Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

Ugur Kog

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of
Master of Science

Sabanct University
January 2014

https://core.ac.uk/display/32328267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

Approved by:

Asst. Prof. Dr. Cemal Yilmaz — cooeeveeeeeeeeeeee,

(Thesis Supervisor)

Assoc. Prof. Dr. Berrin Yanikogluccccceviiiinien.

Assoc. Prof. Dr. Biilent Catay ~ ...occcooveviiniieeeeee.

Assoc. Prof. Dr. Erkay Savas ..,

Asst. Prof. Dr. Hiisnii Yenigiin -~ .ooooeeniiiiiieeeee

Date of Approval:

© Ugur Kog 2014
All Rights Reserved

USING SIMULATED ANNEALING FOR COMPUTING
TEST CASE-AWARE COVERING ARRAYS

Ugur Kog

Computer Science and Engineering, MS Thesis, 2014

Thesis Supervisor: Asst. Prof. Cemal Yilmaz

Keywords: Software quality assurance, combinatorial interaction testing,

covering arrays, test case-aware covering arrays, simulated annealing

Abstract

Exhaustive testing of highly configurable software systems is generally infeasible in prac-
tice. For this reason, efficient sampling of the configuration space is important to improve
the coverage of testing. A t-way covering array is a list of systematically selected con-
figurations covering all value combinations for every t-way option combinations and it
aims to discover faults caused by interactions of configuration options. Despite its many

successes, it can be difficult to use covering arrays in practice.

Once a traditional t-way covering array is constructed, the system is then tested by running
its test cases in all the selected configurations. By doing so, traditional covering arrays

assume that all test cases can run in all configurations of covering array.

Recent studies, however, show that test cases of configurable systems are likely to have
assumptions about the underlying configurations, i.e., they are like to have some test
case-specific inter-option constraints. When a configuration does not satisfy the test case-

specific constraints of a test case, that test case simply skips the configuration, which

v

prevents the test case from testing all valid combinations of option settings appearing in
the configuration an effect called a masking effect. A harmful consequence of masking
effects is that they can make the developers to believe that they have tested certain option

setting combinations while they in fact have not.

A solution approach is to use test case-aware covering arrays a novel type of combinato-
rial objects for testing that has been recently introduced. Test case-aware covering arrays
take test case-specific inter-option constraints into account when computing combinato-
rial interaction test suites, such that no masking effects caused by overlooked constraints
occur. Given a configuration space model augmented with test case-specific constraints, a
test case-aware covering array is not just a set of configurations as is the case in traditional
covering arrays, but a set of configurations each of which is associated with a set of test

cases, indicating the test cases scheduled to be executed in the configuration.

Although it has been empirically demonstrated that test case-aware covering arrays, com-
pared to traditional covering arrays, can significantly improve the quality of combina-
torial interaction testing by avoiding masking effects, there is no efficient and effective
algorithms to compute them, except for a couple of proof-of-concept algorithms. We
conjecture that this greatly hurts the adaptation of test case-aware covering arrays in prac-

tice.

In this thesis, we have developed simulated annealing-based, efficient and effective al-
gorithms to compute test case-aware covering arrays and a tool implementing these al-
gorithms. We, furthermore, compare and contrast the performance of our algorithms
by conducting large-scale experiments in which we used two highly configurable large
software systems. The results of our empirical studies strongly suggest that the proposed
algorithms are an efficient and effective way of computing test case-aware covering arrays

and that they perform better than existing approaches.

BENZETILMIS TAVLAMA ALGORITMASINI
KULLANARAK TEST DURUMLARINI DIKKATE ALAN
KAPSAYAN DIiZILER HESAPLAMA

Ugur Kog
Bilgisayar Bilimleri ve Miihendisligi, Yiikseklisans Tezi, 2014

Tez Danmigsmani: Yar. Do¢. Cemal Yilmaz

Anahtar Kelimeler: Yazilim kalite giivencesi, kombinatoryal etkilesim
testi, kapsayan diziler, test durumlarini dikkate alan kapsayan diziler,

benzetilmis tavlama

Ozet

Yapilandirilabilirligi yiiksek yazilim sistemlerinin eksiksiz bir sekilde test edilmesi pratikte
olanaksizdir. Bu nedenle, konfigiirasyon uzayimin verimli bir sekilde 6rneklendirilmesi

testlerin kapsamin artirmak i¢in 6nemlidir.

Bu amaca yonelik gelistirilen t-yollu kapsayan diziler (t-way covering arrays) (KAD),
konfigiirasyon seceneklerinin biitiin t-yollu kombinasyonlari i¢in biitiin deger kombinasy-
onlarin1 kapsamak iizere sistematik bir sekilde olusturulmus bir konfigiirasyon kiimesidir.
KAD’lar konfigiirasyon seceneklerinin etkilesimlerinden kaynaklanan hatalar1 kesfetmeyi
hedeflemektedir. Giiniimiizde, elde ettikleri bir¢cok basariya ragmen, pratikte KAD’lar1

kullanmak zor olabilir.

Bir t-yollu KAD olusturduktan sonra, diziye secilmis tiim konfigiirasyonlar sistemin her
bir test durumu (test case) i¢in test edilir. Boyle yaparak, geleneksel KAD’lar, test du-

rumlarinin hepsinin secilmig biitiin konfigiirasyonlarda ¢alisabilecegini varsayar.

vi

Ancak yapilan son ¢alismalar, yapilandirilabilirligi yiiksek yazilim sistemlerinin test du-
rumlarinin iizerinde c¢alisacaklar1 konfigiirasyon hakkinda varsayimlarinin (kisitlama) ol-
masinin muhtemel oldugunu gostermektedir. Eger bir konfigiirasyon bir test durumunun
varsayimlarina uymazsa, o test durumu o konfigiirasyonu atlar ve bu da sadece o kon-
figlirasyonda goriinen degerlerinin o test durumunu tarafindan test edilememesi sorununa

yol acar. Bu soruna maskeleme etkisi denmektedir.

Bu sorunu ¢6zmenin bir yontemi, son zamanlarda gelistirilen test durumlarini dikkate alan
kapsayan diziler (test-case-aware covering arrays) (T-KAD) kullanmaktir. T-KAD’lar test
durumlarinin konfigiirasyon seceneklerinin aldiklar1 degerlerle ilgili olan kisitlamalarini
hesaba katarak bu kisitlamalarindan kaynaklanan maskeleme etkilerinin olugmasini onler.
Test durumlarinin kisitlariyla zenginlestirilmis bir konfigiirasyon uzay modeli icin hesa-
planmis bir T-KAD, geleneksel kapsayan dizilerde oldugu gibi sadece bir konfigiirasyon
kiimesi degil, her bir konfiglirasyonun bir dizi test durumuyla iligkilendirildigi bir kon-
figlirasyon kiimesidir. Bu yapida, bir konfigiirasyonla iligskilendirilmis test durumlari

kiimesi, o konfigiirasyonda ¢alistirilmas1 gereken test durumlarini ifade eder.

Yapilan arastirmalarda, KAD’lar ile karsilastirildiginda, T-KAD’larin maskeleme etki-
lerini ortadan kaldirarak kombinatoryal etkilesim testinin kalitesini 6nemli 6l¢iide arttirdigi
gosterilmis olmasina ragmen, kavram ispat1 olarak gelistirilen birkag algoritma haricinde,
T-KAD hesaplamanin etkili ve verimli bir yontemi yoktur. Bu sorunun, T-KAD’larin

kombinatoryal etkilesim testine adapte olmasini engelledigini ongormekteyiz.

Bu tezde, benzetilmis tavlama-tabanl etkili ve verimli T-KAD hesaplama algoritmalari
ve bu algoritmalart uygulayan bir yazilim gelistirdik. Ayrica, iki yapilandirilabilirligi
yiiksek yazilim sistemi kullanarak biiyiik ¢apli deneyler yaparak gelistirdigimiz algo-
ritmalarin performanslarim karsilagtirdik ve degerlendirdik. Deneylerimizin sonuglari,
Onerilen algoritmalarin T-KAD hesaplamada verimli ve etkili bir yol oldugunu ve mevcut

yaklagimlara gore performansinin daha yiiksek oldugunu gostermektedir.

vii

To the scientists who have ostracized or punished for seeking the truth.

viii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Cemal Yilmaz
for the continuous support of my master study and research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor

for my master study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Berrin
Yanikoglu, Prof. Biilent Catay, Prof. Erkay Savas, and Prof. Hiisnii Yenigiin for their

encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Giilsen Demirdz for her great research cooperation in

thesis project, insightful comments and support of my master study.

I thank my fellow labmates in Software Research Group: Hanefi Mercan, Arsalan Javeed,
Yusuf Kiilah, for the stimulating discussions, and research cooperations. Also I thank
my friends in Sabanci University: Mehmet Ahat, Salim Sarimurat, Gizem Gezici, Zeynep

Dogmus, and Rahim Dehkharghani for all the fun we have had in the last two years.

Last but not the least, I would like to thank my family: my parents Ahmet Ko¢ and Emine
Sonmez, for giving birth to me at the first place, my brother and sisters Suat Aligkan,
Asli Filya and Suna Aliskan for supporting spiritually me throughout my life and my
dear darling Meryem Yilmaz for being in my life and empowering me with her great

love.

X

TABLE OF CONTENTS

Introduction

Background Information

2.1 Combinatorial Interaction Testing
2.2 Traditional Covering Arrays
2.3 MaskingEffects
2.4 Test Case-Aware Covering Arrays v v v v v i v v v v v ..

2.5 Simulated Annealing oL L

Related Work
3.1 Covering Array Generation
3.2 ConstraintHandling

3.3 Test Case-Aware Covering Array Generation

Algorithm 3: Minimizing Number of Test Runs
4.1 Proof of Optimality

Approach

5.1 Architectural Design L L

5.2 Binary Search for The Outer Search

5.3 Simulated Annealing for The Inner Search

5.4 Initial Set Generation Strategies

5.5 Neighbor Generation Strategies
5.5.1 Change aRandomIndex-CRI
5.5.2 Change a Random t-Tuple-CRT

12

14
14
15
16

17
18

5.5.3 Schedule More Test Cases-SMT 28

5.5.4 Cover At Least One Missing t-Pair-CMP 29

5.5.5 Alter Violating Option- AVO 30

6 Experiments 31
6.1 Subject Applications 31

6.2 Operation Model, 34

6.3 Independent Variables, 34

6.4 Evaluation Framework 35
6.4.1 Dependent Variables 36

6.5 Dataand Analysis 37
6.5.1 Study 1: Comparing Initial Set Generation Strategies 38

6.5.2 Study 2: Comparing Neighbor Generation Strategies 54

6.5.3 Study 3: Overall Comparison 71

6.6 Discussion. e e e 79

7 Threats to Validity 80
8 Conclusion and Future Work 82
Appendices 84
Appendix A Empirical Results 84

xi

1.1
1.2

2.1

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

LIST OF FIGURES

Input (a) and output (b) of CIT. 3
Input (a) and output (b) of test case-aware CIT. 4
Four Phases of CIT 6
Sampleboxplot 38

Comparing initial missing t-pair counts for initialization strategies at strength

Comparing initial missing t-pair counts for initialization strategies at SUT
by strengthlevel 40
Comparing initial missing t-pair counts for initialization strategies de-
tailed for Apache configuration space models 41
Comparing initial missing t-pair counts for initialization strategies de-
tailed for MySQL Configuration space models 42
Comparing initial missing t-pair percentages for initialization strategies
overall L 43
Comparing initial missing t-pair percentages for initialization strategies
atstrengthlevel 44
Comparing initial missing t-pair percentages for initialization strategies
at SUT level o o 45
Comparing initial missing t-pair percentages for initialization strategies
at SUT by strength level 46
Comparing initial missing t-pair percentages for initialization strategies

detailed for Apache configuration space models 47

Xii

6.11

6.12
6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

Comparing initial missing t-pair percentages for initialization strategies
detailed for MySQL Configuration space models 48
Comparing initialization times for initialization strategies at strength level 49

Comparing initialization times for initialization strategies at SUT by strength

Comparing initialization times for initialization strategies detailed for Apache
configuration spacemodels Lo oL L 51

Comparing initialization times for initialization strategies detailed for MySQL

Configuration spacemodels 52
Comparing the ineffectiveness of initialization strategies 53
Comparing TCA sizes for neighboring strategies overall 55
Comparing TCA sizes for neighboring strategies at strength level 56
Comparing TCA sizes for neighboring strategies at SUT level 57

Comparing TCA sizes for neighboring strategies at SUT by strength level 58
Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration spacemodelsand r=2. 59
Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration spacemodelsand r=3. 60
Comparing TCA sizes for neighboring strategies detailed for MySQL
Configuration space modelsand r=2 61

Comparing TCA sizes for neighboring strategies detailed for MySQL

Configuration space modelsand r =3 62
Comparing annealing times for neighboring strategies overall 63
Comparing search times for neighboring strategies strength level 64
Comparing annealing times for neighboring strategies SUT level 65

Comparing annealing times for neighboring strategies SUT by strength

Comparing annealing times for neighboring strategies detailed for Apache
configuration space modelsandt=2. 67
Comparing annealing times for neighboring strategies detailed for Apache

configuration space modelsandt=3 68

Xiii

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space modelsand r=2 69
Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space modelsandr=3 70
Comparing search times and TCA sizes of neighboring strategies for Apache
configuration space modelsandt=2. 72
Comparing search times and TCA sizes of neighboring strategies for Apache
configuration space modelsandt=3 73
Comparing search times and TCA sizes of neighboring strategies for MySQL
Configuration space modelsand r =2 74
Comparing search times and TCA sizes of neighboring strategies for MySQL
Configuration space modelsand r=3 75
Comparing search times and TCA sizes for AVO strategy and Algorithm

2 at SUT by strengthlevel 76
Comparing search times and TCA sizes for AVO strategy and Algorithm
2fort=2 . . . 77
Comparing search times and TCA sizes for AVO strategy and Algorithm
2fort=3 . . . 77

X1V

LIST OF TABLES

6.1 Initial configuration space model for Apache. 32
6.2 Initial configuration space model for MySQL. 33
6.3 Initialization time, annealing time, and time percentages 78
A.1 Statistics and improvements for HISXAVO combination 85
A.2 Statistics and improvements for HISXCMP combination 86
A.3 Statistics and improvements for HISXCRI combination 87
A.4 Statistics and improvements for HISXCRT combination 88
A.5 Statistics and improvements for RISXAVO combination 89
A.6 Statistics and improvements for RISXCMP combination 90
A.7 Statistics and improvements for RISXCRI combination 91
A.8 Statistics and improvements for RISXCRT combination 92
A.9 Statistics and improvements for TISXAVO combination 93
A.10 Statistics and improvements for TISXCMP combination 94
A.11 Statistics and improvements for TISXCRI combination 95
A.12 Statistics and improvements for TISXCRT combination 96
A.13 Statistics and improvements for TCISXAVO combination 97
A.14 Statistics and improvements for TCISXCMP combination 98
A.15 Statistics and improvements for TCISXCRI combination 99
A.16 Statistics and improvements for TCISxCRT combination 100

XV

>~ e

ISER

<

~

LIST OF SYMBOLS

t-tuple.

set of all valid #-tuples.

t-pair.

set of valid #-pairs.

test case.

test suit (set of test cases).

set of test case-specific constraints.
t-way covering array.

covering array generator.

t-way test case-aware covering array.

XVi

CS
SA
CIT
CA
TCA
BS
NS
IS
SUT
SQA
HIS
TIS
RIS
TCIS
CRI
CRT
SMT
CMP
AVO

LIST OF ABBREVIATIONS

Computer Science.

Simulated Annealing.

Combinatorial Interaction Testing.
Covering Array.

Test Case-Aware Covering Array.

Binary Search.

Neighboring Strategy.

Initialization Strategy.

Software Under Test.

Software Quality Assurance.

Hamming Distance Initial Set.
Traditional Covering Array as Initial Set.
Random Initial Set.

Test Case-Aware Covering Array as Initial Set.
Change a Random Index.

Change a Random Tuple.

Schedule More Test Cases.

Cover at least one Missing t-Pair.

Alter Violating Option.

Xxvii

INTRODUCTION

Software is a fundamental component of modern life. People engage with software to
overcome many tasks of daily life such as driving car, watching TV, shopping and learn-
ing. In many application domains, variety of requirements and diversity of environments
force software systems to be highly configurable. For example, Apache Web Server has
172 user-configurable options to support customization for different requirements and en-

vironments.

While having highly configurable system promotes customization, it introduces testing
problems with regret. Number of possible configurations grows exponentially with num-
ber of configurable factors; therefore, exhaustive testing of all possible configurations
becomes practically infeasible. For example, with 172 configuration options, Apache
Web Server has 1.8x10% unique configurations. Testing all possible configurations for
such a system takes longer than the age of universe, thus infeasible. For this reason, to
improve the coverage of software testing, efficient sampling from the configuration space

is a vital problem for software quality assurance.

Combinatorial interaction testing (CIT) is an effective method that has been commonly
studied for this purpose [33]. CIT aims to improve the coverage of testing by revealing
failures that are caused by the interactions of various system input parameters. As input,
CIT approaches take a configuration space model which includes a set of configurable
factors, their possible settings, and a set of system-wide inter-option constraints that ex-
plicitly or implicitly invalidate some configurations. They then systematically sample the

configuration space based on some coverage criteria.

In CIT, a common criteria is to cover all -way combinations of configuration options,
where ¢ is referred to as the coverage strength. Typically, this criteria is satisfied through
the use of a combinatorial structure called 7-way covering array (CA). A r-way CA is a set
of systematically selected configurations covering all value combinations for every t-way
option combinations. The goal is to discover faults that are caused by interactions of ¢
(and fewer) configuration options. The results of many empirical studies strongly suggest
that a majority of such failures in practice, are caused by the interactions of only a small
number of configuration options. Thus, #-way covering arrays, where ¢ is much smaller
than the number of possible configurable factors, are an effective and efficient way of
revealing such failures [2,9, 13, 14]. CAs are currently being used in many application
domains, and a wide variety of free and commercial tools exist to generate them. Despite

its many successes, practical application is challenging for it.

Once a t-way CA is constructed, the system is then tested by running its test cases in all
configurations of the covering array. By doing so, it is assumed that all test cases can run
in all configurations of the CA. However, test cases of configurable systems are likely to
have assumptions about the underlying configurations. Thus, it is not enough to satisfy
the system-wide constraints to execute each test case for each configuration of the CA.
When a configuration does not satisfy the assumptions of a test case, that test case simply

skips that configuration and which causes the masking effects [15].

Figure 1.1 illustrates masking effects on a system that has four binary configuration op-
tions (01, 05,03, and 04) and a test suite containing three test cases (#1,#, and 3, as in
Figure 1.1(a)). In this example, there is no system-wide constraint. However, test cases
t; and 1, have some self-specific constraints: #; can run only in configurations in which

01=0, and #, can run only in configurations in which o;=1. Test case #3, on the other hand,

3-way CA

0Op 0 03 04| 1h K
Configuration Space Model 1 1 1 11S E E
option settings 1 1 0 O0|S E E
01 {0, 1} 1 0 1 O0|S E E
0> {0, 1} 1 0 0 1|S E E
03 {0, 1} 0O 1 1 O|E S E
04 {0, 1} 0O 1 0 1|E S E
(a) 0O 0 1 1|E S E
0O 0 0 O|E S E

(b)

Figure 1.1: Input (a) and output (b) of CIT.

has no test case-specific constraints. For this configuration model, a 3-way covering array
is created and then all the test cases are executed in all configurations of the covering array
(Figure 1.1(b)). The literal E indicates that the test is executed, and the literal S indicates

that the test skipped the configuration because of the unsatisfying option setting(s).

There are twenty valid 3-tuples to be tested by each of #; and #, and 32 valid 3-tuples for
;. Now consider #;; since #; skipped the first 4 configurations, the 3-way option setting
combinations for options 0,, 03, and o4 that appear in the first four configurations, were
actually not tested by #,. These 4 combinations appear nowhere else in the covering array,
thus #; never had a chance to test them. Similarly, #, never had a chance to test the four
valid 3-way combinations that appear in the configurations skipped by #,. As a result,
eight out of 72 (11%) valid 3-way option setting combination-test case pairs were not

tested at all, masked.

In order to avoid this kind of masking effects caused by existence of test case-specific
constraints, a new combinatorial object -test case-aware covering array (TCA)- is intro-
duced by Yilmaz et al. [32] and CIT became aware of the test case-specific constraints.
As input, test case-aware CIT takes a configuration space model which includes a set
of configurable factors, their possible settings, and a set of system-wide and test case-
specific inter-option constraints that explicitly or implicitly invalidate some configura-
tions system-widely or on test case bases (such as Figure 1.2(a)). Then, systematically
sample the configuration space based on satisfying some coverage criteria and create a

test case-aware COVGI‘il’lg array.

A test case-aware covering array is not just a set of configurations as is the case in tradi-
tional covering array, but a set of configurations, each of which is associated with a set of
test cases, indicating that the test cases are scheduled to be executed in the configuration.
Figure 1.2(b), as an example, presents a 3-way test case-aware covering array constructed

for our hypothetical scenario.

3-way TCA
01 0, 03 04 | scheduled tests

0O 1 1 1 |{fn}
1 1 1 1| {t,t}

Configuration Space Model 0 1 0 0/{
option settings 1 1 0 0| {t, 5}

01 {0, 1} 0O 0 1 0 |{n}
0> {0, 1} 1 0 1 0| {t,t}

03 {0, 1} 0O 0 0 1 |{n}
04 {0, 1} 1 0 0 1 |({n,t}
test suit: 71, 15, 13 0O 1 1 0 |{x, t}

test constraint 1 1 1 0 |{t}
] 01=0 0 1 0 1 | {t, 13}

t 0;=1 1 1 0 1|}
(a) 0 0 1 1 |{, 1}

1 0 1 1 | {r}
0O 0 0 0| {1}

1 0 0 0]

(b)

Figure 1.2: Input (a) and output (b) of test case-aware CIT.

A t-way test case-aware covering array has the following properties:

1. For each test case, every valid -way combination of option settings occurs at least

once in the set of configurations in which the test case is scheduled to be executed,

2. No test case is scheduled to be executed in a configuration which violates the test

case-specific constraints of the test case, or the system-wide constraints.

Having stated the improvements of awareness of test case-specific constraints, except for
a couple of proof-of-concept algorithms introduced by Yilmaz et al. [32], there is no
effective algorithm or tool to generate test case-aware covering arrays. Although, CA and
TCA generation problems are similar, since TCAs are more complex objects with test

case-specific constraints, generating them is a more challenging problem compared to

generating a traditional CA. For example, for a configuration space model with 65 binary
configuration options and 30 distinct test case-specific constraints, conventional greedy
algorithms take seventeen days to generate a 3-way test case-aware covering array [32],

whereas generating a 3-way CA for the same model is just a matter of minutes.

In this thesis, we focused on test case-aware covering array generation problem. We have
assessed existing covering array generation methods and investigated their weaknesses
to solve this problem. Finally, we focused on simulated annealing algorithm, which has

been commonly used for covering array generation task as well, to compute TCAs.

We have developed simulated annealing-based, efficient and effective algorithms to com-
pute test case-aware covering arrays and a tool implementing these algorithms. We, fur-
thermore, compare and contrast the performance of our algorithms by conducting large-
scale experiments in which we used two highly configurable large software systems. The
results of our empirical studies strongly suggest that the proposed algorithms are an ef-
ficient and effective way of computing test case-aware covering arrays and that they per-

form better than existing approaches.

