary

options. In particular, we used cop=20, 30, 40, 50, 60, 80, and 100 (e.g. 7 configuration

space models for each SUT).

In addition, SA algorithm has three control parameters; T0, Cr, and Ts. By conducting

a small-scale experiment, values of those parameters determined as follows: T0 = 1,

Cr = 0, 1 × 10−2, and Ts = 0, 1 × 10−3

6.4. Evaluation Framework

In order to evaluate the proposed approach, we have investigated 1) the effect of coverage

strength, t, 2) the consequence of cop, 3) the impact of subject application spectra, 4)

the performance of the initialization strategies, 5) the performance of the neighboring

strategies, and 6) the overall performance of the approach compared to existing algorithms

(Algorithm 1 and 2 introduced in [32]).

For evaluation, we used the dependent variables that are described in the following sec-

tion.

35

6.4.1. Dependent Variables

As evaluation metrics, we used the following measures:

Initialization time is the time to generate the initial set. The smaller initialization time is

the better.

Initialization time = initialization end time − initialization start time

Search (annealing) time is the time to generate a test case-aware covering array for a

given initial set. The smaller search time is the better.

Search time = search end time − search start time

Total time is the time to generate a test case-aware covering array. The smaller total time

is the better.

Total time = initialization time + search time

Size of array is the number of the configurations in the test case-aware covering array, Ψ.

The smaller the array size is the better.

Size of array = |{< c1,T1 >, . . . , < cN ,TN >}|

where ci ∈ C and Ti ⊆ T for i = 1, 2, . . . ,N.

Initial miss count is number of the t-pairs that are not in the initial set. The smaller the

initial miss count is the better.

Initial miss count = |{λt =< φt, τ >: τ ∈ T∧ φt ∈ Φτ
t∧¬∃ < ci,Ti > ∈ S 0 : φt ⊆ ci∧τ ∈ Ti}|.

Initial miss percentage is the percentage of missing t-pairs in the initial set. The smaller

the initial miss percentage is the better.

36

Initial miss percentage =
initial miss count

number of valid t-pairs
× 100

IS ineffectiveness is a measure for the effectiveness of the initialization strategy. The

smaller the IS ineffectiveness is the better.

IS ineffectiveness =
initialization time

initial miss percentage

6.5. Data and Analysis

The results of the conducted experiments are set of 2-way and 3-way test case-aware

covering arrays that are generated for each of the configuration space models of the subject

applications using each combination of initialization and neighboring strategies. All row

data from the experiments can be found in Appendix A.

In our analysis, we first compared the initialization strategies (Section 6.5.1). For this

analysis, the data is grouped by initialization strategy and using box plots we depicted

initialization time, initial miss percentages, and initial miss counts of initialization strate-

gies. We then compared the neighboring strategies. Using box plots, we depicted search

(annealing) time and test case-aware covering array sizes for the neighboring strategies

(Section 6.5.2). Finally, we grouped the data by initialization and neighboring strategy

combinations and using normal plots we compared total construction time and test case-

aware covering array sizes (Section 6.5.3).

37

Box plots: Box plots depict groups of nu-

merical data through their quartiles. The

lower horizontal bar represents the first quar-

tile, middle horizontal bar represents the me-

dian value (second quartile), and the upper

horizontal bar represents the third quartile.

Thus, 50% of the data falls into the box.

Height of box shows the variance; the higher

the box the higher the variance. Red small

circles show the mean value for that data

group. Black points that are outside of the

boxes are outliers.

1stquartile

median
mean

3rdquartile

outliers

Figure 6.1: Sample box plot

6.5.1. Study 1: Comparing Initial Set Generation Strategies

In this study, we evaluated the initialization strategies described in Section 5.4. The de-

sired case is to have the initial set that has minimum missing count with minimum initial-

ization time.

38

strength: 2 strength: 3

0

25000

50000

75000

H
IS

R
IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 C

o
u
n
t

Figure 6.2: Comparing initial missing t-pair counts for initialization strategies at strength
level

Figure 6.2 illustrates the missing pair counts of the initialization strategies for each strength.

For t = 3, TCIS strategy is the best in the initial miss count, but it is not applicable for

t = 2. For t = 2, performances of HIS and TIS strategies are closed to each other. RIS on

the other hand, is always the worst in the initial miss count.

39

strength: 2 strength: 3

0

10000

20000

30000

40000

0e+00

1e+05

2e+05

s
u

t: a
p

a
c
h

e
s
u

t: m
y
s
q

l

H
IS

R
IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 C

o
u

n
t

Figure 6.3: Comparing initial missing t-pair counts for initialization strategies at SUT by
strength level

Figure 6.3 illustrates the missing pair counts for each of the initialization strategies for

each SUT and strength. First of all, the graph has similar patters for each SUT. Which

means in the experiments performance of our initialization strategies did not depend on

the subject applications. For t = 3, TCIS strategy is the best in the initial miss count, but

it is not applicable for t = 2. For t = 2, performances of HIS and TIS strategies are closed

to each other. RIS on the other hand, is always the worst in the initial miss count.

40

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

100

1000

1000

10000

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 C

o
u
n
t
(l
o
g
 s

c
a
le

)

Figure 6.4: Comparing initial missing t-pair counts for initialization strategies detailed
for Apache configuration space models

Figure 6.4 illustrates the missing pair counts of the initialization strategies for each strength

and configuration space model of Apache. For t = 3, TCIS strategy is the best in the ini-

tial miss count, but it is not applicable for t = 2. For t = 2, performances of HIS and

TIS strategies are closed to each other. RIS on the other hand, is always the worst in the

initial miss count. Lastly, on overall the initial miss count is increasing when the number

of configuration options grow.

41

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

1000

10000

1e+04

1e+05

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 C

o
u
n
t
(l
o
g
 s

c
a
le

)

Figure 6.5: Comparing initial missing t-pair counts for initialization strategies detailed
for MySQL Configuration space models

Figure 6.5 illustrates the missing pair counts of the initialization strategies for each strength

and configuration space model of MySQL. For t = 3, TCIS strategy is the best in the ini-

tial miss count, but not applicable when t = 2. For t = 2, performances of HIS and TIS

strategies are closed to each other. RIS on the other hand, is always the worst in the initial

miss count. Lastly, on overall the initial miss count is increasing when the number of

configuration options grow.

42

0

5

10

15

HIS RIS TCIS TIS

Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.6: Comparing initial missing t-pair percentages for initialization strategies over-
all

Figure 6.6 illustrates the overall miss percentage of the initialization strategies. TCIS

strategy is the best in the overall miss percentage and performances of HIS and TIS

strategies are closed to each other. RIS on the other hand, is the worst in the overall

miss percentage.

43

strength: 2 strength: 3

0

5

10

15

HIS RIS TIS HIS RIS TCIS TIS
Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.7: Comparing initial missing t-pair percentages for initialization strategies at
strength level

Figure 6.7 illustrates the miss percentage of the initialization strategies for each strength.

TCIS strategy is the best in the miss percentage for t = 3 but not applicable for t = 2. For

t = 2, performances of HIS and TIS strategies are closed to each other. RIS on the other

hand, is the worst in the miss percentage.

44

sut: apache sut: mysql

0

5

10

15

HIS RIS TCIS TIS HIS RIS TCIS TIS
Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.8: Comparing initial missing t-pair percentages for initialization strategies at
SUT level

Figure 6.8 illustrates the miss percentage of the initialization strategies for each SUT. In

addition to the Figure 6.6, it is necessary to say that the graph has similar patterns for

each of the subject applications, indicating that; in the experiments, performance of our

initialization strategies did not depend on the subject applications.

45

strength: 2 strength: 3

0

2

4

6

0

5

10

15

s
u
t: a

p
a
c
h
e

s
u
t: m

y
s
q
l

HIS RIS TIS HIS RIS TCIS TIS
Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.9: Comparing initial missing t-pair percentages for initialization strategies at
SUT by strength level

Figure 6.9 illustrates the miss percentage of the initialization strategies for each strength

and SUT. In addition to the Figure 6.7, it is necessary to say that the graph has similar

patterns for each of the the subject applications, indicating that; in the experiments, per-

formance of our initialization strategies did not depend on the subject applications for

different strength levels.

46

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

0.0

2.5

5.0

7.5

0

2

4

6

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.10: Comparing initial missing t-pair percentages for initialization strategies de-
tailed for Apache configuration space models

Figure 6.10 illustrates the miss percentage of the initialization strategies for each strength

and configuration space model of Apache. First of all, as the number of configuration

options increase the initial miss percentage is decreasing for all strategies. For t = 3,

TCIS strategy is the best in the miss percentage but it is not applicable for t = 2. For

t = 2, performances of HIS and TIS strategies are closed to each other. RIS on the other

hand, is always the worst in the initial miss percentage.

47

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

5

10

15

20

0

5

10

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

l
M

is
s
 P

e
rc

e
n
ta

g
e

Figure 6.11: Comparing initial missing t-pair percentages for initialization strategies de-
tailed for MySQL Configuration space models

Figure 6.11 illustrates the miss percentage of the initialization strategies for each strength

and configuration space model of MySQL. In this graph has a similar pattern with Fig-

ure 6.10. For t = 3, TCIS strategy is the best in the miss percentage but it is not applicable

for t = 2. For t = 2, performances of HIS and TIS strategies are closed to each other. RIS

on the other hand, is always the worst in the initial miss percentage.

48

strength: 2 strength: 3

0

1000

2000

3000

4000

HIS RIS TIS HIS RIS TCIS TIS
Initialization Strategy

In
it
ia

liz
a
ti
o
n
 T

im
e
 (

m
s
)

Figure 6.12: Comparing initialization times for initialization strategies at strength level

Figure 6.12 illustrates the initialization time of the initialization strategies for each strength.

HIS and RIS strategies have negligible initialization time (always measured as 0 in the ex-

periments). TIS strategy on the other hand, is always the most time consuming one for

t = 3 as well as for t = 2 (although it is very close to 0). TCIS is not applicable for t = 2

and it required longer time compared to HIS and RIS.

49

strength: 2 strength: 3

0

1000

2000

3000

4000

0

1000

2000

3000

4000

s
u
t: a

p
a
c
h
e

s
u
t: m

y
s
q
l

HIS RIS TIS HIS RIS TCIS TIS
Initialization Strategy

In
it
ia

liz
a
ti
o
n
 T

im
e
 (

m
s
)

Figure 6.13: Comparing initialization times for initialization strategies at SUT by strength
level

Figure 6.13 illustrates the initialization time of the initialization strategies for each SUT

and strength. In addition to the Figure 6.12, it is necessary to say that the graph has similar

patterns for each of the subject applications, indicating that; in the experiments, initial-

ization times of the initialization strategies did not depend on the subject applications for

different strength levels.

50

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

−0.50

−0.25

0.00

0.25

0.50

0

3000

6000

9000

12000

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

liz
a
ti
o
n
 T

im
e
 (

m
s
)

Figure 6.14: Comparing initialization times for initialization strategies detailed for
Apache configuration space models

Figure 6.14 illustrates the initialization time of the initialization strategies for each strength

and configuration space model of Apache. HIS and RIS strategies have negligible initial-

ization time for every case. TCIS again is not applicable for t = 3 and it is not the worst

for t = 3. TIS on the other hand, has negligible initialization time for t = 2, but for t = 3,

it becomes the most time consuming strategy as the number of the configuration options

grow.

51

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

0

2

4

6

0

2500

5000

7500

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

H
IS

R
IS

T
C

IS

T
IS

Initialization Strategy

In
it
ia

liz
a
ti
o
n
 T

im
e
 (

m
s
)

Figure 6.15: Comparing initialization times for initialization strategies detailed for
MySQL Configuration space models

Figure 6.15 illustrates the initialization time of the initialization strategies for each strength

and configuration space model of MySQL. HIS and RIS strategies have negligible initial-

ization time for every case. TCIS again is not applicable for t = 3 and it is not the worst

for t = 3. TIS on the other hand, has negligible initialization time for t = 2, but for t = 3,

it becomes the most time consuming strategy as the number of the configuration options

grow.

52

sut: apache sut: mysql

0

5000

10000

15000

20 30 40 50 60 10 20 30 40 50 60

Option Count

In
it
ia

liz
a

ti
o

n
 T

im
e

 (
m

s
)

/
In

it
ia

l
m

is
s
 p

e
rc

e
n

ta
g

e

IS

HIS

RIS

TCIS

TIS

Figure 6.16: Comparing the ineffectiveness of initialization strategies

Figure 6.16 illustrates the IS ineffectiveness of initialization strategies for each configu-

ration space model of subject applications. Since the initialization time of RIS and HIS

strategies are negligible (always measured as 0 in the experiments), their IS ineffective-

ness scores are the minimum (the best) and TIS strategies has performed the worst on

overall and it is getting worse as the configuration space grows.

This study has shown that TCIS strategy is the best in the miss count and percentage,

but compared to HIS and RIS strategies, it required longer time to compute test case-

aware covering arrays. Although HIS and TIS strategies have similar miss counts and

percentages, HIS strategy is better, since it is faster.

RIS strategy on the other hand, which is the most commonly used one for covering array

generation [10, 12, 23, 26], is fast, because it does not apply any intelligence. However, it

is the worst in the initial miss count and percentage.

53

TIS strategy is not the best or worst for any case. However, this strategy is important

to account already in use testing objects. We have designed our approach to be capable

of using a traditional covering array as an initial set, so that developers can seed their

available covering arrays into our tool to generate test case-aware covering arrays. By

this way, their important configurations and testing objects will not be wasted.

