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Abstract

This study addresses the Resource Constrained Multi Project Scheduling Prob-
lem with Weighted Earliness Tardiness Costs (RCMPSPWET). In multi-project
environments, the project portfolio of a company does often change dramatically in
time. In this dynamic context, the arrival of a new project requires quoting a due
date while keeping the disruptions to the existing plans and schedules to a mini-
mum. The suggested solution method is an adaptation of the well known shifting
bottleneck (SB) heuristic in the job shop literature. Initially, a base schedule is
obtained by relaxing all resource capacities and solving the resulting model as a
linear program (LP). The SB heuristic then resolves the resource conflicts present
in the optimal solution of this resource relaxation iteratively by solving a set of
single-resource weighted earliness tardiness scheduling subproblems with precedence
constraints. The unit earliness and tardiness costs in the subproblems are estimated
by drawing upon tools from LP sensitivity analysis recently proposed by Bülbül and
Kaminsky [1] for a general job shop scheduling problem. The subproblems in the
SB heuristic are a generalization of the NP-hard single machine weighted earliness
tardiness problem, and a neighborhood search based algorithm is applied to these
for the efficiency of the overall SB algorithm. The solution of a subproblem intro-
duces new precedence relationships based on the concept of resource flows. These
new precedence constraints are incorporated into the LP mentioned above and en-
sure that the capacity of the resource under consideration is observed. These steps
are repeated until all resource conflicts are removed. The order in which the re-
source conflicts are resolved is a major determinant of the final solution quality, and
therefore, a systematic tree search strategy is implemented for resolving the resource
conflicts in different orders. A local search algorithm for the original problem is also
adopted to benchmark the results.
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AĞIRLIKLANDIRILMIŞ ERKENLİK GEÇLİK PROBLEMİ İÇİN DARBOĞAZ

ÖTELEME TEMELLİ ÇÖZÜM YÖNTEMİ YAKLAŞIMI

Mehmet Berke Pamay

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2011
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Özet

Çoklu proje ortamlarında firmaların proje havuzlarında zamana bağlı olarak
ciddi değişimler olmaktadır. Bu devingen yapı içerisinde, yeni bir projenin havuza
dahil olması, mevcut çizelge üzerindeki projelere en az etkiyi yapacak şekilde yeni
gelen proje için bir tamamlanma zamanı belirlenmesini zorunlu kılar. Tanımlanan
bu problem için geliştirilmiş olan çözüm yöntemi işlik çizelgeleme teknik yazınında
sıklıkla kullanılan darboğaz öteleme çözüm yaklaşımının proje çizelgeleme ortamına
uyarlanmış halidir. Çözüm yaklaşımın kapsamında, tüm kaynak kısıtlarının gevşetilmesi
sonucu oluşan doğrusal model çözülerek öncül bir çizelge elde edilir. Sonraki adımlarda
mevcut çizelgedeki kaynak aşımları her kaynak tipi için çözülen erkenlik geçlik yan
problemlerinin sonuçlarına bağlı olarak ortadan kaldırılır. Yan problem çözümünde
kullanılan erkenlik geçlik katsayıları doğrusal model üzerine uygulanan duyarlılık
analizi sonucu elde edilmektedir [1]. Tanıtılan yan problemin çözümü için yöre
tarama tabanlı sezgisel bir yöntem geliştirilmiştir. Her yan problem çözümü ana
probleme eklenen öncüllük kısıtları yardımıyla, sonraki adımlarda ele alınan kay-
nak tipi için kapasite aşımı olmasını önler. Bu şekilde modelin doğrusal yapısı ko-
runurken, diğer kaynak tipleri için duyarlılık analizinin uygulanabilmesi sağlanır.
Bu süreç tüm kaynak tipleri etkin hale gelinceye kadar tekrarlanmaktadır. Son
olarak, kaynak tiplerinin etkinleştirilme sırasının çözüm yaklaşımının performansı
için önemli bir etken olduğundan, ağaç yapısında tarama ve tekrar çizelgeleme
yaklaşımları çözüm yöntemie dahil edilmiştir. Son olarak, sezgisel yerel tarama
yöntemi çözüm niceliğinin sınanması amacıyla geliştirilmiştir.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Building a skyscraper in a metropolitan, preparing a term assignment at school

or organizing a concert for rising interest in global climate change involve various

tasks to be completed in a systematic order to reach the final target. All these

tasks have to be accomplished while considering limitations of resources such as

cash, skilled workers, concert hall etc. as well as predefined precedence relations

between individual steps. This statement perfectly matches with the definition made

by Kurtulus and Davis [4] for a resource constrained project scheduling problem.

Project management approach can be applied to any of these processes to improve

efficiency as a decision tool. Moreover, Browning et al. [5] state that such a wide

range of applications make projects a common structure for organizing works.

Demeulemeester et al. [2] emphasize that decisions in project management can

be classified under three categories: strategic, tactical and operational. Strate-

gic decisions focus on the financing of projects, resource allocation and investment

strategies, whereas project portfolio evaluation, capacity planning and due date quo-

tation belong to tactical decisions. Operational decisions, on the other hand, involve

actions to be taken to generate a schedule. Allocation of resources and timetabling

of activities are considered at the operational level and play an essential role for ef-

ficient realizations of projects. Figure1.1 presents different decision levels of project

management.

Competitive business dynamics force companies to manage multiple projects

simultaneously. Internal company activities like maintenance or R&D, external ac-

tivities performed for customers in order to create a profit like in construction or

1



Figure 1.1: Decision making process in project management as presented in [2]

software development industries involve various examples of multi-project manage-

ment applications. Payne [6], reports that up to 90% of the value of all projects

occur in the multi-project context. Typically, multiple projects share common re-

source pools and the capacities of these resources are not sufficient to satisfy the

demand of all project activities at the same time. Therefore, managers have to take

critical decisions including portfolio selection, resource allocation and scheduling of

multiple projects to remain competitive in the market. The Resource Constrained

Multi-Project Scheduling Problem (RCMPSP), which focuses on scheduling of mul-

tiple projects while using available resource profiles and satisfying the precedence

constraints to optimize the desired objective value, draws attention in the literature

as well as in real life applications.

Various mathematical models are developed to support managers while generat-

ing optimal schedules with respect to selected performance measures. Most of these

models concentrate on static characteristics, where schedules are based on the data
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available before the solution procedure and the effects of unexpected events in the

multi-project environment such as disruptions in projects, arrival of new projects and

modifications in resource availability are not considered. Herbots et. al. [7] points

out that static approaches are less realistic and a revision of the existing schedule

might be required especially when dealing with external projects. The main rea-

son behind the dynamic nature of external projects lies in the complex network of

business relations between companies. Cooperation with other organizations and

subcontractor companies is a very common strategy in multi-project management.

Companies take over responsibility at certain steps of different project networks

and foreseeing the total project load in the future becomes almost impossible. As

a consequence, the project portfolio of companies changes dramatically with time.

Therefore, models dealing with dynamic multi-project environments become more

critical to provide realistic decision instruments.

Although selecting dynamic models is a critical step for realistic implementations

in RCMPSP, additional model characteristics have to be determined to clarify the

problem structure. First, deterministic and stochastic approaches differ in solution

procedures as well as in decision parameters. The arrival times of new projects and

the activity durations can be represented with random variables within a stochastic

formulation. As a common approach in OR literature, the solutions obtained in

stochastic models cover mostly optimization of expected objective values. At this

point, the lack of data to fit random variables will be an obstacle on the way to

model the problem with a stochastic approach. Moreover, the expected values are

only realized in the long run. If the business environment is changing too rapidly,

this would not be appropriate for our purposes. Another option might involve using

dynamic scenarios modeled in a deterministic way where solutions are obtained for

each modification in the problem data. Here, each modification corresponds to a

new scenario or an unexpected event. To clarify, the solution process starts with an

initial project portfolio and a baseline schedule. At a certain point of time a new

project arrives and the existing schedule is revised. This case represents a single

turn in this dynamic environment. Multiple disruptions or events, i.e. the arrival of

3



multiple projects at different points in time, can be simulated and the sensitivity of

performance measures can be compared within a deterministic approach. In other

words, specific solutions are offered for each modification. With this capability,

deterministic dynamic models develop case based action plans for managers and

provide required information about how to deal with an unexpected event at each

turn. Therefore, the model presented in this paper is based on deterministic problem

data with the main focus on creating effective decision tools for dynamic multi-

project environments.

Selecting the appropriate performance measure is essential to reflect the reality.

There are different performance measures in the literature with their own strengths.

The project completion time is a quite popular performance measure showing the ef-

fective usage of resources as well as the responsiveness of a company. From the point

of view of each individual company in a supply chain, minimizing the makespan

of projects is a useful objective to utilize the common resources and narrow the

timespan of the network. However, dynamic decision processes involve progressive

schedule generation steps. Therefore, starting times of activities as well as resource

allocation decisions in the schedule can change dramatically while minimizing the

makespan for modified data sets. Most of the companies cannot handle these devi-

ations, since additional costs might be involved for allocating a resource to another

activity. Moreover, minimizing the makespan for the project network of each indi-

vidual company at the same time is impossible. Therefore, focusing on deviations in

different schedules can absorb the negative effects of dynamic events. At this point,

one should keep in mind that the comparison between schedules for a newly arriv-

ing project cannot be performed, since no baseline schedule for this project exists.

A due date has to be quoted in order to calculate the deviation from a promised

deadline, and not from an existing schedule for this project. Yang and Sum [8] state

that a negotiation procedure between the project owner and the supplier company

is mostly adapted in the decision process to handle this problem. The project owner

wants to complete his own project as soon as possible and offers an increased pay-

ment for an earlier completion time to motivate the supplier. The supplier company,

4



on the other hand, tries to place the new project at the very end of his schedule

to eliminate any late delivery costs for existing agreements. A common decision is

made upon the trade off between the increase in the expected revenue of this new

project and the associated costs for not delivering existing projects on time. The

decision process can be extended if rejecting the offer, which presents the newly

arrived project in this case, is an option for the supplier company.

To be more specific about the economic sanctions of late deliveries, selecting

appropriate time restrictions for each project as well as for each activity and defin-

ing respective costs for violating these deadlines is indeed a common objective for

such complex business networks. Moreover, loss of customer goodwill and reputa-

tion have a similar effect and have to be taken into account. Although, finishing

a project earlier is not penalized within the content of such business agreements,

the costs related to storage and opportunity costs have to be considered during

scheduling process. As a result, punishing both earliness and tardiness, directly or

indirectly, force the companies to schedule all the activities on time or as close as pos-

sible to their due dates. Additionally, quoting additional due dates for new projects

to maximize the revenue makes the problem even more difficult. In general, our

problem is denoted as Resource Constrained (Multi-) Project Scheduling Problem

with Weighted Earliness Tardiness (RC(M)PSPWET ) in the literature and defined

as follows: In a single (multi-) project network with a certain number of available

renewable resource types, a processing time, a due date, resource profiles and asso-

ciated tardiness and earliness costs are assigned to each activity. The objective is to

create a schedule without violating precedence and resource capacity constraints in

which the weighted sum of earliness and tardiness values are minimized. In addition

to this base model, a cost parameter for the completion time(s) of the new project(s),

representing the loss in revenue offered by the project owner, is included. As a re-

sult, the objective of our modified model becomes minimizing the weighted sum of

earliness/tardiness costs and the cost associated with the new project’s completion

time.