Our contribution can be summarized as follows:
e design of a new methodology to compute test case-aware covering arrays,
e a tool for test case-aware (and also traditional) covering array generation,
e discovery of new bounds for test case-aware covering array sizes, and
e significant cost reduction in test case-aware covering array generation.

The remainder of this article is organized as follows: chapter 2 provides background in-
formation; chapter 3 discusses the related work; chapter 4 presents the proof of optimality
for Algorithm 3 introduced in [32]; chapter 5 introduces the proposed approach to com-
pute test case-aware covering arrays; chapter 6 presents the empirical studies; chapter 7
discusses the potential external threats to validity; and chapter 8 presents concluding re-

marks and possible directions for future work.

BACKGROUND INFORMATION

This chapter provides background information about traditional covering arrays, masking

effects, test case-aware covering arrays, and simulated annealing algorithm.

2.1. Combinatorial Interaction Testing

Combinatorial interaction testing aims to improve the coverage of testing by revealing
failures that are caused by the interactions of various system input parameters. At a high

level, CIT can be broken down into four major phases as shown in Figure 2.1.

! Parameter
MODELING

A\ A —
|]
3 4
l TESTING - ANALYZING
2
CIT
HOW?
SAMPLING (dynamic)
WHAT?
(static)

Figure 2.1: Four Phases of CIT

The first two of these phases, modeling and sampling, basically address the "'WHAT" of
testing - what are the characteristics of the SUT, and what are the inputs against which
it should be tested? Modeling involves determining what aspect of the system to model
(i.e., input parameters, configuration options, sequences of operations). Sampling refers
to the process or algorithm by which we determine a means to cover the model generated
in the first phase (e.g., all pairs of all factors, etc.). Currently, these phases are typically

static, done once at the beginning of the process.

The last two phases, testing and analysis, typically address the "HOW’ of testing actu-
ally running the tests and then examining the test results. These phases tend to be more
process-driven than the first two phases, unfolding over a more extended period of time.
In testing, developers may test in a batch mode, or test more incrementally or adaptively.
And finally, developers analyze the test results, at a minimum to understand which test
cases have passed and which have failed. In some cases, developers can use the testing
and analysis phases to provide feedback to improve and refine later modeling and sam-

pling activities.

2.2. Traditional Covering Arrays

CIT approaches take a configuration space model M=<0,V, Q> as input. The model
includes a set of configuration options O = {0y, 0,,...,0,}, their possible settings V =
{Vi,Va,...,V,}, and a system-wide inter-option constraint Q (if any). In effect, the con-

figuration space model implicitly defines a valid configuration space for testing.

Each option o; (1 < i < n) in the configuration space model takes a value from a finite
set of k; distinct values Vi={vi,v,, ..., v} (ki=|Vil). Let s;; be an option-value tuple of the
form <o;,v;>, indicating that option o; is set to value v; € V;. Furthermore, let S; be the
set of all possible option-value tuples for option o;, i.e., §;={<0;,v;>: v; € Vi}.

Definition 1. A t-tuple ¢,={s; j,, Si,j,, - - -, Si,j,} is a set of option-value tuples for a combi-

nation of t distinct options, suchthat 1 <t <n, 1 <i) <ip <---<i;<n,ands;; €S,

for p=1,2,...,t.

Let @, be the set of all t-tuples for some 1<¢< n. Not all the t-tuples in ®, may be valid
due to the system-wide constraint Q. Assume a deterministic function valid(¢,, Q), such
that valid(¢,, Q) 1s true, if and only if, ¢, is a valid t-tuple under constraint Q. Otherwise,
valid(¢,, Q) is false. The set of all valid t-tuples ®, under constraint Q is then defined as:
O,={¢, : ¢, € D, A valid(¢,, Q)}.

Definition 2. Given a configuration space model M=<0,V, Q>, a valid configuration c

is a valid n-tuple, i.e., c € ©,, where n = |O|.

Note that, in a valid configuration, each option defined in the configuration space model
takes a valid value and the configuration (i.e., n-tuple) does not violate Q.
Definition 3. Given a configuration space model M=<0,V, Q>, the valid configuration

space C is the set of all valid configurations, i.e., C={c : c € ®,}.

CIT approaches systematically sample the valid configuration space and test only the
selected configurations. The sampling is carried out by computing a -way covering ar-
ray [9], where 7 is often referred to as the strength of the covering array.

Definition 4. A -way covering array CA(t, M=<0O, V, O>) is a set of valid configurations
in which each valid t-tuple appears at least once, i.e., CA(t, M=<0O,V, O>)={c,ca,...,cn},

such that V¥ ¢, € ®,dc; 2 ¢, where c; € C fori=1,2,...,N.

Once a covering array is computed, the system under test is validated by running its test
suite in all the selected configurations. Since the amount of resources required for testing
is a function of the covering array size (i.e., N), covering arrays are constructed so that all

valid t-tuples are covered in minimum number of configurations.

2.3. Masking Effects

Definition 5. A masking effect is an effect that prevents a test case from testing all valid
combinations of option settings appearing in a configuration, which the test case is nor-

mally expected to test.

The concept of masking effects has been introduced by Dumlu et al. [15]. A harmful
consequence of masking effects is that they cause developers to develop false confidence
in their test processes, believing them to have tested certain option setting combinations,
when they in fact have not. One simple example of a masking effect (besides the ones
caused by overlooked test case-specific constraints) would be an error that crashes a pro-
gram early in the programs execution. The crash then prevents some configuration depen-
dent behaviors, that would normally occur later in the programs execution, from being
exercised. Unless the combinations controlling those behaviors are tested in a different
configuration, or unless the error is fixed and the faulty configuration is re-tested, we

cannot conclude that those configuration dependent behaviors have been tested.

Masking effects can be caused by many factors. System failures, unaccounted control
dependencies among configuration options (i.e., option setting combinations that effec-
tively cancel other option setting combinations), and incomplete or incorrect inter-option
constraints can all perturb program executions in ways that prevent other configuration

dependent behaviors from being tested.

2.4. Test Case-Aware Covering Arrays

Definition 6. An inter-option constraint is a constraint among option settings, which

explicitly or implicitly invalidates some combinations of option settings.

System-wide inter-option constraints apply to all test cases and define the set of valid ways
the system under test can be configured. A test case-specific constraint, on the other hand,
applies only to the test case that it is associated with and determines the configurations in

which the test case can run.

It is important to note that expressing test case-specific constraints as system-wide con-
straints and then generating traditional covering arrays, is not an adequate solution for
handling test case-specific constraints. One reason is that constraints for different test
cases may conflict with each other, in which case no solution will be found. For example,

in our hypothetical scenario discussed in Chapter 1, the constraints of #; and 7, conflict;

t; cannot run when the binary option o; has one setting and #, cannot run when the same
option has the other setting. Globally enforcing these conflicting constraints will not gen-
erate any covering arrays. Another reason is that, even if the test case-specific constraints
do not conflict, enforcing them on all test cases can prevent the test cases from exercising
some valid option setting combinations that are invalidated by other test cases. For exam-
ple, in our hypothetical scenario given in Chapter 1, enforcing the constraint of #; on #3

prevents 3 from testing any combinations with o;=1, which are valid for #;.

For these reasons, we need to account the test case-specific constraints individually. Test
case-aware covering arrays have been introduced for this purpose by Yilmaz et al. [32].
As is the case with traditional covering arrays, test case-aware covering arrays take as
input a configuration space model M. The model contains a set of configuration options
O={oy,...,0,}, their settings V={V/,...,V,}, and a system-wide inter-option constraint
Q. Unlike traditional covering arrays, the configuration space model of test case-aware
covering arrays additionally includes a set of test cases T={ry,7,,...}. Each test case
7 € T, in addition to implicitly inheriting the system-wide constraint Q;, can have a test
case-specific constraint Q.. In the remainder of the paper, the collection of all test case-

specific constraints is referred to as Qr.

In the presence of test case-specific constraints, we define the set of valid t-tuples on a
per-test case basis, since a valid t-tuple for a test case may be invalid for another test case.
Let O/={¢; : ¢, € (i), A valid(¢;, Qs A Q)} be the set of all valid t-tuples for a test case
T.

Definition 7. A valid configuration c* for a test case v € T is a valid n-tuple for 7, i.e.,
¢’ € @, where n = |0)|.

Definition 8. The valid configuration space CT for a test case T € T is the set of all valid

configurations for 1, i.e., C'={c : c € O} }.

Test case-aware covering arrays aim to ensure that each test case has a fair chance to
test all of its valid t-tuples. To this end, each test case is scheduled to be executed only in
configurations which are valid for the test case so that no masking effects can occur.

Definition 9. A t-pair is a pair of the form A,=<¢,, >, such that ¢, € ® and T € T.

10

Definition 10. A t-way test case-aware covering array TCA(t, M=<O, V,T, Qy, Or>) =
{<c1, T1>,..., <cn, Ty>} is a set of rows of the form <c;, T;>, where ¢; € C and T; C T
fori=1,2,...,N, such that each valid t-pair appears at least once, i.e., VT € T A ¢, €

O d<c;, T>p CcinteTiandt €T, —» ¢, €C".

In other words, for a given configuration space model, a t-way test case-aware covering
array 1s a set of configurations, each of which is associated with a set of test cases, indi-
cating the test cases scheduled to be executed in the configuration, such that 1) none of
the selected configurations violate the system-wide constraint, 2) no test case is scheduled
to be executed in a configuration that violates the test case-specific constraint of the test
case, and 3) for each test case, every valid t-tuple appears at least once in the set of con-
figurations in which the test case is scheduled to be executed. Figure 1.2b, as an example,
presents a 3-way test case-aware covering array created for our hypothetical scenario de-
picted in Figure 1.1. Since none of the test case-specific constraints are violated in this
covering array, each test case has a chance to test all of its valid 3-tuples; no masking

effects caused by test skips can occur.

Compared to traditional t-way covering arrays, handling test case-specific constraints is
likely to increase the number of configurations required, as the t-tuples being masked in
traditional arrays may need to be covered in additional configurations. However, this does
not necessarily imply an increase in the number of test runs required, as the test cases are
executed only in configurations that contribute to the coverage. For example, comparing
the 3-way test case-aware covering array in Figure 1.2b to the traditional 3-way covering
array in Figure 1.1b, we observe that, while the number of configurations doubles, the

number of test runs stays the same as each array requires a total of 24 test runs.

Therefore, when the goal is to test all valid t-pairs, then traditional t-way covering arrays
will not guarantee the coverage in the presence of test case-specific constraints, whereas
t-way test case-aware covering arrays, while guaranteeing a full coverage, will do so at the
possible cost of increased number of configurations, but not necessarily increased number

of test runs.

11

2.5. Simulated Annealing

Simulated Annealing (SA) is a stochastic optimization method emulated from metal an-
nealing process [8, 19]. Physical annealing is the process of cooling high temperature
molten metal at a significant rate to have frozen metal with minimum potential energy
at the end. There are three control points in physical annealing process; beginning tem-
perature T\, cooling rate C, and stopping temperature 7. All of these parameters are
important to reach to the minimum potential energy, and they also affect the annealing

time.

At high temperatures particles are more susceptive to movement. Therefore, more drastic
changes and high energy releases are likely to occur at early phases of annealing. As the
process goes on, particles get stabilized and it becomes difficult to happen big structural
changes. The process terminates when the temperature reaches to 7,, or potential energy
becomes 0. If C, is not small enough frozen metal will contain imperfections caused by
unreleased energy. Or vice versa, if the cooling rate is too small then the frozen metal will

be too softened to work with.

SA mimics this process to solve optimization problems. Energy corresponds to cost and
the state of metal with minimum potential energy corresponds to the optimal solution with
minimum cost. Ty, C,, and T are referred as annealing parameters and they are used to
control the search process. Annealing parameters should be determined by the needs of

the problem domain.

To avoid stacking in local minimums, SA algorithm applies some probability to create
a chance for accepting the states that are worse that the current state. If the newly gen-
erated neighbor S’ is more costly than S, SA invokes bolzman probability distribution
function;

AE
B(T) = ~ky— 2.1)

and check for the following condition (5" line of Algorithm 1);

Rand(0, 1) < 5D (2.2)

12

Algorithm 1 Simulated Annealing
Input 7, C,, T,;: Annealing Parameters

1: T Ty S —8S¢g Spest < So

2: while E(S) #0and T, < T do

3: S’ « neighbour(S) # generate a neighbour S’
4 AE — E(S")—E(S)#E(S) energy of state S
5. if AE <0 or Rand(0, 1) < e *E/T then

6: S « 8’ # change the state

7: if E£(S) < E(S pes) then

8: S pest — S # save to the S pos

9: end if
10: end if

11: T—-«(TxC) # cool the system
12: end while
13: return S,

If the condition holds, SA continues with S’ otherwise rejects S’ and continues with S.

This probabilistic decision keeps SA to get stacked in local minimums.

Since the temperature is higher at the early phases of the search, the condition (2.2) is
more likely to hold, means, SA is more open to accept worse states. Therefore the tem-
perature interval, (T, T)), is important to effectively scan the search space. C, helps to

cool the system which will effect the acceptance of worse states.

Finally, if the optimum solution cannot be found, SA stops when T" = T. In this case,

which is the wort case for complexity analysis, there will be

(TO - Ts)/cr (23)

iterations with decreasing temperature and at the end the system will be cold.

Although, SA is not a deterministic and complete algorithm which exhaustively scan the
entire search space, in practice it achieves to find the optimum solution and commonly

used to solve NP-hard problems.

13

RELATED WORK

Traditional covering arrays aim at revealing interaction-related failures. The results of
many empirical studies strongly suggest that a majority of such failures in practice are
caused by the interactions of only a small number of configurable factors or input param-
eters and that traditional t-way covering arrays, where ¢ is much smaller than then the
number of possible configurable factors, are an effective and efficient way of revealing

such failures [2,9, 13, 14].

3.1. Covering Array Generation

Nie et al. classify the methods for generating covering arrays, which is an NP-hard prob-
lem, into 4 main categories [23]: random search-based methods [24], heuristic search-
based methods [6,10,12,17,25], mathematical methods [18,20,30,31], and greedy meth-
ods [3,5,7,9,13,21,27,29].

Random search-based methods employ a random selection without replacement strat-
egy [24]. Valid configurations are randomly selected from the configuration space in an
iterative manner until all the required t-tuples have been covered by the selected configu-

rations.

14

Mathematical methods for constructing covering arrays have also been studied [20,30,31].
Some mathematical methods are based on recursive construction methods, which build
covering arrays for larger configuration space models (i.e., the ones with a larger number
of configuration options) by using covering arrays built for smaller configuration space
models [20,30]. Other mathematical methods leverage mathematical programming, such

as integer programming, to compute covering arrays [31].

Greedy algorithms operate in an iterative manner [3,5,7,9,13,21,27,29]. Ateach iteration,
among the sets of configurations examined as candidates, the one that covers the most
previously uncovered t-tuples is included in the covering array. The iterations terminate

when all the required t-tuples have been covered.

Heuristic search-based methods, on the other hand, employ heuristic search techniques,
such as hill climbing [12], tabu search [6], and simulated annealing [10, 28], or Al-based
search techniques, such as genetic algorithms [17] and ant colony algorithms [25]. These
methods maintain a set of configurations at any given time and iteratively apply a series of
transformations to the set until the set constitutes a t-way covering array. These methods
do not search all the search space exhaustively. Therefore, theoretically they are not
sound. However, in practice some of these methods achieve to find a covering array in

reasonable construction cost and size.

3.2. Constraint Handling

Handling system-wide inter-option constraints in the construction of traditional covering
arrays have also been of interest. Cohen et al. study the nature of such constraints in
configurable software systems and empirically demonstrate that ignoring such constraints
leads to wasted testing efforts [11]. Mats et al. propose various techniques to efficiently
handle system-wide constraints [22]. Bryce et al. introduce the concept of “soft con-
straints” to mark option setting combinations that are permitted, but undesirable to be

included in a covering array [4].

15

Traditional covering arrays, while handling system-wide constraints, do not account for
test case-specific constraints. In this work we, on the other hand, take test case-specific

constraints into account when constructing combinatorial interaction test suites.

Seeding mechanisms in CIT approaches have been used to guarantee the inclusion of
certain configurations in traditional covering arrays [9, 13, 16]. In this work, we use the

seeding mechanism to construct test case-aware covering arrays.

3.3. Test Case-Aware Covering Array Generation

Since, test case-aware covering arrays have been introduced recently, there are only 3

proof-of-concept algorithms that also have been introduced with the object [32].
e Algorithm 1: Maintaining a separate configuration space model for each test case,
e Algorithm 2: Maintaining a single configuration space model,
e Algorithm 3: Minimizing number of test runs.

These algorithms fall into the category of greedy algorithms. However, while the exist-
ing greedy algorithms compute traditional covering arrays, they compute test case-aware

covering arrays and each has different objective.

16

ALGORITHM 3: MINIMIZING NUMBER OF TEST RUNS

The algorithm presented in this section is introduced by Yilmaz et al. [32] and it aims to

minimize the number of test runs.

Algorithm 2 Minimizing the number of test runs required.
Input M=<0, V, T, Q;, Or>: Config. space model
Input #: Covering array strength

M — 0

: for each test case 7in T do
S0
Q" — [1¢t, M, S,
YM M g QM

end for

return Y

A o s

Given a configuration space model M=<0O, V, T, Q,, Or>, strength ¢, and using an existing
traditional covering array constructor [[, this algorithm generates a t-way test case-aware
covering array, ¥,, by concatenating |T| number of t-way covering arrays, Q"", each of
which is created for M, where t € TA V1 € T and M,=<0,V, {7}, Q., 0> only has one
system-wide constraint which is originally the test case specific constraint of 7. Therefore,

there is only one test case scheduled to execute for each configuration (row) of V..

17

4.1. Proof of Optimality

Assuming that, [| computes covering array that are optimum in size proof of optimality

of this algorithm can be done as follows;
Statement; Algorithm 3 is optimum in the number of test runs.

1. Basis |T| = 1; constructed N X k covering array is optimum minimum in N. There
will be
Nx1=N 4.1

test runs, so number of test runs is also N which is optimum, statement holds for

IT| = 1.

2. Inductive step; assuming that the statement holds for |T| = n. For each test case

7 € T, [] will construct N; X k covering array meaning N; X 1 = N; test runs. In

i N (4.2)
i=1

is the number of test runs, which is optimum.

total;

Then, for |[T| =n + 1;

[i Ni] + Ny (4.3)

i=1

The first term is optimum from (4.2) and the second term is optimum from (4.1).
Thus, (4.3) is also optimum in number of test run, statement also holds for |T| =

n+1.

18

APPROACH

This chapter presents architectural design, search levels, and initialization and neighbor-

ing strategies of the proposed approach.

5.1. Architectural Design

In order to generate test case-aware covering arrays, we have designed a nested search
process with two levels. The outer level, referred to as the outer search, is the search of
the minimal size for the test case-aware covering array. The inner level on the other hand,
referred to as the inner search, is the actual search of the test case-aware covering array

for the size determined by the outer search.

As input, the approach takes a configuration space model, M=<O, V, T, Q,, Or>, coverage
strength, 7, and optionally a seed to start with. The output is a ¢t-way test case-aware

covering array.

The following two sections elaborate on the search levels of the approach.

19

5.2. Binary Search for The Outer Search

Many covering array generation approaches, which use heuristics, generate covering ar-
rays for a given size. There are known array size bounds for a large number of configura-
tion space models published by Nist [1]. However, no work has been done to discover test
case-aware covering array size bounds yet. Indeed, since the test case-specific constraints
are application specific, sizes for test case-aware covering arrays cannot be generalized as
in the case of traditional covering arrays. Therefore, the array size cannot be given as an

input. Due to this reason, we have designed the outer search.

We used binary search algorithm for the outer search (in Algorithm 3). The interval
(lower and upper bounds, B; and B,) of the search is determined relatively to the published

covering array sizes [1].

Algorithm 3 Binary Search for TCA size

Input M=<0,V, T, Qy, Or>: Configuration space model
Input #: Covering array strength

Input <B;, B,>: Lower and upper bounds

Input S: Seed

1: N« (B;+B,)/2

2: So « initialize(M,N,t,S¢) S «< So

3: while B, > B, do

4: S « run(M,N,1t,S) # running the inner search for ¥, of size N

5: if E(S) = 0 then

6: Y, «S # keep as the best so far
7: B,—N-1

8: else

9: B —N+1

10: end if

11: N« (B;+B)/2 # new size
12: end while
13: return ¥,

First, the initial array size is computed as the average of the bounds. Then, the system
is initialized as in the 2" line of Algorithm 3. This initialization operation is a crucial
component of the approach which will affect the computation cost. Therefore, we have

developed several initialization strategies which will be elaborated in Section 5.4.

20

Then, iterative search starts. At each iteration, first an inner search is performed for the
computed array size, N (4™ line of Algorithm 3). For the next iteration, if the inner search
can find the '¥;, then, N is the new upper bound, otherwise N is the new lower bound. The
function, E(S), computes the number of missing t-pairs as the cost of S. Finally, the outer

search terminates when B, > B, and returns the best found ¥, (e.g. E(¥;) = 0).

5.3. Simulated Annealing for The Inner Search

The inner search is developed to compute test case-aware covering array, Y. We first
assessed existing covering array generation methods which are also mentioned in Sec-

tion 3.1.

Mathematical methods are not effective in constraint handling and they put unrealistic re-
quirements for configuration space model, such as, having prime number of configuration

options or having the same setting count for each option [23].

Random search-based methods are more flexible compared to mathematical methods and
they have been commonly used to compute covering arrays [24]. However, compared to

greedy or local search algorithms they are less effective.

Greedy algorithms work faster than local search algorithms but they produce covering
arrays that are larger in size [23]. Throughout the search, greedy methods complete the
array gradually. They make decisions only with the current local information of the se-
lected configurations and do not account the needs of the proceeding steps. However,
having a complete solution object and being aware of the needs of the system are impor-

tant for the test case-aware covering array generation task.

Local search-based methods on the other hand, work with a complete solution object and
are aware of the needs of the system. Compared to other methods, they are also more
suitable and effective for constraint handling. Therefore among the others, local search-

based methods are the most suitable ones for the task.

21

Stardom et al. [26] compared the performance of tabu search, genetic algorithm and sim-
ulated annealing, on the covering array generation task. Their empirical study have sug-
gested that simulated annealing algorithm, which is a commonly used local search algo-
rithm, was more effective in finding covering arrays that are smaller in size. For these
reasons, we used simulated annealing (SA) algorithm, described in Chapter 2.5, to com-

pute test case-aware covering arrays.
In our use of SA algorithm, components of the (inner) search are defined as follows:

The state, S, is a set of configurations each of which is associated with a set of test cases,

indicating that the test cases are scheduled to be executed in the configuration.
S = {< c, T1>,....<cy, Ty >}

wherec; e Cand T; C Tfori=1,2,...,N.

The cost of S, E(S), is the number of t-pairs, A,, that are not covered by S (missing
t-pairs).
E(S) = [N (5.1)

where

A) =< b, 7> TETAGED A=A <c;, T, >€ S ¢, Cc; ATeT.
i ¢ ¢ ' ¢

The action, is a transition performed on S (will be elaborated in Section 5.5).
Finally, the goal is to find an S with E(S)=0 which is a V..

SA algorithm works with a complete solution in an iterative manner. At each iteration,
a new state S’, called neighbor of S, is generated by applying a simple transition to S.