6.5.2. Study 2: Comparing Neighbor Generation Strategies

In this study, we evaluated the neighboring strategies described in Section 5.5 (except

for the SMT strategy which has failed to find Ψ most of the time). The desired case is

to have the test case-aware covering array of minimum size with minimum computation

time.

54

100

200

300

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.17: Comparing TCA sizes for neighboring strategies overall

Figure 6.17 illustrates the overall test case-aware covering array sizes for the neighboring

strategies. Performances of AVO and CRI strategies are close to each other, and CMP

strategy is the worst among others. Lastly, the height of boxes depict the performance of

the strategy as the configuration space model grows. CMP is the most effected one from

the number of configuration options.

55

strength: 2 strength: 3

100

200

300
A

V
O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T
Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.18: Comparing TCA sizes for neighboring strategies at strength level

In addition to Figure 6.17, Figure 6.18 illustrates sizes of the test case-aware covering

arrays computed by the neighboring strategies for each strength. Performance of AVO and

CRI strategies are close to each other, and CMP strategy is the worst among others.

56

sut: apache sut: mysql

100

200

300
A

V
O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T
Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.19: Comparing TCA sizes for neighboring strategies at SUT level

In addition to Figure 6.17, Figure 6.19 illustrates sizes of the test case-aware covering

arrays computed by the neighboring strategies for each SUT. CRI strategy again is slightly

better than AVO for Apache and they are similar for MySQL. CMP strategy on the other

hand is the worst among others.

57

strength: 2 strength: 3

40

80

120

160

100

200

300

s
u
t: a

p
a
c
h
e

s
u
t: m

y
s
q
l

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T
Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.20: Comparing TCA sizes for neighboring strategies at SUT by strength level

Figure 6.20 illustrates sizes of the test case-aware covering arrays computed by the neigh-

boring strategies for each SUT and strength. AVO and CRI strategies have similar perfor-

mances except for Apache, t = 3. For Apache, t = 2 CRT strategy is the worst, and CMP

strategy is the worst in the other cases.

58

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

20

30

40

50

60

70

20

40

60

20

30

40

50

60

70

IS
: H

IS
IS

: R
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.21: Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration space models and t = 2

Figure 6.21 illustrates sizes of the test case-aware covering arrays computed by the neigh-

boring strategies for each initialization strategy and configuration space model of Apache,

when t = 2. As the number of configuration options increase CRT losses performance,

and CRI losses it’s advantage to AVO. Lastly, the graph has similar patterns for each of

the initialization strategies.

59

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

75

100

125

150

75

100

125

150

50

75

100

125

75

100

125

IS
: H

IS
IS

: R
IS

IS
: T

C
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.22: Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration space models and t = 3

Figure 6.22 illustrates sizes of the test case-aware covering arrays computed by the neigh-

boring strategies for each initialization strategy and configuration space model of Apache,

when t = 3. The observation from this graph is similar with Figure 6.21, indicating that;

strength did not have a significant effect on the performance of neighboring strategies. As

the number of configuration options increase CRT losses performance, and CRI losses it’s

advantages to AVO.

60

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

50

75

100

40

60

80

100

40

60

80

IS
: H

IS
IS

: R
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.23: Comparing TCA sizes for neighboring strategies detailed for MySQL Con-
figuration space models and t = 2

Figure 6.23 illustrates sizes of the test case-aware covering arrays computed by the neigh-

boring strategies for each initialization strategy and configuration space model of MySQL,

when t = 2. As the number of configuration options increase CRT losses performance,

and CRI losses it’s advantages to AVO.

61

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

100

200

300

100

150

200

250

300

150

200

250

300

100

150

200

250

300

350

IS
: H

IS
IS

: R
IS

IS
: T

C
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

T
C

A
 S

iz
e

Figure 6.24: Comparing TCA sizes for neighboring strategies detailed for MySQL Con-
figuration space models and t = 3

Figure 6.24 illustrates sizes of the test case-aware covering arrays computed by the neigh-

boring strategies for each initialization strategy and configuration space model of MySQL,

when t = 3. The observation from this graph is similar with Figure 6.23, indicating that;

strength did not have a significant effect on the performance of neighboring strategies. As

the number of configuration options increase, CRT losses performance, and CRI losses

it’s advantages to AVO.

62

0

10000

20000

30000

40000

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.25: Comparing annealing times for neighboring strategies overall

Figure 6.25 illustrates the overall search time of the neighboring strategies. CMP strategy

is the best in the search time. CRI strategy on the other hand, is the most time consuming

one on overall.

63

strength: 2 strength: 3

0

40000

80000

120000

160000

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.26: Comparing search times for neighboring strategies strength level

Figure 6.26 illustrates the search time of the neighboring strategies for each strength. For

t = 2, AVO and CMP strategies have similar search times. For t = 3, CMP strategy is

the fastest. CRI strategy on the other hand, is the most time consuming for both strength

values.

64

sut: apache sut: mysql

0

10000

20000

30000

40000

50000

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T
Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.27: Comparing annealing times for neighboring strategies SUT level

Figure 6.27 illustrates the search time of the neighboring strategies for each subject ap-

plication. For both of the subject applications, CMP strategy is the fastest and CRI is

the most time consuming. There is a difference in the performances of CRI and CRT

strategies for subject applications. For MySQL, CRI and CRT strategies have similar

performance. However, CRT is better that CRI for Apache.

65

sut: apache sut: mysql

0

5000

10000

15000

0e+00

1e+05

2e+05

3e+05

4e+05

s
tre

n
g
th

: 2
s
tre

n
g
th

: 3

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T
Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.28: Comparing annealing times for neighboring strategies SUT by strength level

Figure 6.28 illustrates the search time of the neighboring strategies for each SUT and

strength. Graph has similar pattern for strength levels, which means neighboring strate-

gies behave similar for different strength values. However, for SUT levels the pattern is

different, just like we observed in Figure 6.27.

66

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

IS
: H

IS
IS

: R
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.29: Comparing annealing times for neighboring strategies detailed for Apache
configuration space models and t = 2

Figure 6.29 illustrates the search time of the neighboring strategies for each initialization

strategy and configuration space model of Apache, for t = 2. On overall, as the number

of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

67

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

0e+00

1e+05

2e+05

0e+00

1e+05

2e+05

3e+05

0

50000

100000

150000

200000

0e+00

1e+05

2e+05

IS
: H

IS
IS

: R
IS

IS
: T

C
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.30: Comparing annealing times for neighboring strategies detailed for Apache
configuration space models and t = 3

Figure 6.30 illustrates the search time of the neighboring strategies for each initialization

strategy and configuration space model of Apache, when t = 3. On overall, as the number

of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

68

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

IS
: H

IS
IS

: R
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.31: Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space models and t = 2

Figure 6.31 illustrates the search time of the neighboring strategies for each initialization

strategy and configuration space model of MySQL, when t = 2. On overall, as the number

of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

69

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

1e+05

2e+05

3e+05

IS
: H

IS
IS

: R
IS

IS
: T

C
IS

IS
: T

IS

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

A
V

O

C
M

P

C
R

I

C
R

T

Neighbouring Strategy

S
e
a
rc

h
 T

im
e
 (

m
s
)

Figure 6.32: Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space models and t = 3

Figure 6.32 illustrates the search time of the neighboring strategies for each initialization

strategy and configuration space model of MySQL, when t = 3. On overall, as the number

of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

70

This study has shown that, CRI strategy, which is commonly used by researchers [10, 12,

23,26,28], is also successful in computing Ψ that are smaller in size. CRI does not require

any intelligence or state specific knowledge and perform a random transition blindly. Al-

though CRI strategy is the fastest per iteration, compared to other strategies, it requires

much more iterations to complete the task. On overall, CRI is the most time consuming

one among the neighboring strategies.

CRT strategy which has been first experienced by Torres et al. [28], has generated TCAs

larger in size compared to AVO. When we inspect the execution, we observed that CRT

gets stacked in finding a suitable place for remaining a few missing pairs whose con-

straints contradict each other. Therefore, binary search increases the size of the search for

just a few missing pairs in each iteration.

CMP strategy was fast but generated TCAs larger in size compared to AVO. When we

inspect the execution, we observed that CMP has the same problem with CRT.

AVO strategy on the other hand, was the best in Ψ generation task. AVO succeeded to

overcome the problem of stacking in finding suitable places for remaining a few missing

pairs by altering constraint violating options of the row which host the last transition of

the neighboring.

6.5.3. Study 3: Overall Comparison

On overall, we compared combination of the initialization and the neighboring strategies

each other as well as with Algorithm 1 and Algorithm 2 which are introduced by Yilmaz

et al. [32] (Algorithm 3 is out of scope of our objective for this study).

Following seven figures, (Figure 6.33,6.34,6.35,6.36,6.38,6.39) illustrate the effectiveness

of neighboring strategies. In these graphs, y-axis is the total time for Ψ generation task

and x-axis is the size of Ψ. Computing Ψ of minimum size in the minimum time is the

desired case.

71

100

150

200

200

300

400

500

250

500

750

1000

1250

1000

2000

3000

0
1000
2000
3000
4000
5000

0

2000

4000

6000

0

5000

10000

15000

o
p
t: 1

3
o
p
t: 1

7
o
p
t: 2

2
o
p
t: 2

6
o
p
t: 3

3
o
p
t: 4

4
o
p
t: 6

5

20 40 60 80 100
TCA Size

S
e

a
rc

h
 T

im
e

 (
m

s
)

NS

Alg1

Alg2

AVO

CMP

CRI

CRT

Figure 6.33: Comparing search times and TCA sizes of neighboring strategies for Apache
configuration space models and t = 2

Figure 6.33 illustrates the search time and TCA size for Apache, t = 2. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

72

250

500

750

1000

500

1000

1500

2000

2000

4000

6000

3000

6000

9000

5000

10000

15000

20000

20000

40000

60000

1e+05

2e+05

o
p
t: 1

3
o
p
t: 1

7
o
p
t: 2

2
o
p
t: 2

6
o
p
t: 3

3
o
p
t: 4

4
o
p
t: 6

5

50 100 150 200 250
TCA Size

S
e

a
rc

h
 T

im
e

 (
m

s
)

NS

Alg1

Alg2

AVO

CMP

CRI

CRT

Figure 6.34: Comparing search times and TCA sizes of neighboring strategies for Apache
configuration space models and t = 3

Figure 6.34 illustrates the search time and TCA size for Apache, t = 3. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

73

200

400

600

300

600

900

1200

1000

2000

3000

1000
2000
3000
4000
5000

1000

2000

3000

4000

2500

5000

7500

10000

0

5000

10000

15000

o
p
t: 1

2
o
p
t: 1

5
o
p
t: 2

0
o
p
t: 2

4
o
p
t: 3

0
o
p
t: 4

0
o
p
t: 6

0

50 75 100
TCA Size

S
e

a
rc

h
 T

im
e

 (
m

s
)

NS

Alg1

Alg2

AVO

CMP

CRI

CRT

Figure 6.35: Comparing search times and TCA sizes of neighboring strategies for MySQL
Configuration space models and t = 2

Figure 6.35 illustrates the search time and TCA size for Mysql, t = 2. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

74

1000

2000

1000

2000

3000

4000

5000

5000

10000

15000

20000

0

10000

20000

30000

40000

0

25000

50000

75000

0e+00

1e+05

2e+05

0

500000

1000000

1500000

o
p
t: 1

2
o
p
t: 1

5
o
p
t: 2

0
o
p
t: 2

4
o
p
t: 3

0
o
p
t: 4

0
o
p
t: 6

0

100 200 300
TCA Size

S
e

a
rc

h
 T

im
e

 (
m

s
)

NS

Alg1

Alg2

AVO

CMP

CRI

CRT

Figure 6.36: Comparing search times and TCA sizes of neighboring strategies for MySQL
Configuration space models and t = 3

Figure 6.36 illustrates the search time and TCA size for Mysql, t = 3. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

75

strength: 2 strength: 3

0

5000

10000

15000

20000

0e+00

1e+05

2e+05

s
u
t: a

p
a
c
h
e

s
u
t: m

y
s
q
l

30 35 40 45 80 100 120 140 160
TCA Size

S
e

a
rc

h
 T

im
e

 (
m

s
)

NS

Alg2

AVO

IS

Alg2

HIS

RIS

TCIS

TIS

Figure 6.37: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
at SUT by strength level

In Figures 6.37, 6.38, and 6.39, we compared search time and TCA sizes of ISxAVO com-

binations with Algorithm 2 only (Algorithm 1 is easy to beat in test case-aware covering

array size). It can be observed that; for both of the subject applications and for both of

the strength levels, AVO strategy has achieved to generate smaller TCAs with a fraction

of construction cost compared to Algorithm 2. When t = 3, TCIS strategy were slightly

better than the others for t = 3. When t = 2 however, initialization strategies did not have

a significant effect on search time and TCA size.

76

1000

2000

3000

37.0 37.5 38.0

TCA Size

S
e
a
rc

h
 T

im
e
 (

m
s
)

NS

Alg2

AVO

IS

Alg2

HIS

RIS

TIS

Figure 6.38: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
for t = 2

40000

80000

120000

110 115 120 125

TCA Size

S
e
a
rc

h
 T

im
e
 (

m
s
)

NS

Alg2

AVO

IS

Alg2

HIS

RIS

TCIS

TIS

Figure 6.39: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
for t = 3

77

This study has shown that; for small problems CRI strategy generates the smallest test

case-aware covering arrays. However, it losses performance as the configuration space

model grows. Another down side of CRI strategy is that; it is the most time consuming

one among others.