Within the context of this problem, the due dates and associated penalties are

5



important parameters defining the characteristics of an instance. An applicable

due date selection procedure is to convert the planned completion times into due

dates. In other words, a baseline schedule, which is accepted by the subcontractor

as well as by the project owner, is generated, and associated costs are defined if

the new schedule deviates from the baseline plan. This approach can be applied to

our deterministic model easily, since each disruption, as explained earlier, provides

a baseline schedule and can be converted into due dates for a new event occurrence.

With this approach, the dynamic problem can be simulated for multiple disruptions.

The variations in revenue and deviations in schedules can be observed for multiple

project arrivals at different points in time. Another strategy might involve defining

some critical progress levels and penalties only for certain milestones of projects.

Defining milestones is actually equivalent to adjusting activity based cost param-

eters. Moreover, higher penalties for project completion times can be selected in

order to reflect different priority levels from a managerial point of view. With this

strategy, the problem can be simplified from an activity due date based to a project

based level. The deviation of each activity is not considered and number of decision

parameters are decreased.

For any of these options, the following step is balancing tardiness penalty values.

An important factor for these penalties is the tightness of due dates. A project with

strict due dates has a greater possibility of becoming tardy so the penalty values for

a unit time will be lower than those under loose due dates where the subcontractor

company has a wider timespan to complete the project on time. However, it should

also be remembered that the total realized penalty for an activity does also depend

on the tardiness/earliness value. For later stages of this research, the relationship

between delivery times and due date quotation penalties per unit time has to be

examined in detail. The cost parameters have to be determined in a way such that

a trade-off between deviation from the baseline schedule and the due date of the

new project exists. Otherwise, the problem can be solved trivially by scheduling the

new project at the very early stages or at the very end of schedule depending on the

relative weights of the cost values.
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The effect of robustness of the baseline schedule on the solution procedure is

also important. Considering the possibility of an unexpected event occurrence and

leveling the resource capacities in order to eliminate negative effects of arriving

project can extend the scope of RCMPSPWET problem. Setting on project due

dates while keeping resource usage under a threshold level, can improve the objective

value and the solution time. A supplier creating the baseline schedule for his current

project portfolio and utilizing resources under the available capacity can use slack

resource capacities to schedule the new project without causing deviations in the

new schedule. However, this might cause an increase in the makespan of the baseline

schedule. At this point, the effects of underutilization of resources and the robustness

of the baseline schedule on the dynamic scheduling procedure has to be questioned.

The sensitivity of the objective function with respect to different resource utilization

levels shall be studied as well.

In this thesis, different solution methods are presented for RCMPSPWET prob-

lem. The dynamics of the problem is analyzed with respect to due date tightness,

cost parameter definition strategies and resource usage level limitations. The main

goal is to devise with solution methods that provide quick and near optimal solu-

tions for this problem. The reason behind it lies on developing decision support tools

for managers, who have to take these critical decisions for their project networks

frequently to survive in competitive markets. At this point, quick solution methods

can make rescheduling, time and cost feasible in comparison with repair heuristics,

which incorporate myopic approaches in most of the cases.

1.1 Contributions

The primary purpose of the present study is to develop an effective linear program-

ming (LP) based method for RCMPSPWET. The following list shows the contribu-

tions of this study:

• An LP-based approach is implemented to solve the original problem. The

procedure is based on a resource decomposition extension of the well known

7



shifting bottleneck heuristic in the job shop literature.

• A local search heuristic is adopted to benchmark the results obtained with the

LP-based method.

• A hybrid approach, combining both methods, is developed to improve the

solution quality.

• A unique data set investigating the effects of due date tightness, due date

distribution, completion time factor of newly arriving project and number of

active resource types on the solution approach will be generated.

1.2 Outline

The thesis is organized as follows: In Chapter 2, the related work in the literature is

presented and an integer programming formulation of RCMPSPWET, as an exact

solution formulation, is introduced. Chapter 3 focuses on the LP-based solution

procedure and provides detailed information about individual steps of the proposed

approach. A heuristic approach for the original problem is presented in Chapter 4.

Introduction of data sets and evaluation of results are made in Chapter 5. Finally,

a conclusion including the comments about the study and possible extensions for a

future work is in Chapter 6.
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CHAPTER 2

LITERATURE SURVEY AND PROBLEM DESCRIPTION

2.1 Literature Survey

The related work in the project scheduling literature does not completely cover all

the aspects mentioned in previous chapter. Therefore, the literature survey includes

articles from different disciplines. In this section, the research papers in resource

constrained project scheduling literature will be presented first. Then, a closer look

will be taken to the weighted earliness/tardiness extension of the problem. The

relevant machine scheduling literature will be also mentioned to give an insight

about applicable solution strategies.

2.1.1 Resource Constrained Project Scheduling Problem

The RCPSP covers various models, solution algorithms and extensions studied in

the literature for different classes of project scheduling problems. Therefore, it is

quite difficult to mention every single extension. However, several survey papers

have been published since 1990s to summarize recent developments in the RCPSP

literature. Interested readers may refer to [9], [10], [11] and [12]. In this section,

related articles to our study will be presented.

2.1.2 Dynamic Resource Constrained Project Scheduling Problem

As it is also mentioned in Chapter 1, the Dynamic Resource Constrained Project

Scheduling Problem (DRCPSP) deals with stochastic as well as deterministic models

depending on the modeling approach to be implemented. Herroelen and Leus [9]
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classifies the related work on DRCPSP under four categories: Reactive scheduling,

stochastic rescheduling, fuzzy project scheduling and proactive scheduling. Note

that our approach is within the scope of first category. Therefore, related work in

the literature will be mentioned only for reactive scheduling processes. However,

readers may also refer to a very recent review paper about the stochastic project

scheduling by Ashtiani et al. [13].

The models focusing on reactive scheduling try to model any unexpected event

within a deterministic approach. The concept is based on the presence of a baseline

schedule similar to our approach, and minimizing the effects of the unexpected

event is the main objective. As stated earlier, two different options can be used

to accomplish that. First, the baseline schedule can be repaired. Second, a full

rescheduling process can be adopted to solve the problem. Artigues et al. [14] study

the case, where a new activity has to be inserted in the baseline schedule. The

objective is to minimize the maximum lateness in a multi-mode multi-project setting.

The multi-project environment is transformed to a resource flow network setting

and dominant insertion cuts are used to generate the new schedule. El Sakkout

and Wallace [15], on the other hand, proposed a solution method for minimizing

the weighted absolute difference between the starting time in the baseline schedule

and in the modified schedule for each activity. The weighted absolute differences

correspond to earliness/tardiness concepts with symmetric costs if the finishing times

in the baseline schedule are converted into due dates. They propose a repair based

heuristic approach to solve this problem.

2.1.3 Resource Constrained Project Scheduling Problem with Weighted

Earliness/Tardiness Costs

The existing work on RCPSPWET addresses the single project version of our prob-

lem. To the best of our knowledge, no research has been conducted on a problem

environment with multiple projects. Moreover, the concept of a baseline schedule is

also not included in most of the studies. Neumann et al. [16] mentions an original

schedule subject to change as a result of unexpected events. The limited work in
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the literature includes some exact solution approaches as well as heuristic methods

for the problem.

An exact solution procedure for the resource unconstrained version of the prob-

lem is suggested by Vanhoucke et al. [17]. The objective function is composed of the

weighted sum of earliness/tardiness values. This approach is based on a recursive

search algorithm and consists of two main steps. First, a schedule is generated by

scheduling activities at their due dates or later while considering precedence rela-

tions only. As a result, no right shift in the schedule can decrease the objective value.

Therefore, in the second step of the algorithm the set of activities are selected, for

which a backward shift can decrease the objective value. This is mainly done by

implementing a recursive search. Two different studies are built upon contributions

of this article. First, Vanhoucke et al. [18] extend the model with resource capac-

ity constraints. With the exact solution algorithm for the resource unconstrained

version on hand, they developed a branch and bound algorithm. This systematic

search method is based on solving the resource conflicts in a resource unconstrained

solution. Precedence relations are added between activities in process during a re-

source conflict period. Each conflict corresponds to a new node in the search tree

and feasible solutions are obtained if all conflicts are resolved. A further extension

of the resource constrained model is mentioned in [19]. In this study, for each ac-

tivity, various due date options are offered. Each option differs in tightness and

unit cost value of the due date. That means, if an earlier due date is selected for

an activity, the unit earliness and tardiness cost values are lower than those for a

loose due date. The objective is to select an appropriate due date option for each

activity and generate a schedule such that the weighted sum of earliness tardiness

values is minimized. A double branch and bound algorithm is developed to solve

this problem. First, the resource unconstrained model is solved with the convex

due date cost profiles. These profiles are obtained by converting the combination of

different due date cost functions for each activity into a convex envelope, which is

the highest convex function fitting below the cost profile. Thereby, a single due date

is selected for each activity. However, unit earliness or tardiness costs might change
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according to the convex envelope profile. The solution is a lower bound for the

actual due date profile and the first branch and bound is applied while considering

the distance between the convex envelope and the original due date profile for each

activity completion time. The optimal solution is obtained after applying a second

branch and bound in order to cope with the resource conflicts as in [18].

One of the most recent studies is by Ballestin et al. [20]. The authors develop an

iterated local search algorithm for the problem. A population of feasible solutions is

generated and local search procedures are applied to improve the objective function

value. One important thing to mention about this work is the representation of

a schedule. Activity lists and a schedule generation scheme are used to generate

corresponding schedules. The activities are scheduled iteratively with respect to a

parameter called simulated due date, which is the completion time of an activity

in a randomly generated precedence feasible but resource unconstrained schedule.

Note that, simulated due dates are selected instead of the original due date values

in the problem data in order to create diversity in the population. Four different

local search procedures are then applied to existing schedules. At this stage, the

activity lists are not changed; instead, schedules are modified in order to obtain

improved solutions for a particular activity list in the population. To expand the

search space, activity lists are perturbed. The sequence of activities in the list as

well as the simulated due dates are updated according to five different perturbation

procedures.

Another list-based heuristic approach is proposed by Nanobe et al. [21]. This

work covers a variety of project scheduling problems with convex cost functions

including the weighted earliness/tardiness problem. The idea behind the solution

procedure relies on keeping event lists to obtain schedules. Each activity consists of a

start- and an end-event, where positions of events in a list define priority relations.

Each list can be represented on an event-on-node network presentation, and the

dual problem can be solved as a minimum cost network flow problem. It should be

noted that event lists have to be resource and precedence feasible. This is done by

controlling the total resource demand of activities which are allowed to be processed
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simultaneously. If this is the case, the list is modified and made feasible by changing

the positions of events. A neighborhood is defined by moving events in the list

backward or forward. Furthermore, an iterated local search is applied to the solution

with the best objective value.

2.1.4 Machine Scheduling

Weighted tardiness as well as weighted earliness/tardiness problems have been stud-

ied thoroughly in machine scheduling literature. Both of these objectives are mod-

eled in single machine, job shop and flow shop scheduling environments. It should be

noted that the single machine problem is also considered in many job shop schedul-

ing solution approaches as a subproblem. This is mainly done by decomposing the

main problem into single machine subproblems. In such decomposition algorithms,

the first problem to be solved is the sequencing problem. The processing sequence

at each machine is obtained by solving the sequencing problem. Once a sequence

is determined, the operation starting times are then obtained by solving the second

subproblem, referred to as the optimal timing problem, which is solved for the given

operation sequence on each machine.