Then, if the cost of S’ is smaller than the cost of S, S’ is accepted to continue with.
if E(S") < E(S), then S =S’ (5.2)

Otherwise, the decision (accept or reject) is made based on the probability criteria of the

SA algorithm as described in Chapter 2.5.

22

In the inner search, the neighbor generation operation is the second crucial component
of the approach which affects the construction cost as well as the size of ¥,. There-
fore, we have developed several neighboring strategies which will be elaborated in Sec-

tion 5.5

5.4. Initial Set Generation Strategies

Choosing a reasonable initial state, S, that covers higher number of t-pairs will shorten
the search (construction) time. Because there will be lower number of t-pairs left to search
for. Therefore, we have developed 4 initialization strategies (IS) each of which is applying

different methods to cover more t-pairs.

If there is no seed given, each of the following initialization strategies starts with an
initially empty set S and perform configuration selection based on their objective until
S has N configurations each of which is associated with a set of test cases. However, if
there is a seed provided as input, then the initialization strategies perform future selection
for (N — Ny) times where N is the size of the given seed. None of them allow system-wide

constraint violations to occur.

Random Initial Set (RIS): Let a random configuration be a random assignment of each

option value. Then, this initialization strategy fills S as follows;
1. Generate a system-wide valid configuration ¢; at random,
2. Schedule all valid test cases T; to ¢;,
3. Add the <¢;, T;>to Sy,
4. Repeat from step 1 until S has N configurations each having scheduled test cases.

RIS does not depend on t, and other than system-wide constraint validation check, it does
not apply any criteria for configuration selection. For these reasons, required time for
RIS is always negligible compared to search time. RIS has been commonly-used for the

covering array generation problem [10, 12,23,26,28].

23

Hamming distance Initial Set (HIS): This initialization strategy fills S using hamming
distance formula as follows:

Definition 11. Hamming distance in between two objects is the number of elements in

which they differ.
Let E = {ey, es, ..., e,} be the set of elements for the objects, then;
|E|
h(o01,00) = " d(01(0), 02(0)) (5.3)
i=1
where o(i) is the i”* element of o, and
1 if e F e

d(ey,er) =
0 otherwise

Perform following steps;
1. Generate the first configuration at random and add it to S .
2. Generate 2 candidate system-wide valid configurations ¢y, ¢, at random,

3. Pick one of the candidate configurations c;, ¢, that has larger overall hamming

distance according to
1Sol

hoverail(€) =) h(S(j),) (5:4)
=1
where S (j) is the j* configuration of S,
4. Schedule valid test cases T; to ¢;,
5. Add the <¢;, T;>to S,
6. Repeat from step 2 until S has N configurations.

This strategy has also been used by Torres et al. [28] in combination with RIS. HIS
does not depend on t and therefore required time for it is negligible compared to search

time.

24

t-way covering array as Initial Set (TIS): This initialization strategy generates a t-way
covering array with a published array size [1], N’. Then it schedules all valid test cases
for each configuration and completes the remaining (N — N’) configurations as in HIS

strategy.

Generating traditional covering array means ignoring the test case-specific constraints.
By doing so, TIS first aims to cover all the t-pairs that are not constrained. Once a t-way
covering array is generated and all the valid test cases are scheduled, what remain are the
masked t-pairs which will be covered in the search process. Required time for TIS is not

negligible and depends on t and the configuration space model.

Y,_, as Initial Set (TCIS): This initialization strategy generates a \¥,_; with size N" and

completes the remaining (N — N’) configurations as in HIS strategy.

The relation stated below, implies that; ¥, also covers all valid 4,_;. TCIS aims to take the

advantage of this relation by starting with an initial solution that is a subset of P;.

Y., CY¥, (5.5)

Required time for TCIS is not negligible and depends on t, test case-specific constraints,

and the configuration space model on overall.

The following section describes each of the neighboring strategies.

5.5. Neighbor Generation Strategies

Neighbor generation operation of the inner search is crucial for the effectiveness of the
approach. Unsuitable neighboring strategies may keep the algorithm converging to the
optimum solution and last in cold termination of annealing, whereas some intelligent

strategies may reduce the construction cost drastically.

25

For this reason, we have also developed 5 neighboring strategies (NS) which differ in in-
telligence levels. Each of the following neighboring strategies performs some transition
based on their objectives to generate a neighbor form S. They do not let constraint viola-
tions to happen. Therefore, all the scheduled test and configurations are valid at any point

of the search.

5.5.1. Change a Random Index - CRI

This strategy changes the value of a randomly chosen option in a randomly chosen con-
figuration to another randomly chosen valid value from the domain of the option as in

Algorithm 4.

CRI steps can be summarized as follows: 1) randomly pick a configuration, 2) randomly
pick a option of that configuration, 3) change the value of the option to another valid value
from the domain, 4) check for system-wide constraint violation for the altered configura-
tion and if there is a constraint violation, then turn back to step 1 otherwise, 5) update the
scheduled test case list for the altered configuration, and 6) return S’, which contains the

altered configuration as the neighbor.

Algorithm 4 Changing a Random Index - CRI
Input M=<0, V, T, Qy, Or>: Configuration space model
Input S: Current Solution

1: Random.shuf fle(S) # to avoid picking the same configuration again in the loop
2: forallc:cdS do
3: idx « Random.nextInt(0, O.size)

4: c.getOption(idx).value < Random.Pick from{v : v € V;;.}
5. if valid(Q;, c) then

6: T, « scheduleTestCases(c, T, Or)

7: S’ «— keep(S,<c,T.>)

8: return S’

9: endif

10: Rollback(c)

11: end for

12: return S # no valid neighbor found

26

5.5.2. Change a Random t-Tuple - CRT

missing

This strategy aims at inserting a randomly chosen missing t-tuple, ¢,

, into S by
changing the values of referred options to the values of missing t-tuple in a randomly
chosen configuration.

missin missin,
; 8 c q)l 8

where

D = {1 A =< BT > AL € AT

CRT steps can be summarized as follows: 1) randomly pick a ¢"**"*%, 2) randomly pick a
configuration, 3) insert ¢"**""% into the selected configuration, 4) check for system-wide
constraint violation for the altered configuration and if there is constraint violation, then
turn back to step 1, 5) update scheduled test case list for the altered configuration and

return S, which contains the altered configuration, as the neighbor.

Algorithm 5 Change a Random t-tuple - CRT
Input M=<0, V, T, Qy, Or>: Configuration space model
Input S: Current Solution

1: Random.shuf fle(S) # to avoid picking the same configuration again in the loop
2. for all ¢, : ¢, € D" do
forallc:c € S do
c.changeTuple(¢,)
if valid(Q;, ¢) then
T, « scheduleTestCases(c, T, Ot)
S’ « keep(S, <c, T.>)
return S’
end if
10: Rollback(c)
11: end for
12: end for
13: return S # no valid neighbor found

W

N A Al

The altered configuration may not satisfy the test case-specific constraints of any of the

missing

test cases, such as <¢,

,7>. In that case, the update operation will not provide any

benefit.

27

5.5.3. Schedule More Test Cases - SMT

missing

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, ¢, ,

into § by changing the values of referred option to the values of missing t-tuple in a
randomly chosen configuration. Unlike CRT, SMT also requires the altered configuration

to have a larger scheduled test case list after the update.

SMT steps can be summarized as follows: 1) randomly pick ¢"**"¢, 2) randomly pick
a configuration, 3) insert ¢/"**" into the selected configuration, 4) update scheduled test
case list for the altered configuration, 5) checks for system-wide constraint violation for
the altered configuration, if there is, then turn back to step 2, 6) compare the sizes of old

and new scheduled test case lists, and if new test case list has smaller size turns back to

step 1, 7) return the S’, which contains the altered configuration, as the neighbor.

Algorithm 6 Schedule More Test Cases - SMT
Input M=<0,V, T, Qy, Or>: Configuration space model
Input S: Current Solution

1: Random.shuf fle(S) # to avoid picking the same configuration again in the loop
2. for all ¢, : ¢, € D" do
forallc:c € S do
c.changeTuple(¢,)
T! < scheduleTestCases(c, T, Or)
if valid(Q;, ¢) and [T| > |T.| then
S’ « keep(S,<c, T.>)
return S’
end if
10: Rollback(c)
11: end for
12: end for
13: return S # no valid neighbor found

W

D A A

28

5.5.4. Cover At Least One Missing t-Pair - CMP

missing

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, ¢, ,

into § by changing the values of referred option to the values of missing t-tuple in a
randomly chosen configuration. Unlike CRT, CMP requires the altered configuration to

missing

cover at least one missing pair, A, .

missing missing
A €A,

missing

CMP steps can be summarized as follows: 1) randomly pick a ¢, , 2) randomly pick
a configuration, 3) insert gb:"i”i"g into the selected configuration, 4) find the test cases that
are not covered for ¢:’ms"”g , 5) updates scheduled test case list for the altered configuration,
6) checks for system-wide constraint violation for the altered configuration and if there is
turn back to step 1, 7) intersect the new scheduled test case list with missing test case list,

and if the intersection is empty set turn back to step 1, 7) return the S’, which contains the

altered configuration, as the neighbor.

Algorithm 7 Cover At Least One Missing t-Pair - CMP
Input M=<0, V, T, Qy, Or>: Configuration space model
Input S: Current Solution

1: Random.shuf fle(S) # to avoid picking the same configuration again in the loop
2: for all ¢, : ¢, € ®"**" do

30 Tissing < (T2 A =<¢,, 7> AL, € A7)
4: forallc:c € S do

5: c.changeTuple(¢,)

6: T, < scheduleTestCases(c, T, Or)

7: if valid(Qy, ¢) and T, N T,is5ine # O then
8: S’ « keep(S, <c, T.>)

9: return S’

10: end if

11: Rollback(c)

12: end for

13: end for

14: return S # no valid neighbour found

29

5.5.5. Alter Violating Option - AVO

missing

As in CRT, this strategy also aims at inserting a randomly chosen missing t-tuple, ¢, ,

into § by changing the values of referred option to the values of missing t-tuple in a
randomly chosen configuration. Unlike CRT, AVO alters the selected configuration to

schedule one randomly chosen uncovered test case.

AVO steps can be summarized as follows: 1) randomly pick a ¢/"**"¢, 2) randomly pick
a configuration, 3) insert ¢/"**" into the selected configuration, 4) randomly pick a test
case, T,, that was uncovered for ¢;""”i"g, 5) check for system-wide constraint violation
for the altered configuration, and if there is turn back to step 2, 6) update the scheduled
test case list for the altered configuration, 7) if 7, is not in the scheduled test case list,

then alter the row to change the violating options for 7, and return S’, which contains the

altered configuration, as the neighbor.

Algorithm 8 Alter Violating Option - AVO
Input M=<0, V, T, Q;, Or>: Configuration space model
Input S: Current Solution

I: ¢, < Random.Pickfrom ®"*"

2: Random.shuf fle(S) # to avoid picking the same
3: forallc:c € S do

4: c.changeTuple(¢,)

5 if valid(Q;, c¢) then o
6: 7, < Random.Pickfrom{z : A, =<¢,, 7> A 4, € A"}
7: if valid(Q-,, c¢) then

8: c.changeViolatingOptions(t,)

9: end if

10: T, « scheduleTestCases(c, T, Or)

11: S’ « keep(S, <c,T.>)

12: return S’

13: endif

14: Rollback(c)

15: end for

16: return S # no valid neighbor found

30

EXPERIMENTS

This chapter provides information about the experiments we have conducted to evaluate

the proposed approach.

6.1. Subject Applications

In the experiments, we used two highly-configurable widely-used software systems as our
subject applications: Apache v2.3.11-beta and MySQL v5.1. Apache is a HTTP server.

MySQL is a database management system.

We chose these systems for several reasons. First, they share the key characteristics com-
mon to configurable software systems. They are highly configurable with dozens of con-
figuration options supporting a wide variety of features. They have a large code base
and substantial test code. Both systems enjoy a large developer community that actively
updates and tests the systems. Second, like many configurable software systems, devel-
opers of these systems cannot exhaustively test the entire configuration space; the number
of possible configurations is far beyond the resources available to run the test cases in a

timely manner, e.g., for regression testing.

31

For the SUT versions we have used, out of 3789 and 738 test cases examined for Apache
and MySQL respectively, 378 Apache test cases and 337 MySQL test cases had some
test case-specific constraints. These test cases were clustered based on their self-specific
constraints by Yilmaz et al. [32]. There are 17 test clusters for Apache and 30 test clusters

for MySQL.

enable, disable

enable, disable

proxy-http enable, disable

proxy enable, disable}

test cluster list: {1, 12, 3, t4, 15, 16, 17, 13, to, L10, t11, t12, 113, T14s 15, 16, 17 }
system-wide constraint: proxy-http = enable — proxy=enable

cluster idx test case-specific constraint

vhost-alias
cgi

option settings
case-filter {enable, disable}
ssl {enable, disable}
dav {enable, disable}
echo {enable, disable}
rewrite {enable, disable}
case-filter-in {enable, disable}
bucketeer enable, disable}
info enable, disable}
}
}
}
}

{
{
{
headers {enable, disable
{
{
{
{

H ssl=enable A proxy-http=enable
1 ssl=enable

1 rewrite=enable

1y headers=enable

I proxy=enable

ts dav=enable

ty case-filter=enable

13 vhost-alias=enable

ty proxy-http=enable

1o proxy=enable A rewrite=enable A cgi=enable
i echo=enable

t ssl=enable A headers=enable

13 rewrite=enable A proxy=enable
Ha ssl=enable A case-filter-in=enable
s case-filter-in=enable

s bucketeer=enable

t7 info=enable

Table 6.1: Initial configuration space model for Apache.

32

option settings

log-format row, statement, mixed}
sql-mode strict, traditional, ansi}
ext-charsets {disable, complex, all}
innodb enable, disable}
libedit enable, disable}

readline enable, disable}
ndbcluster enable, disable}
ssl enable, disable}
archive enable, disable}
blockhole enable, disable}
federated {enable, disable}

{
{
{
{
{
log-bin {enable, disable}
{
{
{
{
{

test cluster list: {t,, 15, 13, 14, 15,16, 17, 13, t9, t10, L11, L12, 113, Ti4, Tis, e, 117, Ligs F10s
10, 01, 12, 13, taa, tos, e, 127, 128, 19, 130 |

system-wide constraint: ssl=disable A (libedit=enable — readline=disable)

cluster idx test case-specific constraint

t; log-bin=enable A sql-mode#ansi

t, ndbcluster=enable

t; innodb=enable

t4 log-format#row A log-bin=enable A sql-mode+ansi

ts sql-mode+ansi

tc ext-charsets#disable A sql-mode+ansi

t7 log-format#statement A log-bin=enable A ndbcluster=enable

tg innodb=enable A log-bin=enable A sql-mode+ansi

ty log-bin=enable A ndbcluster=enable

tip log-format#row A innodb=enable A log-bin=enable A sql-mode+ansi

t11 log-format#row A ext-charsets#disable A log-bin=enable A sql-mode+ansi
t1, federated=enable A log-bin=enable A sql-mode+#ansi

t13 innodb=enable A sql-mode+ansi

t14 ndbcluster=enable A sql-mode+ansi

t15 log-format#statement A innodb=enable A log-bin=enable A sql-mode+ansi
t1¢ blackhole=enable A log-bin=enable A ndbcluster=enable

t17 archive=enable A log-format#row A log-bin=enable A sql-mode#ansi

13 federated=enable A innodb=enable A log-bin=enable A sql-mode+ansi

t19 log-format#row A blackhole=enable A log-bin=enable A sql-mode+ansi
o log-format#statement A log-bin=enable A ndbcluster=enable A sql-mode+ansi
t;1 ext-charsets#disable A log-bin=enable A sql-mode+ansi

t, log-bin=enable A ndbcluster=enable A sql-mode+#ansi

3 log-format#row A log-bin=enable A ndbcluster=enable

t,4 ext-charsets#disable A innodb=enable A sql-mode+ansi

5 innodb=enable A log-bin=enable A ndbcluster=enable

1 1nnodb=enable A ndbcluster=enable

1,7 archive=enable A innodb=enable

1,3 archive=enable

o log-bin=enable

1o ext-charsets#all

Table 6.2: Initial configuration space model for MySQL.

33

6.2. Operation Model

We used the configuration space models given in Table 6.1 and 6.2. These models only
contain configuration options that are referenced by the system-wide or test case-specific
constraints. A configuration option that is referenced by a constraint (system-wide or
test case-specific) is referred to as a constrained option, e.g., all the options in our initial
configuration models were constrained options (100%). In order to vary the constrained
option percentage (cop in short), we augmented the initial configuration space models by

adding extra unconstrained binary options.

We then run the experiments for each combination of independent variables and strategies.

In total, we have executed 2240 test case-aware covering array generation tasks.

{2 SUTSs} x {7 Models} x {4 IS} x {4 NS} x {2 t value} X {5 runs} = 2240

All the experiments were performed on a Casper computer with 31.3 GB of RAM, 8
Intel(R) Xeon(R) E630 @ 2.53GHz CPUs, and running CentOS 6.2 operating system on
64bit Kernel Linux 2.6.32 and GNOME 2.28.2.

6.3. Independent Variables

Strength of the test case-aware covering array, t, is an independent variable that we used
to evaluate the performance of the approach. Test case-aware covering array computation
time grows exponentially with the strength. The results of many empirical studies strongly
suggest that a majority of option-related failures in practice are caused by the interactions
among only a small number of configuration options [23]. Therefore in the experiments,

we used ¢t = 2 and ¢ = 3 to see the behavior of our approach for varying strengths.

34

Subject application (SUT) is an independent variable to evaluate the behavior of the ap-
proach. We used two different subject applications; Apache, MySQL which are described
in Section 6.1. Compared to Apache, MySQL has more constrained configuration space

model (see Table 6.1 and 6.2) which will challenge the task.

Configuration space model of SUT is the last independent variable to evaluate the be-
havior of the approach. Initial configuration space models of the SUTs have 100% con-
strained options (e.g. each of the configuration options is referred at least one constraint).
To vary the percentage of constraint options (constraint option percentage, cop in short),
we augmented the initial configuration space models by adding extra unconstrained binary
options. In particular, we used cop=20, 30, 40, 50, 60, 80, and 100 (e.g. 7 configuration
space models for each SUT).

In addition, SA algorithm has three control parameters; Ty, C,, and T,. By conducting
a small-scale experiment, values of those parameters determined as follows: T = 1,

C,=0,1x102%and 7, =0,1x 1073

6.4. Evaluation Framework

In order to evaluate the proposed approach, we have investigated 1) the effect of coverage
strength, ¢, 2) the consequence of cop, 3) the impact of subject application spectra, 4)
the performance of the initialization strategies, 5) the performance of the neighboring
strategies, and 6) the overall performance of the approach compared to existing algorithms

(Algorithm 1 and 2 introduced in [32]).

For evaluation, we used the dependent variables that are described in the following sec-

tion.

35

6.4.1. Dependent Variables

As evaluation metrics, we used the following measures:

Initialization time is the time to generate the initial set. The smaller initialization time is

the better.

Initialization time = initialization end time — initialization start time

Search (annealing) time is the time to generate a test case-aware covering array for a

given initial set. The smaller search time is the better.

Search time = search end time — search start time

Total time is the time to generate a test case-aware covering array. The smaller total time
is the better.

Total time = initialization time + search time

Size of array is the number of the configurations in the test case-aware covering array, ‘P’

The smaller the array size is the better.

Size of array = |{< ¢y, Ty >,...,<cy, Ty >}
wherec;e Cand T, C Tfori=1,2,...,N.

Initial miss count is number of the t-pairs that are not in the initial set. The smaller the

initial miss count is the better.

Initial miss count = [{A;, =< ¢, T >: T € TAP, € D/A-T < ¢;, T; >€ So: ¢, C AT €T

Initial miss percentage is the percentage of missing t-pairs in the initial set. The smaller

the initial miss percentage is the better.

36

..) initial miss count
Initial miss percentage = - — X 100
number of valid t-pairs

IS ineffectiveness is a measure for the effectiveness of the initialization strategy. The

smaller the IS ineffectiveness is the better.

initialization time

IS ineffectiveness = — -
initial miss percentage

6.5. Data and Analysis

The results of the conducted experiments are set of 2-way and 3-way test case-aware
covering arrays that are generated for each of the configuration space models of the subject
applications using each combination of initialization and neighboring strategies. All row

data from the experiments can be found in Appendix A.

In our analysis, we first compared the initialization strategies (Section 6.5.1). For this
analysis, the data is grouped by initialization strategy and using box plots we depicted
initialization time, initial miss percentages, and initial miss counts of initialization strate-
gies. We then compared the neighboring strategies. Using box plots, we depicted search
(annealing) time and test case-aware covering array sizes for the neighboring strategies
(Section 6.5.2). Finally, we grouped the data by initialization and neighboring strategy
combinations and using normal plots we compared total construction time and test case-

aware covering array sizes (Section 6.5.3).

37

Box plots: Box plots depict groups of nu-
merical data through their quartiles. The
lower horizontal bar represents the first quar-
tile, middle horizontal bar represents the me-
dian value (second quartile), and the upper
horizontal bar represents the third quartile.
Thus, 50% of the data falls into the box.
Height of box shows the variance; the higher
the box the higher the variance. Red small
circles show the mean value for that data
group. Black points that are outside of the

boxes are outliers.

20 -

I > outliers

- 3quartile

|___mean

-~ median

> 1%quartile

Figure 6.1: Sample box plot

6.5.1. Study 1: Comparing Initial Set Generation Strategies

In this study, we evaluated the initialization strategies described in Section 5.4. The de-

sired case is to have the initial set that has minimum missing count with minimum initial-

ization time.

38

strength: 2 strength: 3
°
75000 —
IS .
3
IS) 50000 —
2]
R
=
8
E L]
(o
<o b S
25000 +
] ¢ H >
[)
l —— —— | | : |
o-——71 i T I I I I
2]) 2] (%) %) @ %)
T o = I o © [=

Initialization Strategy

Figure 6.2: Comparing initial missing t-pair counts for initialization strategies at strength
level

Figure 6.2 illustrates the missing pair counts of the initialization strategies for each strength.
For r = 3, TCIS strategy is the best in the initial miss count, but it is not applicable for
t = 2. For t = 2, performances of HIS and TIS strategies are closed to each other. RIS on

the other hand, is always the worst in the initial miss count.

39

strength: 2 strength: 3
[]
[]
40000 —
[)
30000
w
=
Q
©
20000 - o
=0
[] (0]
<> []
10000 - © o
c
3 S
O 0 i o e T 1 ;,_] T
[72]
R
= °
®
=
2e+05 -
° []
[]
[] w
=
3
<
w
1e+05 2
1
o ° |
o) o
0e+00 - e] + | m—
I I I I I I
@ & %) %) 2)
T o I o O =

Initialization Strategy

Figure 6.3: Comparing initial missing t-pair counts for initialization strategies at SUT by

strength level

Figure 6.3 illustrates the missing pair counts for each of the initialization strategies for

each SUT and strength. First of all, the graph has similar patters for each SUT. Which

means in the experiments performance of our initialization strategies did not depend on

the subject applications. For ¢ = 3, TCIS strategy is the best in the initial miss count, but

it is not applicable for ¢ = 2. For ¢ = 2, performances of HIS and TIS strategies are closed

to each other. RIS on the other hand, is always the worst in the initial miss count.