CRT and CMP strategies are faster than CRI, however they generate test case-aware cov-

ering arrays that are larger in size compared to CRI and AVO.

AVO strategy on the other hand, gains advantage as the configuration space model grows.

For large configuration space models, AVO strategy generated smallest test case-aware

covering arrays with a fraction of computation cost compared to the others. On overall,

AVO strategy has overruled the other strategies as well as existing algorithms (Algorithm

1 & 2).

subject init. init. annealing total init. time anneal time
app. t strategy time(ms) time (ms) time (ms) percentage percentage
apache 2 HIS 0.00 1348.21 1348.21 0.00 100.00
apache 2 RIS 0.00 1506.06 1506.06 0.00 100.00
apache 2 TIS 0.00 1547.79 1547.85 0.00 100.00
mysql 2 HIS 0.00 2888.85 2888.88 0.00 100.00
mysql 2 RIS 0.00 2801.71 2801.71 0.00 100.00
mysql 2 TIS 1.00 2833.34 2834.56 0.04 99.96
apache 3 HIS 0.00 25646.28 25646.30 0.00 100.00
apache 3 RIS 0.00 29797.34 29797.35 0.00 100.00
apache 3 TCIS 721.02 26874.60 27771.20 3.23 96.77
apache 3 TIS 2252.16 27379.12 29631.87 7.60 92.40
mysql 3 HIS 0.00 46476.69 46476.88 0.00 100.00
mysql 3 RIS 0.00 50692.71 50692.77 0.00 100.00
mysql 3 TCIS 659.78 38521.86 39328.17 2.05 97.95
mysql 3 TIS 1813.84 38452.11 40266.44 4.51 95.49

Table 6.3: Initialization time, annealing time, and time percentages

init. time percentage =
initialization time

total time
× 100

anneal time percentage =
annealing time

total time
× 100

78

Table 6.3 presents initialization time, annealing time, and time percentages for each ini-

tialization strategy and strength value. In the experiments, HIS and RIS strategies always

had negligible initialization time. Therefore, initialization time percentage for them al-

ways measured as 0%. For t = 2, required time for TIS also negligible but it is the most

time consuming one for t = 3. For t = 2, TCIS is not applicable and for t = 3 .

6.6. Discussion

In these studies, the goal was to generate smaller test case-aware covering arrays with

minimum construction cost. Therefore, we have compared only with Algorithm 1 and

Algorithm 2 [32]. Algorithm 1, which aims at maintaining a separate configuration space

model for each test case, generates test case-aware covering arrays larger in size but it is

fast. Algorithm 2, which aims at maintaining a single configuration space model, on the

other hand, generates test case-aware covering arrays smaller in size but it is very time

consuming.

These testing objects, test case-aware covering arrays, are computed for ones and then

used for many times for testing in general. For example, they can be used in daily test

task. Thus, having smaller test suits is important to decrease the cost of testing. In this

case, spending the necessary time to compute test case-aware covering arrays that are

minimal in size is worthy. AVO and CRI strategies are better for this case.

However, if cost of testing is negligible, e.g. configuring the system has a cheap cost, then

spending time to compute test case-aware covering arrays that are minimal in size is not

needed. Algorithm 1 can be preferred for this case.

79

7

THREATS TO VALIDITY

In this thesis, we are primarily concerned with threats to external validity since they limit

our ability to generalize the results of our studies to industrial practice.

First potential threat is the completeness of the used algorithms. Simulated annealing is

not a complete algorithm; it does not exhaustively search the entire search space. There-

fore, in theory, our approach may fail to find test case-aware covering arrays, even though

there exist. To overcome this thread, in our approach, we have designed two level of

search. While the inner search for the test case-aware covering arrays, the outer search

helps to relax the problem in the case of failures. In the experiments we have conducted,

our algorithms achieved to find test case-aware covering array in each execution. Also, in

practice, simulated annealing is practically effective in traditional covering array genera-

tion task [23, 26].

Another potential thread is the appropriateness of the outer search (binary search) interval.

In this thesis we have determined the search interval based on the published traditional

covering array sizes. There is no guarantee to find the test case-aware covering array with

a size in the determined interval. However in the experiments we have conducted, our

algorithms always achieved to find a solution in the determined interval.

80

Another potential threat is that the proposed approach assumes that all test case-specific

constraints are known a priori. In the presence of missing or incorrect constraints, as

test cases can still skip some configurations due to unsatisfied constraints, the test case-

aware covering arrays may suffer from masking effects. In such cases, the feedback driven

adaptive combinational testing process we introduced in a prior work [15] can be used to

iteratively detect and remove masking effects.

Another potential threat is that we have only studied two software systems; Apache and

MySQL. However, both Apache and MySQL are widely-used non-trivial applications

with large configuration spaces and both have been used in other related works in the

literature [15, 16, 32].

A related threat concerns the representativeness of the configuration space models and the

test suites used in the experiments. Although these configuration space models and test

suites were culled from the actual configuration space models and test suites of our subject

applications, they only represent two sets of data points. To reduce the threats concerning

the representativeness of the configuration space models, we varied the percentage of

constrained options in the models (Section 6.1).

Finally, we have not directly evaluated the cost-effectiveness of test case-aware cover-

ing arrays, i.e., evaluating the effectiveness, such as failure-detection capabilities, as a

function of cost, such as total testing time. However, our empirical results reported in

a prior work [15] strongly suggest that, as masking effects are removed, the number of

failures observed and the structural code coverage obtained in testing monotonically in-

crease.

81

8

CONCLUSION AND FUTURE WORK

In this thesis, we have focused on test case-aware covering array generation problem. We

have developed simulated annealing-based, efficient and effective algorithms to compute

test case-aware covering arrays and a tool implementing these algorithms.

To evaluate the effectiveness of our algorithms and tool, we conducted large-scale ex-

periments on two widely-used highly-configurable software systems, namely Apache and

MySQL. The results of our empirical studies strongly suggest that the proposed algo-

rithms are an efficient and effective way of computing test case-aware covering arrays and

that they perform better than existing approaches.

This study, first of all, has shown that local search-based methods, as in traditional cov-

ering arrays, can be used to compute test case-aware covering arrays. We have used

simulated annealing algorithm, and it has achieved to compute test case-aware covering

arrays.

In this study, as well as introducing novel initialization strategies, we have also leveraged

existing initialization strategies, which have been used for computing traditional cover-

ing arrays (e.g. HIS and RIS). HIS (hamming distance initialization) strategy among

them, was effective in generating initial sets that covers high number of t-pairs with rela-

82

tively negligible computation time. RIS (random initialization) strategy however, which

is the most commonly used one for traditional covering arrays, was fast (again negligible

computation time) but generated initial sets were covering fewer t-pairs compared to the

others.

We have introduced and evaluated 2 more initialization strategies, namely TIS (traditional

covering array as initial set) and TCIS ((t-1)-way test case-aware covering array as initial

set). TCIS strategy has generated the best initial sets among others. TIS strategy is not

the best or worst for any case. However, we have designed our approach capable of using

a traditional covering array as an initial set, to account the already in use traditional cov-

ering arrays. Developers can seed their available covering arrays into our tool to generate

test case-aware covering arrays. By doing so, their important configurations and testing

objects will not be wasted.

For the neighbor generation task, we again introduced novel strategies, and leveraged

existing neighboring strategies that are used in traditional covering arrays (e.g. CRI

and CRT). It turned out that; CRI (change a random index) strategy, which is the most

commonly used one for traditional covering arrays, is the most time consuming one.

CRT (change a random t-tuple) on the other hand, computed test case-aware overing

arrays larger in size and it was also relatively time consuming (compared to AVO and

CMP).

Our novel neighboring strategy AVO (alter violating option) on the other hand, was the

most effective one in the size of test case-aware covering arrays as well as in computa-

tion time. On overall, AVO strategy overruled the other strategies and also existing test

case-aware covering array generation algorithms by achieving to compute test case-aware

covering arrays that are smaller in size and with minimum computation time.

As future work, we first plan to focus on other local search algorithms such as genetic

algorithm or tabu search for test case-aware covering array construction. We will then

work on cost&test-case aware covering arrays that support a general cost model, in which

the overall cost of testing can be specified at the granularity of option settings and test

cases.

83

A

EMPIRICAL RESULTS

This appendix contains the row data from the experiment we have conducted. There is

one table for each combination of the initialization and neighboring strategy. The headers

are as follows:

sut : subject application, t : strength of the test case-aware covering array,

opt : option count of the configuration space model, cop : constrained option percent-

age,

of φt : number of valid t-tuples, # of λt : number of t-pairs,

size of Λt : number of valid t-pairs, InitMiss : initial miss count,

ITsa : iteration count of SA, ITbs : iteration count of binary search,

Tinit : initialization time, Tanneal : annealing time, Ttotal : total time,

size : size of the computed test case-aware covering array,

Timp : computation time improvement compared to Algorithm 2,

Timp =
Algorithm 2 Time − Ttotal

Algorithm 2 Time
× 100

Nimp : test case-aware covering array size improvement compared to Algorithm 2.

Nimp =
Algorithm 2 N − size

Algorithm 2 N
× 100

84

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
itM

is
s

T i
ni

t
IT

sa
IT

bs
T a

nn
ea

l
T t

ot
al

si
ze

T i
m

p
N

im
p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
22

2.
4

0
38

06
66

.8
5.

6
10

8.
2

10
8.

2
22

.8
-8

0.
33

10
.5

9
ap

ac
he

17
2

76
54

3
97

74
89

89
31

3.
6

0
35

01
62

.4
5.

6
15

6.
4

15
6.

4
25

.2
-3

0.
33

8.
03

ap
ac

he
22

2
59

92
3

16
61

4
15

57
9

29
3

0
26

18
32

.8
5.

8
19

9.
2

19
9.

2
27

.4
84

.1
9

4.
43

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

40
0.

4
0

40
75

11
.6

6
41

5.
6

41
5.

6
27

.4
87

.4
1

8.
67

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

64
8.

4
0

30
63

22
.2

6
54

3.
6

54
3.

6
30

88
.8

1
7.

69
ap

ac
he

44
2

30
37

83
68

09
4

65
95

9
61

6
0

26
87

55
.4

6
86

1.
6

86
1.

6
31

.6
86

.4
5

7.
06

ap
ac

he
65

2
20

83
19

14
97

42
14

65
57

10
48

.2
0

16
40

65
6

12
10

.8
12

10
.8

33
.4

84
.8

3
10

.9
3

m
ys

ql
12

2
10

0
30

7
95

17
77

56
10

22
.8

0
38

29
86

.4
6

13
6.

2
13

6.
4

36
.2

-1
27

.3
3

14
.2

2
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
15

28
.8

0
45

72
54

.2
6.

8
23

9.
2

23
9.

2
37

.2
-9

9.
33

13
.6

9
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
16

51
.2

0
40

47
29

.4
6.

4
31

2.
8

31
2.

8
40

.2
89

.3
6

9.
32

m
ys

ql
24

2
50

11
95

37
04

5
33

41
2

27
23

.4
0

26
98

57
.6

6
31

4.
2

31
4.

2
40

.2
93

.6
9

12
.6

1
m

ys
ql

30
2

40
18

55
57

50
5

52
93

6
34

89
.6

0
17

11
63

.2
6

36
5.

4
36

5.
4

42
.4

64
.1

8
8.

48
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
55

24
.6

0
36

85
77

.6
6.

8
11

27
.6

11
27

.6
43

82
.6

13
.4

3
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
91

60
.7

33
0

31
66

71
.9

6.
53

21
13

.9
3

21
14

46
74

.8
3

8.
91

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
93

1.
4

0
47

05
19

.2
6.

4
69

6.
6

69
6.

6
62

-6
5.

86
5.

92
ap

ac
he

17
3

76
54

10
97

38
0

85
84

2
16

79
.6

0
47

11
61

7
14

57
14

57
72

.8
-1

42
.8

3
7.

38
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

29
91

.2
0

47
60

31
.2

7.
2

32
66

.6
32

66
.6

82
.4

45
.0

1
4.

19
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

51
31

.4
0

50
98

32
.4

7.
4

55
67

.6
55

67
.6

86
.8

48
.1

6
4.

62
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

86
86

0
39

43
71

7
10

50
6

10
50

6
96

.5
38

.9
9

6.
31

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
17

73
2.

5
0

37
38

03
.5

7.
5

21
47

6.
5

21
47

6.
5

10
3.

5
27

.1
8.

81
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

43
25

7.
33

0
45

61
39

7.
67

78
67

9
78

67
9.

33
11

7.
67

11
.1

6
10

.1
8

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
37

26
.6

0
40

60
93

7.
6

69
0.

2
69

0.
2

11
7.

4
32

.3
3

9.
69

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

64
38

0
45

71
01

.2
7.

6
12

88
12

88
12

4.
6

67
.4

7
13

.7
1

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
11

79
3

0
48

43
11

.6
7.

8
31

23
31

23
.4

13
5.

8
84

.0
8

10
.6

6
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

18
57

2.
4

0
53

04
70

.2
8

56
89

.2
56

89
.2

14
4.

4
85

.7
4

7.
24

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

37
46

1
0

54
94

01
8

12
12

2
12

12
2

15
5

86
.5

7
7

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
64

54
9

0
58

82
12

8.
5

29
90

4
29

90
4.