Avci and Storer [22], Brandimarte et al. [23] study job shop scheduling problems.

The first article studies the weighted earliness/tardiness problem, whereas Brandi-

marte et al. study the weighted tardiness problem. They propose neighborhood

search algorithms by modeling the optimal timing subproblem as a maximum cost

network flow problem. The neighborhood definition is based on changing directions

of disjunctive arcs in the network, which corresponds to changing the sequence of

operations processed on the same machine. Both studies define specific properties of

neighborhood structures for finding improving moves. Thereby, the required number

of iterations is decreased and the solution quality is improved.
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2.2 Problem Environment

2.2.1 Resources

In [10], four different types of resources are emphasized: renewable, nonrenewable,

doubly constrained and partially renewable resources. Nonrenewable resources have

limited capacities over the project horizon without any restrictions for the consump-

tion within each period. Renewable resources, on the other hand, are limited on a

time period basis. That means, there is a certain capacity which is renewed at the

beginning of each time period. Doubly constrained resources are limited on a time

period as well as on a project horizon basis. Finally, partially renewable resources

are similar to renewable resources, but they are limited within a specific range of the

time horizon instead of each period of time. For instance, the available capacity of

a partially renewable resource type cannot exceed 5 units in 3 consecutive periods.

(a) Renewable resource usage
profile

(b) Non-renewable resource usage
profile

Figure 2.1: Resource usage profile examples as presented in [3]

Most of the work in the literature use renewable and nonrenewable resources in

their models. The remaining two types are rarely implemented to reflect specific

resource characteristics. In our study, we will only consider renewable resources.

The reason why nonrenewable resources are not included is that our problem is

modeled in a single mode setting, which will be further explained in the problem

formulation section.
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2.2.2 Network Structure

The RCPSP scheduling process includes determining starting times of activities

with respect to available resource capacities and the temporal relations between ac-

tivities. Precedence relations, which are used to define these temporal relations, are

mostly imposed due to the technological reasons. Four different types of precedence

relations are mentioned in [24] : start to start (S-S), start to finish (S-F), finish to

start (F-S) and finish to finish (F-F). All these precedence relation types correspond

to specific time lags between starting times or finishing times of two activities. A

minimum time lag F-F precedence relation, for instance, dictates that a predefined

amount of time has to elapse between the finishing time of an activity and the

finishing time of its successor.

The network structure also varies with respect to the selected presentation scheme.

Activity-on-node and activity-on-arc network structures are commonly used for

project scheduling problems. In activity-on-node networks, each node corresponds

to an activity and directed arcs stand for precedence relations. In activity-on-arc

networks, on the other hand, activities are defined by event nodes. For each activity,

there is a start and an end node. The completion of the activity is presented by

an arc between these two nodes. Precedence relations are also presented by arcs

between events depending on the type of the precedence relation. In our problem

environment, activity-on-node networks with F-S zero time lag type precedence re-

lations will be used to describe the problem data. Note that all the instances in

this study are starting with dummy start projects and ending with dummy finish

projects.

2.3 Problem Formulation

The model presented in this study covers a single mode RCMSP. As it is proven by

Blazewicz et al. [25], RCPSP is NP-Hard. Although our problem is mainly defined

as a RCMSPWET and extends RCPSP with a nonregular objective function [18], it

does not only include the sum of weighted earliness/tardiness costs. The considered
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scenario is based on an existing project portfolio with a baseline schedule on hand,

where a new project arrives on top of a baseline schedule. The objective is first

to quote a due date for the new project and also generate a new schedule while

minimizing the total weighted deviation of finishing times. Therefore, the problem

becomes a weighted earliness-tardiness problem with an additional cost component

for the quoted due date of the new project.

The problem is a single mode problem. That means, each activity can only be

executed according to a single recipe where the resource requirements and activity

durations are fixed. It is important to mention that we consider only renewable

resources. Since there is only a single way to execute each activity, it does not make

any sense to check whether the problem is feasible with respect to nonrenewable

resources. It is straightforward to see that the nonrenewable resource feasibility is

sustained when the sum of requirements is no more than the available capacity of a

particular nonrenewable resource type. Moreover, once an activity is started, it has

to be completed without interruption, in other words, preemption is not allowed.

The work done by Pritsker et al. [26], is one of the earliest mixed integer (MIP)

models developed for the RCPSP. An extension for the multi-mode version of the

problem is mentioned in Sperenza et al. [27]. These two models differ in their defi-

nitions of 0-1 decision variables as well in the structure of their objective functions.

Although our problem setting is not similar to any of these formulations, the model

presented below is based on the models studied in these works.

2.3.1 Sets and Indices

T = set of time periods

I = set of all projects in the baseline schedule

I∗ = set of all projects including the arriving project

h = |I|

h+ 1 = index of the arriving project

Ji = set of all activities of project i

Pi = set of precedence relations between all activities j ε Ji of project i
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R = set of all renewable resources

2.3.2 Parameters

Wrt = available amount of renewable resource r in period t

ESij = earliest start time of activity j of project i

LSij = latest start time of activity j of project i

dij = due date of activity j of project i

pij = processing time of activity j of project j

wijr = renewable resource requirement of activity j of project i of type r per unit

time

eij = earliness penalty of activity j of project i per unit time

tij = lateness penalty of activity j of project i per unit time

K = due date penalty for the arriving project per unit time

The parameters presented above are required to define an instance. For each

activity, pij, wijr values define the single execution mode. However, there are ad-

ditional parameters for activities depending on their status in the problem. First,

for activities in the baseline schedule, a due date and corresponding earliness and

tardiness values must be present in the problem data. A completion time factor

standing for the cost associated with the completion time of the arriving project

has to be also included. Note that eij, tij, dij and K are not part of the original

problem data in the experimental study. They have to be determined according

to the prescheduling procedure, which will be detailed in Chapter 5. Finally, the

available capacities of renewable resources are required. Note that the earliest and

latest start times of activities can be calculated for a given time horizon T by using

the conventional forward and backward pass algorithms of the critical path method.

A proper time horizon can be selected by summing up the processing times of all

activities and adding it to the maximum due date value. Although, a smaller T

value can improve the performance of an exact solution algorithm and decrease the
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number of variables in the model, it is not possible to narrow the theoretical time

horizon, since our objective function is nonregular. Therefore, an increase in the

makespan of the whole multi-project network might indeed decrease the objective

function value.

2.3.3 Decision Variables

The decision variables listed below have to be determined within the solution pro-

cedure in order to obtain a schedule. The 0-1 decision variable, xijt, is defined for

each activity in the multi-project network including the dummy start and finish

activities. For the activities in the baseline schedule; a finishing time, earliness and

tardiness values have to be determined. For the arriving project, a due date has to

be quoted. As stated in Chapter 1, this is done by selecting the finishing time of

the dummy finish activity of the arriving project as the quoted due date.

xijt =

1 if activity j of project i starts at time period t ,

0 otherwise.

fij = finishing time of activity j of project i

dh+1 = due date of arriving project

Eij = earliness of activity j of project i

Tij = tardiness of activity j of project i

2.3.4 Mathematical Model

Model RCMPSPWET :

min
∑
i ε I

∑
j ε Ji

(eij · Eij + tij · Tij) + K · dh+1 (2.1)

fil − fik ≥ pil ∀ i ε I∗ , ∀ (k, l) ε Pi (2.2)
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fij =

LSij∑
t=ESij

xijt · t+ pij ∀ i ε I∗ , ∀ j ε Ji (2.3)

Eij ≥ dij − fij ∀ i ε I , ∀ j ε Ji (2.4)

Tij ≥ fij − dij ∀ i ε I , ∀ j ε Ji (2.5)

dh+1 ≥ fh+1j ∀ j ε Jh+1 (2.6)

∑
i ε I∗

∑
j ε Ji

t∑
θ=max{ESij ,t−pij+1}

xijθ · wijr ≤ Wrt ∀ r εR , ∀ t ε T (2.7)

ESij∑
t=LSij

xijt = 1 ∀ i ε I∗ , ∀ j ε Ji (2.8)

xijtε {0, 1} ∀ i ε I∗ , ∀ j ε Ji , ∀ t ε ESij, . . . , LSij (2.9)

dh+1, fh+1j ≥ 0 ∀ j ε Jh+1 (2.10)

Eij, Tij, fij ≥ 0 ∀ i ε I , ∀ j ε Ji (2.11)

The model introduced above is a minimization problem, where the objective

function consists of weighted sum of earliness and tardiness values of the activities

in the baseline schedule and the completion time cost of the new project. Constraint

(2.2) defines the precedence relationships for each project. The finishing times of

the activities are given in constraint (2.3). Constraints (2.4) and (2.5) determine

the earliness and tardiness values, respectively. The quoted due date value, in other

words the completion time of the arriving project is set by constraint (2.6). The

renewable resource capacities for each time period are given in constraint (2.7).

Finally, constraint (2.8) is included to ensure that each activity is assigned once and

constraints (2.9), (2.10), and (2.11) define the domains of the decision variables.
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CHAPTER 3

SOLUTION APPROACH

Our solution approach is mainly an extension of the machine-based decomposition

heuristic studied by Bülbül and Kaminsky [1]. Therefore, a closer look will be taken

at the original article, before presenting the general flow of our algorithm.

A shifting bottleneck heuristic for a large class of job shop scheduling problems

is presented by the authors. We note that, although the suggested approach is

applicable to a wide range of problems, these problems are limited to those for

which their optimal timing subproblem can be modeled as an LP. The objective

function studied in this article consists of two components: an intermediate holding

cost component and a cost component which is a function of completion times.

The objective function involves weighted costs of earliness and tardiness values and

intermediate holding costs. Additionally, a weighted total makespan term is also a

part of the objective function. As stated before, the solution strategy can be defined

as a modification of the shifting bottleneck heuristic, which was originally developed

by Adams et al. [28]. As a decomposition based heuristic, the subproblems of the

bottleneck single machines in the job shop are solved iteratively. The disjunctive

graph representation is used to give a better understanding of the solution approach.

Two different types of arcs are adopted in order to define the relations between

the operations. The first type corresponds to the precedence relations between

the operations of the jobs. These arcs are fixed and given in the problem data.

The second type of arcs are called disjunctive arcs. They represent the sequencing

decisions made between the operations to be processed on the same machine. By

fixing these arcs, machine capacity violations are prevented. Thereby, by solving
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the single machine subproblems iteratively, disjunctive arcs of machines are added

to the network. The key steps of the algorithm are given below:

• At the initial state, no decisions are made about the sequences of jobs on the

machines in the job shop, i.e. no disjunctive arcs in the network are fixed.

Therefore, machine capacity constraints are ignored.

• At each iteration, single machine subproblems are solved for each unscheduled

machine. The bottleneck machine is determined according to the objective

values of the single machine subproblems. The disjunctive arcs for the bot-

tleneck machine are added to the network. Thereby, the machine capacity

constraints of this particular machine is no longer violated. Rescheduling of

already scheduled machines is also applied as an option to improve the sched-

ule.

• These steps are repeated until all the machines are scheduled. In other words,

the disjunctive arcs for each machine are fixed, such that no capacity con-

straints can be violated.