40

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

1000 - . ke
@ @
S 3
>
«Q
Eﬂ =
. . N
6 []
3 = ==
2 °
[@)] °
(@]
fb) []
5
g 100
2 &ﬁ 2
= . !
e E
-
10000 - s 'O'B

of o
—1+
—$
o e
¢ :yibuais

1000—@ qQ-] * $'

s
=
[]
1T 1T 1 I I I | 1T 1T 1 I I I | 1T 1T 1 I I I | 1T 1T 1
D2 22w 2w VO2lw V22w V2w V2w
IcPrF IxPF TPk IxPF ICPrF IxcPrF TxPF
Initialization Strategy

Figure 6.4: Comparing initial missing t-pair counts for initialization strategies detailed
for Apache configuration space models

Figure 6.4 illustrates the missing pair counts of the initialization strategies for each strength
and configuration space model of Apache. For r = 3, TCIS strategy is the best in the ini-
tial miss count, but it is not applicable for r = 2. For t = 2, performances of HIS and
TIS strategies are closed to each other. RIS on the other hand, is always the worst in the
initial miss count. Lastly, on overall the initial miss count is increasing when the number

of configuration options grow.

41

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60
[]
10000 -
[]
[]
T @
&, &7 §
. "%
N
® . E =
© e
® .
o 1000 - Ef_']
i}
c
>
3
® 4 B
51 05 E
—1e+05 - . .
2 = .
IS @ & .
@é (%)
. - T 8
" B = . g
° ° ° = =
1e+04 - @ 1 @$ # = w
Ok @Q I
2
.
I I
D020 002w 00l DLy Vly Vol nulag
IxcPrF TTPF IIE.I.—.I.IIEI— IcPrFr TP TxPF
Initialization Strategy

Figure 6.5: Comparing initial missing t-pair counts for initialization strategies detailed
for MySQL Configuration space models

Figure 6.5 illustrates the missing pair counts of the initialization strategies for each strength
and configuration space model of MySQL. For ¢ = 3, TCIS strategy is the best in the ini-
tial miss count, but not applicable when ¢ = 2. For ¢t = 2, performances of HIS and TIS
strategies are closed to each other. RIS on the other hand, is always the worst in the initial
miss count. Lastly, on overall the initial miss count is increasing when the number of

configuration options grow.

42

15+

g
o
1

Initial Miss Percentage

HIS RIS TCIS TiS
Initialization Strategy

Figure 6.6: Comparing initial missing t-pair percentages for initialization strategies over-
all

Figure 6.6 illustrates the overall miss percentage of the initialization strategies. TCIS
strategy is the best in the overall miss percentage and performances of HIS and TIS
strategies are closed to each other. RIS on the other hand, is the worst in the overall

miss percentage.

43

strength: 2 strength: 3
15—
[0}
210 1
c
[0}
2
[0}
o .
[/2]
1]
=
3 o
£
5- © o
(o4
o &
| e
I
0 -
I I I I I I I
HIS RIS TIS HIS RIS TCIS TIS

Initialization Strategy

Figure 6.7: Comparing initial missing t-pair percentages for initialization strategies at
strength level

Figure 6.7 illustrates the miss percentage of the initialization strategies for each strength.
TCIS strategy is the best in the miss percentage for r = 3 but not applicable for ¢ = 2. For
t = 2, performances of HIS and TIS strategies are closed to each other. RIS on the other

hand, is the worst in the miss percentage.

44

sut: apache sut: mysq|l
15—
®
S
3 10—
C
[0}
2
[0}
o
[/2]
1]
s <&
©
= & o
£
5 -
®
[]
. |
[| <&
' | N l
0 -
I I I I I I I I
HIS RIS TCIS TIS HIS RIS TCIS TIS

Initialization Strategy

Figure 6.8: Comparing initial missing t-pair percentages for initialization strategies at
SUT level

Figure 6.8 illustrates the miss percentage of the initialization strategies for each SUT. In
addition to the Figure 6.6, it is necessary to say that the graph has similar patterns for
each of the subject applications, indicating that; in the experiments, performance of our

initialization strategies did not depend on the subject applications.

45

strength: 2 strength: 3
6_
[]
- ,
=
o =
. S
Q
Q
>0
(0]
Al HE
) | <
o
£ T I | |
@ - [
~ l
£ o-
[/2]
1]
=15+
<
S
|
10_ w
© =4
< ‘ 3
<
(2]
| E
57 ‘ ‘ o z v
[
l | I
T
0_ I I I I I I I
HIS RIS TIS HIS RIS TCIS TIS

Initialization Strategy

Figure 6.9: Comparing initial missing t-pair percentages for initialization strategies at
SUT by strength level

Figure 6.9 illustrates the miss percentage of the initialization strategies for each strength
and SUT. In addition to the Figure 6.7, it is necessary to say that the graph has similar
patterns for each of the the subject applications, indicating that; in the experiments, per-
formance of our initialization strategies did not depend on the subject applications for

different strength levels.

46

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65
[]
7.5-
[)
@,
5.0 §
H ‘ 5
N
[]
=]
025-"° LIS ¢
g @ ﬁ] ﬁ
5 &
8 = <¥ O
o ° .
o 0.0 -
2]
R
= 6-
]
E
4- o
@
® a
5
w
[]
21 g #1 l? %1 o
[] ° $ # B # *B @ﬂ
[]
< ==
0_I I
DLy 00290 0020 0020 V029 Dl v waloyp
TIxcPrF ITITPF ID‘:E-II—.I-IIEI— IcPrF ITcPF TxPF
Initialization Strategy

Figure 6.10: Comparing initial missing t-pair percentages for initialization strategies de-
tailed for Apache configuration space models

Figure 6.10 illustrates the miss percentage of the initialization strategies for each strength
and configuration space model of Apache. First of all, as the number of configuration
options increase the initial miss percentage is decreasing for all strategies. For r = 3,
TCIS strategy is the best in the miss percentage but it is not applicable for t+ = 2. For
t = 2, performances of HIS and TIS strategies are closed to each other. RIS on the other

hand, is always the worst in the initial miss percentage.

47

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

20 -
15 . &l
. i
e . E;
10 - ° % (V)
é o o °
S EH. T
S 5-
z el
e
(0]
o
2]
2
S
s
E

il Sy
{4+
{3
pi Cll g
¢ :yibuais

I a7 b g

[)
=
= 5 2 7,
e) °
- 2 .
- 8.
0_
1T 1 1 1T 1T 1 | I D I | 1T 1 1 1T 1T 1 | I D I | 1T 1 1
DLy D0lw DLy D0l Vol vl 00l
IcPrF IxPrF ITcPF ITPF IxPF ITPF IxPF

|_
Initialization Strategy

=]

Figure 6.11: Comparing initial missing t-pair percentages for initialization strategies de-
tailed for MySQL Configuration space models

Figure 6.11 illustrates the miss percentage of the initialization strategies for each strength
and configuration space model of MySQL. In this graph has a similar pattern with Fig-
ure 6.10. For ¢ = 3, TCIS strategy is the best in the miss percentage but it is not applicable
for t = 2. For t = 2, performances of HIS and TIS strategies are closed to each other. RIS

on the other hand, is always the worst in the initial miss percentage.

48

4000 strength: 2 strength: 3
3000
m
E
)
E
|_
<2000 - ©
Ke]
T
N
8
S
1000
(o
0 i i 1 i i T i
HIS RIS TIS HIS RIS TCIS TIS

Initialization Strategy

Figure 6.12: Comparing initialization times for initialization strategies at strength level

Figure 6.12 illustrates the initialization time of the initialization strategies for each strength.
HIS and RIS strategies have negligible initialization time (always measured as O in the ex-
periments). TIS strategy on the other hand, is always the most time consuming one for
t = 3 as well as for t = 2 (although it is very close to 0). TCIS is not applicable for t = 2

and it required longer time compared to HIS and RIS.

49

4000 strength: 2 strength: 3
3000 -
2
(o4 &
2000 -]
QO
Q
>
@
1000 —
E o
(0]
S
= T .
5 4000
T
N
]
£3000 -
2
2000 - 3
<o S
S
1000 ~ |
lod
|
0 T 7 7 T I
HIS RIS RIS TCIS TIS

Initialization Strategy

Figure 6.13: Comparing initialization times for initialization strategies at SUT by strength

level

Figure 6.13 illustrates the initialization time of the initialization strategies for each SUT

and strength. In addition to the Figure 6.12, it is necessary to say that the graph has similar

patterns for each of the subject applications, indicating that; in the experiments, initial-

ization times of the initialization strategies did not depend on the subject applications for

different strength levels.

50

0.50 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65
0.25
@,
@
0.00 - G bbb b |6 > 6> O |G > o> @
0
N
‘» -0.25
E
o
=
|_
S 74088
g 3
N
©
" 9000 -
[)
® o
6000 - E
5
w
-
3000 —
ol
v
_0_7 #. -6
Voot e+ votd oo o e e o e
I I
D020 00lp 00l DLy Vol Vol vulag
IcPr TxPF III{*_)lII—.IlCEEI— IcPrF TPk TxPF
Initialization Strategy

Figure 6.14: Comparing initialization times for initialization strategies detailed for
Apache configuration space models

Figure 6.14 illustrates the initialization time of the initialization strategies for each strength

and configuration space model of Apache. HIS and RIS strategies have negligible initial-

ization time for every case. TCIS again is not applicable for = 3 and it is not the worst

for ¢t = 3. TIS on the other hand, has negligible initialization time for ¢ = 2, but for ¢ = 3,

it becomes the most time consuming strategy as the number of the configuration options

grow.

51

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60
6_ J; -
@,
4 - < T
>
«Q
o 5
N
2_
m
E | o
£
E 0-%- e G o [t | o b e o o
5
= =
© i3
N
©
=7500
£
[]
,‘ﬂ
5000 - o)
«Q
5
w
2500 -
[]
-
<
== o -
== = v
tieeFe ceTr oeTT Lo e N - <
I I
D020 D020 2020 VLw VRl V29w 0w0?g
IxlPrF TxPF ICEEII.—.I.IEI— IcPrF IxPrF ITxPF
Initialization Strategy

Figure 6.15: Comparing initialization times for initialization strategies detailed for
MySQL Configuration space models

Figure 6.15 illustrates the initialization time of the initialization strategies for each strength

and configuration space model of MySQL. HIS and RIS strategies have negligible initial-

ization time for every case. TCIS again is not applicable for = 3 and it is not the worst

for ¢t = 3. TIS on the other hand, has negligible initialization time for ¢ = 2, but for ¢ = 3,

it becomes the most time consuming strategy as the number of the configuration options

grow.

52

sut: apache sut: mysql

15000 -

10000 -
HIS

- RIS
TCIS
TIS

5000 -

Initialization Time (ms) / Initial miss percentage

I I
20 30 40 50 60 10 20 30 40 50 60
Option Count

Figure 6.16: Comparing the ineffectiveness of initialization strategies

Figure 6.16 illustrates the IS ineffectiveness of initialization strategies for each configu-
ration space model of subject applications. Since the initialization time of RIS and HIS
strategies are negligible (always measured as 0 in the experiments), their IS ineffective-
ness scores are the minimum (the best) and TIS strategies has performed the worst on

overall and it is getting worse as the configuration space grows.

This study has shown that TCIS strategy is the best in the miss count and percentage,
but compared to HIS and RIS strategies, it required longer time to compute test case-
aware covering arrays. Although HIS and TIS strategies have similar miss counts and

percentages, HIS strategy is better, since it is faster.

RIS strategy on the other hand, which is the most commonly used one for covering array
generation [10, 12,23, 26], is fast, because it does not apply any intelligence. However, it

is the worst in the initial miss count and percentage.

53

TIS strategy is not the best or worst for any case. However, this strategy is important
to account already in use testing objects. We have designed our approach to be capable
of using a traditional covering array as an initial set, so that developers can seed their
available covering arrays into our tool to generate test case-aware covering arrays. By

this way, their important configurations and testing objects will not be wasted.

6.5.2. Study 2: Comparing Neighbor Generation Strategies

In this study, we evaluated the neighboring strategies described in Section 5.5 (except
for the SMT strategy which has failed to find ¥ most of the time). The desired case is
to have the test case-aware covering array of minimum size with minimum computation

time.

54

300+

200+

TCA Size

100 4 4

1 1
o _
z 5
Neighbouring Strategy

AVO 7
CRT 7

Figure 6.17: Comparing TCA sizes for neighboring strategies overall

Figure 6.17 illustrates the overall test case-aware covering array sizes for the neighboring
strategies. Performances of AVO and CRI strategies are close to each other, and CMP
strategy is the worst among others. Lastly, the height of boxes depict the performance of
the strategy as the configuration space model grows. CMP is the most effected one from

the number of configuration options.

55

strength: 2 strength: 3
[)
[]
300 - s
8200~
w
<
(©]
= <&
<&
100 - ‘
o ‘
=Ll
[

I I I I I I
o — - o — -

e = g T Q s T b

< o o @) < O o [S)

Neighbouring Strategy

Figure 6.18: Comparing TCA sizes for neighboring strategies at strength level

In addition to Figure 6.17, Figure 6.18 illustrates sizes of the test case-aware covering
arrays computed by the neighboring strategies for each strength. Performance of AVO and

CRI strategies are close to each other, and CMP strategy is the worst among others.

56

sut: apache sut: mysq|l
[)
[]
300 -
8200~
w
<
(©]
= o
<
100 - ‘ ‘ <o o
o &
<
| r n
I I T
I I I I I I I I
o oc o
= c§> o (&) = % o O

Neighbouring Strategy

Figure 6.19: Comparing TCA sizes for neighboring strategies at SUT level

In addition to Figure 6.17, Figure 6.19 illustrates sizes of the test case-aware covering

arrays computed by the neighboring strategies for each SUT. CRI strategy again is slightly

better than AVO for Apache and they are similar for MySQL. CMP strategy on the other

hand is the worst among others.

57

strength: 2 strength: 3
160 -
[]
120 -
‘ 2
[o ;r
ray
o 2
80 - ‘ [o
| (0]
|
[)
7 == l
8 == =
w
<C
(@)]
|_
300 - * .
(2]
=
200 - s
| o | B
[72]
Qo
[] raY
: |
' ° I
100 -
=== ' ———— E
I I I I I I I I
o oc o
2 % O (& = g O O

Neighbouring Strategy

Figure 6.20: Comparing TCA sizes for neighboring strategies at SUT by strength level

Figure 6.20 illustrates sizes of the test case-aware covering arrays computed by the neigh-
boring strategies for each SUT and strength. AVO and CRI strategies have similar perfor-
mances except for Apache, r = 3. For Apache, r = 2 CRT strategy is the worst, and CMP

strategy is the worst in the other cases.

58

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65

70 -
60 - M
Ln
50 - & (7)
I
40 - . E] EI it o)
- ‘ﬁ'+
30- o B & £3) + Do T
& == e = = + 1
et w2 ==
20 - -

[e—

[0}
N —
%) é Cp
2 & :
|C_)40— @ é = ray] »
&2 ° -+ <
== &S -
- + & e
20 - v
70+
60 -
50 - »
& H
40 - . @ & @
=2 o & =
30- = S E3 < = 4
20 - ha
r T 1 1 r 1 1T 1 r 1 1T 1 r T 1 1 r 1 1T 1 r 1 1T 1 r T 1 1
Ok gk Ol gk Ok gFkE O FkE O FkE OLgFk O gk
o oCoor C or oC o oC or C oC
<>(c§>00 <>:§Oo ?:%Oo <>(c§300 ?:goo <>:§Oo <><c§>Oo
Neighbouring Strategy

Figure 6.21: Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration space models and ¢ = 2

Figure 6.21 illustrates sizes of the test case-aware covering arrays computed by the neigh-
boring strategies for each initialization strategy and configuration space model of Apache,
when ¢t = 2. As the number of configuration options increase CRT losses performance,
and CRI losses it’s advantage to AVO. Lastly, the graph has similar patterns for each of

the initialization strategies.

59

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65
150 - $
«as
125 - - - - o |P
b= I
100 - B P 2let @* ¢.$ B - @
= == | | -
754 VF‘ 4= =en
4+2 - +
150 - ©-
125 - $
he B < |5
100 - T T T
é] < = @'& by +§-o-* T+ °
o 75- - -’
N
» e
<C
) - -
P 425- = - -
$ < B3 7
)i - %
100 - @ @_‘_$é_ 3
é - | - ® 2
75+ ° - *
P
50 +
e
125 - -
5 & |
- -- 7]
100 - =B == - =
5 . B+ + - ad
wen
*0'0'
I I
OL gk OlgFgk Ok gk OfgkE O FkE OLgFkE Ok FkE
o oo oo oo oo oo oo
<>tc§>Oo <>(c§300 <>tc§>oo <>:§Oo <>:§Oo ?:goo ?:goo
Neighbouring Strategy

Figure 6.22: Comparing TCA sizes for neighboring strategies detailed for Apache con-
figuration space models and 7 = 3

Figure 6.22 illustrates sizes of the test case-aware covering arrays computed by the neigh-
boring strategies for each initialization strategy and configuration space model of Apache,
when ¢ = 3. The observation from this graph is similar with Figure 6.21, indicating that;
strength did not have a significant effect on the performance of neighboring strategies. As
the number of configuration options increase CRT losses performance, and CRI losses it’s

advantages to AVO.

60

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60
[]
100 -
&
4 (| —
7
75- [7 - # * -|T
©- 7]
eas
cas
50 - -
- 2 & T
=2a =% e <
4+ = 4 = * < - *
100 °
[]
& | o | f
N &2 . ag
(D [) -= ()]
. 53]
S 60- - 2
— - -
<o === - = e 2 == T
40- = || an < L o |[%= ==
Q-
5 e | ® 5
@ -
. - »
_|
60 - 2= P
- T -
¢ o % e
=2 == °
40- = =© @5 e W ==
= - 5 == 4§
r 1 1 1 r 1 1 1 r 1 1 1 r T 1 1 r T 1 1 r T 1 1 r T 1 1
OL gk OlgFgk Ok gk OfgkE O FkE OLgFkE Ok FkE
o oC C oC oC C oC
<>tc§>Oo <>(c§300 <>tc§)oo <>:c§>Oo <>:§Oo ?:goo ?:goo
Neighbouring Strategy

Figure 6.23: Comparing TCA sizes for neighboring strategies detailed for MySQL Con-
figuration space models and ¢ = 2

Figure 6.23 illustrates sizes of the test case-aware covering arrays computed by the neigh-
boring strategies for each initialization strategy and configuration space model of MySQL,
when ¢t = 2. As the number of configuration options increase CRT losses performance,

and CRI losses it’s advantages to AVO.

61

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60
300 - B =] -
- 23 i = T
200~ o e -lle - [|©
=aa
P . o | - -
100+ =+ >
300 - -
[]
zéa
250 - =&z
= $ - 7
200 - . g
o | & 5
—||e #-e @ wfn
GN)150— 1 1 - #Q- 4+ -
%) oo e
< 368= = =
|_250 hd
rox $ Q Be > 7]
200 - = < - |d
e - ©- - | - e 7]
- === === «&s
150 - + o <%
- < ||® =
350 -
300 - - | B
250 -)
- = + = - o
200 - - - |®
«&a
150 - ol T <7
oo v <= - o -
100_I 1
OL gk OlgFgk Ok gk OfgkE O FkE OLgFkE Ok FkE
o oC C oC oC C oC
<>tc§300 <>n:c§300 <>tc§>oo <>:§Oo <>:§Oo ?:goo ?:goo
Neighbouring Strategy

Figure 6.24: Comparing TCA sizes for neighboring strategies detailed for MySQL Con-
figuration space models and 7 = 3

Figure 6.24 illustrates sizes of the test case-aware covering arrays computed by the neigh-
boring strategies for each initialization strategy and configuration space model of MySQL,
when ¢ = 3. The observation from this graph is similar with Figure 6.23, indicating that;
strength did not have a significant effect on the performance of neighboring strategies. As
the number of configuration options increase, CRT losses performance, and CRI losses

it’s advantages to AVO.

62

40000

s o
L]
30000 - . ?
L]
L]
L]
£ | s
2 ' :
i= 20000 $
% L]
I °
@ t 1
10000
0 i | ! i
o a T =
< 3 & o
Neighbouring Strategy

Figure 6.25: Comparing annealing times for neighboring strategies overall

Figure 6.25 illustrates the overall search time of the neighboring strategies. CMP strategy
is the best in the search time. CRI strategy on the other hand, is the most time consuming

one on overall.

63

160000 strength: 2 strength: 3
120000 - . d
m
E
() °
IS
= 80000 - s
5 "
o
8 °
n .
[]
b4 <&
40000 -
I e
0 2 . % ; , ; T
o a T = le) o — —
o as o
z g o (&) z g o (@)

Neighbouring Strategy

Figure 6.26: Comparing search times for neighboring strategies strength level

Figure 6.26 illustrates the search time of the neighboring strategies for each strength. For

t = 2, AVO and CMP strategies have similar search times. For ¢t = 3, CMP strategy is

the fastest. CRI strategy on the other hand, is the most time consuming for both strength

values.

64

50000 sut: apache sut: mysq|l
[]
[]
[)
40000 -
[)
[]
[]
o °
30000 - ¢ .
E)
~ []
(0] °
e °
=
3 © s
20000 — * +
[)
[]
° []
10000 -
T [
0 i i ! I i I I I
o o o
z QED O o z 423 O &)

Neighbouring Strategy

Figure 6.27: Comparing annealing times for neighboring strategies SUT level

Figure 6.27 illustrates the search time of the neighboring strategies for each subject ap-
plication. For both of the subject applications, CMP strategy is the fastest and CRI is
the most time consuming. There is a difference in the performances of CRI and CRT

strategies for subject applications. For MySQL, CRI and CRT strategies have similar

performance. However, CRT is better that CRI for Apache.

65

sut: apache sut: mysq|l
[]
15000 - 3
[]
@
10000 - W
«Q
5
N
5000 - 1 o o
—_ > []
[%2]
< . r—l—\ =
o : — T ¥
g 0- '
=
N [)
S 40405 - . .
@ [)
o)
w °
[)
3e+05 -
[}
o &
. g
26+05 - S e
w
[]
1e+05- o . : l
[] s 1 [} <o
[]
— <l)] l J5 | 4)
0e+00 - ' — :
I I I I I I I I
o o o
z (EJ O (&) = 3 o O

Neighbouring Strategy

Figure 6.28: Comparing annealing times for neighboring strategies SUT by strength level

Figure 6.28 illustrates the search time of the neighboring strategies for each SUT and
strength. Graph has similar pattern for strength levels, which means neighboring strate-
gies behave similar for different strength values. However, for SUT levels the pattern is

different, just like we observed in Figure 6.27.