5
16

6.
5

89
.1

6
8.

01
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

15
56

67
.5

0
56

05
29

.5
8.

5
95

48
1.

5
95

48
2.

5
18

9
93

.7
3.

08

Ta
bl

e
A

.1
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rH

IS
xA

V
O

co
m

bi
na

tio
n

85

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T
an

ne
al

T
to

ta
l

si
ze

T i
m

p
N

im
p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
22

2.
4

0
24

98
95

.8
5.

2
77

.2
77

.2
26

-2
8.

67
-1

.9
6

ap
ac

he
17

2
76

54
3

97
74

89
89

31
3.

6
0

31
31

12
.2

5.
6

14
1.

8
14

1.
8

30
.6

-1
8.

17
-1

1.
68

ap
ac

he
22

2
59

92
3

16
61

4
15

57
9

29
3

0
27

00
53

.4
5.

4
19

7.
4

19
7.

4
32

84
.3

3
-1

1.
61

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

40
0.

4
0

20
38

94
.6

5.
6

22
6

22
6

30
.8

93
.1

5
-2

.6
7

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

64
8.

4
0

22
40

04
.2

5.
4

36
9.

6
36

9.
6

33
.4

92
.4

-2
.7

7
ap

ac
he

44
2

30
37

83
68

09
4

65
95

9
61

6
0

25
30

12
.2

6
73

8.
2

73
8.

2
35

.8
88

.3
9

-5
.2

9
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
10

48
.2

0
23

26
32

.6
6

19
47

.2
19

47
.2

38
75

.6
-1

.3
3

m
ys

ql
12

2
10

0
30

7
95

17
77

56
10

22
.8

0
58

84
38

.6
6.

6
42

0.
2

42
0.

2
52

-6
00

.3
3

-2
3.

22
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
15

28
.8

0
52

17
28

6.
2

42
7.

4
42

7.
4

77
-2

56
.1

7
-7

8.
65

m
ys

ql
20

2
60

83
5

25
88

5
22

87
6

16
51

.2
0

44
56

56
.6

6.
2

50
0.

2
50

0.
2

78
.4

82
.9

9
-7

6.
86

m
ys

ql
24

2
50

11
95

37
04

5
33

41
2

27
23

.4
0

46
03

55
6.

6
71

5.
4

71
5.

4
76

.2
85

.6
3

-6
5.

65
m

ys
ql

30
2

40
18

55
57

50
5

52
93

6
34

89
.6

0
45

93
66

.2
6.

6
10

04
.4

10
04

.4
83

.4
1.

53
-8

0.
01

m
ys

ql
40

2
30

32
75

10
15

25
95

39
6

55
24

.6
0

41
63

47
.4

6.
6

16
52

16
52

.2
80

.4
74

.5
-6

1.
87

m
ys

ql
60

2
20

73
15

22
67

65
21

75
16

90
15

0
34

04
24

.2
6

25
54

.4
25

54
.4

91
.6

69
.5

9
-8

1.
39

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
93

1.
4

0
30

71
45

.4
6.

2
42

2
42

2
58

-0
.4

8
11

.9
9

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

16
79

.6
0

38
21

96
.8

7
12

00
.4

12
00

.4
82

.8
-1

00
.0

7
-5

.3
4

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
29

91
.2

0
34

80
07

.4
7

24
60

.4
24

60
.4

90
.4

58
.5

8
-5

.1
2

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
51

31
.4

0
41

73
35

7.
2

48
79

.4
48

79
.4

92
.4

54
.5

7
-1

.5
4

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
86

86
0

24
26

85
7

79
17

79
17

11
2.

5
54

.0
2

-9
.2

2
ap

ac
he

44
3

30
10

58
68

19
05

62
4

18
16

59
6

17
73

2.
5

0
22

83
99

7
20

37
0

20
37

0
12

1.
5

30
.8

6
-7

.0
5

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
38

37
5.

5
0

36
88

72
.5

7.
5

72
58

0
72

58
0

15
8.

5
18

.0
4

-2
0.

99
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

37
26

.6
0

76
77

52
.8

8
16

54
.2

16
54

.2
12

9
-6

2.
18

0.
77

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

64
38

0
64

01
53

.6
7.

8
21

84
.4

21
84

.4
19

8.
6

44
.8

4
-3

7.
53

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
11

79
3

0
52

05
11

7.
8

39
85

.4
39

85
.6

22
3.

8
79

.6
9

-4
7.

24
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

18
57

2.
4

0
54

91
58

.6
8.

2
65

20
.6

65
20

.8
23

5.
6

83
.6

6
-5

1.
35

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

37
46

1
0

46
07

45
8

12
58

0
12

58
0

25
1

86
.0

6
-5

0.
6

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
64

54
9

0
48

89
42

8
26

00
2.

5
26

00
3

25
9.

5
90

.5
8

-4
3.

37
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

15
56

67
.5

0
31

76
38

.5
8

63
41

3
63

41
3.

5
28

5.
5

95
.8

2
-4

6.
41

Ta
bl

e
A

.2
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rH

IS
xC

M
P

co
m

bi
na

tio
n

86

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T

im
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
22

2.
4

0
49

44
88

5
23

9.
6

23
9.

6
21

-2
99

.3
3

17
.6

5
ap

ac
he

17
2

76
54

3
97

74
89

89
31

3.
6

0
79

79
72

.2
6

50
3.

4
50

3.
4

23
.4

-3
19

.5
14

.6
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
29

3
0

98
24

55
.4

6
10

90
.8

10
90

.8
24

.4
13

.4
3

14
.8

9
ap

ac
he

26
2

50
12

99
23

38
2

22
14

7
40

0.
4

0
89

24
62

.8
6

13
81

.6
13

81
.6

26
.2

58
.1

3
12

.6
7

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

64
8.

4
0

73
39

80
.2

5.
4

18
23

18
23

27
62

.4
9

16
.9

2
ap

ac
he

44
2

30
37

83
68

09
4

65
95

9
61

6
0

97
85

77
.8

6
43

59
.6

43
59

.6
31

31
.4

5
8.

82
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
10

48
.2

0
13

03
80

5
6

13
07

8.
6

13
07

8.
6

34
-6

3.
89

9.
33

m
ys

ql
12

2
10

0
30

7
95

17
77

56
10

22
.8

0
78

98
37

.4
6

39
8

39
8

34
.6

-5
63

.3
3

18
.0

1
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
15

28
.8

0
97

71
66

.2
6.

4
67

9.
8

67
9.

8
36

.2
-4

66
.5

16
.0

1
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
16

51
.2

0
99

96
79

.4
6.

2
13

57
.2

13
57

.2
38

.4
53

.8
4

13
.3

8
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
27

23
.4

0
99

68
63

.6
6.

2
17

67
17

67
39

.6
64

.5
2

13
.9

1
m

ys
ql

30
2

40
18

55
57

50
5

52
93

6
34

89
.6

0
87

56
46

.6
6

29
27

.4
29

27
.4

41
.4

-1
87

10
.6

4
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
55

24
.6

0
18

60
64

5
6.

8
10

84
9.

6
10

84
9.

6
43

.8
-6

7.
43

11
.8

2
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
81

72
.5

0
22

78
21

7
6.

75
18

48
2.

25
18

48
2.

25
48

.5
-1

20
.0

3
3.

96
ap

ac
he

13
3

10
0

22
66

40
78

8
34

53
0

10
95

.2
5

0
91

27
94

6.
75

86
4

86
4

57
.2

5
-1

05
.7

1
13

.1
3

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

14
93

0
82

22
11

.5
7

17
94

.2
5

17
94

.2
5

66
-1

99
.0

4
16

.0
3

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
30

67
0

10
27

36
4

7.
25

50
68

.7
5

50
68

.7
5

74
.7

5
14

.6
7

13
.0

8
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

49
66

.2
5

0
94

32
02

.2
7.

25
89

52
.5

89
52

.5
79

.5
16

.6
4

12
.6

4
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

86
00

0
84

67
58

7
18

65
6

18
65

6
91

-8
.3

4
11

.6
5

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
20

64
0

0
10

21
84

1
7

51
31

2
51

31
2

10
3

-7
4.

18
9.

25
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

43
15

1
0

15
64

79
0

8
27

62
48

27
62

48
11

8
-2

11
.9

3
9.

92
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

40
17

.7
5

0
13

64
80

4
7.

75
11

77
.5

11
77

.5
10

8.
25

-1
5.

44
16

.7
3

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

64
16

.2
5

0
14

10
57

0
8

26
21

.2
5

26
21

.2
5

11
4.

75
33

.8
1

20
.5

3
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

12
23

3
0

13
99

34
6

8
70

20
.7

5
70

20
.7

5
13

0
64

.2
2

14
.4

7
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

20
46

2.
25

0
13

36
87

7
8

12
29

6.
75

12
29

7
14

1.
25

69
.1

8
9.

26
m

ys
ql

30
3

40
35

66
8

11
05

70
8

97
66

77
40

55
3

0
12

56
26

2
8

29
23

1
29

23
1

15
3

67
.6

1
8.

2
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

69
74

2.
5

0
20

47
55

4
8.

5
14

02
11

.5
14

02
11

.5
16

1.
5

49
.1

9
10

.7
7

m
ys

ql
60

3
20

28
73

28
89

07
16

8
83

68
27

7
18

13
10

0
17

03
96

0
8

38
44

52
38

44
52

18
7

74
.6

5
4.

1

Ta
bl

e
A

.3
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rH

IS
xC

R
Ic

om
bi

na
tio

n

87

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T
to

ta
l

si
ze

T i
m

p
N

im
p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
22

2.
4

0
64

14
14

.8
5.

6
20

6.
2

20
6.

2
32

.2
-2

43
.6

7
-2

6.
27

ap
ac

he
17

2
76

54
3

97
74

89
89

31
3.

6
0

62
40

10
.2

5.
2

28
8.

6
28

8.
6

36
.6

-1
40

.5
-3

3.
58

ap
ac

he
22

2
59

92
3

16
61

4
15

57
9

29
3

0
62

14
81

.4
5.

4
51

6.
8

51
6.

8
43

.6
58

.9
8

-5
2.

08
ap

ac
he

26
2

50
12

99
23

38
2

22
14

7
40

0.
4

0
41

48
01

.4
5.

2
43

5.
6

43
5.

6
45

86
.8

-5
0

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

64
8.

4
0

70
08

99
.8

6
12

38
.6

12
38

.6
48

74
.5

1
-4

7.
69

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

61
6

0
53

62
13

.4
5.

6
16

65
16

65
56

.8
73

.8
2

-6
7.

06
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
10

48
.2

0
38

24
31

.6
6

37
29

.8
37

29
.8

59
53

.2
6

-5
7.

33
m

ys
ql

12
2

10
0

30
7

95
17

77
56

10
22

.8
0

19
18

42
4

7
74

1.
4

74
1.

4
41

-1
13

5.
67

2.
84

m
ys

ql
15

2
80

47
5

14
72

5
12

49
6

15
28

.8
0

20
79

81
2

7
11

43
.2

11
43

.2
46

-8
52

.6
7

-6
.7

3
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
16

51
.2

0
21

81
09

2
7

19
65

.8
19

66
52

33
.1

3
-1

7.
3

m
ys

ql
24

2
50

11
95

37
04

5
33

41
2

27
23

.4
0

21
72

20
4

7
26

69
.4

26
69

.6
55

46
.3

9
-1

9.
57

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

34
89

.6
0

21
99

59
5

7
41

03
.6

41
03

.6
61

-3
02

.3
1

-3
1.

66
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
55

24
.6

0
22

40
14

0
7

73
47

.4
73

47
.4

68
-1

3.
39

-3
6.

9
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
90

15
0

20
95

23
2

7
14

57
2.

4
14

57
2.

4
75

-7
3.

48
-4

8.
51

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
93

1.
4

0
60

15
83

.2
6.

8
10

98
.6

10
98

.6
75

.8
-1

61
.5

7
-1

5.
02

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

16
79

.6
0

58
23

87
.2

6.
8

22
13

.4
22

13
.4

90
.6

-2
68

.9
-1

5.
27

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
29

91
.2

0
58

53
50

.8
7.

6
42

01
.4

42
01

.4
85

.4
29

.2
7

0.
7

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
51

31
.4

0
46

30
16

.2
7.

2
58

88
.8

58
88

.8
91

45
.1

7
0

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
86

86
0

52
38

74
7.

5
13

44
2.

5
13

44
2.

5
10

1.
5

21
.9

4
1.

46
ap

ac
he

44
3

30
10

58
68

19
05

62
4

18
16

59
6

17
73

2.
5

0
68

41
56

8
50

07
0.

5
50

07
0.

5
10

5
-6

9.
96

7.
49

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
38

37
5.

5
0

23
82

35
.5

7.
5

46
80

6.
5

46
80

7
13

8.
5

47
.1

5
-5

.7
3

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
37

26
.6

0
15

41
30

8
8

29
06

.4
29

06
.4

11
1

-1
84

.9
4

14
.6

2
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
64

38
0

15
67

02
4

8
50

32
.8

50
32

.8
12

5
-2

7.
09

13
.4

3
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

11
79

3
0

16
00

18
3

8
11

50
7.

6
11

50
7.

8
14

1
41

.3
5

7.
24

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
18

57
2.

4
0

18
68

42
3

9
22

95
3.

8
22

95
4.