The single machine subproblem is not solved according to the original problem data,

but instead a sensitivity analysis is applied to reflect the changes after adding corre-

sponding disjunctive arcs for already scheduled machines. That means, the costs for

moving the operations according to the current state of the schedule are estimated.

This mainly done by determining the change in the objective function value, if the

finishing time of an operation is increased or decreased by a representative time

unit. An approximation for this estimation is obtained by implementing a single it-

eration of the dual simplex method. Note that a partial tree search is also included

to process different sequences of scheduling the machines. Since our approach is an

extension, no further detail will be provided about the job shop study.

After introducing the inspiring work in the literature, the implementation for

the RCMPSPWET will be presented. The general flow of the algorithm is given

in Figure 3.1. Note that the tree search procedure is not illustrated in this figure.

First of all, conflicts of different resource types are solved. This step corresponds
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Figure 3.1: Flow chart of the solution approach.

to fixing disjunctive arcs of the bottleneck machines in the original paper. At the

beginning of the solution method, all resource constraints are relaxed. Sensitivity

analysis is applied to estimate the costs for moving activities earlier or later by a

representative time unit in the resource unconstrained schedule. A single resource

subproblem, which will be introduced in the upcoming sections, is solved for each

resource type. According to the objective function values of the single resource

subproblems, the bottleneck resource type is determined. For this particular resource

type, a constraint propagation algorithm is used to avoid further resource conflicts.

As it is stated in the previous paragraph, the solution approach can be applied to

problems whose optimal timing subproblem can be modeled as an LP. Therefore, the

constraint propagation algorithm is used to generate resource capacity preserving

LP models for activated resource types. Once the associated constraints are added
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to the model, the subproblem data is updated and new bottleneck resource type is

determined. This process is repeated until all the resource types in the problem are

activated. Just like in the original solution procedure, tree search and rescheduling

strategies are adapted to our approach.

3.1 Resource Unconstrained Problem

As the first step of the solution procedure, the model of the resource unconstrained

problem is presented below. As stated in chapter 2, the original model is an MIP

model. The resource capacities are controlled by introducing 0-1 decision variable

xijt, which is set to 1, if activity j of project i starts at time t, and is set to 0,

otherwise. However, the resource unconstrained version can be modeled as an LP.

Resource Unconstrained LP Model :

min
∑
i ε I

∑
j ε Ji

(eij · Eij + tij · Tij) + K · dh+1 (3.1)

flj − fkj ≥ plj ∀ i ε I∗ , ∀ (k, l) ε Pi (3.2)

Eij ≥ dij − fij ∀ i ε I , ∀ j ε Ji (3.3)

Tij ≥ fij − dij ∀ i ε I , ∀ j ε Ji (3.4)

dh+1 ≥ fh+1j ∀ j ε Jh+1 (3.5)

dh+1, fh+1j ≥ 0 ∀ j ε Jh+1 (3.6)

Eij, Tij, fij ≥ 0 ∀ i ε I , ∀ j ε Ji (3.7)

The objective function(3.1) consists of the weighted sum of earliness/tardiness

values of the activities in the baseline schedule and an additional term stands for

the completion time of the newly arriving project, just like in the original model.

Constraint (3.2) introduces the precedence relations between the activities. Earliness

and tardiness values are determined in constraints (3.3) and (3.4), respectively.

Completion time of the arriving project is determined in constraint (3.5). Finally,
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the lower bound values for the decision variables are set in constraints (3.6) and

(3.7).

3.2 Sensitivity Analysis

Manipulating the original data is an important part of our solution approach. This

new data has to reflect the current situation of the problem, in other words, the

effects of already activated resource types. On the other hand, it should provide the

appropriate costs for making any changes in this schedule. This is mainly done by

performing a sensitivity analysis in our study.

At a certain step of the algorithm, once the resource unconstrained LP problem

is solved, an objective function value for the original problem is obtained. The

solution is probably infeasible, since not all resource capacity constraints are active.

The main purpose of the sensitivity analysis is to determine the cost of shifting

each activity later or earlier in time by a representative time unit of δ. Thereby, the

modified earliness and tardiness costs for each activity can be estimated by assuming

that the completion time in the solution is a due date. It should be noted that these

modified values are obtained for all activities in the problem including the ones of

the newly arriving project. As a result, the objective function of the subproblem,

which will be introduced in the upcoming sections, consists of the weighted sum of

modified earliness/tardiness values only.

There are two different approaches to estimate the modified cost values. Both of

them are based on the LP solution obtained at the beginning of each iteration. In

general, constraints (3.8) and (3.9) are added to the model in order to determine the

change in the objective function value of the problem. The first constraint represents

the case of shifting the activity by δ time units later and the second one stands for

moving the activity δ time units earlier. Remember that these constraints are added

to the model one at a time for each activity and, one of the aforementioned options

involves adding the constraints for each activity, building the new model and solving

it. This process has to be repeated two times for each activity. At each time, the

estimated cost value is calculated by dividing the difference between the objective

24



function value of the LP at the beginning of iteration and the objective function

value of the constraint added LP by δ. By doing this the modified LP is solved to

optimality for each activity and the complete procedure of the sensitivity analysis is

applied. However, considering the number of activities and the number of iterations

in the solution procedure, this approach will be computationally costly.

fij ≥ d∗ij + δ (3.8)

or

fij ≤ d∗ij − δ (3.9)

An alternative way of performing the sensitivity analysis is using an approxi-

mation for modified cost values. This is mainly done by applying a single iteration

of dual simplex method. Once the optimal solution for the LP model is obtained,

adding one more constraint, either (3.8) or (3.9), makes the primal model infeasi-

ble. The dual model, on the other hand, is still feasible. Therefore, the dual simplex

method can be applied to repair the infeasibility of the primal model. By performing

one iteration of the dual simplex method, the actual earliness/tardiness costs can

be approximated. It is important to mention that all these calculations are made

by using the data available in the LP optimal solution at the beginning of each

iteration. In general, earliness and tardiness values can be calculated according to

the expressions given below:

e∗ij =
ct

Ajt
= − max

k 6=j|Ajk>0

ck

−Ajk
(3.10)

and

t∗ij = − ct

Ajt
= − max

k 6=j|Ajk<0

ck

Ajk
(3.11)

As stated above, these expressions are obtained by a single implicit dual simplex

iteration, where ct is the dual cost of the entering variable t and A =
(
AB AN

)
=(

A−1B AB A−1B AN
)

=
(
I AN

)
, where AB is the basis matrix. Note that Ajk is the
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element of the matrix A with the row index j and the column index k. We simply

apply a ratio test to the LP model and calculate the change in the objective func-

tion explicitly. Readers may refer to [1] for more detailed information about the

approach.

3.3 Single Resource Subproblem

The data obtained in the sensitivity analysis is used in the single resource sub-

problem. In general, for each activity including the activities of the newly arriving

project, a modified due date value, which is equal to the completion time of the ac-

tivity in the LP model and earliness/tardiness values are defined. As stated before,

these values are the costs for moving an activity earlier or later in time. In the single

resource subproblem, a schedule has to be generated while considering the capacity

constraints of the candidate resource type only. Once a schedule is obtained, the

network will be modified with the constraint propagation algorithm, which will be

explained later, such that no resource infeasibilities of the activated resource occur,

in the subsequent iterations.

One way of solving the single resource subproblem is developing the associated

model and solving the problem with the exact solution method. This model is

represented below:

Model for the Single Resource Subproblem for a resource type k:

min
∑
i ε I∗

∑
j ε Ji

(
e∗ij · Eij + t∗ij · Tij

)
(3.12)

(2.3), (2.8), (2.9) and (2.11)

fil − fik ≥ pil ∀ i ε I∗ , ∀ (k, l) ε P ∗i (3.13)

Eij ≥ d∗ij − fij ∀ i ε I∗ , ∀ j ε Ji (3.14)
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Tij ≥ fij − d∗ij ∀ i ε I∗ , ∀ j ε Ji (3.15)

∑
i ε I∗

∑
j ε Ji

t∑
θ=max{ESij ,t−pij+1}

xijθ · wijk ≤ Wkt ∀ t ε T (3.16)

fh+1j, Eh+1j, Th+1j ≥ 0 ∀ j ε Jh+1 (3.17)

The model is actually the original RCPSPWET model in a multi-project en-

vironment. That means, the objective function consists of the weighted sum of

earliness and tardiness values only. Moreover, the model is a MIP model because

of the 0-1 decision variable xijt, which is exactly the same variable presented in the

model for the original problem in Chapter 2. Note that constraints (2.3), (2.8),

(2.9) and (2.11) are taken from this model. Constraint (3.13) stands for precedence

relations of projects in the baseline schedule and the arriving project. The original

precedence set Pi for a project i is replaced by the set P ∗i , which includes the original

precedence relations as well as the arcs added in the network for activated resource

types by the constraint propagation algorithm. The earliness and tardiness values

according to the modified due date d∗ij are imposed in constraints (3.14) and (3.15).

Constraint (3.16) is added to the model in order to control the resource capacity of

the activated type k. Constraint (3.17) define the range of the decision variables.

Initial experiments conducted with very small instances consisting of 20 activities

show that implementing the exact model for the single resource subproblem into the

solution procedure is computationally expensive. Even for these small instances,

the required CPU times are longer than the amount of time required for the exact

solution method of the original problem. There are actually two main reasons behind

that. The first reason is that the model for the single resource subproblem is a MIP

model just like the one for the original problem. The number of constraints are

decreased by selecting only one type of resource. However, additional constraints are

also added by defining earliness and tardiness values for the newly arriving project.

In general, the size of this model is slightly smaller in comparison with the original
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model. The second disadvantage of the model is that the single resource subproblem

has to be solved for several times in the solution procedure. For example, in an

instance with five resource types for a given activation sequence of resources, the

subproblem has to be solved for five times. It should also be noted that this number

increases dramatically as tree search and rescheduling steps are included. Therefore,

solving the single resource subproblem with the exact model is computationally

prohibitive. An alternative approach is suggested in the upcoming subsection.

3.3.1 A Heuristic Approach for the Single Resource Subproblem

The heuristic approach proposed for the single resource subproblem is a local search

algorithm. A generalization of the same method is developed for the original prob-

lem in order to benchmark the results. Therefore, the detailed structure and steps

of the procedure are presented in Chapter 4 including the differences between im-

plementations for the subproblem and the original problem.

The performance of the heuristic approach is initially tested by comparing the

solution quality of the algorithm with that of the exact MIP model. An initial

experiment is conducted with 10 instances in the data set with 20 activities each.

For each solution of the single resource subproblem, the results obtained by both

methods are compared. The results are shown in Figure 3.2. As it can be also seen

in the figure, the heuristic approach performs well for a total of 1169 single resource

subproblem results.

3.4 Constraint Propagation Algorithm

Once the single resource subproblem is solved at a particular step of the solution

algorithm, the structure of the network has to be modified in order to reflect the

schedule obtained in the subproblem and avoid resource infeasibilities of the acti-

vated resource type. In job shop scheduling, the original model is an LP model and

the solution of the subproblem is introduced by adding additional precedence arcs to

the network. Therefore, the structure of the model does not change. For the RCPSP

extension, a similar approach has to be implemented in order to conserve the LP
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Figure 3.2: Comparison of the exact solution and the heuristic approach for the
single resource subproblem.

characteristics of the resource unconstrained model while preserving feasibility of

the already activated resource types. One way of doing this is adding additional

precedence constraints to the model. There are several studies in the literature fo-

cusing on this property of the RCPSP networks. Artigues et al. [14] used resource

flow arcs to represent a schedule. Vanhoucke et al. [17] added additional precedence

arcs to the original problem for the activities in process during a resource conflict.