66

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65
15000 - Q
10000
»
I
7]
5000 - é
= = - E
< == eay -3
0ot (-t | -r T [Gregn W o =l .
515000 ~ g
E
) _
£ 10000 - %)
= D
5 7]
5 5000 - =
$ g_, B
- e T
PPN DU P) PR s it = <
15000 -
10000 - =
d
)
[]
5000 - ‘?$ E
=]
Gttt |t |0t Te e o = N &
]]
O gk OkgFk OkgFk OLFE OLgFgE Ok gk O gk
o 0C oo 0C ocooc 0C oo
<><<§300 <>zc§>Oo <>n:c§>Oo <>zc§>00 <>(c§>00 ?:%oo <>n:c§)Oo
Neighbouring Strategy

Figure 6.29: Comparing annealing times for neighboring strategies detailed for Apache
configuration space models and t = 2

Figure 6.29 illustrates the search time of the neighboring strategies for each initialization
strategy and configuration space model of Apache, for r = 2. On overall, as the number
of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

67

opt: 13 opt: 17 opt: 22 opt: 26 opt: 33 opt: 44 opt: 65
s
2e+05 —
»
I
1e+05 - @-@- »
D 3
LS dindas
00+00 0= 0= 9= = | | 6= 6= 6= 0= | | 8= 0= 6= 4~ | D= = O m
s
3e+05 -
26+05 - 7
— 2y
[%2) wn
é 1e+05 < o -
(0] <e- <] -e-
E 00400 46n 6n i 6n| | e m | | A | |- e - | | T &
= -
5200000 -
©
5 150000 — 4 @
_|
100000 - $Q
- @)
50000 - $
- was
0 b b b bn | | 6m i bm | | m b O - | | m n O e |- &S
wos
2e+05
»
o
1e+05 - 2]
- P =
=y o
00400 —o6m m m 4= | | m m in || - e O i | e - |
]]
Ot gk OkgFk O gk Okgk OkgkE O FE O FkE
o oCor ' oC o C r o or oC o
<>:<§300 <>:c§>Oo <>:§Oo <><%Oo <>cc§300 <>:c§>Oo <>:§Oo
Neighbouring Strategy

Figure 6.30: Comparing annealing times for neighboring strategies detailed for Apache
configuration space models and 7 = 3

Figure 6.30 illustrates the search time of the neighboring strategies for each initialization
strategy and configuration space model of Apache, when ¢ = 3. On overall, as the number
of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

68

opt: 12 opt: 15 opt: 20 opt: 24 opt: 30 opt: 40 opt: 60

20000 - $

15000 —

10000 — *

SIH Sl

5000 -

PR P el P - -*°
20000 ~

b1
+
Sid Sl

0ot o=

20000 - ?
15000 — oo

10000 — #

SI1 ‘Sl

5000 -

-+

CRI 7

<=
I
S
<

crRT- ¢

-
I
OD_

=
<5

Figure 6.31: Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space models and ¢ = 2

Figure 6.31 illustrates the search time of the neighboring strategies for each initialization
strategy and configuration space model of MySQL, when ¢ = 2. On overall, as the number
of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

69

4e+05

opt: 12

opt: 15

opt: 20

opt: 24

opt: 30

opt: 40

opt: 60

3e+05 -

2e+05 -

1e+05 -

0e+00 -

B o

- 4 om

-4

S

2.

*| | e

SIH ‘Sl

4e+05 -
3e+05 -
2e+05 -

—

(7]
E 16405 -

+ oo

>~

o= o 6=

oo

e

SId ‘Sl

©
g 0e+00 -
|_
-§ 4e+05 -
& 3e+05 -
n
2e+05 -
1e+05 -

0e+00 -

-+ oo

- o % o

N

e

e

SIOL1 SI

3e+05 -

2e+05 -

1e+05 -

0e+00 -

SI1 Sl

Figure 6.32: Comparing annealing times for neighboring strategies detailed for MySQL
Configuration space models and ¢ = 3

Figure 6.32 illustrates the search time of the neighboring strategies for each initialization

strategy and configuration space model of MySQL, when 7 = 3. On overall, as the number

of the configuration options increase, the search time increases for every neighboring

strategy, but CRI strategy is the most effected one among the others.

70

This study has shown that, CRI strategy, which is commonly used by researchers [10, 12,
23,26,28], is also successful in computing ¥ that are smaller in size. CRI does not require
any intelligence or state specific knowledge and perform a random transition blindly. Al-
though CRI strategy is the fastest per iteration, compared to other strategies, it requires
much more iterations to complete the task. On overall, CRI is the most time consuming

one among the neighboring strategies.

CRT strategy which has been first experienced by Torres et al. [28], has generated TCAs
larger in size compared to AVO. When we inspect the execution, we observed that CRT
gets stacked in finding a suitable place for remaining a few missing pairs whose con-
straints contradict each other. Therefore, binary search increases the size of the search for

just a few missing pairs in each iteration.

CMP strategy was fast but generated TCAs larger in size compared to AVO. When we

inspect the execution, we observed that CMP has the same problem with CRT.

AVO strategy on the other hand, was the best in ¥ generation task. AVO succeeded to
overcome the problem of stacking in finding suitable places for remaining a few missing
pairs by altering constraint violating options of the row which host the last transition of

the neighboring.

6.5.3. Study 3: Overall Comparison

On overall, we compared combination of the initialization and the neighboring strategies
each other as well as with Algorithm 1 and Algorithm 2 which are introduced by Yilmaz

et al. [32] (Algorithm 3 is out of scope of our objective for this study).

Following seven figures, (Figure 6.33,6.34,6.35,6.36,6.38,6.39) illustrate the effectiveness
of neighboring strategies. In these graphs, y-axis is the total time for ¥ generation task
and x-axis is the size of ¥. Computing ¥ of minimum size in the minimum time is the

desired case.

71

200 -
150
100

gl :1do

500

400 -
300 -
200 -

/1 1do

1250 A
1000
750 -
500 -
250 -

22 1do

3000 -
2000 -
1000

9z :1do

5000
4000 -
3000 +
2000 -
1000

Search Time (ms)

g¢ 1do

6000 -
4000
2000

>

¥ :1do

15008-
10000
5000 +

G9 :1do

20

6IO
TCA Size

80

T
100

NS
Alg1
-4 Alg2
- AVO
—+ CMP
CRI
CRT

Figure 6.33: Comparing search times and TCA sizes of neighboring strategies for Apache

configuration space models and t = 2

Figure 6.33 illustrates the search time and TCA size for Apache, ¢ = 2. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

72

1000
750 -
500 -
250 -

+a

gl :1do

2000 -
1500
1000
500 -

/1 1do

6000 -
4000
2000 -

22 1do

©

o

o

o
1

6000 -
3000 -

9z :1do

Search Time (ms)

n
o
o
o
o
1

15000
10000
5000 ~

g¢ 1do

60000 -
40000 -
20000 -

¥ :1do

2e+05 -
1e+05 -

+

G9 :1do

50

T
100

T
150

TCA Size

T
200

T
250

NS
Alg1
-4 Alg2
- AVO
—+ CMP
CRI
CRT

Figure 6.34: Comparing search times and TCA sizes of neighboring strategies for Apache

configuration space models and 7 = 3

Figure 6.34 illustrates the search time and TCA size for Apache, ¢ = 3. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

73

600 -
400 -
200 -

2l 1do

1200

900 -
600 -
300 -

G| :1do

3000
2000 -
1000

0g :1do

5000
4000
3000 -
2000
1000

¥ :1do

Search Time (ms)

4000 -
3000 -
2000 -
1000

0¢g :1do

10000 -
7500
5000 ~
2500

0¥ :1do

15000
10000 -
5000 +

09 :1do

50

75
TCA Size

T
100

NS
Alg1
-4 Alg2
- AVO
—+ CMP
CRI
CRT

Figure 6.35: Comparing search times and TCA sizes of neighboring strategies for MySQL

Configuration space models and ¢ = 2

Figure 6.35 illustrates the search time and TCA size for Mysql, # = 2. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

74

2000

1000

2l 1do

5000
4000 -
3000 -
2000 -
1000

G| :1do

20000
15000
10000 -

5000 —

0g :1do

40000 -
30000 -
20000 -
10000

¥ :1do

Search Time (ms)

75000 -
50000 -
25000 -

0¢g :1do

0

2e+05 -
1e+05
0e+00

0¥ :1do

1500000
1000000 -
500000 -
0

+

09 :1do

100

T
200

TCA Size

300

NS
Alg1
-4 Alg2
- AVO
—+ CMP
CRI
CRT

Figure 6.36: Comparing search times and TCA sizes of neighboring strategies for MySQL

Configuration space models and ¢ = 3

Figure 6.36 illustrates the search time and TCA size for Mysql, # = 3. In this figure, it can

be observed that as the configuration space model grows, AVO strategy gains advantage

to the others. On overall, AVO strategy has generated smaller test case-aware covering

arrays with minimum search times.

75

strength: 2 strength: 3
20000 -
X
15000 — N
’ g
5
O
10000 — 8
>
D
NS
5000 - Alg2
> - AVO
£
[0]
— e Alg2
3 A HIS
©
Q
2 = RIS
+ TCIS
2e+05 - = TIS
w
=
3
<
"
Q
1e+05 -
AEI
0e+00 - « +
I I I I I I I I
30 35 40 45 80 100 120 140 160
TCA Size

Figure 6.37: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
at SUT by strength level

In Figures 6.37, 6.38, and 6.39, we compared search time and TCA sizes of ISXAVO com-
binations with Algorithm 2 only (Algorithm 1 is easy to beat in test case-aware covering
array size). It can be observed that; for both of the subject applications and for both of
the strength levels, AVO strategy has achieved to generate smaller TCAs with a fraction
of construction cost compared to Algorithm 2. When ¢ = 3, TCIS strategy were slightly
better than the others for r = 3. When ¢ = 2 however, initialization strategies did not have

a significant effect on search time and TCA size.

76

3000 -

NS
- Alg2
(2]
£ AVO
)
E IS
52000- e Alg2
3]
@ A HIS
o)
2 = RIS
+ TIS

1000

37.5
TCA Size

Figure 6.38: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
fort=2

120000

NS
Alg2
AVO

80000 — e Alg2

A HIS
= RIS
+ TCIS
= TIS

Search Time (ms)

40000 -

T T T T
110 115 120 125
TCA Size

Figure 6.39: Comparing search times and TCA sizes for AVO strategy and Algorithm 2
fort=3

71

This study has shown that; for small problems CRI strategy generates the smallest test
case-aware covering arrays. However, it losses performance as the configuration space
model grows. Another down side of CRI strategy is that; it is the most time consuming

one among others.

CRT and CMP strategies are faster than CRI, however they generate test case-aware cov-

ering arrays that are larger in size compared to CRI and AVO.

AVO strategy on the other hand, gains advantage as the configuration space model grows.
For large configuration space models, AVO strategy generated smallest test case-aware
covering arrays with a fraction of computation cost compared to the others. On overall,
AVO strategy has overruled the other strategies as well as existing algorithms (Algorithm

1&2).

subject init. init. annealing | total init. time | anneal time
app. t | strategy | time(ms) | time (ms) | time (ms) | percentage | percentage
apache | 2 | HIS 0.00 1348.21 1348.21 0.00 100.00
apache | 2 | RIS 0.00 1506.06 | 1506.06 0.00 100.00
apache | 2 | TIS 0.00 1547.79 | 1547.85 0.00 100.00
mysql | 2 | HIS 0.00 2888.85 | 2888.88 0.00 100.00
mysql | 2 | RIS 0.00 2801.71 | 2801.71 0.00 100.00
mysql | 2 | TIS 1.00 2833.34 | 2834.56 0.04 99.96
apache | 3 | HIS 0.00 25646.28 | 25646.30 0.00 100.00
apache | 3 | RIS 0.00 29797.34 | 29797.35 0.00 100.00
apache | 3 | TCIS 721.02 26874.60 | 27771.20 3.23 96.77
apache | 3 | TIS 2252.16 | 27379.12 | 29631.87 7.60 92.40
mysql | 3 | HIS 0.00 46476.69 | 46476.88 0.00 100.00
mysql | 3 | RIS 0.00 50692.71 | 50692.77 0.00 100.00
mysql | 3 | TCIS 659.78 38521.86 | 39328.17 2.05 97.95
mysql | 3 | TIS 1813.84 | 38452.11 | 40266.44 4.51 95.49

Table 6.3: Initialization time, annealing time, and time percentages

. initialization time
init. time percentage = - x 100
total time

) annealing time
anneal time percentage = anneahg Tme o 100

total time

78

Table 6.3 presents initialization time, annealing time, and time percentages for each ini-
tialization strategy and strength value. In the experiments, HIS and RIS strategies always
had negligible initialization time. Therefore, initialization time percentage for them al-
ways measured as 0%. For t = 2, required time for TIS also negligible but it is the most

time consuming one for ¢ = 3. For ¢ = 2, TCIS is not applicable and for 7 = 3 .

6.6. Discussion

In these studies, the goal was to generate smaller test case-aware covering arrays with
minimum construction cost. Therefore, we have compared only with Algorithm 1 and
Algorithm 2 [32]. Algorithm 1, which aims at maintaining a separate configuration space
model for each test case, generates test case-aware covering arrays larger in size but it is
fast. Algorithm 2, which aims at maintaining a single configuration space model, on the
other hand, generates test case-aware covering arrays smaller in size but it is very time

consuming.

These testing objects, test case-aware covering arrays, are computed for ones and then
used for many times for testing in general. For example, they can be used in daily test
task. Thus, having smaller test suits is important to decrease the cost of testing. In this
case, spending the necessary time to compute test case-aware covering arrays that are

minimal in size is worthy. AVO and CRI strategies are better for this case.

However, if cost of testing is negligible, e.g. configuring the system has a cheap cost, then
spending time to compute test case-aware covering arrays that are minimal in size is not

needed. Algorithm 1 can be preferred for this case.

79

THREATS TO VALIDITY

In this thesis, we are primarily concerned with threats to external validity since they limit

our ability to generalize the results of our studies to industrial practice.

First potential threat is the completeness of the used algorithms. Simulated annealing is
not a complete algorithm; it does not exhaustively search the entire search space. There-
fore, in theory, our approach may fail to find test case-aware covering arrays, even though
there exist. To overcome this thread, in our approach, we have designed two level of
search. While the inner search for the test case-aware covering arrays, the outer search
helps to relax the problem in the case of failures. In the experiments we have conducted,
our algorithms achieved to find test case-aware covering array in each execution. Also, in
practice, simulated annealing is practically effective in traditional covering array genera-

tion task [23, 26].

Another potential thread is the appropriateness of the outer search (binary search) interval.
In this thesis we have determined the search interval based on the published traditional
covering array sizes. There is no guarantee to find the test case-aware covering array with
a size in the determined interval. However in the experiments we have conducted, our

algorithms always achieved to find a solution in the determined interval.

80

Another potential threat is that the proposed approach assumes that all test case-specific
constraints are known a priori. In the presence of missing or incorrect constraints, as
test cases can still skip some configurations due to unsatisfied constraints, the test case-
aware covering arrays may suffer from masking effects. In such cases, the feedback driven
adaptive combinational testing process we introduced in a prior work [15] can be used to

iteratively detect and remove masking effects.

Another potential threat is that we have only studied two software systems; Apache and
MySQL. However, both Apache and MySQL are widely-used non-trivial applications
with large configuration spaces and both have been used in other related works in the

literature [15, 16, 32].

A related threat concerns the representativeness of the configuration space models and the
test suites used in the experiments. Although these configuration space models and test
suites were culled from the actual configuration space models and test suites of our subject
applications, they only represent two sets of data points. To reduce the threats concerning
the representativeness of the configuration space models, we varied the percentage of

constrained options in the models (Section 6.1).

Finally, we have not directly evaluated the cost-effectiveness of test case-aware cover-
ing arrays, i.e., evaluating the effectiveness, such as failure-detection capabilities, as a
function of cost, such as total testing time. However, our empirical results reported in
a prior work [15] strongly suggest that, as masking effects are removed, the number of
failures observed and the structural code coverage obtained in testing monotonically in-

crease.

81

CONCLUSION AND FUTURE WORK

In this thesis, we have focused on test case-aware covering array generation problem. We
have developed simulated annealing-based, efficient and effective algorithms to compute

test case-aware covering arrays and a tool implementing these algorithms.

To evaluate the effectiveness of our algorithms and tool, we conducted large-scale ex-
periments on two widely-used highly-configurable software systems, namely Apache and
MySQL. The results of our empirical studies strongly suggest that the proposed algo-
rithms are an efficient and effective way of computing test case-aware covering arrays and

that they perform better than existing approaches.

This study, first of all, has shown that local search-based methods, as in traditional cov-
ering arrays, can be used to compute test case-aware covering arrays. We have used
simulated annealing algorithm, and it has achieved to compute test case-aware covering

arrays.

In this study, as well as introducing novel initialization strategies, we have also leveraged
existing initialization strategies, which have been used for computing traditional cover-
ing arrays (e.g. HIS and RIS). HIS (hamming distance initialization) strategy among

them, was effective in generating initial sets that covers high number of t-pairs with rela-

82

tively negligible computation time. RIS (random initialization) strategy however, which
is the most commonly used one for traditional covering arrays, was fast (again negligible
computation time) but generated initial sets were covering fewer t-pairs compared to the

others.

We have introduced and evaluated 2 more initialization strategies, namely TIS (traditional
covering array as initial set) and TCIS ((t-1)-way test case-aware covering array as initial
set). TCIS strategy has generated the best initial sets among others. TIS strategy is not
the best or worst for any case. However, we have designed our approach capable of using
a traditional covering array as an initial set, to account the already in use traditional cov-
ering arrays. Developers can seed their available covering arrays into our tool to generate
test case-aware covering arrays. By doing so, their important configurations and testing

objects will not be wasted.

For the neighbor generation task, we again introduced novel strategies, and leveraged
existing neighboring strategies that are used in traditional covering arrays (e.g. CRI
and CRT). It turned out that; CRI (change a random index) strategy, which is the most
commonly used one for traditional covering arrays, is the most time consuming one.
CRT (change a random t-tuple) on the other hand, computed test case-aware overing
arrays larger in size and it was also relatively time consuming (compared to AVO and

CMP).

Our novel neighboring strategy AVO (alter violating option) on the other hand, was the
most effective one in the size of test case-aware covering arrays as well as in computa-
tion time. On overall, AVO strategy overruled the other strategies and also existing test
case-aware covering array generation algorithms by achieving to compute test case-aware

covering arrays that are smaller in size and with minimum computation time.

As future work, we first plan to focus on other local search algorithms such as genetic
algorithm or tabu search for test case-aware covering array construction. We will then
work on cost&test-case aware covering arrays that support a general cost model, in which
the overall cost of testing can be specified at the granularity of option settings and test

cases.

83

EMPIRICAL RESULTS

This appendix contains the row data from the experiment we have conducted. There is

one table for each combination of the initialization and neighboring strategy. The headers

are as follows:

sut : subject application, t : strength of the test case-aware covering array,

opt :

age,

option count of the configuration space model, cop : constrained option percent-

of ¢, : number of valid t-tuples, # of A, : number of t-pairs,

size of A, : number of valid t-pairs, InitMiss : initial miss count,

IT,, :
Tim't :
size :

Timp .

Nimp .

iteration count of SA, IT), : iteration count of binary search,
initialization time, 7'y, : annealing time, T, : total time,
size of the computed test case-aware covering array,

computation time improvement compared to Algorithm 2,

Algorithm 2 Time — Ty

x 100
Algorithm 2 Time

Timp =

test case-aware covering array size improvement compared to Algorithm 2.

Algorithm 2 N — size
Algorithm 2 N

Nimp = x 100

84

UOIRUIqUIOd OAVXSIH 10} syuawaAoidwr pue sonsnels :1'y 9[qeL,

80°¢ L'€6 681 | ST8YS6 | SI8YS6 | S8 | S6TS09S | 0| SL99SST | LLTSIES | 891L068 | 8TELST | 0T | €| 09 | [bsAw
108 | 91'68| S991 | S¥066C | +066T | S8 | <TITS8S| O 6VSY9 | LLOL6ET | 8TS1€9T | 888¥8 | 0€ | €| O | [bsAw

L| LS98 61 eIy | ceiel 8| T10V6¥S | 0 19vLE | LL99L6 | 8OLSOTT | 899S€ | O | € | 0€ | IbsAw
YL | YLSS| v¥Pl | T689S | T689S 8| TOLVOSS | 0| +'TLSST | €SYTSy | S0TE9S | $918T1 | 0S| €| vz | 1bskw
99°01 | S0¥S | 8SE1 | VETIE €TIE| SL|9TIEHSY | O €6L11 | LLO69T | $88€TE | SYHOI | 09 | €| 0T | I1bsAw
ILET | LY'L9| 9%T1 8871 88C1 | 9L |TIOILSY| O 8E€Y9 | LLOSOL | SLYYEL 8¢cy | 08| €| SI | 1bsAw
696 | €£T€| VLII T069 | TO069 | 9L| €6090% | 0| 997LE LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
SI'OL | 9UIL | LYLIT | €C°6L98L | 6L9SL | LYL | 6€19SY | 0 | €C°LSTEY | $S6L809 | TS9LYTY | ¥IS6VE | 0T | €| S9 | dyoede
18°8 1'LT| S€01 | SOLYIT | SOLPIT | S'L| SEO8ELE | 0| STELLI | 96S9IST | $29S061 | 898501 | 0€ | € | b | Syoede
1€9| 668 | $96 90501 | 90501 L| TLEVEE| 0 9898 | 068SEL | SPSYSL | 98S€v | 6€ | € | €€ | dyoede
9V | 9ISy | 898 | 9L9SS| 9L9SS| ¥L|tTES6OS| O VIEIS| 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
6I'v | 10SP| 78| 9992€ | 999ZE€ | TL | TICO9LY | 0| T166C| TS900CT | 0OvOIZT | 08CCI | 6S | €| TT | dyoede
8C'L | €8THI-| 8TL LSP1 LSP1 L| 191ILy| O] 96L91 TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
6'S | 9869 29 9969 | 9969 | 9| T6ISOLY| 0 v'1€6 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
168 | €8¥L 9t PITT | €6°CIIT | €59 | 6'1L991€ | O | €€L°0916 | 9ISLIT| S9.9TC | SIEL| 0T |T| 09 | 1bsAw
a3 9°Z8 €V | 9LTIT| 9LTIT| 89| 9LLSR9E| 0| 9SS 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
8PS| 8I'V9 | PTP v'69¢ | 1'S9¢ 9 | TE9TILI 0| 968p¢ 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
1921 | 69€6| TOb TYIE | TYIE 9 9.8869C | 0| P¥E€TLT TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
€6 | 9¢68| TOV 8TIS| S8TIE| ¥9|¥e6clyor | 0| TI1S9I 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
69€l | €€66-| TLE T6ET | T6ET| 89| TYSTLSY | 0| 8'8TSI 96121 STLYL Sy | 08| ¢C| S1| [bsdw
Tyl | €E°LTI- | T9E vOEl | TYEI 9| $'98678€ | 0| 8701 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€601 | €8¥8| P¥E€E| 80I1TI | $0ICI 9| S90t91 0| TS8YOL | LSSOVI | ThLevl | 61€8| 0T |T| S9 | oyoede
90°L| SY98| 9I¢ 9198 | 9198 9| ¥'SSL89T | 0 919 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
69°L| 1888 0€ 9CHS | 9EPS 9| 7TTE90¢ | 0 7819 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
L9S | VL8| VLT 9¢Iy | 9SIP 9| 9TISLOY | 0 ¥ 00¥ LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
Sy | 6Iv8 | vLT T661 | T661 | 86 |8Te8I9T| 0 €6¢ 6LSST | ¥1991 €26 | 6S || Tz |oyoede
€08 | €£0¢-| TSt vOST | ¥9ST | 96 | +7910SE | 0 9¢I¢ 6868 vLL6 €pS | 9L | T | L1 | 9yoede
6501 | €€08-| 87T 7801 | T80I| 95|899908€| 0 v'TTT €10S 86SS 11€ | 001 | 2| €1 | dyoede
N du 9718 ol gl o Sq LI "ML | ssuAul | 'y joozis | 'yjog | 'gJoy | doo | 3 |do ms