2
15

3
42

.4
7

1.
72

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

37
46

1
0

18
82

04
2

9
48

20
3

48
20

3.
5

16
7

46
.5

8
-0

.2
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

64
54

9
0

19
01

48
8

9
10

91
54

.5
10

91
54

.5
18

5
60

.4
4

-2
.2

1
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

17
07

58
0

11
43

20
4

8.
5

25
99

40
.5

25
99

41
34

6.
5

82
.8

6
-7

7.
69

Ta
bl

e
A

.4
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rH

IS
xC

R
T

co
m

bi
na

tio
n

88

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T

im
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
30

9.
8

0
40

26
52

.4
5.

8
10

5.
8

10
5.

8
22

.8
-7

6.
33

10
.5

9
ap

ac
he

17
2

76
54

3
97

74
89

89
46

7.
6

0
29

57
15

.8
5.

2
13

5.
6

13
5.

6
24

.8
-1

3
9.

49
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
66

1.
4

0
28

50
94

.8
5.

8
20

9.
8

20
9.

8
26

.4
83

.3
5

7.
92

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

68
6.

8
0

30
73

98
.8

5.
6

30
1.

2
30

1.
2

28
90

.8
7

6.
67

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

95
7.

8
0

30
90

57
.8

6
54

0.
2

54
0.

2
29

.6
88

.8
8

8.
92

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

10
96

0
29

71
88

.8
6

93
5.

2
93

5.
2

31
.2

85
.3

8.
24

ap
ac

he
65

2
20

83
19

14
97

42
14

65
57

14
42

.4
0

16
61

94
.6

6
16

93
.2

16
93

.2
32

.8
78

.7
8

12
.5

3
m

ys
ql

12
2

10
0

30
7

95
17

77
56

12
43

.2
0

38
81

49
.2

6
13

3.
6

13
3.

6
37

.2
-1

22
.6

7
11

.8
5

m
ys

ql
15

2
80

47
5

14
72

5
12

49
6

14
35

0
35

85
79

.6
6.

4
18

2
18

2
37

.6
-5

1.
67

12
.7

6
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
19

51
.6

0
32

69
29

.8
6.

2
29

9.
4

29
9.

4
39

.4
89

.8
2

11
.1

2
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
29

45
.8

0
28

62
46

.8
6

32
2.

2
32

2.
2

40
.6

93
.5

3
11

.7
4

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

48
95

.8
0

22
36

09
.2

6.
2

40
6

40
6

41
.4

60
.2

10
.6

4
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
63

69
.6

0
33

72
68

.4
6.

6
94

2.
8

94
2.

8
42

.4
85

.4
5

14
.6

4
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
92

62
.4

71
0

28
34

07
.9

6.
41

18
94

.6
5

18
94

.7
1

45
.9

4
77

.4
4

9.
03

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
18

50
.4

0
44

58
18

.2
6.

4
67

9
67

9
61

.6
-6

1.
67

6.
53

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

23
32

.8
0

42
54

97
.4

7
13

33
.6

13
33

.6
74

-1
22

.2
7

5.
85

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
44

41
.2

0
37

04
86

.2
7

24
25

.8
24

25
.8

81
.4

59
.1

6
5.

35
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

64
22

0
51

00
30

.8
7.

4
60

38
.8

60
38

.8
89

.2
43

.7
7

1.
98

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
10

33
6.

5
0

38
11

32
7

87
00

.5
87

00
.5

96
49

.4
7

6.
8

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
21

05
4

0
50

56
48

7.
5

33
38

5
33

38
5

10
8.

5
-1

3.
32

4.
41

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
37

36
0

0
41

60
46

.3
7.

67
74

96
7.

33
74

96
7.

33
11

8.
33

15
.3

5
9.

67
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

49
91

0
44

27
90

7.
2

69
5.

6
69

5.
6

11
6.

4
31

.8
10

.4
6

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

79
45

.2
0

56
37

33
.4

7.
8

14
61

.2
14

61
.2

12
4

63
.1

14
.1

3
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

14
03

8.
2

0
59

40
30

.2
8

36
50

.6
36

50
.6

13
5.

8
81

.3
9

10
.6

6
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

21
81

7.
6

0
53

69
38

8
56

58
.4

56
58

.4
14

5.
6

85
.8

2
6.

47
m

ys
ql

30
3

40
35

66
8

11
05

70
8

97
66

77
35

06
0

0
50

72
39

8
13

06
7.

5
13

06
8

15
3

85
.5

2
8.

2
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

79
21

3.
67

0
53

90
31

.3
8.

33
28

97
1.

67
28

97
1.

67
16

7.
33

89
.5

7.
55

m
ys

ql
60

3
20

28
73

28
89

07
16

8
83

68
27

7
25

42
03

0
48

02
72

8
86

63
8.

5
86

63
9

18
4

94
.2

9
5.

64

Ta
bl

e
A

.5
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rR

IS
xA

V
O

co
m

bi
na

tio
n

89

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
30

9.
8

0
22

02
53

.2
5

69
69

27
.8

-1
5

-9
.0

2
ap

ac
he

17
2

76
54

3
97

74
89

89
46

7.
6

0
32

34
29

.8
5.

4
15

6
15

6
29

.4
-3

0
-7

.3
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
66

1.
4

0
32

76
62

5.
8

22
6.

4
22

6.
4

31
82

.0
3

-8
.1

3
ap

ac
he

26
2

50
12

99
23

38
2

22
14

7
68

6.
8

0
23

57
82

.6
5.

6
23

5.
2

23
5.

2
30

92
.8

7
0

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

95
7.

8
0

21
63

86
.4

5.
6

34
8.

2
34

8.
2

34
.2

92
.8

4
-5

.2
3

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

10
96

0
24

65
99

.2
5.

6
69

7.
4

69
7.

4
38

.6
89

.0
3

-1
3.

53
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
14

42
.4

0
17

85
88

.6
6

14
69

.6
14

69
.6

39
.8

81
.5

8
-6

.1
3

m
ys

ql
12

2
10

0
30

7
95

17
77

56
12

43
.2

0
64

65
19

6.
8

45
6.

6
45

6.
6

46
.8

-6
61

-1
0.

9
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
14

35
0

56
42

73
.2

6.
4

51
9.

4
51

9.
4

64
.8

-3
32

.8
3

-5
0.

35
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
19

51
.6

0
53

17
26

.4
6.

6
62

6.
4

62
6.

4
78

.8
78

.6
9

-7
7.

76
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
29

45
.8

0
36

44
95

.2
6.

2
54

6.
2

54
6.

2
76

89
.0

3
-6

5.
22

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

48
95

.8
0

39
92

78
.6

6.
2

90
0.

2
90

0.
2

80
.4

11
.7

5
-7

3.
54

m
ys

ql
40

2
30

32
75

10
15

25
95

39
6

63
69

.6
0

41
22

41
.2

6.
4

14
65

.2
14

65
.2

84
.6

77
.3

9
-7

0.
32

m
ys

ql
60

2
20

73
15

22
67

65
21

75
16

94
49

.3
64

0
31

94
73

.3
6.

45
26

83
.8

2
26

83
.8

2
83

.3
6

68
.0

5
-6

5.
07

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
18

50
.4

0
28

82
88

6.
4

42
8.

8
42

9
61

.4
-2

.1
4

6.
83

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

23
32

.8
0

29
48

80
6.

6
95

6
95

6
83

.4
-5

9.
33

-6
.1

1
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

44
41

.2
0

40
89

90
.8

7
28

12
28

12
88

.6
52

.6
6

-3
.0

2
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

64
22

0
43

66
31

.4
7.

4
51

43
.2

51
43

.2
97

.4
52

.1
1

-7
.0

3
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

10
33

6.
5

0
35

52
95

7.
5

92
98

92
98

10
5

46
-1

.9
4

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
21

05
4

0
23

59
57

.5
7

20
94

4.
5

20
94

4.
5

12
1.

5
28

.9
1

-7
.0

5
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

36
09

8
0

30
78

92
7

68
15

6
68

15
6

15
1

23
.0

4
-1

5.
27

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
49

91
0

78
89

58
.8

8
16

89
.8

16
89

.8
11

1
-6

5.
67

14
.6

2
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
79

45
.2

0
63

41
76

.8
7.

8
21

58
.4

21
58

.4
22

0.
8

45
.4

9
-5

2.
91

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
14

03
8.

2
0

57
38

31
7.

8
43

11
.4

43
11

.4
22

5
78

.0
3

-4
8.

03
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

21
81

7.
6

0
44

26
00

.8
8

56
55

.6
56

55
.6

21
9.

6
85

.8
3

-4
1.

07
m

ys
ql

30
3

40
35

66
8

11
05

70
8

97
66

77
35

06
0

0
46

86
74

8
11

30
3

11
30

3
25

0
87

.4
7

-5
0

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
77

31
0.

5
0

34
17

81
.5

8
19

17
1

19
17

1
26

9.
5

93
.0

5
-4

8.
9

m
ys

ql
60

3
20

28
73

28
89

07
16

8
83

68
27

7
25

42
03

0
30

10
67

.5
8

73
31

3
73

31
3

29
7.

5
95

.1
7

-5
2.

56

Ta
bl

e
A

.6
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rR

IS
xC

M
P

co
m

bi
na

tio
n

90

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T
an

ne
al

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
30

9.
8

0
63

69
17

.6
5

23
5.

4
23

5.
4

21
.6

-2
92

.3
3

15
.2

9
ap

ac
he

17
2

76
54

3
97

74
89

89
46

7.
6

0
71

74
08

.6
5.

8
46

2
46

2
23

-2
85

16
.0

6
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
66

1.
4

0
96

70
24

.4
6

10
14

10
14

24
.2

19
.5

2
15

.5
9

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

68
6.

8
0

87
95

46
.8

6
14

65
.4

14
65

.4
26

55
.5

9
13

.3
3

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

95
7.

8
0

73
69

39
.8

5.
2

18
77

.4
18

77
.4

27
.2

61
.3

7
16

.3
1

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

10
96

0
11

89
65

1
6

51
71

.4
51

71
.4

30
.2

18
.6

9
11

.1
8

ap
ac

he
65

2
20

83
19

14
97

42
14

65
57

14
42

.4
0

13
49

02
2

6
14

43
5

14
43

5
34

-8
0.

89
9.

33
m

ys
ql

12
2

10
0

30
7

95
17

77
56

12
43

.2
0

78
59

44
6

40
6.

4
40

6.
4

34
.8

-5
77

.3
3

17
.5

4
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
14

35
0

11
78

35
1

6.
8

81
9.

4
81

9.
4

36
.2

-5
82

.8
3

16
.0

1
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
19

51
.6

0
92

96
93

6
12

35
.6

12
35

.6
38

.4
57

.9
7

13
.3

8
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
29

45
.8

0
10

49
89

0
6.

4
20

02
20

02
39

.8
59

.8
13

.4
8

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

48
95

.8
0

91
91

47
.8

6
30

51
.2

30
51

.2
41

.8
-1

99
.1

4
9.

78
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
63

69
.6

0
15

84
87

3
6.

4
88

43
.6

88
43

.6
43

.6
-3

6.
48

12
.2

2
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
97

57
.7

5
0

22
15

97
6

7
17

99
0

17
99

0
48

.7
5

-1
14

.1
7

3.
47

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
15

24
.5

0
10

11
29

0
7

91
5

91
5

56
.5

-1
17

.8
6

14
.2

6
ap

ac
he

17
3

76
54

10
97

38
0

85
84

2
25

02
.5

0
69

66
52

.5
7

16
34

16
34

66
.2

5
-1

72
.3

3
15

.7
1

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
43

78
0

11
04

85
0

7.
25

57
13

.7
5

57
13

.7
5

74
.2

5
3.

81
13

.6
6

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
48

35
.7

5
0

11
66

92
0

7.
25

11
21

8.
5

11
21

8.
5

80
.2

5
-4

.4
6

11
.8

1
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

12
94

6
0

14
24

02
8

8
29

80
7

29
80

7
89

-7
3.

1
13

.5
9

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
22

88
7

0
14

16
22

8
8

76
89

4
76

89
4

10
1

-1
61

.0
1

11
.0

1
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

43
60

6
0

15
51

50
0

8
32

43
26

32
43

26
11

6
-2

66
.2

2
11

.4
5

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
47

35
.5

0
11

33
57

2
7.

25
93

6.
5

93
6.

5
11

0
8.

19
15

.3
8

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

76
22

0
12

60
64

7
7.

5
22

48
22

48
11

7
43

.2
3

18
.9

8
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

15
19

8.
5

0
13

74
26

5
8

63
64

.5
63

64
.5

12
9.

25
67

.5
6

14
.9

7
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

17
96

8
0

12
36

98
4

8
11

23
8.

75
11

23
8.

75
14

2
71

.8
3

8.
78

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

54
20

8
0

14
96

89
1

8
32

49
2

32
49

2
15

2
63

.9
9

8.
8

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
83

80
9

0
14

31
51

6
8.

33
10

85
70

.7
10

85
71

.3
16

5.
67

60
.6

5
8.

47
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

18
72

25
0

20
30

24
6

8
40

34
90

40
34

90
18

7
73

.4
4.

1

Ta
bl

e
A

.7
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rR

IS
xC

R
Ic

om
bi

na
tio

n

91

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T
an

ne
al

T t
ot

al
si

ze
T

im
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
30

9.
8

0
54

34
37

.2
5.

4
18

8.
2

18
8.

2
32

-2
13

.6
7

-2
5.

49
ap

ac
he

17
2

76
54

3
97

74
89

89
46

7.
6

0
60

86
35

.4
5.