Another study is performed by Policella et al. [29]. In this study, the main purpose

is to robustify a solution by converting the associated schedule into a resource fea-

sible resource unconstrained model. The partial order schedule as defined by the

authors, is an activity network, such that any possible temporal solution is also a

resource-consistent assignment. That means only precedence relations are used to

attain resource feasibility. This is mainly done by defining flows for each unit of

resource from the dummy start activity of the project to the dummy finish activity

for a given schedule. Each activity can only transfer resource to activities, which

start after its finishing time. If no precedence arc already exists in the network

between two activities transferring a resource unit, an arc is added to the network.
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In this study, we use a similar concept of partial order schedules. For a given

solution of the single resource subproblem, we will convert this schedule into a

network consisting of temporal arcs, such that no resource infeasibility can occur

for this particular resource. In order to do that, an LP constraint propagation

algorithm is proposed. The parameters used in the algorithm and the pseudocode

of the algorithm are presented in Appendix A. The flow of the algorithm is as follows:

• First, each activity has a demand for the considered resource type equal to its

resource requirement. Additionally, a source node with the available capacity

equal to the total capacity of the resource and a sink node with the demand

equal to the total capacity are introduced.

• All the activities in the schedule are sorted according to their starting times.

The algorithm selects the activity with the minimum starting time and satisfies

its demand by transferring the resource from already processed activities, for

which the finishing time is less than or equal to the starting time of the activity

in process. Note that, at the beginning of the algorithm only the source node

is in the processed activity list.

• There are two options while satisfying the demand of an activity. The resource

transfer can be done over existing precedence relations or by adding additional

arcs to the network. In our algorithm, we first transfer resources to an activity

from its predecessors in the processed activity list, that means from activities,

which are connected to the activity in process with an arc. If the resource

amount offered by those activities is not enough, resource is transferred from

other activities in the processed list. At this point, the candidates are selected

according to the maximum available resource capacity. Thereby, the number

of additionally propagated arcs is minimized.

• If the resource demand is satisfied, the activity is added to the processed list

with the available capacity equal to its requirement.

• This process is repeated until all the activities, including the dummy sink
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node, are added to the processed activity list.

Although the LP constraint propagation algorithm is able to provide LP models

without any resource conflicts, it should be noted that there are various possibilities

while adding constraints to the network. Each resource transfer decision is made

among various candidates in the processed activity list. Therefore, this approach

may narrow the search space for the original problem. In general, adding resource

arcs progressively might affect the optimal timing of activities in the final solution.

In order to visualize these effects, a single project RCPSPWET numerical example

is provided below.

Table 3.1: Numerical example data for resource flow networks.
Activity p d ec tc r1 r2 Successors

1 0 0 2 0 0 0 2,3,6
2 3 4 2 2 1 2 5
3 4 5 2 2 3 1 4
4 2 8 3 3 2 2 7
5 3 10 4 1 3 0 7
6 5 5 3 2 1 3 7
7 0 9 6 4 0 0

Figure 3.3: Activity-on-node network of the numerical example.

The problem data, including the processing times, due dates, earliness and tardi-

ness costs, resource requirements, and successor activities are summarized in Table

3.1. The activity-on-node network presentation is also given in Figure 3.3. Our
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approach will be similar to the original solution method in this report. That means,

we will solve the resource unconstrained version of the problem first. Then associ-

ated resource flow arcs will be added to the network and the modified LP will be

solved again. The same process will be repeated for the second resource type and

the increase in the objective function value will be observed.

Table 3.2: Solution of the resource unconstrained problem.
Activity 1 2 3 4 5 6 7 OFV=4

fj 0 4 5 8 9 5 9
Ej 0 0 0 0 1 0 0
Tj 0 0 0 0 0 0 0

Figure 3.4: Gantt chart for the resource unconstrained solution.

The finishing times and the earliness/tardiness values for the resource uncon-

strained version of the problem are given in Table 3.2. Since there are no resource

constraints in the problem, the only priority relations while scheduling the activities

are the precedence relations. The Gantt chart of the solution is given in Figure 3.4.

As it can be also seen on the Gantt chart, the resources capacity constraints are

violated. Activities 2, 3 and 6 consume more than the available capacity of resource

types 1 and 2, whereas activities 4 and 5 cause a resource conflict for resource type

1. In order to resolve these conflicts additional precedence arcs will be added. As

32



the first step, we will only consider the resource type 1. An arc is added between

activities 3 and 6 to solve the first conflict and an arc between activities 4 and 5

will prevent capacity violations of those activities. The resulting network is given in

Figure 3.5 with the additional arcs colored in red. Note that there are alternative arc

combinations while processing the schedule. For example, it is also possible to add

arcs from activity 3 to activities 2 and 6. The critical point is finding predecessor

activities, which can provide enough resource for its successors.

Figure 3.5: Activity-on-node network with resource arcs of resource type 1.

Table 3.3: Solution for the network with resource arcs of resource type 1.
Activity 1 2 3 4 5 6 7 OFV=41

fj 0 4 9 11 14 5 14
Ej 0 0 0 3 0 0 0
Tj 0 0 4 0 4 0 5

The modified LP model is solved again and the solution is presented in Table

3.3. The corresponding Gantt chart is given in Figure 3.6. As it can be seen, with

the additional arcs, no conflicts occur for resource type 1. However, activities 2 and

6 cause a resource conflict for resource type 2. It should be also mentioned that

new precedence relations cause an increase in the objective function value from 4 to

41. At this point, an arc from activity 6 to activity 2 is added to solve the resource

conflict. The final structure of the network is given in Figure 3.7.

The final solution of the numerical example is provided in Table 3.4, and the
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Figure 3.6: Gantt chart for the solution with resource arcs of resource type 1.

Figure 3.7: Activity-on-node network with resource arcs of resource types 1 and 2.

Table 3.4: Solution for all resources active network.
Activity 1 2 3 4 5 6 7 OFV=76

fj 0 14 9 11 17 5 17
Ej 0 0 0 0 0 0 0
Tj 0 10 4 3 7 0 8

Gantt chart in Figure 3.8. The objective function value is increased to 76. The

optimal solution of the same problem is given in Table 3.5 and Figure 3.9. In

this particular example, adding constraints to solve the resource conflicts makes it

possible to solve the problem as an LP without any resource conflicts. However, the
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Figure 3.8: Gantt chart for the solution with all resources active.

objective function value is increased at the same time, since the solution space is

limited by modifying the network structure.

Table 3.5: Optimal solution of the problem.
Activity 1 2 3 4 5 6 7 OFV=66

fj 0 3 7 9 17 14 17
Ej 0 1 0 0 0 0 0
Tj 0 0 2 1 7 9 8

3.5 Tree Search

In order obtain solutions for different resource activation sequences, a tree search

procedure is implemented in the solution approach. An example tree for an instance

with four resource types is given in Figure 3.10.

In general, the tree search starts with an LP model without any resource related

constraints. As stated before, sensitivity analysis is then applied to obtain the

required data for the single resource subproblems. At this point, the decision of the

activated resource is made upon the subproblem objective function values of child

nodes. As it can be seen on the first level of the tree, activation of resource types 1,

2, 3 and 4 is evaluated and the corresponding nodes are generated. In this particular
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Figure 3.9: Gantt chart for the optimal solution.

example, the objective function value for the subproblem with the activated resource

type 1 is greater than those of the other nodes. Therefore, this node is selected as the

new node to be processed. Once the resource type 1 is selected, the LP constraint

generation algorithm is activated and related arcs are added to the network. Since

the LP model is modified, the sensitivity analysis is reapplied and modified due

dates and costs are obtained. At the second level of the tree, 3 different child nodes

are generated for activating resources 2, 3 and 4 after resource type 1. Subproblem

objective function values are evaluated and the node {1, 3,−,−} is selected. At

the third level of the tree, there are actually 2 different child nodes, which yield to

feasible solutions for the original problem. After the arcs for resource type 3 are

added and the network is updated, the end nodes are separately generated by first

solving the subproblem for resource type 2 and then for type 4. These steps are

then repeated in the reverse order. These two child nodes at the end are {1, 3, 2, 4}

and {1, 3, 4, 2}. It should be noted before repeating the reverse order for the final

two resource types, the corresponding arcs have to be removed and the initial state

of parent node {1, 3,−,−} has to be rebuilt. Once the end nodes are generated,

backtracking is applied to process other sequences. As showed in this example, a

possible backtracking node might be {1, 4,−,−}. Deactivated resource arcs have
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Figure 3.10: Tree search example.

to be removed from the network again. Therefore, in order to move from node

{1, 3, 4, 2} to node {1, 4,−,−} the arcs added for resources 2, 4 and 3 have to be
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deleted. At this node, the sensitivity analysis is then performed and new child nodes

are generated accordingly.

The maximum number of resource types in an instance is in general less than the

number of machines in the benchmark instances in the job shop scheduling literature.

As it will be explained in the experimental study chapter, two different resource

type settings are selected in our study: 2 and 5. For an instance with two different

resource types, there are only two different resource activation sequences either {1, 2}

or {2, 1}. Therefore, the size of the tree is relatively small. For an instance with

five resource types, on the other hand, the number of nodes in the tree is increasing

but it does not reach the dramatic level in job shop scheduling instances. Therefore,

no extra fathoming rule will be included into the tree search approach. However,

in order to decrease the required computational effort, the maximum number of

nodes generated at a certain level of the tree is limited to 3. That means, according

to our example, at the first level of tree, among nodes {1,−,−,−}, {2,−,−,−},

{3,−,−,−} and {4,−,−,−} child nodes will be generated only for three nodes with

the highest single resource subproblem objective function values. Apart from that,

a rescheduling strategy is also implemented to improve the solution at each node in

the tree, which will be explained in the next subsection.

3.6 Rescheduling

The sequence in which the resources are activated, is an important decision variable

for the performance of the solution method. As stated in the previous subsection,

tree search is one of the tools used to explore the solution space more throughly and

obtain schedules for different resource activation sequences. Another tool which can

be incorporated into our approach is the rescheduling step. In general, a classical

rescheduling step in the SB heuristic in the job shop literature includes removing

the arcs for one of the already scheduled machines and re-solving the subprob-

lem of this particular machine while considering the modified state of the network.

The solution of the subproblem yields the new arcs to be added to the network.

Rescheduling can be repeated at various steps of the algorithm and also for a given
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number of rescheduling cycles depending on the problem structure. Demirkol et

al. [30] reported in their study that rescheduling can improve the performance of

SB algorithms significantly. The rescheduling process in our solution approach fo-

cuses on arcs added to the LP for each resource type. That means, at a particular

rescheduling step we will remove the arcs which are only used for the selected re-

source type. It should be noted that an arc can transfer resources for more than one

resource type. At this point, these arcs have to be kept in the network in order to

avoid resource conflicts. Moreover, rescheduling can be repeated for more than one

cycle. The main steps of the rescheduling are summarized below:

• At a given node, the arcs corresponding to the first resource type in the se-

quence are removed and the LP model is solved.