85

uoneuIquIod JINDXSTH 10J siuawaroidwr pue sonsnels 7'y 9[qeL

19y | 78°S6 | S'S8T | SEIPEY | €1HE9 8| SSEILIE | 0| SL99SST | LLTYIEY | 891L068 | 8TELST | 0T | €| 09 | [bsAw
LESY- | 8506 | S6ST | €009T | $°T009T 8| cvessy| 0 6VSY9 | LLOL6ET | 8TS1€9T | 888¥8 | 0€ | €| O | [bsAw
90S- | 9098 | IST| 08STI | 08STI 8| SvLo9v | 0 19vLE | LL99L6 | 8OLSOTT | 899S€ | O | € | 0€ | IbsAw
SEIS- | 99°€8 | 96ET | 80TS9 | 90789 | T8 | 98SI6vS | 0| +v'TLSSI | €SHTSy | S0TE9S | 89181 | 0S| € | v | 1bskw
YTLY- | 696L | 8€TT | 9°S86€ | ¥'S86E | §L | T11S0CS| 0O €6L11 | LLO69T | $88€TE | SYHOI | 09 | €| 0T | I1bsAw
€SLE- | v8PY | 9861 | v¥SIT | PHSIT| L | 9ESION9 | 0 8E€Y9 | LLOSOL | SLYYEL 8¢cy | 08| €| SI | 1bsAw
LLO| 81'T9-| 6T1 | TSI | THS9I 8| 8TSLLOL| 0| 99TLE LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
66'0C- | 08I | S'SST | 08STL| 08STL| SL|STLSSIE | 0| SSLESE | ¥S6L809 | TSLYTY | vIC6YE | 0T | € | S9 | dyoede
SO'L-| 980€|STITI | 0LEOT | 0LEOT L| 66€8TC| 0| STELLY | 9659181 | ¥T9S06T | 898S01 | 0€ | € | ¥¥ | dyoede
6| 0S| STII L16L L16L L| €89T¥T| 0 9898 | 068SEL | SPSYSL | 98S€v | 6€ | € | €€ | dyoede
YSI- | LSPS | ¥T6 | v6LSY | veLSy | TL| SEELIV| O VIEIS| 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
TIS- | 8S°8S | ¥06 | v09vT | ¥°09%C L|¥LO0SYE | 0| TI166T| TS900T | 0¥O1TC | 08TTI | 6S | €| T | dyoede
vE'G- | LO00T- | 8T8 | #0021 | +00TI L|896128€| 0| 96L91 TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
6611 80" 8¢ (442 T | T | ¥SPILOE | 0 v'1€6 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
6£ 18| 6569 | 916 | v¥SST| PHSST 9| TYHOrE | 0 G106 | 9ISLIT | S9L9TC | SIEL| 0T |T| 09 | [bsAw
L8'19- SYL| 08| TTSII TOL | 99 | ¥LyE9ly | 0| 9vTsS 96£S6 | STSIOL SLZE | 0| T | Op | IbsAw
10°08- €SI | ¥€8| vHOOL | ¥H00T | 99| T99¢6Sy | 0| 9'68PE 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
S9°69- | €968 | TI9L| ¥SIL| ¥SIL| 99| SS€09v | 0| ¥E€TLT TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
989L- | 66T8| ¥SL| TO00S| TO0S| T9|99S9sty | 0| TIS91 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
S9'8L- | L1'9ST- LL| VLlTv| Vvl | T9| STLITS| O] §8TSI 96121 STLYL Sy | 08| ¢C| S1| [bsdw
TTET | £€009- TS| ToTy | TOoTty | 99| 98cv88S| 0| 87T0l 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€CI- 9°GL 8¢ | TLY6L | TLY6I 9|9C€9T€C | 0| TSYOL | LSS9VI | TPL6VI | 61€8| 0T | T | S9 | dyoede
675 | 6£88| 8SE| TSEL| TSEL 9| zTI06ST| 0 919 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
LLT vT6 | YEE| 969€ | 969€ | S| THOOVTT | 0 7819 €Iv9¢ | 866LE | 11| 6€|T| €€ | dyoede
L9T-| SI'€6| 80€ 97¢ 9ZC | 96 | 9168€0T | 0 ¥ 00¥ LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
1971-| €€8 €| YLl | YLl | ¥'S|¥ES00LT| 0 €6¢ 6LSST | ¥1991 €26 | 6S || Tz |oyoede
8O°I1-| LI'SI-| 90¢| Sl 8IvI | 9GS | TTIIEIE| 0O 9¢I¢ 6868 vLL6 €pS | 9L | T | L1 | 9yoede
96'1- | L98T 9T TLL TLL| TS| 8s686vT| 0 v'TTT €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | oz1s L A I IR A § LI | "ML | SSUNMUL | 'y joozis | 'yjog | '¢Joy | doo | 3 |do ms

86

UOIIBUIqQUIOd [YDXSTH I0J sjuswaaoxdwl pue sonsnels ¢y 2[qel,

'y | S9OvL LS1 | TSPYSE | TSHPSE 8 | 096€0L1 0| OISISI | LLTS9ES | 891,068 | 8T€L8T | 0T | €| 09 | 1bsAw
LLOT | 6167 | STI91 | STTITOVI | STTITOPY | S8 | ¥SSLYOT | O | STPL69 | LLOL6ST | STSIE9T | 888¥8 | 0€ | €| OF | [bsAw
8| 19.9 €61 1€26C 1€26C 8 | 7979STI 0 €SSOY | LL99L6 | SOLSOTT | 899S€ | OF | €| 0¢ | [bsAw
976 | 8169 | STIVI L6TTI | SL'96TT1 8 | LL89EET 0| STTOP0T | €SPT8y | 80T€9S | 89181 | 0S| €| ¥T | 1bsAw
LYYl | TTY9 0SI | SL'OTOL | SLOZOL 8 | 9re66¢€l 0 €€TT1 | LLO69T | $88€TE | SYYOI | 09 | €| 0T | I1bsAw
€6°0C | I8EE | SLYIT | STIT9C | ST1T9T 8 | 0LSOII 0| STOI¥9 | LLOSOL | SLYYEI 8¢cy | 08| €| SI | 1bsAw
€L91 | ¥¥'S1- | ST801 SLLIT SLLIT | SL'L | $08¥9€1 0| SLLIOY LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
66 | €6'11T SIT | 8¥C9LT | 8YTILT 8 | 06LY9S1 0 ISIEY | ¥S6L809 | TS9LYTY | vIC6YE | 0T | € | S9 | dyoede
ST6 | SI'vL €01 TICIS TICIS L | 1¥81201 0 0v90T | 9659181 | ¥T9S06T | 898S01 | 0€ | € | ¥ | dyoede
SOl | ¥E8- 16 96981 96981 L| SSLO¥S| 0O 0098 | 068SEL | 8PSYSL | 98SEy | 6€ | €| €¢ | ayoede
Y9TL | ¥9°91 S6L | STS68| STS68|STL|TTOTEY6 | 0| ST996 | S9THPE | 9€SE€LE | TSLOT | 0S| €| 9T | dyoede
80°Cl | L9PI | SLYL| SL'S90S | SL'890S £9€L201 0 L90S | TS900T | OP0ITT | 08TTI | 6S | €| CCT | 2yoede
€091 | ¥0'661- 99 | STY6LI | STY6LI SIITTT8 | 0 covl TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
€Il | IL°SO1- | STLS 798 798 v6LT16 | 0| STS601 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
96°C | €O0TI- | S'8Y | STTYHSI | STT8HSI LIT8LTC | 0| STLIS| 9ISLIT| S9L9TC| SIEL| 0T |T| 09 | 1bsAw
TSI | €VL9-| 8€h | 96¥801 | 967801 S$90981 0| 9¥Tss 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
¥9°01 LS1-| ¥I¥| ¥LT6T| V'LT6T 99v96L8 | 0| 968P¢ 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
16€1 | TSH9| 96¢ L9LY L9LT 9°€98966 | 0| V¥E€TLT TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
8CEl | P8ES| P8 | TLSEL | TLSEL v'6L9666 | 0| TI1S9I 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
1091 | S99%- | T9¢ 8°6L9 8°6L9 T991LL6 | O] 8§8TSI 96121 STLYL Sy | 08| ¢C| S1| [bsdw
1081 | €€°€9S- | 9v¢ 86€ 86€ vLES6SL | 0| 87TT0l 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€€6 | 68€9 v€ | 9°8LOCT | 9'8LOEI S08€0ET 0| TSPOT | LSSOPI | ThLevl | 61€8| 0T | T | S9 | ayoede
88| SYIg 1€ 965y | 9'6SE $LLS8L6 | O 919 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
691 | 6V'T9 LT €81 €z81 T086SEL| 0O 7819 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
LOTL | €I'SS| T9TZ| 9I8El| 9I8El 8TIVT6S | 0 ¥ 00¥ LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
68Vl | E€VEL| ¥¥T| 80601 80601 v'SSHI86 | 0 €6¢ 6LSST | ¥1991 €26 | 6S || Tz |oyoede
Ov1 | S6l¢-| V€T ¥°€0S €08 TTL6L6L | O 9¢I¢ 6868 vLL6 €pS | 9L | T | L1 | 9yoede
SO'LIL | €£66C 1T 9'6£T 9'6£C 88rv6r | 0 v'TTT €10S 86SS 11€ | 001 | 2| €1 | dyoede
N au g o718 el g 1woun g LI | "ML | SSUNMUL | 'y joozis | 'yjog | '¢Joy | doo | 3 |do ms

87

uoneuIquod JDXSIH 0] siusuwrasoidwit pue sonsnels 'y 9[qe],

69'LL- 98°T8 | SOVE | 1¥66ST | SOV66ST | S8 | YOTEYII 0| 8SLOLT | LLTS9E8 | 891L068 | 8TEL8T | 0T | €| 09 | [bsAw
12T 09 | S81 | SPSI601 | STS1601 6| 8871061 0| 6VSY9 | LLOL6ST | 8TS1E9T | 8888 | 0E | €| O | [bsAw
o 85OV | L91 | S€0T8Y €0T8Y 6 | TrOTSsI 0 19vLE | LL99L6 | 8OLSOTT | 899S€ | O | € | 0€ | IbsAw
Ll YTy | €SI | TYS6TT | 8°€S67C 6 | €T¥8981 0| ¥TLSST | €SYTsy | S0TE9S | $918I | 0S| €| v | 1bskw
vTL SEIP | IPI | $LOSIT | 9LOSII 8 | €810091 0 €6L11 | LLO69T | $88€TE | SYHOI | 09 | €| 0T | I1bsAw
€Y el 60°LC- | STl 8TEOS | 8T€0S 8 | $20L9S1 0 8E€Y9 | LLOSOL | SLYYEL 8¢cy | 08| €| SI | 1bsAw
9OvL | vev8I-| 111 | $906T | +'906C 8 | 80€1¥ST 0| 99zLE LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
€LS- SI'LY | $°8¢1 LOS9Y | S9089% | S'L| SSETRET | 0| SSLESE | ¥S6L809 | TSIL8TY | ¥I€6vE | 0T | €| S9 | oyoede
6V'L| 9669 | SOI | S$0LO0OS | S0LOOS 8| 9SI¥89 | 0| STELLI | 9659181 | ¥T9S061 | 898501 | 0OF | € | v | oyoede
91 Y6 1T | ST01 | STHPEL | STHYEL | SL| vLSETS| O 9898 | 068SEL | SPSYSL | 98S€v | 6€ | € | €€ | dyoede

0 LTSy 16| $888S| 88885 | TL|TII0S9Y | O P¥ICIS| S9THPE | 9€SE€LE | TSLOT | 0S| €| 9T | yoede
L0 LT6T | ¥'SS| ¥I10Th | vI0TP | 9L | $0SES8S | 0| TI66T | TS900T | 0VOITT | 08TTI | 6S | €| CCT | 2yoede
LTSI-| 689 | 906 | P¥€lce| +E€ITC| 89| TLSET8S | 0| 9'6L91 TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
TOSI-| LSI91-| 8SL| 98601 | 98601 | 89| T€SS109| 0 v'1€6 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
IS8y~ | 8pEL SL| ¥TLSYL | vTLSKI L| T€TS60T | 0 G106 | 9ISLIT | S9L9TC | SIEL| 0T |T| 09 | [bsAw
6'9¢- | 6£€I- 89 | VLVEL| VLVEL L| oviovcz | 0| 94Tss 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
99'1¢- | 1€7T0€- 19| 9€0I¥ | 9€0IY L| S6S661T| 0| 968p¢ 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
LS61- 6£°9 SS | 9699T | 1699 L| voTTLiz | 0| v€TLe TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
€L cree 49 9961 86961 L| 260181 | 0| T1S91 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
€L9- | L97TS8- 9 | TEPIL | TEPII L| TI86LOT | O §8TSI 96121 STLYL Sy | 08| ¢C| S1| [bsdw
¥8T | L9SETI- 8% v IvL V1YL L| vTr8i6l 0| 8720l 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€CLS- 97°€S 6S | 86CLE| 86TLE 9| 9IEYT8E | 0| TSYOI | LSSOVI | TLevl | 6I€8 | 0T |T| S9 | oyoede
90°L9- T8€EL | 896 S991 G991 | 9°S | ¥'€1T9¢S | 0 919 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
69 LY- 1S¥L 8V | 9'8€TI | 9°8¢TI 9| 866800L| 0 7819 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
0S- 898 Sy 9°GeY 96y | TS| vI08YIY | 0 ¥ 00¥ LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
80°CS- 86'8S | 9'¢h 8916 89IS | ¥'S | ¥IsSPIT9| 0 €6¢ 6LSST | ¥1991 €26 | 6S || Tz |oyoede
8S€e- | SOvI-| 99¢ 9887 9'88T | TS |T0OI0¥Z9 | O 9¢I¢ 6868 vLL6 €pS | 9L | T | L1 | 9yoede
LT | LYEYT- | TTE 790 90T | 96| 8YIFIvY | 0 v'TTT €10S 86SS 11€ | 001 | 2| €1 | dyoede
N iy oz ol g o | Sy PLI| "ML | SSUNWU] | 'y Joozis | yJog | ‘pyog | doo | 1| 1do ms

88

uoneUIqUOd OAVXSTY 10J siuawaroidwr pue sonsnels ¢y 9[qelL,

Y9G | 6716 ¥81 6£998 | $'8£998 8| TLTOSY | 0| €0TPST | LLTS9EY | 891L068 | 8TELST | 0T | €| 09 | [bsAw
SS'L C'68 | €CLIT | LOTLO6ST | LOTL6ST | €€°8 | €TE06ES | 0| LYCITOL | LLOL6ET | 8TSIE9T | 888¥8 | 0C | € | O | [bsAw
78| Tsss €61 890€1 | SL90ET 8| 6£TLOS| O 090SE | LL99L6 | SOLSOIT | 899SE€ | OF | €| 0 | [bsAw
V9| T8SS| 9SHI | $'8S9S | +°859¢ 8| 8€69€S| 0| 9LISIT| €SYTSy | S0TE9S | $918T1 | 0S| €| vz | 1bskw
9901 | 6€18| 8SEI | 90S9€ | 90S9¢ 8| T0OSOV6S | 0| TSEOVI | LLO69T | $S8€TE | S¥YOI | 09 | €| 0z | I1bsAw
€Iyl 1'€9 YCL | TI9P1 | TI9PL | SL | ¥EELEOS | 0| TSP6L | LLOSOL | SL¥YEL 8¢cy | 08| €| SI | 1bsAw
9%°01 81| P9Il 9669 9669 | TL| 06LTVY | 0 1667 LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
L96 | SESI | €E8IT | €CLI6YL | €CLI6GYL | LYL | €9Y09I¥ | 0 09€LE | ¥S6L809 | TS9LYTY | vIC6YE | 0T | € | S9 | dyoede
vy | T€E1-| S'801 ¢8eee G8€EC | SL | 8¥9S0S | 0 ¥SOIT | 9659181 | ¥T9S06T | 898S01 | 0€ | € | ¥ | dyoede
89| Li6b 96 | S00L8 | SO00LS L| TELISE| 0| S9¢€01 | 068SEL | SPSYSL | 985y | 6€ | €| €€ | dyoude
861 | LLEP| T68| $8€09| 88€09| ¥L|SOL00IS| O TTV9 | 89THPE | 9€SELE | TSLOT | 0S| € | 9T | dyoede
SES| 9I'6S| V8| §SThT| 85T L|T98Y0LE | O | TIvby | TS900T | O¥OITC | 08TTI | 6S | €| T | dyoede
68'S | LTTTI- VL | 9€EEr | 9€eel L|vLevSey | 0| 87TEET TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
€69 | L919-| 919 6L9 6L9 | 9| T8I8SHY | 0| $0S8I 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
€06 | VVLL| v6'SY | ILV681 | S9O6SI | 179 | 6'LOVEST | 0| 1LV'T9T6 | 9ISLIT | S9L9TC | SIEL| 0T | T | 09 | [bskw
YOvL | SY'S8 | vTh 8°TP6 8TV | 99 | ¥'S9TLEE| 0| 969£9 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
£9°01 T09 | vIP 90¥ 90y | T9|T6096CC| 0| 8568t 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
YLIT | €S€6| 90 e e 9| 89vT98T | 0| 8SP6T TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
TUIL | 7868 | t6E ¥'66C V66T | 79| 862692 | 0| 9156l 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
9LTl | L9IS-| 9LE z81 81| ¥9|96L585E| 0 Sevl 96121 STLYL Sy | 08| ¢C| S1| [bsdw
SS'IL | L9TCI-| TLE 9¢€l 9 €€l 9| T6rISSE| 0| TeEvel 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€STI | 8LSL| 8TE| TEO9I | TE691 9 | 9761991 0| vThpl | LSSOvI | ThLevl | 61€8| 0T | T | S9 | oyoede
vT'8 €68 | TIE 75€6 T5€6 9| 8881L6C| 0 9601 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
68| 8888 | 96C Tovs Tovs 9| $°LS060E | 0 8°LS6 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
L99 | L806 8T T10€ TI0E | 96| 8$'86€L0E| 0 8989 LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
6L | S£€8 | v9C 860 8607 | 8S|8¥60S8T| 0 ¥'199 6LSST | ¥1991 €26 | 6S || Tz |oyoede
676 €r-| 8¥C 961 9GET | TS| 8SILS6T| 0 9,9t 6868 vLL6 €pS | 9L | T | L1 | 9yoede
6501 | €€9L-| 87T 8501 8601 | 8S|¥Ts9zor| 0 8'60€ €10S 86SS 11€ | 001 | 2| €1 | dyoede
N au g o718 el g o o Sy LI | "ML | SSUNMUL | 'y joozis | 'yjog | '¢Joy | doo | 3 |do ms

&9

uoneuIquod JINDXSIY 10J sjuswaaoxdwil pue sonsnels 19y Aqel,

96°TS- | L1'S6 | SL6T | €CISEL| €I1€EL 8| SL90I0E | 0| €0TPST | LLTS9EY | 891L068 | 8TELST | 0T | €| 09 | [bsAw
68| SO€6|S69C | I1LI61 | ILI6I 8| SISLIVE | 0| SOISLL | LLOL6ST | 8TS1E9T | 888¥8 | 0€ | € | O | [bsAw
0S- | L¥L8| 0ST| €0EIT| €OEIl 8| PL9S9Y | 0 090SE | LL99L6 | SOLSOIT | 899SE€ | OF | €| 0 | [bsAw
LOTY- | €868 |961T| 95595 | 95596 8| 8009Cky | 0| 9LISIT| €SYTSY | S0TE9S | $918T | 0S| €| vz | 1bskw
€Oy~ | €OSL| STT| VIISP | vIIEh | $L| T€8ELS| O TSEOVI | LLO69T | 888€TE | 8¥POI | 09 | €| 0T | [bsdw
16TS- | 6Y'St | 802 | ¥'8S1T | v'8SIT| SL | S9LIVE9 | 0| TSP6L | LLOSOL | SL¥YEl 8¢cy | 08| €| SI | 1bsAw
TOVL | L9S9-| I11| 86891 | 86891 8]88S688L| 0 1667 LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
LTSI-| vO€T| ISI| 9SIS9 | 9SI89 L| T68LOE| O 8609¢ | ¥S6L809 | TS9L879 | ¥I€6¥E | 0T | €| S9 | dyoede
SO'L-| 16°8T | SITI | SPP60T | S¥r60T L|SLS6SET| 0 ¥SOIT | 9659181 | ¥T9S06T | 898S01 | 0€ | € | ¥ | dyoede
v6'1- 9% | <Ol 8626 8676 | SL| S6TSSE| 0| S9CE0I | 068SEL | SYSPSL | 98Scy | 6€ | €| €€ | dyoede
€O'L-| 11'TS| vL6 | TEVIS| TEPIS| ¥L|¥1€99sh | 0O TTV9 | 89THPE | 9€SELE | TSLOT | 0S| € | 9T | dyoede
20€- | 99C7S | 988 T18C T18¢ L] 806680y | 0| TIvby | TS900T | O¥OITC | 08TTI | 6S | €| T | dyoede
119- | €€65 | ¥¢8 956 966 | 99| 088v6T | 0| 87TEET TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
€89 | V1T | 19 6TV | 88tr| ¥9| 88788T| 0| 0S8I 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
LOS9- | S0'89 | 9€°€8 | T8E89T | TSEV9T | S¥'9 | €ELY6IE | O | Y9 6¥V6 | 9ISLIT | $9L9TT | SIEL| 0T |T| 09| IbsAw
TEOL- | 6SLL| 9¥8 | TS9OV | TSOPI | ¥'9 | TIVCCIY | O] 969€9 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
pSEL- | SLIT| v08| TO006| TO006| T9|98LT66E| 0| 8S68Y 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
TTSY9- | €068 9L | TIPS | TS| TO|TS6W9E| 0| 8'SH6T TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
L LL-| 698L| S8L| +929| +¥9729| 99| +9TLIES| O 91S61 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
SE0S- | €8°T€EE-| 8¥9 | ¥6IS| v6IS| ¥9 | TELTHIS| 0 Sevl 96121 STLYL Sy | 08| ¢C| S1| [bsdw
601" 199- | 89% | 995y | 995k | 89| 6IS9¥9 | 0| TEPTL 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€1'9-| 8SI18| 86E| 9691 | 96971 9 | 9°88S8LI 0| vThpl | LSSOvI | ThLevl | 61€8| 0T | T | S9 | oyoede
€SEI-| €068 | 98C| ¥L69| vL69| 9 |T66S9YCT| O 9601 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
€TS- | ¥8T6| TYE| TSYE| TSPE| 9S | +98€91T | O 8°LS6 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede

0| L8T6 0S| TSET| TSET| 96| 9T8LSET| O 8989 LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
€I's-| €078 1€ | v9tC| ¥92C| 8S| T99LZ€| O ¥'199 6LSST | ¥1991 €26 | 6S || Tz |oyoede
€L 0¢- | ¥'6¢ 91 oGl | ¥'S|86TreTe| 0 9,9t 6868 vLL6 €pS | 9L | T | L1 | 9yoede
206 SI-| §LT 69 69 S|lzegszoce| 0 8'60€ €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | ozis S B I YA LI | "ML | SSUNMUL | 'y joozis | 'yjog | '¢Joy | doo | 3 |do ms