6
36

1.
8

36
1.

8
37

.6
-2

01
.5

-3
7.

23
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
66

1.
4

0
52

73
93

5.
6

49
7.

4
49

7.
4

38
.4

60
.5

2
-3

3.
94

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

68
6.

8
0

72
31

20
.4

5.
8

86
5.

4
86

5.
4

44
.8

73
.7

8
-4

9.
33

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

95
7.

8
0

72
44

44
.6

5.
8

14
97

.6
14

97
.6

47
.8

69
.1

9
-4

7.
08

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

10
96

0
81

42
49

.6
6

30
16

.2
30

16
.2

59
.4

52
.5

8
-7

4.
71

ap
ac

he
65

2
20

83
19

14
97

42
14

65
57

14
42

.4
0

57
11

41
.2

6
39

59
.6

39
59

.6
57

50
.3

8
-5

2
m

ys
ql

12
2

10
0

30
7

95
17

77
56

12
43

.2
0

19
76

32
4

7
76

5.
8

76
5.

8
41

-1
17

6.
33

2.
84

m
ys

ql
15

2
80

47
5

14
72

5
12

49
6

14
35

0
20

88
81

1
7

11
58

.4
11

58
.4

46
-8

65
.3

3
-6

.7
3

m
ys

ql
20

2
60

83
5

25
88

5
22

87
6

19
51

.6
0

21
75

14
7

7
19

54
.2

19
54

.2
52

33
.5

3
-1

7.
3

m
ys

ql
24

2
50

11
95

37
04

5
33

41
2

29
45

.8
0

21
67

68
4

7
26

82
.8

26
82

.8
55

46
.1

3
-1

9.
57

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

48
95

.8
0

22
03

47
3

7
41

25
.4

41
25

.4
61

-3
04

.4
5

-3
1.

66
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
63

69
.6

0
22

16
42

1
7

72
67

.6
72

67
.6

68
-1

2.
15

-3
6.

9
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
94

49
.3

64
0

21
07

64
5

7
14

76
7

14
76

7
75

-7
5.

8
-4

8.
51

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
18

50
.4

0
62

06
90

.2
6.

8
12

88
.8

12
88

.8
82

.8
-2

06
.8

6
-2

5.
64

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

23
32

.8
0

48
28

24
.8

6.
8

16
81

.2
16

81
.2

83
-1

80
.2

-5
.6

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
44

41
.2

0
43

34
34

.6
7

29
97

.4
29

97
.4

89
.6

49
.5

4
-4

.1
9

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
64

22
0

64
41

66
.8

7.
4

82
34

.8
82

34
.8

92
.8

23
.3

3
-1

.9
8

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
10

33
6.

5
0

71
19

66
7.

5
19

44
6

19
44

6
99

.5
-1

2.
93

3.
4

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
21

05
4

0
43

44
19

7
26

83
9.

5
26

83
9.

5
10

9
8.

9
3.

96
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

36
09

8
0

41
88

20
7

88
06

1
88

06
1

13
0.

5
0.

56
0.

38
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

49
91

0
15

47
52

3
8

28
89

.8
28

89
.8

11
1

-1
83

.3
1

14
.6

2
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
79

45
.2

0
15

62
64

6
8

50
34

.6
50

34
.6

12
5

-2
7.

14
13

.4
3

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
14

03
8.

2
0

15
84

33
4

8
11

33
3.

8
11

33
3.

8
14

1
42

.2
3

7.
24

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
21

81
7.

6
0

18
02

85
0

8.
8

21
91

6
21

91
6

17
8.

6
45

.0
7

-1
4.

73
m

ys
ql

30
3

40
35

66
8

11
05

70
8

97
66

77
35

06
0

0
19

00
22

0
9

48
13

3
48

13
3

16
7

46
.6

6
-0

.2
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

77
31

0.
5

0
18

78
72

4
9

10
67

73
10

67
73

18
5

61
.3

1
-2

.2
1

m
ys

ql
60

3
20

28
73

28
89

07
16

8
83

68
27

7
17

03
29

0
18

74
38

0
9

40
02

29
.5

40
02

29
.5

20
7

73
.6

1
-6

.1
5

Ta
bl

e
A

.8
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rR

IS
xC

R
T

co
m

bi
na

tio
n

92

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
17

6.
2

0
40

86
41

.6
5.

8
10

6.
2

10
6.

2
22

.8
-7

7
10

.5
9

ap
ac

he
17

2
76

54
3

97
74

89
89

26
7.

4
0

29
51

06
5.

2
13

7.
2

13
7.

2
24

.8
-1

4.
33

9.
49

ap
ac

he
22

2
59

92
3

16
61

4
15

57
9

33
2.

4
0

23
66

84
5.

4
18

0.
4

18
0.

4
26

85
.6

8
9.

31
ap

ac
he

26
2

50
12

99
23

38
2

22
14

7
44

6
0

35
84

50
.2

5.
8

40
4.

6
40

4.
6

28
87

.7
4

6.
67

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

55
6.

2
0

25
75

70
5.

8
42

5
42

5
28

.4
91

.2
6

12
.6

2
ap

ac
he

44
2

30
37

83
68

09
4

65
95

9
79

8
0

22
10

62
.4

6
65

7.
8

65
7.

8
30

.6
89

.6
6

10
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
13

96
.4

0
15

80
08

.6
6

12
17

.2
12

17
.4

33
.4

84
.7

4
10

.9
3

m
ys

ql
12

2
10

0
30

7
95

17
77

56
91

0.
6

4
39

71
27

.8
6

13
5

13
9.

6
37

.4
-1

32
.6

7
11

.3
7

m
ys

ql
15

2
80

47
5

14
72

5
12

49
6

13
89

.6
3

27
41

71
.4

6
16

4.
6

16
8.

4
38

.8
-4

0.
33

9.
98

m
ys

ql
20

2
60

83
5

25
88

5
22

87
6

22
72

.2
0

27
63

34
.6

6
23

9.
2

23
9.

2
38

.4
91

.8
6

13
.3

8
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
18

73
0

27
26

32
.6

6
33

1.
6

33
1.

6
40

.4
93

.3
4

12
.1

7
m

ys
ql

30
2

40
18

55
57

50
5

52
93

6
40

52
.4

0
21

00
00

6.
2

44
2.

2
44

2.
4

41
.2

56
.6

3
11

.0
7

m
ys

ql
40

2
30

32
75

10
15

25
95

39
6

35
08

.8
0

38
28

12
.2

6.
6

10
95

10
95

.2
43

.6
83

.1
12

.2
2

m
ys

ql
60

2
20

73
15

22
67

65
21

75
16

85
59

.3
33

0
28

90
44

.8
6.

47
19

54
.6

19
54

.7
3

46
.2

76
.7

3
8.

51
ap

ac
he

13
3

10
0

22
66

40
78

8
34

53
0

88
5.

6
24

44
16

00
.4

6.
2

62
1

64
5.

4
62

.8
-5

3.
67

4.
7

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

18
45

.4
70

.8
35

82
56

.4
6.

8
10

75
.4

11
46

.6
75

.4
-9

1.
1

4.
07

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
39

71
.6

21
9

38
67

53
7

29
15

.8
31

35
.6

80
.4

47
.2

1
6.

51
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

81
85

.6
74

2.
8

56
25

57
.6

7.
4

59
25

.6
66

68
.6

90
37

.9
1

1.
1

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
61

10
.5

15
33

64
53

04
.5

8
16

41
6.

5
17

95
0

97
-4

.2
4

5.
83

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
15

61
7

38
65

.5
42

95
40

.5
7.

5
27

94
5

31
81

1.
5

10
2.

5
-7

.9
8

9.
69

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
32

05
4

98
92

53
08

02
8

93
66

5
10

35
57

.3
11

8
-1

6.
93

9.
92

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
48

68
.6

94
39

88
57

.8
7.

4
63

4.
8

72
9.

4
11

5.
2

28
.4

9
11

.3
8

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

68
71

.4
14

9
40

27
52

.4
7.

6
11

76
.4

13
26

.2
12

5.
6

66
.5

1
13

.0
2

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
13

60
2.

6
30

9.
4

59
53

88
.2

8
36

97
.4

40
07

13
6.

8
79

.5
8

10
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

23
58

8.
2

53
2.

8
55

45
27

.8
8

62
97

68
30

14
4.

6
82

.8
8

7.
11

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

35
09

9
10

77
51

67
45

8
12

60
5

13
68

2
15

7
84

.8
4

5.
8

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
53

12
5

25
13

35
32

13
8

17
43

6
19

94
9

16
6

92
.7

7
8.

29
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

15
69

86
90

92
.5

41
22

28
8

80
43

3
89

52
6.

5
18

5.
5

94
.1

4.
87

Ta
bl

e
A

.9
:S

ta
tis

tic
s

an
d

im
pr

ov
em

en
ts

fo
rT

IS
xA

V
O

co
m

bi
na

tio
n

93

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
17

6.
2

0
29

45
45

.6
5.

2
91

91
27

.4
-5

1.
67

-7
.4

5
ap

ac
he

17
2

76
54

3
97

74
89

89
26

7.
4

0
38

13
83

.6
5.

8
19

2.
6

19
2.

6
28

.8
-6

0.
5

-5
.1

1
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
33

2.
4

0
29

77
69

.8
5.

8
24

3.
2

24
3.

2
31

.2
80

.7
-8

.8
2

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

44
6

0
27

43
81

.4
6

31
4.

6
31

4.
8

31
.8

90
.4

6
-6

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

55
6.

2
0

34
72

15
.4

6
54

9.
2

54
9.

4
33

.4
88

.7
-2

.7
7

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

79
8

0
29

79
58

.4
6

80
9.

8
80

9.
8

35
.8

87
.2

7
-5

.2
9

ap
ac

he
65

2
20

83
19

14
97

42
14

65
57

13
96

.4
0

20
55

86
.8

6
14

55
14

55
.2

46
.6

81
.7

6
-2

4.
27

m
ys

ql
12

2
10

0
30

7
95

17
77

56
91

0.
6

4
63

94
74

.6
6.

8
45

1.
4

45
6

46
.8

-6
60

-1
0.

9
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
13

89
.6

3
52

50
47

6.
2

45
6.

4
45

9.
8

70
-2

83
.1

7
-6

2.
41

m
ys

ql
20

2
60

83
5

25
88

5
22

87
6

22
72

.2
0

48
24

48
6.

4
54

4.
2

54
4.

6
82

.6
81

.4
8

-8
6.

33
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
18

73
0

50
62

23
.2

6.
8

82
5.

4
82

5.
6

79
.4

83
.4

2
-7

2.
61

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

40
52

.4
0

41
85

06
.6

6.
4

89
1.

2
89

1.
2

84
.6

12
.6

3
-8

2.
6

m
ys

ql
40

2
30

32
75

10
15

25
95

39
6

35
08

.8
0

39
28

61
6.

4
14

32
14

32
73

.8
77

.9
-4

8.
58

m
ys

ql
60

2
20

73
15

22
67

65
21

75
16

83
21

.6
0

28
94

03
.2

6
21

01
.4

21
02

86
.6

74
.9

8
-7

1.
49

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
88

5.
6

24
23

15
84

.8
6.

4
33

8.
6

36
3

66
.6

13
.5

7
-1

.0
6

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

18
45

.4
70

.8
38

85
57

.6
6.

8
12

20
.6

12
92

.2
82

.2
-1

15
.3

7
-4

.5
8

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
39

71
.6

21
9

25
57

60
.8

7
18

86
.6

21
06

93
.6

64
.5

5
-8

.8
4

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
81

85
.6

74
2.

8
32

17
31

7
36

90
.8

44
33

.8
95

.8
58

.7
2

-5
.2

7
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

61
10

.5
15

33
61

57
54

.5
8

16
73

1.
5

18
26

5.
5

99
-6

.0
7

3.
88

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
15

61
7

38
65

.5
32

64
80

.5
7

23
41

4
27

28
0.

5
12

6
7.

4
-1

1.
01

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
37

17
9

11
25

2.
5

33
21

46
7.

5
74

13
9.

5
85

39
2.

5
14

1.
5

3.
58

-8
.0

2
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

48
68

.6
94

74
39

73
.4

7.
8

15
07

16
01

.8
14

7
-5

7.
04

-1
3.

08
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
68

71
.4

14
9

61
74

43
.6

7.
8

20
48

.8
21

98
.4

21
1.

6
44

.4
8

-4
6.

54
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

13
60

2.
6

30
9.

4
48

64
18

.4
7.

8
36

71
.8

39
81

.6
22

2.
4

79
.7

1
-4

6.
32

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
23

58
8.

2
53

2.
8

40
44

33
.8

8
52

07
.6

57
40

.8
23

2.
4

85
.6

1
-4

9.
29

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

35
09

9
10

77
39

80
04

8
10

40
1.

5
11

47
8.

5
22

6.
5

87
.2

8
-3

5.
9

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
53

12
5

25
13

41
22

57
8

22
97

7
25

49
1

23
0

90
.7

6
-2

7.
07

m
ys

ql
60

3
20

28
73

28
89

07
16

8
83

68
27

7
15

69
86

90
92

.5
34

68
07

8
70

11
1

79
20

4.
5

30
8

94
.7

8
-5

7.
95

Ta
bl

e
A

.1
0:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
IS

xC
M

P
co

m
bi

na
tio

n

94

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
17

6.
2

0
51

28
65

5
24

7.
2

24
7.