• Sensitivity analysis is applied and the single resource subproblem is solved

with the data obtained in the sensitivity analysis.

• The arcs are then added according to the solution of the singe resource sub-

problem and the problem for the modified network is solved.

• These steps are repeated for the remaining active resource types in the node

and the objective function values of the LP model are obtained for each re-

source type.

• The resource types are sorted according to the objective values of the LP

model. At this point, a single cycle of rescheduling is completed and this

sorted vector is the new sequence for the second cycle of rescheduling process.

• Rescheduling is repeated unless the predefined number of the rescheduling

cycles is performed or an already processed rescheduling sequence is obtained.

Initial experiments show that the structure of the resource flow network affects the

performance of the rescheduling process. The resource flow arcs are mostly used by

more than one resource type. That means, each arc in the network transfers more

than one resource type. These arcs might be present in the problem or they can be
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added while activating resources at the earlier stages of the solution algorithm. As a

result, it is observed that the arcs in the network are completely preserved although

the arcs corresponding to a single resource type are deactivated. In other words,

there is no arc in the network, which is only responsible for transferring the resource

type to be rescheduled. Therefore, the solution of the initial LP as well as the single

resource subproblem remains the same after deactivation. That means the vector at

the end of the rescheduling cycle consists of a single objective value for all resource

types, which are rescheduled. In such a case the rescheduling process is terminated

in order to prevent further unnecessary CPU requirements.
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CHAPTER 4

AN ITERATED LOCAL SEARCH APPROACH FOR RCPSPWET

Heuristic procedures are developed for RCPSPWET in single project environments

as it is also mentioned in Chapter 2. List-based heuristics studied in [20] and [21]

perform well by means of solution quality as well as computation times. Moreover,

neighborhoods can easily be defined for schedules presented by lists and schedule

generation procedures are quite simple and fast. Therefore, a population based local

search procedure is suggested to solve the single resource subproblem and the original

problem. The general flow of the solution algorithm is presented in Figure 4.1. Note

that the detailed information about the structure of the heuristic developed for the

single resource subproblem is also presented in this chapter.

Figure 4.1: Flow of the local search heuristic.
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The heuristic method starts by generating an initial population. Three different

improving steps are applied to this initial population iteratively in order to improve

the activity lists. These steps replace the sequencing and optimal timing procedures,

which are commonly used in the machine scheduling literature for weighted earliness

tardiness problems. First, a list-position based neighborhood search is performed.

Thereby, the sequencing in each activity list is improved. An optimal timing based

neighborhood search is then applied to move chains of activities earlier in time.

Finally, as it is also used in the LP-based method, for all the resource types in an

instance, associated arcs are added to the network and the corresponding LP model

is solved.

4.1 Activity List Presentation

Activity-lists are used to present a schedule in the population. Each activity is

assigned to a position in the list. In a feasible activity list, each activity has to

be positioned after its predecessors and before its successors. If an activity-list is

precedence feasible, a schedule is generated by scheduling each activity in the list

to start at its locally optimal position. Locally optimal position means scheduling

an activity to a position with the minimum cost with respect to its due date and

according to the current state of the schedule. There is a small difference between the

locally optimal scheduling scheme of the subproblem and the original problem. As

it is stated before, each activity in the subproblem including activities of the newly

arriving project has a modified due date and earliness/tardiness costs. Therefore,

each activity in the subproblem can be scheduled locally optimal with respect to its

due date. In the original problem, on the other hand, the activities of the newly

arriving project have to be scheduled as early as possible since their contribution

to the objective function is regular and depends on the completion time factor K.

Therefore, in the original problem if an activity belongs to the newly arriving project,

it is scheduled to the earliest resource feasible position.
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4.2 Initial Population Generation

An initial population is generated to apply the neighborhood search procedures.

Each member of the population is actually a precedence feasible activity list. In

order to expand the search space, different dispatching rules and totally random

activity lists are generated. At this point, there is again a small difference between

the implementations of both problem types. For the single resource subproblem,

earliest due date, most number of successors and minimum latest starting time rules

are used to form an initial population. This is mainly done by selecting the activity

with best value according to the dispatching rule among the precedence feasible

candidates. Furthermore, roulette wheel versions of these dispatching rules are also

used to increase the size of the population. To each candidate activity, a probability

is assigned proportional to the fitness values and a random number is generated to

select an activity. Finally, totally random selection among candidate activities is

also adopted. For the original problem, on the other hand, the earliest due date rule

cannot be used to generate activity-lists, because no due date value is defined for

the activities of the arriving project.

4.3 List-Positional Neighborhood Search

Once the members of the initial population are generated, the first neighborhood

search procedure starts. This process is applied to each member of the initial popu-

lation separately and if an improvement is observed, the activity list is replaced and

the search for better schedules continues with the new activity list. This is mainly

done by calculating the contribution of each activity to the objective function in an

activity-list. The neighborhood is defined as selecting the activity with the highest

cost value and placing it to an earlier position while preserving precedence feasibility.

Thereby, the activity can be scheduled at earlier stages of the schedule generation

process, so there is a greater chance to schedule the activity closer to its due date.

For a selected activity, there are several candidate positions for insertion in the list.

These candidate positions lie in the range between the predecessor with the latest
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position and the current position of the activity. In order to make a move, the ac-

tivity is removed from its current position and inserted to each possible spot in the

list. For each position, the objective function value is determined by using the lo-

cally optimal scheduling scheme. If the objective value can be improved, this change

is applied to the activity-list. If it does not improve, the activity with the second

highest cost contribution is selected and the procedure is repeated until a limitation

number of nonimproving steps is reached. If no improvement can be observed after

reaching this threshold level, the best nonimproving move is applied and the move

is added to a tabu list to record forbidden moves. In general, the neighborhood

search of an activity list continues until a predefined number of moves is reached or

no improvement can be observed. It should be noted that no tabu list extension is

applied for the single resource subproblem, since satisfactory solution performance is

obtained with the basic neighborhood structure as reported in Chapter 3. Moreover,

the cost contribution of the activities of the newly arriving project in the original

problem is determined by selecting the cost contribution of the project, which is

equal to the completion time of the project times K, for activities on the critical

path of the project and 0 for the remaining ones.

4.4 Optimal Timing Neighborhood Search

The activity lists can also be improved by applying a timing process. The locally

optimal scheduler places an activity to its own optimal position without taking

other activities into account. Therefore, the total objective function value can be

reduced by moving a single activity earlier or later in time. This can be done by

modifying the due dates of activities, such that the locally optimal positions of the

activities are changed for the same sequence. First, the activity chains in a schedule

are determined. A chain of activities consists of activities which are connected

with precedence arcs and the finishing time of the successor activity is equal to the

starting time of its predecessor. Once the chains in the schedule are determined, the

total cost contribution of each chain is calculated. The chain with the maximum

cost is selected and the due date of the first activity in this chain is decreased by a
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single time unit. This due date value is used while scheduling the activity locally

optimally, but the objective function is still calculated with the original problem

data. By decreasing the due date of an activity, other members of the chain can

move earlier in time and the objective function value can be improved. If this is the

case, the activity list is replaced. If it is not, then the chain with second highest

cost value is selected and the procedure is repeated. The search is terminated if

either the number of nonimproving steps or the number of total steps reaches the

threshold value.

4.5 LP-Based Optimal Timing

As a final improvement step, some of the activity lists in the initial population,

which is a decision parameter in the heuristic method, are converted to LP models

by adding additional arcs in the network, such that no resource infeasibilities can

occur. The LP model is solved in order to obtain an improved solution for the

modified structure of the network.

4.6 Parameter Finetuning

In order to select the best-performing parameter setting, a finetuning procedure is

applied. 20 different instances with 200 activities are tested. Six different param-

eters are adjusted: maximum number of steps for positional neighborhood search,

maximum number of steps for timing neighborhood search, two different parameters

for the maximum number of nonimproving steps of these neighborhoods, the size

of the tabu list and the number of LP-based search repetitions. Different values

selected for each setting and the results are presented in Table 4.1 and Figure 4.2.

Table 4.1: Parameter selection settings

Method
# of Positional # of Timing # of Nonimproving # of Nonimproving # of Size
Neighborhood Neighborhood Steps for Steps for Timing LP-Based of
Search Steps Search Steps Positional Neighborhood Neighborhood Search Steps Tabu List

Setting 1 20 30 10 20 5 5
Setting 2 50 50 20 40 5 5
Setting 3 100 100 30 70 10 5
Setting 4 200 200 100 150 10 5
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Figure 4.2: Parameter finetuning results.

Figure 4.2 shows the average GAP between the best solution and the solution

found by each setting and the average CPU time for each setting. As it can be

seen clearly, setting 3 performs well by means of solution quality and CPU times.

Therefore, setting 3 is selected for the single resource subproblem and for the original

problem solution procedures.
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CHAPTER 5

COMPUTATIONAL STUDY

All the solution approaches have been coded in Visual C#. IBM ILOG CPLEX

Optimization Studio ver. 12.1 is selected as the optimization software for solving the

LP models. A data set of 800 unique instances are generated to test the performance

of the suggested methods. The experiments were conducted on an HP Compaq dx

7400 Microtower with a 2.33 GHz Intel Core 2 Quad CPU Q8200 processor and 3.46

GB of RAM.

5.1 Experimental Data

As stated before, related work in the literature focuses on the single project version

of RCPSPWET. Moreover, the existing benchmark instances in these works do not

always investigate the effects of different problem parameters on the performance

of the proposed solution approaches. Therefore, a new data set is generated. Each

unique instance represents a new scenario corresponding to a critical decision which

has to be taken by a project manager as stated in the previous chapters. That means,

each instance of the problem set consists of a group of projects present in a baseline

schedule with activity based due dates, earliness, and tardiness values. A newly

arriving project is also included with a completion time factor K. The parameter

settings for the whole data set are given in the table below. The idea behind adopting

each of these parameters will be detailed in the upcoming subsections.
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Table 5.1: Dataset parameter settings.
Total # of Activities 20, 40, 50, 100, 150, or 200
Due Date Distribution Clustered or Distributed
Due Data Tightness Tight or Loose
# of Resource Types 2 or 5
Completion Time Factor High or Low

5.1.1 Project Pool Generation

Before focusing on the details of the parameters for generating data sets, a closer

look will be taken at the project pool generation method. Our problem is a multi-

project scheduling problem. Therefore, each instance in the data set consists of a

group of projects. For this reason, a project pool is generated first, which will be

later used to create multi-project instances. Various project generation software are

present in the literature. ProGen is developed by Kolisch [31] for RCPSP and for

the multi-mode extension. ProGen/max developed by Schwindt [32] is an upgraded

version of ProGen for minimal and maximal time lag extensions of generalized prece-

dence relations. Both pieces of software are popular in the literature and used by

many researchers. A more recent project generator, called RanGen, is developed by

Vanhoucke et al. [33]. Although no one can claim that any of these generators is

definitely superior against others, RanGen enables selecting predefined complexity

measures for generated networks, which is important for differentiating instances.

Apart from that, the other adjustable parameters are similar in all software. As a

result, RanGen is selected as the project generation software in our study.