90

uoneuIqUOd [YDXSTY 10J syuswasoiduwir pue sonsnels /'y 9[qel,

'y vEL LST | 06¥E0Y | 06VE0Y 8| 9¥T0S0T | 0| STTLST | LLTS9ES | 891L068 | 8T€L8T | 0T | €| 09 | I1bsAw
LY'S | $909 | L9S9T | €TLSSOT | L'OLSSOT | €€°8 | 9ISTIEPT 0| 608€8 | LLOL6ST | 8TS1€9T | 8888 | 0C | €| O | [bsAw
88| 66€9 49! T6¥CE T6¥TE 8 | 16896%1 0 80TYS | LL99L6 | SOLSOTT | 899S€ | OF | €| 0¢ | [bsAw
8L | €81L TP | SL'SETIT | SL'8ETIT 8 | ¥869€T1 0 896L1 | €SPT8Y | 80TE9S | 89ISI | 0S | €| T | IbsAw
L6Vl | 9S'L9 | ST6TI SH9€9 | SH9€9 8 | S9TPLEL 0| S'86ISI | LLO69T | 888€TE€ | 8¥¥O1 | 09 | €| 0T | [bsdw
86'81 | €TEh LT1 8¥7CC 8YTT | SL| L¥909TI 0 TT9L | LLOSOL | 8LYYEI 8¢cy | 08| €| SI | 1bsAw
8¢°SI 61'8 011 $'9¢6 S'9C6 | STL | TLSEECTT 0| SSELy LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
SY'I1 | TT99C- 9IT | 9TEPTE | 9TEPTE 8 | 00S1SSI 0| 909¢t | ¥S6L809 | TS9L8TY | ¥IS6VE | 0T | €| S9 | dyoude
1011 | 10°191- 101 Y689L ¥689L 8 | 8TT9IPI 0 LS8TT | 96S9181 | $29S061 | 898501 | 0€ | € | b | dyoede
6S°€l 1'€L- 68 LOS6T LO86T 8 | 8TOvTrl 0| 9v6T1 | 068SEL | SYSYSL | 985y | 6€ | €| €€ | dyoude
IST11 | 9P b | STO8| S8ITIT| SSITII | STL | 0TE99IT 0| SL'SE8Y | S9ThPE | 9€S€LE | TSLOT | 0S| €| 9T | dyoede
99°¢1 18°€ | STYL| SL'SILS| SL'SILS | STL| 0SSYOII 0 8LEY | TS900T | 0OV0ITT | 08TTI | 6S | €| CCT | 2yoede
ILST | €€TLI- | ST99 Y91 Y91 L]ST89969 | 0| $7T0ST TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
9TVl | 98°LIT-| S9¢ S16 S16 L| 0621101 0| SyesI 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
LYE | LTVIT-| SL'SY 066L1 066L1 L| 9L6S1TT | 0| SLLSL6 | 9ISLIT| S9.9TC | SIEL| 0T |T| 09 | IbsAw
TTTL | 8P'9¢-| 9€h | 9€P88 | 9€H8S | +'9 | €L8YSSI 0| 9699 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
8L°6 | ¥1°661-| S1¥| TISOE| TISOE 9| $LYI6I6 | 0| 868 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
8P€l 865 | 86¢ 2002 2002 | ¥'9 | 0686¥01 0| 8SP6T TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
8CE€l | L6LS| v'8E| 96€Tl | 9s€Tl 9| €69626 | 0| 97156l 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
1091 | €878 | T9¢ 7618 v618 | 89| 1SESLIT 0 Sevl 96121 STLYL Sy | 08| ¢C| S1| [bsdw
YSLL | €CLLS- | 8PE ¥'90% ¥'90¥ 9| PP6SSL| 0| TEVTI 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€€'6 | 6808 1% SEvpl SEvpl 9 | TT06VEL 0| ¥Thvl | LSSOPI | cTvlevl | 61€8| 0T | T | S9 | dyoede
SI'TL | 6981 | TOE| VILIS| ¥ILIS 9 | 1596811 0 9601 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
1€91 | LE19 | TLT| VLLSI| VLLST | TS| S6£69EL| O 8°LS6 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
€CEL | 6S°SS 9T | ¥SOPI | tSopl 9| 89¥S6L8 | 0 8989 LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
6SS1 | TS6l| THC ¥101 ¥101 9 | ¥'¥20L96 | 0 ¥'199 6LSST | ¥1991 €26 | 6S || Tz |oyoede
9091 ¢8z- €T 9% 9Y | S| 980VLIL| 0 9,9t 6868 vLL6 €pS | 9L | T | L1 | 9yoede
6TSI | €€T6C- | 91T ¥'SET v'SET S19L169€9 | 0 8'60€ €10S 86SS 11€ | 001 | 2| €1 | dyoede
N dut o718 el o po Sy PLI| "ML | SSUNWU] | 'y Joozis | yJog | ‘pyog | doo | 1| 1do ms

91

UuoneuUIqUIOd JDXSIY J0J siuawaroidwr pue sonsnels 8y 9qelL

SI'9- 19°€L | LOT | $62200F | S6TT00Y 08€EPL81 0| 6CEOLT | LLTS9ES | 891L068 | 8T€L8T | 0T | €| 09 | I1bsAw
12T 1€19 | S81 | €LL90T | €LL901 YTLSLST 0| SOIELL | LLOL6ET | 8TSIEIT | 888¥8 | 0€ | € | OF | IbsAw
0 99°9% | L9I €e18y ceI8Y 0TT0061 0 090SE | LL99L6 | SOLSOIT | 899SE€ | OF | €| 0 | [bsAw
cLYI- LOSY | 9°8LI 91612 91612 0SSZ081 0| 9LISIT| €SPT8y | 80T€9S | 89181 | 0S| €| ¥T | 1bsAw
YL €TTW | 1P| $EEEIT | 8EECTT PEEYSST 0| T8EOPI | LLO69T | 88S€TE | $PPOI | 09 | €| 0T | [bskw
SPEL | PILT- | STL | 9¥E0S | 9PE0S 9v97961 0| TSY6L | LLOSOL | SLYYEI 8¢cy | 08| €| SI | 1bsAw
9V | 1€€81- | 111 86887 | 8688C €TSLYST 0 1667 LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
8€°0 960 | S0€1 19088 19088 0z881v | 0 8609¢ | ¥S6L809 | TS9L879 | ¥I€6¥E | 0T | €| S9 | dyoede
96°€ 68| 601 | S6£89C | S6£89T 6IvvEy | 0 ¥SOIT | 9659181 | ¥T9S06T | 898S01 | 0€ | € | ¥ | dyoede
vl €6TI-| S66 961 961 99611L | 0| S9EE0T | 068SEL | 8YSPFSL | 98SEH | 6€ | €| €¢ | ayoede
86'1- €CE€T| 8T6 | 8YET8 | 8HETs 899I¥H9 | 0 TTV9 | 89THPE | 9€SELE | TSLOT | 0S| € | 9T | dyoede
611~ vS6v | 968 | vL66T | VvL66T OvErEEy | 0| TIbby | TS900T | 0Ov0ITT | 08TTl | 6S | €| ¢ | 2yoede
96| TO8I- €8 | TI891 | T1891 V8T8 | 0| 87TELT TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
¥9°6T- | 98°90C- | 878 | 888CI 8'88C1 7069029 | 0] $0S8I 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
1681 8°GL- SL LILY] LILY] SP9LOIT | O | ¥9S6¥¥6 | 9ISLIT | S9L9CT | SIEL| 0T | T | 09 | [bsAw
69¢- | SITI- 89| 9.9TL| 9L9TL 1TV912C| 0| 9'69€9 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
99'1¢- | SPH0E- 19| ¥ty | ¥'STivy €LYE0TT | 0| 8'S68Y 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
LS61- AN GG | 8789T | 87T89T ¥89L91C | 0| 8Sh6T TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
€L €see S| Tysel | Tvsel LYISLIT| 0] 97186l 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
€L9- | €£698- 9y | ¥'SSIT | ¥'8SIT 118880C | 0 Sevl 96121 STLYL Sy | 08| ¢C| S1| [bsdw
¥8T | €E9LII- I 8'G9L 8'S9L YTE9L61 0| zevel 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
8- 8€°0S LS| 96S6E| 9656€ TIVIILS | 0| vTvbl | LSSOVT | cTvlevl | 6I€8 | 0T |T| S9 | oyoede
ILYL 8STS | ¥'6S | TII0E | TIIOE 96vCrIS | 0 9601 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
80 LY~ 6169 | S$LV| 9L6VI | 9L6VI 9vPPYTL | 0 8°LS6 CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
€C6v- SLEL | SPP 7698 698 vOTISTL| 0O 8989 LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
v6'€E- S09 | ¥'8¢ v L6Y v'L6Y €6€LTS | 0 ¥'199 6LSST | ¥1991 €26 | 6S || Tz |oyoede
€TLE- | ST10T | 9°LE 819¢ 8 19¢ ¥'6€9809 | 0 9,9t 6868 vLL6 €pS | 9L | T | L1 | 9yoede
6V'ST- | LYEIT 43 7881 7881 TLEVEYS | 0 8'60€ €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | ozs ol g 1woun g LI | "ML | SSUNMUL | 'y joozis | 'yjog | '¢Joy | doo | 3 |do ms

92

UoneUIqUOd OAVXSLL 10J sjusurosoidwit pue sonsnels 'y Q[qel,

L8V I'76 | SS81 | S97S68 | €££+08 8| 8TTTIY | ST606 | 9869ST | LLTS9ES | 891L068 | 8TELST | 0T | €| 09 | [bsAw
6C8 | LLT6| 991 67661 | 9EYLI 8| ¢€rzese | €Ise GTIES | LLOL6ST | 8TSIE9T | 888F8 | 0€ | €| OF | IbsAw
G| ¥8¥8 | LSI T89ET | S09TI 8| SPLOIS | LLOT 660SE | LL99L6 | SOLSOTT | 899SE€ | OF | € | 0 | [bskw
I1L| $8T8|9trl 0£89 L6279 8 | $'LTSPSS | $TES | T'SSSET | €SHT8Y | 80TE9S | 89ISI | 0S| €| vT | Ibshkw
01 | 8S6L | 89¢I LOOY | ¥'L69E 8 | T88ES6S | ¥'60E | 9TO9EI | LLO69T | 888€TE | S¥YOI | 09 | €| 0T | [bsdw
TOEL | IS99 | 9°6T1 | TY9ZEL | ¥9LIT | 9L | ¥ TSLZOY 6Vl | ¥IL89 | LLOSOI | SLVPEL 8¢cy | 08| €| SI | 1bsAw
8C'IL | 6V'8T | TSII V6TL | SVE9 | YL | 8LSSS6E v6 | 98981 LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
66| €691-| SIT | €LSSE0T | $99¢6 8| T080€S | 7686 ¥S0ZE | ¥S6L809 | TS9LYTY | vIC6VE | 0T | € | S9 | dyoede
696 | 86L|STOI| STISIE| SP6LT | SL|SOVS6TY | $S98€ L19ST | 96S9I81 | $29S061 | 898501 | 0€ | € | b | dyoede
€8S | vy L6 0S6L1 | S9I¥91 8 | SPOESH9 | €€61 SOI19 | 068SEL | SPSYSL | 98S€v | 6€ | € | €€ | ayoede
'l | 16LE 06| 998999 | 9°6ST6S | VL |9LSSTOS | 8THL | 9'SSI8 | S9THPE | 9€S€LE | TSLOT | 0S| €| 9T | dyoede
1S9 | I1TLY| ¥08| 9SEIE| 8616 L| €SL98€ 61T | 91L6E| TS900T | OvOICTZ | 08CCI | 6S | €| TT | dyoede
LOY | T16°| ¥SL| 99vIl | $'SLO0T | 89 |+9ST8SE| 8O0L| +'SP8I TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
Ly | L9ES-| 879 S 129 | 79 | ¥'0091+¥ T 9688 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
IS8 | €L9L| TV | €LYS6L | 9¥S61 | L9 | 87H068T 0| €€€6SS8 | 9ISLIT| $9.9TC | SIEL| 0T |T| 09 | 1bsAw
«ad| 1'€8 | 9¢y | TS601 S601 | 979 | TTISTSE 0| 880S¢ 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
LOTL | €995 | TI1v vTvy | TTPY | T9| 000012 0| tTsor 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
LITL | vE€6 | tvop 91€C | 91¢€ 9 | 9°7€9TLT 0 €L81 TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
8¢€l | 9816 | P8¢ T6ET | T6ET 9 | 9VEE9LT 0| TTLTe 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
86'6 | €€0F- | 8'8¢ 7’891 | 9991 9 | VILIVLT €| 968l 96121 STLYL Sy | 08| ¢C| S1| [bsdw
LETL | L9TEL- | P'LE 9'6€1 SE1 9 | 8'LTIL6E 4 9016 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€601 | PLYS | ¥E€€| ¥LITI | TLITI 9 | 9°8008S1 0| +96€1 | LSSOVI | ThLevl | 61€8| 0T |T| S9 | oyoede
01| 9968 | 90¢ 8LS9 | 8'LS9 9 | $'7901C¢ 0 86L 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
9T | 9T16| t'8T STy Str | 8'S | 0LSLST 0 79SS CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
L99 | VLLS 8T 9VOr | 9POY | $°S | TOSHSSE 0 by LYITT | T8€€T| 66T1 | 0S| T | 97 | oyoede
1€6 | 8968 9T v081 | ¥08SI | ¥'S| ¥899€C 0 v zee 6LSST | ¥1991 €26 | 6S || Tz |oyoede
6v'6 | €EVI-| 8¥C TLET | TLEL| TS| 901S6C 0 v'L9T 6868 vLL6 €pS | 9L | T | L1 | 9yoede
6501 LL-| 87TC 901 | T901 | 8§ | 91+980% 0 T9LI €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | oz1s oty | e g sd "I | ssuNmup | 'y joozis | yjog | ‘¢jog | doo | 1 |1do ms

93

uoneuIquod JINDXSLL 10} syuswaaoiduir pue sonsnels :01'V 9qeL

S6'LS-| 8LY6 | 80€ | SHOTOL | TI10L 8| LOS9YE | ST606 | 9869SI | LLTS9ES | 891L068 | 8TELST | 0T | €| 09 | [bsAw
LOLT-| 9L06| OST| 16vST| LL6TT 8| LSTTIV €1ST GTIES | LLOL6ST | 8TSIE9T | 888F8 | 0€ | €| OF | IbsAw
6°SE- | STLY | S9TT | S8LYIT | STTOVOI 8| 0086 LLOT 660SE | LL99L6 | SOLSOTT | 899SE€ | OF | € | 0 | [bskw
676V | 1968 | ¥'T€T | SOVLS | 9°L0TS 8| 8CEPPOY | 8TES | TSSSET | €SPT8Y | 80TE9S | 89ISI | 0S| €| T | IbsAw
TE9Y- | IL6L | ¥'TTT| 9186E | SILIE | L | v8I¥9SY | ¥60E | 9T09ET | LLO69T | $SS€TE | SYHOI | 09 | €| 0T | 1bsAw
YSop- | Stvy | 91T | ¥'861T | 8§8Y0C | 8L | 9EPPLI 6Vl | P 1L89 | LLOSOL | SL¥YEl 8¢cy | 08| €| SI | 1bsAw
80°CI- | vO'LS-| Lyl | 81091 LOST | $'L | ¥'EL6EYL ¥6 | 9°898% LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
20°8- 8S°C | SIYI | STOESS | S6EIVL | SL| 9vITEE | STSTII 6LILE | ¥S6L809 | TS9LSTY | ¥IE6VE | 0T | €| S9 | dyoude
10711~ vL| 9T1 | S08TLT | PIVET L| S08Y9ZE | S'S98€ LT9ST | 9659181 | ¥T9S061 | 898501 | 0€ | € | ¥t | syoede
88°¢C | LO9- 66 | $°S9TST | S1€L91 8 | SPSLSIO €EST | SO119| 068SEL | SYSPSL | 98Sch | 6€ | €| €€ | dyoede
LTS | TLSS| 8S6| $EEHY | 8069€ L| TELITE| STWL| 9S8IS | 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
¥8'8-| SSY9 | 9¢6 901C | 99881 L | $09L8ST 61T | 91L6E| TS900T | 0OVOITT | 08TTI | 6S | €| CCT | 2yoede
8Sp- | LESTI-| TT8 | TT6TI| 90Tl | 89 | 9°LSS88E 80L| tSH8I TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
90 1- | LSE€1| 999 €9€ | 9'8€€| ¥'9 | 8¥8SIET T 9688 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
6V’ IL- | 86VL| 998 2012 | ¥'1012 9 | TEOV68T 0| 912€8 | 9ISLIT| $9L9TC | SIEL| 0T | T | 09 | [bskw
8G'8P- 6'LL| SEL 434! VL | 19| 198T6€ 0| 880s¢ 96£S6 | STSIOL SLZE | 0| T | Op | IbsAw
978 | €9C1 | 9¥8| TI68| TI68| 9| 990S8IY 0| ¥Tsor 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
19CL- | Tre8| v6L| 9ST8| +'STS| 89 | TETTI0S 0 €L81 TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
€€98- | SYIS| 978 | 9V¥S| THYYS| ¥9 | SyIsh 0| TtLTe 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
%29 | L1°€8T- OL| 86Sv| ¥9S¥| T9| LYOSTS €| 968€1 96121 STLYL Sy | 08| ¢C| S1| [bsdw
601 099- | 89v 9Sv | ¥ISY | 89| 9PLY6E9 4 9016 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
LTYC- | 9L 18| 99y | TSSHI SSyl 9 | 8°98550C 0| ¥96€1 | LSSOPI | cTvlevl | 61€8| 0T | T | S9 | dyoede
675 | LTLS| 8SE| 8608| 8608 9 | ¥'8S6L6T 0 86L 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
LLT L'88| veEE| vers| Ters 9 | ¥'SITLYE 0 79SS CIY9E | 866LE | T11T| 6€| T | €€ | ayoede

9-| 906 | SIE| SPIE| O9VIE 9 | ¥'ISEYLT 0 by LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
788" L08 | TIS| TEvT| TEvT| 8S | 869LL6T 0 v zee 6LSST | ¥1991 €26 | 6S || Tz |oyoede
[1°6-| S09-| 88T | 9761 | 9T6I| 8S|9€SEI8E 0 v'L9T 6868 vLL6 €pS | 9L | T | L1 | 9yoede
YL | LY1S-| VLT 16 16 | TS | 9°SvSy6c 0 T9LI €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | oz1s ity | e s Il M| sSUNIUL | 'y joozis | fyjog | ‘pjoy | doo | 1 |do ms

94

uoneUIqUOD [YDXSL, 10J siuawaroldwr pue sonsnels :11°V 2[qeL,

96T | 6T9L 061 | OVS6SE | PEVESE 8| SSTTPOL | 9019 | 91920T | LLTS9ES | 891L068 | 8TEL8T | 0T | €| 09 | [bsAw
169 | 8€TS| S891 | S60VIET | $°99T6T1 | S8 | THE9891 | STHIT | SE€E6T9 | LLOL6ET | 8TSIEIT | 888¥8 | 0€ | € | OF | IbsAw
901 | LVIS 671 LOLEY 061<H 6 | TTEYTOT L09 18S9C | LL99L6 | 8OLSOTT | 899S€ | Ov | € | 0€ | I1bsAw
6I'IT | €L69 | STSEI 9L0T1 | STTOLIT 8 | 0Z90¥C1 | ST'E8T 8LI61 | €SPT8Y | 80TE9S | 89ISI | 0S | €| T | IbsAw
€SI | 209 61 | ST6SOL | STE069 8 | 18666€1 | STSSI 8€9GT | LLO69T | $88€TE | SYYOI | 09 | €| 0T | I1bsAw
9P'8I | 69°€h | SLLIT | SL6CTT | STSIIT| SL| 0E8LTTI ¥9 | SL'69T9 | LLOSOY | SLVPEL 8¢cy | 08| €| SI | 1bsAw
SI'9L | LS9I- 601 6811 | SL'SSIT | SL | 9€0L8El €€ | S08F¢E LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw
vE'S | LS'SIT YTl | 0€1C8T | €OvbLT L| SSITEET | 9TLL 881SY | ¥S6L809 | TS9L8T9 | ¥IS6¥E | 0T | €| S9 | dyoude
8LCI | ¥1°0TI- 66 €S819 0TLT9 8| 8166 | TEIT 8L9ST | 96S9I81 | $29S061 | 898501 | 0€ | € | b | dyoede
SOIL | 600" 16 9¢TLI 75€91 L| T79¢€s8 €88 Obpy | 068SEL | SPSYSL | 98SEv | 6€ | € | €€ | dyoede
9TIT | 8LLI| SLOS| STOE88 | SI1EPS L | T610606 | STS6E | SL'ETSS | 89THPE | 9€SE€LE | TSLOT | 0S | €| 9T | yoede
6LCI 8Y1- SL| ST6I89 | $6699 | SL'L| ¥6£8STI | S611 6LV | TS900T | 0v0OIZT | 08TCI | 6S | €| TT | dyoede
L991 LST-| SS9 riT | ST601C L|SOILIV6 | STTE 16€1 TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
88°C1 8L6-| SL9S| SLOE8| STETS | SL9 | S98€606 | STL S'LE6 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
96°¢€ | ¥9°611-| S8 0S¥81 0S¥81 L| 611€8€T 0 LOS6 | 9ISLIT | S9L9TT | SIEL| 0T |T| 09 | IbsAw
1901 | 90°SS-| t¥b | §LYOOL | $LPOOL | 99 | 1616LLI 0| 880s¢ 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
1201 | 86°€SI-| 91v | 9065C| 906SC 9| LSTESL 0| ¥Tsor 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
16€1 | 189S | 96£| 80SIT| 80SIT| 9| LLLZOTI 0 €L81 TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
8TV | 9L'6S 8¢ €811 | $T8IL| T9|9LEO6I6 0| TtLTe 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
LY'91 | €8°C8S- 9¢ 7618 7918 | 89| TEPO9I1 €| 968€1 96121 STLYL Sy | 08| ¢C| S1| [bsdw
6591 | €€°696- | TSE T66€ 86< 9| PIILIS 4 9016 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
LTS | TTTIL- | ¥HE SE691 | 91E691 9 | €£86¢F1 0| ¥96€1 | LSSOPI | cTvlevl | 61€8| 0T | T | S9 | dyoede
9L’ 1T | 9T'8I 0| +'86IS| ¥'861S 9 | 68T1611 0 86L 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
1€91 | I¥v9 | TLT| 86TLI 86CLI | TS | vyvrsTL 0 79SS CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
€CSI | IV6S | ¥ST| 96£El | 96£€T 9 | 9'7888¥8 0 by LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
SEl | 6TvC| 8¢ ¥S6 ¥S6 | 8'S | ' 176688 0 v zee 6LSST | ¥1991 €26 | 6S || Tz |oyoede
90°91 Y0¢- €T 8 8P 8 8P 9| L9EESL 0 v'L9T 6868 vLL6 €pS | 9L | T | L1 | 9yoede
S9'LI TIg- 1T TLYT LT S| <98TI¢ 0 T9LI €10S 86SS 11€ | 001 | 2| €1 | dyoede
N du o718 el g o o Sy "SI M| sSUNIUL | 'y joozis | fyjog | ‘pjoy | doo | 1 |do ms

95

uoneuIqUIOd JDXSLL I0J sjuswaaoxdwl pue sonsnels 71’V 9[qeL

L8YL- 1126 | 1¥€ | ST961T | SEYOII 8| 065S8S 9816 | €TTOLT | LLTS9EY | 891L068 | 8TELST | 0T | €| 09 | [bsAw
vL9- LS99 | €0€ | 09TT6 | 9vL6S 6 | L09STSI €1ST GTIES | LLOL6ST | 8TSIE9T | 888F8 | 0€ | €| OF | IbsAw
0" LTSy | L91 | S'L8E6Y | SOIESY 6 | 189681 LLOT 660SE | LL99L6 | SOLSOTT | 899SE€ | OF | € | 0 | [bskw
Ll LLTY | €ST | 9°S€TET | TOLTT 6| L6SESST | STES | TSSSET | €SPT8Y | S0TE9S | 89ISI | 0S | €| +T | IbsAw
VL 8L°6€ | 1¥I | TYISIL | ¥'HOSTT 8 | 08LY6ST v'60€ | 97TO9ET | LLO69T | 888€TE | SPPOI | 09 | € | 0T | [bskw
€Y el €0°0€- | STl | T6VIS | 86661 8 | 6810SST 6Vl | P 1L89 | LLOSOL | SL¥YEl 8¢cy | 08| €| SI | 1bsAw
9Vl | 6£881-| 111 | 91¥6C | TLYST 8 | 6966151 ¥6 | 9°898% LSS6Y | 9S¥L9 | 9L1T | 001 | €| TI | 1bsAw