2
21

-3
12

17
.6

5
ap

ac
he

17
2

76
54

3
97

74
89

89
26

7.
4

0
78

33
67

6
48

4.
8

48
4.

8
23

-3
04

16
.0

6
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
33

2.
4

0
88

99
21

.4
5.

8
95

4
95

4
24

.8
24

.2
9

13
.5

ap
ac

he
26

2
50

12
99

23
38

2
22

14
7

44
6

0
84

88
84

.6
6

13
39

.6
13

39
.6

25
.4

59
.4

1
15

.3
3

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

55
6.

2
0

72
84

44
.4

5.
2

17
29

.8
17

29
.8

27
.2

64
.4

1
16

.3
1

ap
ac

he
44

2
30

37
83

68
09

4
65

95
9

79
8

0
11

91
28

9
6

51
98

.4
51

98
.4

30
18

.2
6

11
.7

6
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
13

96
.4

0
14

39
83

3
6

16
93

4.
6

16
93

5
34

.4
-1

12
.2

2
8.

27
m

ys
ql

12
2

10
0

30
7

95
17

77
56

91
0.

6
4

81
71

14
6

39
4.

8
39

9.
2

35
.2

-5
65

.3
3

16
.5

9
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
13

89
.6

3
11

60
43

2
6.

8
81

6.
2

81
9.

4
36

-5
82

.8
3

16
.4

7
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
22

72
.2

0
91

90
37

.6
6.

2
11

82
.4

11
83

38
59

.7
6

14
.2

8
m

ys
ql

24
2

50
11

95
37

04
5

33
41

2
18

73
0

11
02

77
7

6.
4

21
50

.8
21

50
.8

39
.6

56
.8

1
13

.9
1

m
ys

ql
30

2
40

18
55

57
50

5
52

93
6

40
52

.4
0

75
32

57
6

25
90

.6
25

90
.6

41
.6

-1
53

.9
8

10
.2

1
m

ys
ql

40
2

30
32

75
10

15
25

95
39

6
35

08
.8

0
17

79
19

1
6.

6
10

04
7.

8
10

04
7.

8
44

.4
-5

5.
06

10
.6

1
m

ys
ql

60
2

20
73

15
22

67
65

21
75

16
95

07
0

23
83

11
9

7
18

45
0

18
45

0
48

.5
-1

19
.6

4
3.

96
ap

ac
he

13
3

10
0

22
66

40
78

8
34

53
0

93
7.

5
7.

25
90

93
86

.5
6.

75
82

3.
25

83
0.

75
56

.7
5

-9
7.

8
13

.8
8

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

13
91

32
.2

5
94

17
10

.5
7

21
09

.2
5

21
42

65
.5

-2
57

16
.6

7
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

44
79

11
9.

5
12

58
39

4
7.

75
66

99
.5

68
19

.2
5

75
-1

4.
8

12
.7

9
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

55
23

.7
5

39
8.

25
90

90
19

.2
7

84
31

.5
88

30
.2

5
80

.7
5

17
.7

8
11

.2
6

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
44

46
88

3
85

33
62

7
16

35
2

17
23

6
91

-0
.0

9
11

.6
5

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
15

67
8

21
32

99
18

24
8

62
72

0
64

85
3

99
-1

20
.1

4
12

.7
8

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
45

18
8

77
26

13
32

15
5

7
27

44
03

28
21

30
12

4
-2

18
.5

7
5.

34
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

34
80

.5
33

13
87

03
6

7.
5

11
55

.7
5

11
89

10
9

-1
6.

57
16

.1
5

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

62
69

.7
5

64
12

27
83

0
7.

5
21

65
.2

5
22

29
.7

5
11

7.
75

43
.6

9
18

.4
6

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
15

63
8

15
5.

25
13

99
98

1
8

69
03

.2
5

70
59

.2
5

12
9

64
.0

2
15

.1
3

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
19

17
8

28
3.

25
12

40
62

0
8

11
79

2.
25

12
07

6
13

8.
25

69
.7

3
11

.1
9

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

26
58

1
60

7
20

24
32

2
9

43
19

0
43

79
7

14
9

51
.4

7
10

.6
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

62
93

3.
5

21
42

.5
16

86
34

2
8.

5
12

92
66

.5
13

14
09

.5
16

8.
5

52
.3

8
6.

91
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

20
26

16
61

06
19

42
25

5
8

35
34

34
35

95
40

19
0

76
.2

9
2.

56

Ta
bl

e
A

.1
1:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
IS

xC
R

Ic
om

bi
na

tio
n

95

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T

im
p

N
im

p

ap
ac

he
13

2
10

0
31

1
55

98
50

13
17

6.
2

0
45

07
99

.4
5.

2
16

4.
2

16
4.

2
32

.4
-1

73
.6

7
-2

7.
06

ap
ac

he
17

2
76

54
3

97
74

89
89

26
7.

4
0

48
33

87
.8

5.
4

27
8.

2
27

8.
2

35
.4

-1
31

.8
3

-2
9.

2
ap

ac
he

22
2

59
92

3
16

61
4

15
57

9
33

2.
4

0
64

74
97

.6
5.

4
53

9
53

9
44

.6
57

.2
2

-5
5.

56
ap

ac
he

26
2

50
12

99
23

38
2

22
14

7
44

6
0

45
81

05
.6

5.
4

54
4.

8
54

5
40

.8
83

.4
8

-3
6

ap
ac

he
33

2
39

21
11

37
99

8
36

41
3

55
6.

2
0

76
38

19
.2

5.
6

16
34

16
34

.2
51

.2
66

.3
7

-5
7.

54
ap

ac
he

44
2

30
37

83
68

09
4

65
95

9
79

8
0

89
45

80
.8

6
30

82
.4

30
82

.4
61

.8
51

.5
3

-8
1.

76
ap

ac
he

65
2

20
83

19
14

97
42

14
65

57
13

96
.4

0
38

00
39

.4
6

34
23

.2
34

23
.4

57
.2

57
.1

-5
2.

53
m

ys
ql

12
2

10
0

30
7

95
17

77
56

91
0.

6
4

19
38

98
7

7
75

2.
4

75
7

41
-1

16
1.

67
2.

84
m

ys
ql

15
2

80
47

5
14

72
5

12
49

6
13

89
.6

3
21

11
89

1
7

11
65

.6
11

69
46

-8
74

.1
7

-6
.7

3
m

ys
ql

20
2

60
83

5
25

88
5

22
87

6
22

72
.2

0
21

97
86

9
7

19
84

.6
19

84
.6

52
32

.5
-1

7.
3

m
ys

ql
24

2
50

11
95

37
04

5
33

41
2

18
73

0
21

76
27

0
7

26
77

26
77

55
46

.2
4

-1
9.

57
m

ys
ql

30
2

40
18

55
57

50
5

52
93

6
40

52
.4

0
21

80
09

5
7

40
90

40
90

61
-3

00
.9

8
-3

1.
66

m
ys

ql
40

2
30

32
75

10
15

25
95

39
6

35
08

.8
0

22
21

19
3

7
72

53
.2

72
53

.2
68

-1
1.

93
-3

6.
9

m
ys

ql
60

2
20

73
15

22
67

65
21

75
16

83
21

.6
0

21
09

83
7

7
14

71
3.

8
14

71
3.

8
75

-7
5.

16
-4

8.
51

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
88

5.
6

24
44

74
85

6
80

9.
4

83
4

78
.8

-9
8.

57
-1

9.
58

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

18
45

.4
70

.8
45

26
17

6.
6

17
03

.6
17

75
81

-1
95

.8
3

-3
.0

5
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

39
71

.6
21

9
46

10
81

.8
7

33
75

.8
35

95
.4

90
.8

39
.4

7
-5

.5
8

ap
ac

he
26

3
50

20
75

2
37

35
36

34
42

68
81

85
.6

74
2.

8
42

63
04

.2
7

55
83

.8
63

26
.6

94
.8

41
.0

9
-4

.1
8

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
61

10
.5

15
33

66
08

22
7.

5
18

51
1

20
04

4.
5

98
-1

6.
4

4.
85

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
15

61
7

38
65

.5
46

78
34

.5
7

32
15

9.
5

36
02

6
10

9
-2

2.
29

3.
96

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
37

17
9

11
25

2.
5

30
02

94
.5

7
62

94
8

74
20

1
13

1
16

.2
1

0
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

48
68

.6
94

15
19

96
9

8
28

47
.2

29
41

.6
11

1
-1

88
.3

9
14

.6
2

m
ys

ql
15

3
80

43
38

13
44

78
10

50
77

68
71

.4
14

9
15

50
18

9
8

49
99

.8
51

49
.2

12
5

-3
0.

03
13

.4
3

m
ys

ql
20

3
60

10
44

8
32

38
88

26
90

77
13

60
2.

6
30

9.
4

15
94

78
0

8
11

50
4.

4
11

81
4.

2
14

1
39

.7
8

7.
24

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
23

58
8.

2
53

2.
8

18
53

39
7

9
22

70
2

23
23

5.
6

15
3

41
.7

7
1.

72
m

ys
ql

30
3

40
35

66
8

11
05

70
8

97
66

77
35

09
9

10
77

18
94

68
1

9
48

31
0.

5
49

38
7.

5
16

7
45

.2
7

-0
.2

m
ys

ql
40

3
30

84
88

8
26

31
52

8
23

97
07

7
53

12
5

25
13

15
25

60
7

9
89

74
6

92
26

0
30

3
66

.5
7

-6
7.

4
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

17
62

23
91

86
58

55
90

8
11

04
38

11
96

25
34

1
92

.1
1

-7
4.

87

Ta
bl

e
A

.1
2:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
IS

xC
R

T
co

m
bi

na
tio

n

96

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
54

9.
8

18
3.

4
52

58
10

.2
7

83
0

10
14

61
.2

-1
41

.4
3

7.
13

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

89
6.

8
24

5.
8

47
90

27
.6

7
15

52
.8

17
99

.2
72

.6
-1

99
.8

7
7.

63
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

14
50

.2
21

9.
4

39
98

83
.4

7
28

37
.2

30
57

.4
82

48
.5

3
4.

65
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

22
10

.4
56

9.
4

48
69

34
7.

2
51

65
57

35
87

.4
46

.6
3.

96
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

25
63

89
1

55
66

59
.5

7.
5

12
91

3.
5

13
80

5.
5

96
19

.8
3

6.
8

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
53

21
.5

11
81

31
38

01
.5

7.
5

22
52

6.
5

23
70

8
11

1.
5

19
.5

2
1.

76
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

10
57

0
18

96
.5

56
43

67
.5

8
11

80
89

.5
11

99
86

12
2

-3
5.

49
6.

87
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

17
17

.4
28

4
45

97
70

.2
8

73
2.

6
10

17
.4

11
7

0.
25

10
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
29

10
.8

33
3.

6
48

27
62

.6
7.

8
13

10
.6

16
45

12
4.

6
58

.4
6

13
.7

1
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

53
14

.2
38

0
47

68
70

.8
7.

8
32

45
.2

36
25

.8
13

6
81

.5
2

10
.5

3
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

85
74

55
3.

8
51

42
17

.8
8

55
75

.6
61

30
.2

14
2.

8
84

.6
4

8.
27

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

13
00

4.
5

10
88

.5
46

71
40

.5
8

12
32

5
13

41
4

15
2

85
.1

4
8.

8
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

18
77

2
50

9
48

58
67

8
14

55
1

15
06

1
15

8
94

.5
4

12
.7

1
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

53
20

0
14

32
39

61
38

8
46

01
2

47
44

5
18

5
96

.8
7

5.
13

Ta
bl

e
A

.1
3:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
C

IS
xA

V
O

co
m

bi
na

tio
n

97

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T

im
p

N
im

p

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
58

8.
8

18
3.

4
33

68
87

6.
6

46
2.

8
64

6.
2

59
-5

3.
86

10
.4

7
ap

ac
he

17
3

76
54

10
97

38
0

85
84

2
80

8.
6

24
5.

8
31

99
70

6.
8

11
05

13
51

.2
83

-1
25

.2
-5

.6
ap

ac
he

22
3

59
12

28
0

22
10

40
20

06
52

15
00

.2
21

9.
4

38
03

30
.8

7
29

37
.8

31
57

.6
91

.2
46

.8
4

-6
.0

5
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

21
27

56
9.

4
45

95
58

.4
7.

4
54

24
.8

59
94

.8
96

44
.1

8
-5

.4
9

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
39

71
89

1
47

18
04

.5
7.

5
12

97
6

13
86

8
10

3.
5

19
.4

7
-0

.4
9

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
47

88
11

81
45

48
23

.5
7.

5
30

59
7.

5
31

77
9

12
0

-7
.8

7
-5

.7
3

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
96

85
18

96
.5

24
75

20
.5

7.
5

48
73

3
50

63
0

14
1.

5
42

.8
3

-8
.0

2
m

ys
ql

12
3

10
0

21
76

67
45

6
49

55
7

16
06

33
2

32
30

37
7

64
3

97
5

18
1

4.
41

-3
9.

23
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
27

60
.7

5
30

6.
75

63
11

72
.5

8
20

84
23

91
.5

21
5.

5
39

.6
1

-4
9.

24
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

57
02

.4
38

0
43

41
35

.4
7.

6
32

29
.6

36
10

.4
22

3
81

.6
-4

6.
71

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
81

45
.8

55
3.

8
41

09
78

.6
8

51
85

.4
57

40
23

9.
6

85
.6

1
-5

3.
92

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

10
24

7
10

88
.5

45
26

17
.5

8
12

54
4

13
63

3.
5

23
3.