Four parameters have to be adjusted in RanGen to obtain different project net-

works. The first setting is the order strength (OS ), which is defined as the number

of precedence relations including the transitive ones but not including the arcs con-

necting the dummy start and end activity divided by the max number of precedence

relations (n(n− 1)/2), where n denotes the number of non-dummy activities in the

network [34]. As stated before, RanGen is able to generate unique networks with

the prespecified OS values. Three different OS values (0.25, 0.50 and 0.75) are

selected. For each project, 5 types of renewable resources are also defined. Two
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different resource usage related parameters are included, which are introduced in

equations (5.1) and (5.2). The first resource related measure is the resource density

(RU ). This parameter is used to define the minimum number of resource types used

by an activity in the network. This parameter is preferred against another resource

related measure referred to as the resource factor (RF ) introduced by Alvarez et

al. [35], because RF might yield networks in which some of the activities are not

using any resources at all. Another resource measure, the resource-constrainedness

(RC ), is defined as the ratio between the available capacity of a resource type and

the average usage of activities (wr) for this particular resource. The RU and RC

values are selected as 4 and 5, 0.25 and 0.75, respectively. Last but not least, the

number of the activities in a project is an input data in the software. To reach the

required number of activities for each RCMPSPWET instance, projects with 5, 10

,20 and 30 activities are generated.

RUi =
R∑
r=1

1 if wir > 0 ,

0 otherwise.

(5.1)

RCi =
wr
Wrt

; (5.2)

All parameter settings are summarized in Appendix B. Each activity number

category, except the one with 5 activities, consists of 50 different projects. The

reason for a total of 32 projects with 5 activities is that the generator is not able to

generate 50 unique networks with the specified OS values due to the small number

nodes in the network.

5.1.2 Total Number of Activities

The total number of activities in an instance is a quite important measure to define

the size as well as the difficulty of the problem. As it can be seen in Table 5.1 the

activity numbers are selected within a range of 20 to 200 activities. It should be

noted that this number does not include the dummy start and finish projects of each

instance and their corresponding activities as well as the dummy start and finish
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activities of each project. Note that we solve instances with up to 200 activities

while the maximum number of activities considered in the literature is 100( [20],

[18], [16]).

5.1.3 Project Combinations

For each setting of the total number of activities, different scenario schemes are gen-

erated. That means, different combinations of projects are suggested to reach the

total number of activities in an instance. For example, in order to generate a 30-

activity instance, a combination of three projects with 10 activities each, is selected

as one of the combinations. In this scenario, for two of these three projects, due

dates, earliness and tardiness costs are generated and the third project is defined as

the newly arriving one, so a completion time factor is determined. Another com-

bination is selected as a project portfolio consisting of 6 projects with 5 activities

each. Just like in the previous combination, one of these projects is the arriving

one. For each setting of the total number of activities, up to three different combi-

nations are selected. These combinations differ in the total number of projects in an

instance. For each combination, five different master instances (MI ) are generated.

These master instances provide the information about which projects in the pool

are added to the project portfolio. This is accomplished by selecting projects from

the pool with the desired number of activities randomly. Master instances are then

used to create unique instances by adding the data about due dates, earliness and

tardiness costs and the completion time factors depending on the values of remaining

parameters. All the project combination schemes are given in Appendix B.

5.1.4 Due Date Generation

At stated before, the way the due dates are generated in this study is based on a real

baseline schedule. In other words, all projects in an instance, except for the new

arrival, have an associated existing schedule constructed by a scheduling routine

described next. In [20], [18] and [16], on the other hand, the data sets are generated

while considering the critical paths and earliest start time values of the activities in
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the network.

The method used to schedule the activities is quite important for the effective

utilization of the resources. Therefore, makespan minimization is the objective of

the pre-scheduling process. In other words, it will be appropriate to schedule the

activities as early as possible. There are many heuristic approaches in the literature

developed for makespan minimization. We decided to use a scheduling scheme with

an effective dispatching rule in order to generate schedules with good objective values

within reasonable computation times. In his review paper about the performance of

different dispatching rules for makespan minimization, Kolisch [36] states that the

Latest Starting Time (LST ) rule shows the best performance. Therefore, the LST

rule is applied to existing projects in order to generate the baseline schedule. The

rule simply selects the activity with the minimum latest starting time among the

ones whose predecessors are already scheduled. The latest starting time values are

calculated by using a backward pass heuristic, as stated in the previous chapters of

this report.

5.1.5 Due Date Distribution

The distribution of the due dates in the time horizon is important for the flexibility

while scheduling. That means, if the due dates of a project are spread throughout

the entire planning horizon, activities can be moved forward or backward in time

while scheduling the arriving project. A clustered due date distribution, on the other

hand, forces the projects to stay close to their active time intervals in the baseline

schedule. The difference between these two settings are visualized in Figures 5.1 and

5.2. In the first case, all projects are active in most of the schedule timeline. The

second case presents a schedule, where the total makespan is divided into intervals

in which limited number of projects are active.

In order to obtain schedules with these two different characteristics, the basic

schedule generation scheme with the LST rule is modified. For a distributed due

date generation method, the progress levels of the projects are controlled while

scheduling activities iteratively. That means at a certain step of scheduling, the
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Figure 5.1: Schedule of distributed due date windows.

activity with the lowest LST value is selected among the activities of the project

with the minimum progress level. With this approach, the projects are kept active

along the entire baseline schedule timeline. The clustered due date distribution

is obtained, by selecting a project randomly and scheduling the activities of this

particular project first according to LST rule. The process continues by selecting

another unscheduled project randomly and scheduling the activities of this project.

Thus, the selected project is scheduled as early as possible after it is started. In order

to observe the effects of this parameter setting, distributed and clustered due dates

are only applied to project combinations with a higher number of total projects.

If this is not the case, only distributed due dates are generated. The details are

provided in Appendix B.

5.1.6 Due Date Tightness

An additional due date factor is implemented to adjust the tightness of the due

dates. Tight due dates values are closer to the starting time of the schedule and

offer less flexibility for meeting the due date. Loose due dates, on the other hand,

allow the activities to move in time without effecting successor activities or causing

any extra cost. In other words, there is a higher possibility to meet loose due
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Figure 5.2: Schedule of clustered due date windows.

dates than the tight ones. It should be noted that the due date tightness in the

related articles in the literature is adjusted by manipulating the due date value

with a tightness factor. Our approach, on the other hand is built upon a different

approach. In order to reflect these tightness and looseness aspects, we change the

available resource capacities in the baseline schedule. In this way, we increase the

total makespan of the baseline schedule and offer an additional resource capacity

to schedule the newly arriving project. Thereby, it is expected that the number

activities scheduled on time will increase and for the same master instance a lower

objective value can be obtained. A level of 80% is selected to adjust the capacities

for the loose due date setting and 100% resource availibility in the baseline schedule

corresponds to the case of tight due dates. For each unique instance loose and tight

due dates settings are present in the data set.

5.1.7 Resource Conditions

As it is mentioned in the previous chapters, the number of active resources is im-

portant for the performance of our solution method for two reasons. First, our tree

search process aims to compare the objective values for different release sequences

of resource types. Therefore, the number of nodes in the tree increases dramatically
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as the number of resource types increases. Secondly, it is straightforward to state

that the number of resource flow constraints in the model increases as the number

of resource types increases. In our data set, we selected two different resource type

settings. We created instances with either two or five resource types. Actually, all

the instances are created with five resource types, but if the instance has two active

resource types, the last three resource types are not processed.

5.1.8 Completion Time Factor

Finally, the completion time factor value is changed for different instances in the

dataset. As one of the contributions of our study, the effects of the completion time

factor K will be studied. As stated before, a tradeoff between the earliness/tardiness

costs and the completion time related cost must exist in order to generate a rea-

sonable problem setting. Otherwise, scheduling the newly arriving project in the

beginning or at the end of the schedule, depending on dominant cost values, might

yield good solutions in most of the instances. Therefore, we implemented another

pre-scheduling step, just like that in the due date generation process, to obtain com-

pletion time factors. For two due date distribution settings, different approaches are

used. For the distributed due date setting, we generate a new schedule with the

newly arriving project by using the LST rule and calculated the earliness/tardiness

costs for the projects in the baseline schedule. For this value, we obtained the com-

pletion time factor by dividing the total earliness/tardiness cost by the completion

time of newly arriving project. For the clustered due date distribution, we used the

sequence of projects selected while generating due dates. In this sequence vector, we

inserted the newly arriving project to each possible position and scheduled projects

accordingly again with the LST rule. Hereby, we obtain different cost values for

the same instance depending on the position of the new project in the sequence.

Therefore, we take the average value of these cost values and completion times.

The completion time factor is then calculated by taking the ratio of these two aver-

age values. Thereby, we generated completion factors specific to the problem data

instead of selecting the same factor for all instances.
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These completion time factor values are modified in order to obtain different

parameter settings. They are multiplied by two different constants. These constants

are selected as 0.5 and 1. These values represent that the contribution of the newly

arriving project in the original problem to the objective function value is expected

to be the half or as much as the contribution of existing projects, respectively. As

a result, two different completion factor settings, a high (with the constant value 1)

and a low value (with the constant value 0.5) are determined for each instance.

5.1.9 Instance Naming Conventions

Depending on different parameters introduced above a seven digit coding scheme

is used to define an instance. In general, each instance is presented in this form:

A1 2 3 4 5 6 7. The first position stands for the total number of projects in the

instance. Digit 2 represents the combination scheme number for a given total number

of activities. Digit 3 is the master instance number. Digit 4 is set to 0 for the

distributed due date settings and to 1 for diverse due date settings. A 0 in digit

5 stands for tight and a 1 is for loose due date values. An instance with 2 active

resource types is presented with a 2 in the sixth digit and 5 is used for an instance

with 5 resource types. Finally, the last digit is equal to the completion time factor

calculated for each unique instance.

An example is provided to make the naming procedure clear in fig 5.3.

5.2 Results

Experimental analysis is performed with four different solution methods: exact so-

lution procedure (MIP), LP-based method (LP), local search heuristic (LS) and a

hybrid method (H). The hybrid method is developed in a way such that the end

nodes in the search tree of the LP-based algorithm are used as the initial population

of the LS procedure. Each node is converted to an activity list according to the

starting times in the schedule. For each of those activity lists, two unique members

of the population are generated by selecting the due date values as the original due

date value or the finishing time in the schedule. The same neighborhood procedures
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Figure 5.3: Instance naming conventions.

are then applied to improve the solutions obtained in the LP-based method.

All 200 instances with 20, 30, and 40 activities are solved with these four meth-

ods. The exact solution procedure is not applied to instances with 50 , 100, 150, and

200 activities because of long computational times. For the remaining 600 instances,

solutions of LP, H, and LS are provided. All the results of our experiments are given

in Appendix C.

The experiments with MIP are performed for a given time limit. This time limit

is selected as one hour for instances with 20 and 30 activities and as two hours for

40 activity-instances. The summary of results are given in Table 5.2. As it can

be seen on the table, the LP method performs worst among all four methods. An

average gap of 84.30% is calculated with respect to the best solution values. It

should be noted that for some of the instances MIP is not able to find the optimal

solution. Therefore, the average gap for the exact solution algorithm is not equal to

0%, but instead there is an average gap of 4.38%. The local search method, on the

other hand, is within 7.83% of gap on average for 200 instances. The hybrid method

improves the solutions obtained by LP and reduces the average gap from 84.30%

to 40.09%. However, the limited initial population cannot reach the performance

of the original LS structure. Combining the results obtained by LS and H (LS +

H), in other words generating an initial population consisting of activity lists of the
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LS method and the end nodes of the SB tree, results with an average gap value of

5.94% with respect to the best known values. For instances with 50, 100, 150, and

200 activities, LS + H performs best. Combining the results of LS with H improves

the average gap to 1.23%. For LP and H, the average gaps are at 157.10% and

102.34%,respectively.