0 1291 | I€1 | 10TvL | 8$¥6T9 L | $¥6T00E | STSTII 6LILE | ¥S6L809 | TS9LSTY | ¥IE6VE | 0T | €| S9 | dyoude
96°€ | 6TTC | 601 | 9709€ | S'6S1TE L| SYESLOY | S'S98€ L19ST | 96S9I81 | $29S061 | 898501 | 0€ | € | b | dyoede
S8y v91- | 86| S¥P0O0T | TIS81 | SL| TT8O99 €EST | SO119| 068SEL | SYSPSL | 98Sch | 6€ | €| €€ | dyoede
81~ 60 1¥ | 86 | 99T€9 | 8€8SS L|TYOE9Ty | STHL| 9°S8IS | 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
8G°G- LY'6E | 806 | t°S6SE | $'SLEE L | $18019% 61T | 91L6E| TS900T | 0OVOITT | 08TTI | 6S | €| CCT | 2yoede
SO¢-| €8S61-| 18 SLLT | 9°€OLT | 99| LI9TSH 80L| tSH8I TP8S8 | 08€L6 | OIFS | 9L | €| LI | oyoede
8S'61- | LS'86™ | 8'8L ve8 | 1608 9| SSYLvY T 9688 0ESPE | 88L0% | 99TT | 001 | € | €1 | dyoede
1S8P- | 9I'SL- | SL | SCILYT | S EILYT L| LE860IT 0| 912€8 | 9ISLIT| $9L9TC | SIEL| 0T | T | 09 | [bskw
69¢- | €611-| 89| TESTL | TESTL L| €611TCC 0| 880s¢ 96£S6 | STSIOL SLze | 0€ || op | 1bsAw
99'1¢- | 8600€- | 19 060% 0607 L| S60081C 0| ¥Tsor 9¢6TS | SOSLS | SSSI | Ov | T| 0¢ | IbsAw
LS'61- Yoy | SS LL9T LL9T L| OLT9LIT 0 €L81 TIPEE | SPOLE | S6I1 | 0S| T | vT | IbsAw
€L STE| TS| 9861 | 9¥861 L| 698L61T 0| TtLTe 9/8TC | S88ST Se8 | 09 || 0z | Ibsdw
€L9- | LI'PLS-| 9P 6911 | 976911 L| 1681112 €| 968€1 96121 STLYL Sy | 08| ¢C| S1| [bsdw
v8T | L91911-| It LSL | ¥TSL L| L868¢61 4 9016 9GLL L1S6 LOS | 001 | T | T1 | IbsAw
€5TS- I'LS | TLS | v€Tve | TeTve 9 | ¥'6£008€ 0| ¥96€1 | LSSOPI | cTvlevl | 61€8| 0T | T | S9 | dyoede
9L'18- €S'IS [819 | +T80E | +'TSOE 9 | 8°08S168 0 86L 65659 | v6089 | €8LE | 0€ | T | v¥ | oyoede
v LS LE99 | TIS | TYEII PE9T | 9°G | T6I8E9L 0 79SS CIY9E | 866LE | T11T| 6€| T | €€ | ayoede
9¢- 8Y°¢8 | 80 SPS | 8PPS | ¥'S | 9°S0I8SH 0 by LYITT | TSEET| 66C1 | 0S| T| 9T | ayoede
9G°GG- TLS | 9P 6€S 6€S | ¥'S | 9L6VLYY 0 v zee 6LSST | ¥1991 €26 | 6S || Tz |oyoede
T6T- | €81EI- | ¥'SE | TSLT| TSLT| 'S | 8LYECSY 0 v'L9T 6868 vLL6 €pS | 9L | T | L1 | 9yoede
90°LT | LYELL- | ¥TE| TYIL | TYIL | TS | ¥'66LOSY 0 T9LI €10S 86SS 11€ | 001 | 2| €1 | dyoede
N g | ozis ity | e s Il M| sSUNIUL | 'y joozis | fyjog | ‘pjoy | doo | 1 |do ms

96

UONBUIqUIOd OAVXSID, 10] sjuowarorduwir pue sonsnels (€1°V 9[qeL,

€IS | L1896 | S8T | ShvLy Z109% 8| 8€196€ | TEYI 00TES | LLTS9ES | 891L068 | 8TELST | 0T | €| 09 | [bshw
ILTL | ¥S¥6 | SST | 190S1 1SSP1 8| L98S8Y 60S | TLLST | LLOL6ST | 8TSTE9T | 888¥8 | 0€ | €| Op | IbsAw
88| vI'SS| TSI | wIvEl STETI 8 | SOPIL9Y | S8801 | SHO0ST | LL99L6 | 8OLSOIT | 899S€ | O | € | 0€ | [bskw
LTS | Y98 | 8THl | TOSI9| 9°SLSS 8| §LITPIS | 8$°€SS VLSS | €SPT8Y | 80T€9S | 89181 | 0S| €| ¥T | IbsAw
€601 | TSIS| 9€I | 8ST9E | TSHTe | $L | S0OLSILY 08€ | TYIES | LLO69T | 88S€TE | 8PPOI | 09 | € | 0T | 1bsAw
ILET | 9¥'8S | 94Tl SYPOL | 90IET | $L|9T9LT8Y | 9€EC| 8016T | LLOSOT | SLVPET | S€€k | 08 | €| S1 | [bshw
01 STO| LI1| ¥'L101 9TEL 8 | TOLL6SY ¥8T | ¥LILI LSS6Y | 9SHL9 | 9L1T | 001 | €| T1 | Ibshw
LS89 | 6vSE-| TTI | 986611 | S'6808TT 8 | SLIEYIS | S9681 0LSOT | ¥S6L809 | TS9L8TY | vIS6VE | 0T | €| S9 | oyoede
9L T | TS6I|STIT| 8OLET| S9TSTT| S'L| STOSEIE | ISIT| ST1TES | 96S9I8T | $T9S061 | 898SOI | 0 | € | ¥v | Syoede
89| €861 96 | S°SOSET | SEI6TI | S'L | $65995S 168 €9ST | 068SEL | SYSYSL | 98Scv | 6€ | €| €€ | ayoede
96°€ 99y | VLS8 SELS SOIS | TL| vE€698Y | ¥'69S | +01TT| 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
SO | €S8P 78| vLSOS | TLEST L | ¥'€8866€ | ¥'61T | TOSYI | TS900T | OvOITT | 08TTI | 6S | €| TT | dyoede
€L | L8661 | 9TL| T66LI | 8TSSI L | 9LTO6LY | $'SPT 8968 TP8SS | 08€L6 | OI¥S | 9L | €| LI | 9yoede
€UL | sv1vl-| T19 ¥101 0€8 L | T0I1SSTS | €81 8'6¥S 0ESYE | 88L0Y | 997T | 001 | €| €1 | ayoede
g g | 9z ol 1 | g " LI | sSUNWL | 'y Joazis | ‘yjog | ‘pjog | doo | 1| 1do ms

97

uoneuIquiod JINDXSID.L 10} syusuwaroidwt pue sonsnels 41y 9[qel,

1€¢Cs- | Sv'Le L6T | T698¢ 6STLE 8 CLO68C | Cevl OF9LE | LLTSIEY | 891L068 | 8TELYT | 0T | € | 09 | [bskw
9y | IL°S6 ¢9¢ IS8T1 IveEll 8 89661¢ 60S G8¢HT | LLOLG6ET | 8TSTEYT | 888¥8 | 0¢ | €| OF | Ibshw
'Oy | 68¥8 | S€ET | S°€e9¢Cl 1241! 8 | SLI9TSY | 68801 LYol LL99L6 | SOLSOTT | 899S€ | OF | € | 0¢ | IbsAw
¢6'eS- | 1968 | 9°6¢£C OvLS | ¥°G8IS 8 | 9°8L60IY | 8€SS 'S8 €S8y | 80TE9S | 89181 | 0S | €| #¢ | Ibskw
1L°9%- 918 €T | YOI9E | 96CCc | 9L | veelvey 08¢ VCOLS LLO69T | 888€TE | 8¥POT | 09 | € | 0T | IbsAw
voey- | 19'6¢ | S°CIT | S16EC ¥80¢ 8 | STLITEY | SL90E | SL'09LT LLOSOT | 8LYPEl 8¢y | 08 | €| ST | IbsAw
€Coe- vy 181 SL6 ev9 L] LEOETE (423 9091 LSS6Y 9SvL9 9L1T | 001 | €| TI | 1bsAuw
c0'8- | €8¢Cr | STV 0€90¢ €EL8Y | S'L | SOTSLYT | S9681 6896 | ¥S6L809 | TS9L8TY | ¥IE6¥E | 0T | € | S9 | oyoede
eLs- | L8L-| 071 6LLIE | SL6SOE | S'L | SET8YSY 1811 88LY | 96S9181 | #T9S061 | 898501 | 0€ | € | t | oyoede
6v°0- | Lv'6l | €01 898¢1 9L6CI | S'L| SYO8ILY 168 [L6¢€ 068SEL | 8YSH8L | 98Sey | 6€ | €| €€ | oyoede
6v'c- | 8I'vy 96 | 81665 | 8VIvS | YL | ¥8SC6SY | v 69S LCIT 89THPE | 9€SELE | TSLOT | 0S| €| 9T | ydede
CO9- | ¥89¥ | TI6 | 9LSIE | 8LEL6T L | 80ce08¢ | ¥6IC C00ST TS900T | 0¥0ITT | 08Tl | 6S | €| CT | oyoede
9°¢- | TCCI- €8 | CISEl SOTT | 89| O0L66IE | 8SPC 9808 858 08EL6 OI¥S | 9L | €| LI | oyoede
LYOl | 98°¢S- 65 <919 89 | 99 L889¢E | €8I 8'88¢ 0esre 88L0¥ 99T | 001 | € | €1 | oyoede
TN duy | ozt oL oy | LI "Ll ML | SSUNIUL | 'V JO 9ZIS ‘vJo# | '¢jo4 | doo| 1 |1do s

98

uoneuIqUIOd [YDXSIDL 10J siuawasoxdwl pue sonsnels :G1'y d[qel.

80°¢€-| 6L96| 10T | T698Y | 6STLY 8 | TLO6SYT | TEVT 9%9LE | LLTS9ES | S91L06S | 8TELST | 0T | €| 09 | 1bsAw
¥8'8 | 8076 | S9T | 1S8IT | 1¥E€IT 8 | LOSYITT | 60S | SSEPI | LLOL6ST | STSTE9T | 888¥8 | 0€ | €| OF | 1bsAw
8¢ | 9808 | €LT | 9LTLI | €¥ISI 8 | TLO616 | TSOT £896 | LL99L6 | SOLSOTT | 899S€ | O | € | 0€ | [bshw
€70 | 8L08| SST| 899L| SEIL 8 | THTTOST | TS 88€9 | €SYTSY | S0TE9S | $9I8I | 0S| €| vz | Ibskw
TSEL | ¥969 | 1€1 | LS6S | PLSE 8| CIECTIT | T8¢€ OLLS | LLO69T | 88S€TE | 8¥PO1 | 09 | € | 0T | 1bsAw
€Iyl vSE | ¥TI | 0T8E | 06€€ 8| 6128611 | 6TF 6€LT | LLOSOT | SLVPET | S€€k | 08 | €| S1 | [bshw
€T6 | LE9S-| SIT| S6ST | €vIl 8 | LEOELTT | TSE 9091 LSS6Y | 9SHL9 | 9L1T | 001 | €| T1 | Ibshw
119 | 88191~ | €TI | €T61ET | TTHOET L | 0628201 | OSET TOPLT | ¥S6L809 | TS9L8TY | vIS6VE | 0T | €| S9 | oyoede
¥P'0 | TOE0T- | €IT | T186S | 0998S 8 | 6VL8ETT | TETT 161S | 96S9181 | ¥29S061 | 898501 | 0€ | € | v | dyoede
€8S | €9vI-| L6 | OWL6I | S8691 L| €I€SST | ¥S6 079% | 068SEL | SPSPSL | 98S€v | 6€ | € | €€ | ayoede
zT| 6911-| 68| S66I1 | LSPII L| ¥60216 | LES ¥SOT | 89THYE | 9€SELE | TSLOT | 0S| €| 9T | ayoede
869 | SO'S-| 08| S8I¥9| SS9 L| 1v6108 | €91 €T€1 | TS900T | 0v0ITT | 08TTI | 6S | €| 7T | dyoede
PI'S- | €€°199- | S8 | 89Sy | 6LET L| 681.86 | €IT 168 TP8SS | 08€L6 | OI¥S | 9L | €| LI | 9yoede
LET | TOTTT- | S9| SSE1| SSIT L| TESSE6 | whT 079 0ESYE | S8LOY | 9IEk | 001 | €| €1 | ayoede
N duy | ozis oty | e g Sy LI | ML | SSUNML | 'vgoazis | v jog | ‘pjog | doo | 1| do ms

99

uoneUIqUIOd TDXSIDL 10J stusuwrosoidwir pue sonsnels 91"y 9[qeL

6L TS~ | 88°L8 | 96T | £98€81 | 0£HT8l 6| T¥SS6ET | TEVI 8ST8T | LLTB9ES | S9TL06S | 8TELST | 0T | €| 09 | 1bsAw
€8°67- | €S€6 | SE€T| ISSLI | 1v€91 8| 89¢616 60S | SSEVI | LLOL6ET | 8TSTE9T | 888¥8 | 0€ | €| OF | IbsAw
vZT- | SU'IS | ¥0T| TI0LTI | S¥6SI 8| €S1e8y | S901 LOSOT | LL99L6 | SOLSOIT | 899S€ | OF | €| 0¢ | 1bsAw
9TvE-| S0T8| 60T | 19IL L1S9 8 | 079891 €99 ¥T08 | €SPT8Y | 80T€9S | 89181 | 0S| €| ¥T | IbsAw
€rsI- L'L9| SLI| 8€£€9 8109 8 | I¥0E6ET 61¢ SSY9 | LLO69T | S88E€TE | SHYOI | 09 | €| 0z | [bskw
€0'8-| 6L1€| 9SI 10LT LTYT 8| SLIVI6 €8T 8LST | LLOSOT | SLVPET | 8€€v | 08 | €| S1 | [bshw
S1'9- SIT-| 8€I| €61C 1761 8 | TI1TEEIT (44 9091 LSS6Y | 9SHL9 | 9L1T | 001 | €| T1 | Ibshw
L9T- | 11'v- | SPEL | 86176 | 1006 L| SOVETIY | S9681 | SPE6ET | $S6L809 | TSOLSTY | ¥1c6vE | 0T | € | S9 | dyoede
88°0- | V¥6l-| SPII | PLISE | STE6EE | SL| 9v08by | 1811 TH09 | 96S918T | $79S061 | 898S0T | 0 | € | ¥¥ | Syoede
vo'l- | LO9E-| SO | TEYET | €0STT 8| 6SILSS 876 T0€E | 068SEL | SPSPSL | 98S€v | 6€ | € | €€ | ayoede
vLE- | 960S| v¥6 | SIVL| Sv¥89 | ¥L| TT6TI6Y | ¥'69S | S0SHT | S9THPE | 9€SE€LE | TSLOT | 0S| €| 9T | yoede
86'9- | LSTE 76 | 9°S00¥ | 9°S8LE L|9L9STIS | ¥'6IT | 98SHI | TS900T | Ov0ITT | 08TTI | 6S | €| Tt | dyoede
9G°¢- | €L°SET- | ¥I8 | ¥PIOT | ¥'S9LT | 89 | TOIITSS | §'SHT 9768 TP8SS | 08€L6 | OI¥S | 9L | €| LI | 9yoede
81°0C- | ¥I'TvI- | T6L | 8TIOL 678 | ¥'9 | 9vTTIsSy | e8I 9°9¢9 0ESYE | 88L0Y | 997T | 001 | €| €1 | ayoede
N w9z ot | emn sy " LI | sSUNWL | 'y Joazis | ‘yjog | ‘pjog | doo | 1| 1do ms

100

[1]

BIBLIOGRAPHY

Advanced Combinatorial Testing System (ACTS), 2012. http://csrc.nist.

gov/groups/SNS/acts/documents/comparison-report.html.

R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of AT& T PMX/StarMAIL
using OATS. AT&T Technical Journal, 71(3):41-7, 1992.

R. C. Bryce and C. J. Colbourn. Constructing interaction test suites with greedy al-
gorithms. In Proceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering, ASE ’05, pages 440—443, New York, NY, USA, 2005.
ACM.

R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Information and Software Technology, 48(10):960 —
970, 2006. Advances in Model-based Testing.

R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise interaction

testing: Research articles. Softw. Test. Verif. Reliab., 17:159—-182, September 2007.

R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic search for interaction
test suites. In Proceedings of the 9th annual conference on Genetic and evolutionary

computation, GECCO °07, pages 1082-1089, New York, NY, USA, 2007. ACM.

R. C. Bryce and C. J. Colbourn. A density-based greedy algorithm for higher
strength covering arrays. Softw. Test. Verif. Reliab., 19:37-53, March 2009.

V. Cerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications,

45(1):41-51, 1985.

101

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering, 23(7):437-44, 1997.

M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augmenting simulated annealing to
build interaction test suites. In Proceedings of the 14th International Symposium on
Software Reliability Engineering, ISSRE *03, pages 394—, Washington, DC, USA,
2003. IEEE Computer Society.

M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable
systems in the presence of constraints. In Proceedings of the 2007 international
symposium on Software testing and analysis, ISSTA °07, pages 129-139, New York,
NY, USA, 2007. ACM.

M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Constructing test
suites for interaction testing. In Proceedings of the 25th International Conference on
Software Engineering, ICSE 03, pages 38—48, Washington, DC, USA, 2003. IEEE

Computer Society.

J. Czerwonka. Pairwise testing in the real world: Practical extensions to test-case
scenarios. In Proc. of the 24th Pacific Northwest Software Quality Conference, pages
285-294, 2006.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-based testing in practice. In Proc. of the Int’l Conf. on
Software Engineering, pages 285-294, 1999.

E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback driven adaptive com-
binatorial testing. In Proceedings of the 2011 International Symposium on Software

Testing and Analysis, ISSTA ’11, pages 243-253, New York, NY, USA, 2011. ACM.

S. Fouché, M. B. Cohen, and A. Porter. Towards incremental adaptive covering ar-
rays. In The 6th Joint Meeting on European software engineering conference and
the ACM SIGSOFT symposium on the foundations of software engineering: com-
panion papers, ESEC-FSE companion 07, pages 557-560, New York, NY, USA,
2007. ACM.

102

[17] S. Ghazi and M. Ahmed. Pair-wise test coverage using genetic algorithms. In Evolu-
tionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 2, pages 1420
— 1424 Vol.2, dec. 2003.

[18] A. Hartman. Software and hardware testing using combinatorial covering suites. In
M. C. Golumbic and I. B.-A. Hartman, editors, Graph Theory, Combinatorics and
Algorithms, volume 34 of Operations Research/Computer Science Interfaces Series,

pages 237-266. Springer US, 2005.

[19] S. Kirkpatrick, M. Vecchi, et al. Optimization by simmulated annealing. science,

220(4598):671-680, 1983.

[20] N. Kobayashi. Design and evaluation of automatic test generation strategies for

functional testing of software. Osaka University, Osaka, Japan, 2002.

[21] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog-ipog-d: efficient test
generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab., 18:125—
148, September 2008.

[22] G. Mats, O. Jeft, and M. Jonas. Handling constraints in the input space when using
combination strategies for software testing. Technical Report HS- IKI -TR-06-001,

University of Skvde, School of Humanities and Informatics, 2006.

[23] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput. Surv.,
43:11:1-11:29, February 2011.

[24] P.J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault detection effectiveness
of n-way and random test suites. In Proceedings of the 2004 International Sym-
posium on Empirical Software Engineering, pages 49-59, Washington, DC, USA,
2004. IEEE Computer Society.

[25] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate
test cases for combinatorial testing. In Proceedings of the 28th Annual Interna-
tional Computer Software and Applications Conference - Volume 01, COMPSAC
’04, pages 72—77, Washington, DC, USA, 2004. IEEE Computer Society.

[26] J. Stardom. Metaheuristics and the Search for Covering and Packing Arrays [mi-

croform]. Canadian theses. Thesis (M.Sc.)-Simon Fraser University, 2001.

103

[27]

[28]

[29]

[30]

[31]

[32]

[33]

K.-C. Tai and Y. Lei. A test generation strategy for pairwise testing. Software
Engineering, IEEE Transactions on, 28(1):109 —111, jan 2002.

J. Torres-Jimenez and E. Rodriguez-Tello. New bounds for binary covering arrays

using simulated annealing. Information Sciences, 185(1):137-152, 2012.

Y.-W. Tung and W. Aldiwan. Automating test case generation for the new genera-
tion mission software system. In Aerospace Conference Proceedings, 2000 IEEE,

volume 1, pages 431 —437 vol.1, 2000.

A. W. Williams. Determination of test configurations for pair-wise interaction cov-
erage. In Proceedings of the IFIP TC6/WG6.1 13th International Conference on
Testing Communicating Systems: Tools and Techniques, TestCom 00, pages 59-74,
Deventer, The Netherlands, The Netherlands, 2000. Kluwer, B.V.

A. W. Williams and R. L. Probert. Formulation of the interaction test coverage prob-
lem as an integer program. In Proceedings of the IFIP 14th International Conference
on Testing Communicating Systems XIV, TestCom ’02, pages 283—, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B. V.

C. Yilmaz. Test case-aware combinatorial interaction testing. Software Eng., IEEE

Trans. on, PP(99):1, 2012.

C. Yilmaz, S. Fouche, M. Cohen, A. A. Porter, G. Demiroz, and U. Koc. Moving

forward with combinatorial interaction testing. Computer, 99(PrePrints):1, 2013.

104

	Introduction
	Background Information
	Combinatorial Interaction Testing
	Traditional Covering Arrays
	Masking Effects
	Test Case-Aware Covering Arrays
	Simulated Annealing

	Related Work
	Covering Array Generation
	Constraint Handling
	Test Case-Aware Covering Array Generation

	Algorithm 3: Minimizing Number of Test Runs
	Proof of Optimality

	Approach
	Architectural Design
	Binary Search for The Outer Search
	Simulated Annealing for The Inner Search
	Initial Set Generation Strategies
	Neighbor Generation Strategies
	Change a Random Index - CRI
	Change a Random t-Tuple - CRT
	Schedule More Test Cases - SMT
	Cover At Least One Missing t-Pair - CMP
	Alter Violating Option - AVO

	Experiments
	Subject Applications
	Operation Model
	Independent Variables
	Evaluation Framework
	Dependent Variables

	Data and Analysis
	Study 1: Comparing Initial Set Generation Strategies
	Study 2: Comparing Neighbor Generation Strategies
	Study 3: Overall Comparison

	Discussion

	Threats to Validity
	Conclusion and Future Work
	Appendices
	Appendix Empirical Results