5
84

.8
9

-4
0.

1
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

14
38

5
50

9
31

95
68

8
11

34
1

11
85

1
26

5
95

.7
1

-4
6.

41
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

37
64

6
14

32
28

90
72

8
37

25
9

38
69

2
29

7
97

.4
5

-5
2.

31

Ta
bl

e
A

.1
4:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
C

IS
xC

M
P

co
m

bi
na

tio
n

98

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T
an

ne
al

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

3
10

0
43

16
40

78
8

34
53

0
62

0
24

4
93

55
32

7
11

55
13

55
65

-2
22

.6
2

1.
37

ap
ac

he
17

3
76

54
10

97
38

0
85

84
2

89
1

21
3

98
71

89
7

13
79

45
68

85
-6

61
.3

3
-8

.1
4

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
13

23
16

3
80

19
41

7
62

55
64

18
80

-8
.0

5
6.

98
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

16
54

53
7

91
20

94
7

11
45

7
11

99
5

89
-1

1.
69

2.
2

ap
ac

he
33

3
39

43
58

6
78

45
48

73
58

90
46

20
95

4
18

53
13

7
16

98
5

19
74

0
97

-1
4.

63
5.

83
ap

ac
he

44
3

30
10

58
68

19
05

62
4

18
16

59
6

51
91

11
31

11
38

74
9

8
58

66
0

59
81

1
11

3
-1

03
.0

2
0.

44
ap

ac
he

65
3

20
34

93
14

62
87

65
2

60
87

95
4

17
40

2
13

50
10

28
29

0
7

23
04

22
23

19
23

12
3

-1
61

.8
8

6.
11

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
16

06
45

2
12

73
03

7
8

11
43

15
95

11
8

-5
6.

37
9.

23
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
27

39
42

9
11

98
21

9
8

33
90

38
20

12
4

3.
54

14
.1

3
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

57
70

38
2

11
13

31
3

8
35

74
59

57
13

1
69

.6
4

13
.8

2
m

ys
ql

24
3

50
18

16
8

56
32

08
48

24
53

63
88

53
2

15
02

24
2

8
71

35
76

68
15

5
80

.7
8

0.
43

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

96
87

10
52

91
90

72
8

15
14

3
17

27
6

17
3

80
.8

6
-3

.8
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

14
38

5
50

9
11

14
56

7
8

21
34

1
21

85
1

16
5

92
.0

8
8.

84
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

37
64

6
14

32
14

89
07

2
8

47
25

9
48

69
2

20
1

96
.7

9
-3

.0
8

Ta
bl

e
A

.1
5:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
C

IS
xC

R
Ic

om
bi

na
tio

n

99

su
t

op
t

t
co

p
#

of
φ

t
#

of
λ

t
si

ze
of

Λ
t

In
it.

M
is

s
T i

ni
t

IT
sa

IT
bs

T a
nn

ea
l

T t
ot

al
si

ze
T i

m
p

N
im

p

ap
ac

he
13

3
10

0
22

66
40

78
8

34
53

0
63

6.
6

18
3.

4
48

12
24

.6
6.

4
82

9
10

12
.8

79
.2

-1
41

.1
4

-2
0.

18
ap

ac
he

17
3

76
54

10
97

38
0

85
84

2
89

2.
6

24
5.

8
55

21
16

.2
6.

8
17

68
.4

20
14

.4
81

.4
-2

35
.7

3
-3

.5
6

ap
ac

he
22

3
59

12
28

0
22

10
40

20
06

52
14

58
.6

21
9.

4
51

25
67

.6
7

37
85

.6
40

05
.6

92
32

.5
7

-6
.9

8
ap

ac
he

26
3

50
20

75
2

37
35

36
34

42
68

24
50

.8
56

9.
4

49
12

92
.2

7.
4

68
44

.8
74

15
94

.4
30

.9
6

-3
.7

4
ap

ac
he

33
3

39
43

58
6

78
45

48
73

58
90

33
02

92
8

85
71

59
8

22
50

3
23

43
2

10
5

-3
6.

07
-1

.9
4

ap
ac

he
44

3
30

10
58

68
19

05
62

4
18

16
59

6
60

42
11

81
44

80
46

7.
5

33
99

2.
5

35
17

4
11

4.
5

-1
9.

4
-0

.8
8

ap
ac

he
65

3
20

34
93

14
62

87
65

2
60

87
95

4
13

93
4.

5
18

96
.5

41
23

40
.5

7
90

30
1

92
19

8
13

4.
5

-4
.1

1
-2

.6
7

m
ys

ql
12

3
10

0
21

76
67

45
6

49
55

7
16

06
25

2
11

33
21

1
8

19
41

21
93

13
8

-1
15

-6
.1

5
m

ys
ql

15
3

80
43

38
13

44
78

10
50

77
25

78
28

3
91

41
75

8
24

17
27

01
15

6
31

.7
9

-8
.0

3
m

ys
ql

20
3

60
10

44
8

32
38

88
26

90
77

64
55

31
9

13
93

04
1

8
60

18
63

38
17

5
67

.7
-1

5.
13

m
ys

ql
24

3
50

18
16

8
56

32
08

48
24

53
80

24
64

3
12

68
64

0
8

65
17

71
61

20
9

82
.0

5
-3

4.
26

m
ys

ql
30

3
40

35
66

8
11

05
70

8
97

66
77

10
80

7
10

65
48

31
53

8
15

94
5

17
01

1
20

4
81

.1
5

-2
2.

4
m

ys
ql

40
3

30
84

88
8

26
31

52
8

23
97

07
7

14
38

5
50

9
91

93
68

8
16

34
1

17
85

1
23

5
93

.5
3

-2
9.

83
m

ys
ql

60
3

20
28

73
28

89
07

16
8

83
68

27
7

28
25

8
14

32
13

98
54

1
9

18
24

30
18

38
63

29
6

87
.8

8
-5

1.
79

Ta
bl

e
A

.1
6:

St
at

is
tic

s
an

d
im

pr
ov

em
en

ts
fo

rT
C

IS
xC

R
T

co
m

bi
na

tio
n

100

BIBLIOGRAPHY

[1] Advanced Combinatorial Testing System (ACTS), 2012. http://csrc.nist.

gov/groups/SNS/acts/documents/comparison-report.html.

[2] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of AT&T PMX/StarMAIL

using OATS. AT&T Technical Journal, 71(3):41–7, 1992.

[3] R. C. Bryce and C. J. Colbourn. Constructing interaction test suites with greedy al-

gorithms. In Proceedings of the 20th IEEE/ACM international Conference on Auto-

mated software engineering, ASE ’05, pages 440–443, New York, NY, USA, 2005.

ACM.

[4] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-wise coverage

with seeding and constraints. Information and Software Technology, 48(10):960 –

970, 2006. Advances in Model-based Testing.

[5] R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise interaction

testing: Research articles. Softw. Test. Verif. Reliab., 17:159–182, September 2007.

[6] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic search for interaction

test suites. In Proceedings of the 9th annual conference on Genetic and evolutionary

computation, GECCO ’07, pages 1082–1089, New York, NY, USA, 2007. ACM.

[7] R. C. Bryce and C. J. Colbourn. A density-based greedy algorithm for higher

strength covering arrays. Softw. Test. Verif. Reliab., 19:37–53, March 2009.

[8] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of optimization theory and applications,

45(1):41–51, 1985.

101

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an

approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering, 23(7):437–44, 1997.

[10] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augmenting simulated annealing to

build interaction test suites. In Proceedings of the 14th International Symposium on

Software Reliability Engineering, ISSRE ’03, pages 394–, Washington, DC, USA,

2003. IEEE Computer Society.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable

systems in the presence of constraints. In Proceedings of the 2007 international

symposium on Software testing and analysis, ISSTA ’07, pages 129–139, New York,

NY, USA, 2007. ACM.

[12] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Constructing test

suites for interaction testing. In Proceedings of the 25th International Conference on

Software Engineering, ICSE ’03, pages 38–48, Washington, DC, USA, 2003. IEEE

Computer Society.

[13] J. Czerwonka. Pairwise testing in the real world: Practical extensions to test-case

scenarios. In Proc. of the 24th Pacific Northwest Software Quality Conference, pages

285–294, 2006.

[14] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and

B. M. Horowitz. Model-based testing in practice. In Proc. of the Int’l Conf. on

Software Engineering, pages 285–294, 1999.

[15] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback driven adaptive com-

binatorial testing. In Proceedings of the 2011 International Symposium on Software

Testing and Analysis, ISSTA ’11, pages 243–253, New York, NY, USA, 2011. ACM.

[16] S. Fouché, M. B. Cohen, and A. Porter. Towards incremental adaptive covering ar-

rays. In The 6th Joint Meeting on European software engineering conference and

the ACM SIGSOFT symposium on the foundations of software engineering: com-

panion papers, ESEC-FSE companion ’07, pages 557–560, New York, NY, USA,

2007. ACM.

102

[17] S. Ghazi and M. Ahmed. Pair-wise test coverage using genetic algorithms. In Evolu-

tionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 2, pages 1420

– 1424 Vol.2, dec. 2003.

[18] A. Hartman. Software and hardware testing using combinatorial covering suites. In

M. C. Golumbic and I. B.-A. Hartman, editors, Graph Theory, Combinatorics and

Algorithms, volume 34 of Operations Research/Computer Science Interfaces Series,

pages 237–266. Springer US, 2005.

[19] S. Kirkpatrick, M. Vecchi, et al. Optimization by simmulated annealing. science,

220(4598):671–680, 1983.

[20] N. Kobayashi. Design and evaluation of automatic test generation strategies for

functional testing of software. Osaka University, Osaka, Japan, 2002.

[21] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog-ipog-d: efficient test

generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab., 18:125–

148, September 2008.

[22] G. Mats, O. Jeff, and M. Jonas. Handling constraints in the input space when using

combination strategies for software testing. Technical Report HS- IKI -TR-06-001,

University of Skvde, School of Humanities and Informatics, 2006.

[23] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput. Surv.,

43:11:1–11:29, February 2011.

[24] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault detection effectiveness

of n-way and random test suites. In Proceedings of the 2004 International Sym-

posium on Empirical Software Engineering, pages 49–59, Washington, DC, USA,

2004. IEEE Computer Society.

[25] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate

test cases for combinatorial testing. In Proceedings of the 28th Annual Interna-

tional Computer Software and Applications Conference - Volume 01, COMPSAC

’04, pages 72–77, Washington, DC, USA, 2004. IEEE Computer Society.

[26] J. Stardom. Metaheuristics and the Search for Covering and Packing Arrays [mi-

croform]. Canadian theses. Thesis (M.Sc.)–Simon Fraser University, 2001.

103

[27] K.-C. Tai and Y. Lei. A test generation strategy for pairwise testing. Software

Engineering, IEEE Transactions on, 28(1):109 –111, jan 2002.

[28] J. Torres-Jimenez and E. Rodriguez-Tello. New bounds for binary covering arrays

using simulated annealing. Information Sciences, 185(1):137–152, 2012.

[29] Y.-W. Tung and W. Aldiwan. Automating test case generation for the new genera-

tion mission software system. In Aerospace Conference Proceedings, 2000 IEEE,

volume 1, pages 431 –437 vol.1, 2000.

[30] A. W. Williams. Determination of test configurations for pair-wise interaction cov-

erage. In Proceedings of the IFIP TC6/WG6.1 13th International Conference on

Testing Communicating Systems: Tools and Techniques, TestCom ’00, pages 59–74,

Deventer, The Netherlands, The Netherlands, 2000. Kluwer, B.V.

[31] A. W. Williams and R. L. Probert. Formulation of the interaction test coverage prob-

lem as an integer program. In Proceedings of the IFIP 14th International Conference

on Testing Communicating Systems XIV, TestCom ’02, pages 283–, Deventer, The

Netherlands, The Netherlands, 2002. Kluwer, B.V.

[32] C. Yilmaz. Test case-aware combinatorial interaction testing. Software Eng., IEEE

Trans. on, PP(99):1, 2012.

[33] C. Yilmaz, S. Fouche, M. Cohen, A. A. Porter, G. Demiroz, and U. Koc. Moving

forward with combinatorial interaction testing. Computer, 99(PrePrints):1, 2013.

104

	Introduction
	Background Information
	Combinatorial Interaction Testing
	Traditional Covering Arrays
	Masking Effects
	Test Case-Aware Covering Arrays
	Simulated Annealing

	Related Work
	Covering Array Generation
	Constraint Handling
	Test Case-Aware Covering Array Generation

	Algorithm 3: Minimizing Number of Test Runs
	Proof of Optimality

	Approach
	Architectural Design
	Binary Search for The Outer Search
	Simulated Annealing for The Inner Search
	Initial Set Generation Strategies
	Neighbor Generation Strategies
	Change a Random Index - CRI
	Change a Random t-Tuple - CRT
	Schedule More Test Cases - SMT
	Cover At Least One Missing t-Pair - CMP
	Alter Violating Option - AVO

	Experiments
	Subject Applications
	Operation Model
	Independent Variables
	Evaluation Framework
	Dependent Variables

	Data and Analysis
	Study 1: Comparing Initial Set Generation Strategies
	Study 2: Comparing Neighbor Generation Strategies
	Study 3: Overall Comparison

	Discussion

	Threats to Validity
	Conclusion and Future Work
	Appendices
	Appendix Empirical Results