Table 5.2: Summary of results.
Avg. gap from best solution value (%)

Instance Sets MIP LP LS H LS + H
A20 , A30 , and A40 4.38 84.30 7.83 40.09 5.94
A50 , A100 , A150 , and A200 157.10 1.23 102.34 0.00

Out of 200 instances, LP method is able to find the same objective value with

MIP for 2 instances and for a single instance the LP method finds a better solution in

comparison with MIP. LS, on the other hand, is able to find the same objective value

with MIP for 53 instances. For 28 instances, LS can outperform the exact solution

method. Considering the whole data set with 800 instances, LP can improve the

solutions obtained by LS for 28 instances and find the same objective value for

9 instances. The number of improved solutions are increased from 28 to 96 by

implementing the hybrid approach. For 18 instances, the hybrid approach can come

up with the same objective value with LP.

A detailed investigation of results is made by comparing average optimality gaps

and computational times in Table 5.3. At this point, the instances are categorized

according to the number of activities and the number of active resource types. The

reason for that is that the computational times change dramatically for different

number of active resource types. This statement is valid for the instance sets.

As it can be seen in the table, the average CPU times are also increasing as the

number of activities increases. The exact solution method is not always able to

terminate the process by either solving the problem to optimality or ending the

procedure while reaching the time limit. This is the case if the system is in out of

memory (OoM) status. The number of instances, for which the solution procedure

cannot be completed because of OoM status are presented in parenthesis. The solver

57



terminates the solution because of OoM status for 25 instances with 2 resource types

and for 4 instances with 5 resource types.

Table 5.3: Summary of results.
Act. Res. # of Instances Avg. CPU Time (sec.) Avg. gap from best solution value (%)

MIP LP LS H MIP LP LS H LS+H
20 2 20 74.23 1.44 3.11 1.23 0.00 21.17 2.53 7.24 2.09
20 5 20 476.13 13.87 6.05 20.6 0.00 63.23 5.21 20.17 0.15
30 2 40 1240.58 (9) 2.53 4.71 1.93 0.10 94.28 9.78 54.76 8.74
30 5 40 4137.68 34.27 8.91 36.44 1.55 112.18 5.05 53.23 3.24
40 2 40 790.29 (16) 3.22 5.63 2.51 12.40 63.76 9.87 35.61 8.88
40 5 40 5120.50 (4) 43.11 11.99 50.05 7.87 109.09 10.60 43.13 7.74
50 2 60 2.93 7.06 2.64 82.98 1.39 63.01 0.00
50 5 60 29.44 13.57 43.29 91.03 4.77 62.10 0.00
100 2 80 6.38 14.35 6.11 129.27 0.49 93.23 0.00
100 5 80 88.02 26.47 111.19 178.93 2.20 84.72 0.00
150 2 80 10.7 24.36 10.5 143.14 0.47 106.98 0.00
150 5 80 140.81 46.26 184.6 191.13 1.20 114.22 0.00
200 2 80 12.81 34.96 13.62 168.63 0.04 145.43 0.00
200 5 80 142.42 71.68 232.3 236. 67 0.17 129.16 0.00

The computation times of LP range from 1.44 seconds to 12.81 seconds for in-

stances with 2 resource types and from 13.87 to 142.42 seconds for instances with 5

resource types. LS is slower than LP for instances with 2 resource types and is able

to generate solutions in 3.11 to 34.96 seconds. However, LP completes the solution

procedure in 6.05 to 71.68 seconds for the instances with 5 resource types. The

hybrid method requires computational times about the sum of CPU times required

by the LP and LS methods, which is reasonable since both solution approaches

are applied iteratively. The gap between LP and MIP increases as the number of

activities increase. Moreover, the performance of LP is also better for instances

with 2 resource types. Clearly, more arcs are added to the network in order to

avoid resource infeasibilities for increasing number of activities and resource types.

Therefore, LP’s performance does depend on these parameters. This can be also

observed in comparison between the LP and LS. The average gap difference is lower

for instances with 2 active resource types in any activity number category. LS, on

the other hand, performs better with 2 resource types for instances with 20 and

40 activities with respect to the instances with 5 resource types. However, with 30

activities, increasing number of resources have a positive effect on the performance

of the solution method. The hybrid method shows a similar performance trend

with LP. This makes sense, since the initial population is generated by this method.

However, it should be noted that applying hybrid approach improves the schedules

obtained by the LP for all the instance sets. Moreover, combining the results of the
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LS and H improves the average gap of LS up to 5.06%.

Table 5.4: Effect of due date tightness on solution quality.
Avg. gap from best solution value (%)

Act. Tightness # of Instances MIP LP LS H LS+H
20 0 20 0.00 52.02 4.22 20.68 1.35
20 1 20 0.00 32.37 3.52 6.72 0.88
30 0 40 0.62 115.30 6.59 56.16 5.51
30 1 40 1.04 91.15 8.25 51.82 6.47
40 0 40 14.41 103.53 12.59 57.13 10.66
40 1 40 5.85 69.32 7.88 21.61 5.96
50 0 60 108.51 1.01 85.12 0.00
50 1 60 65.50 5.14 40.00 0.00
100 0 80 151.29 1.06 106.22 0.00
100 1 80 156.91 1.63 71.73 0.00
150 0 80 144.76 1.45 104.94 0.00
150 1 80 189.50 0.22 116.25 0.00
200 0 80 214.22 0.00 167.66 0.00
200 1 80 191.08 0.21 106.93 0.00

A further data analysis is performed in order to investigate the effects of due date

tightness. The results are given in Table 5.4. Tight due dates have a negative effect

on the solution performance of LP. Only for instances with 100 and 150 activities,

this is not the case. The LS method, on the other hand, can obtain better solutions

for 20, 40 and 150 activities with loose due dates in comparison with the tight due

date setting for the same number of activities in the instance. The hybrid method

can reach better average gap values for all the activity number categories with loose

due dates except the one with 150 activities in comparison with the tight setting.

That means, H is able to improve the solutions obtained by LP considerably, such

that the higher gap value for instances with loose due dates and 100 activities is

improved significantly (from 156.91% to 71.73%).

Finally, a comparison is made for clustered and distributed due dates. The results

are given in Table 5.5. Since different due date distribution parameters are selected

for instances with 50, 100, 150, and 200 activities, no MIP results are present for this

analysis. Both methods, LP and H, show better performances, if the due dates are

not distributed. The only exception is for instances with 150 activities. Moreover,
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Table 5.5: Effects of due date distribution on solution quality.
Avg. gap from best solution value (%)

Act. Distribution # of Instances LP LS H LS+H
50 0 80 43.52 4.29 24.31 0.00
50 1 40 173.99 0.65 139.06 0.00
100 0 120 119.95 1.68 60.13 0.00
100 1 40 256.56 0.37 175.51 0.00
150 0 120 172.11 0.16 111.14 0.00
150 1 40 152.22 2.87 108.97 0.00
200 0 120 195.27 0.14 127.78 0.00
200 1 40 224.81 0.00 165.86 0.00

expanding the initial population of LS has a greater effect on solution quality, if the

due dates are distributed. This is not the case only for instances with 150 activities.

As a conclusion, the combination of the LS and H performs best among the four

methods tested in the experimental study. The MIP is limited by the computation

time requirements. The LP does not obtain good solutions in comparison with the

other methods. LP, LS and H obtain solutions in reasonable computational times

even for instances with 200 activities. Due date tightness and due dates distribution

effect the performance of solution approaches. However, these effects are not very

distinctive.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this study, an LP-based approach is adopted to solve the resource constrained

multi-project scheduling problem with weighted earliness tardiness costs. The main

purpose of the work is to model the dynamic project scheduling environments. A

project arrives on top of an existing project portfolio and a due date has to be

quoted for the new project while keeping the costs related to changes in the sched-

ule at minimum. The objective function consists of the weighted earliness tardiness

costs of the existing projects and a completion time related term for the newly ar-

riving project. The solution approach is a generalization of the shifting bottleneck

approach from the machine scheduling literature. Resources are activated itera-

tively and at each activation step a single resource subproblem is solved with the

data obtained by applying a sensitivity analysis to the existing resource feasible

schedule. The project network is updated by adding arcs to avoid any resource

conflicts for activated resources. A local search heuristic is also developed to bench-

mark the results. In order to analyze the performance and behavior of the proposed

method, a new multi-project data set is created by controlling the due date tight-

ness and the due date distribution, the number of resource types, the completion

time factor and the total number of activities in an instance. A series of compu-

tational experiments are carried out. The performance of the LP-based method,

local search approach and a hybrid method are tested. The hybrid method is based

on creating an initial population for the local search algorithm with the schedules

obtained in the LP-based method. Moreover, exact solutions for small instances are

provided by solving the mathematical model. The results show that the LP-based
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approach does not perform well for the RCPSPWET. The reason behind that is

mostly that the activities are using multiple resources. Therefore, activating arcs

iteratively for each resource type prevents generating good solutions for the original

problem. The heuristic approach, on the other hand, performs well in terms of so-

lution quality and CPU times. By applying a hybrid approach, the performance of

the LP-based method is improved considerably. However, the hybrid approach fails

to reach the performance of the original local search approach. Combining the best

results obtained by the local search procedure and the hybrid method show the best

performance among all the tested solution methods in this study.

There are several extension possibilities which can be studied in the future.

• Precedence relations between projects can also be included considering that in

practice some projects need to precede others because of technological reasons

especially in R&D environments.

• Arrival of multiple projects at a time or at different points in time can be

studied to study different dynamic scenarios.

• Multiple-mode extension of the problem can be adopted to define multiple

execution options for the activities.

The proposed work is as far as known the first study on the multi-project version

of RCPSPWET. Moreover, the resource decomposition approach is also a unique

approach for resource constrained project scheduling problems. Considering new

research possibilities and limited work on the problem, resource constrained multi-

project scheduling problem with weighted earliness tardiness costs is a rich topic

for further research activities. Moreover, the fact that most of the companies have

to manage their project portfolio in dynamic environments offers a wide range of

implementation options in the business context.
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Appendix A

LP CONSTRAINT GENERATION ALGORITHM

Table A.1: Parameters used in the algorithm.
I Set of all projects
Pi Set of activities of project i
(0, 0) Index of the dummy start activity
(f, 0) Index of the dummy finish activity
ListPro Set of processed activities by the algorithm
ListUnpro Set of unprocessed activities by the algorithm
Rk Total capacity of resource k
rijk Requirement of activity j of project i from resource k
eijk The remaining/available capacity of activity j of project i for resource k
ef0k The remaining/available capacity of the dummy finish activity
e00k The remaining/available capacity of dummy start activity
sij Starting time of activity j of project i in existing solution
fij Finishing time of activity j of project i in existing solution
Predkl Set of all predecessor activities of activity l of project k
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input : A feasible solution for the single resource subproblem

output: An LP, preserving the resource feasibility of a particular resource type k

begin1

Initialization Let e00k = Rk and ListPro = (0, 0) Let ef0k = Rk and2

ListUnpro = (f, 0) foreach Project i ∈ I do

foreach Activity j ∈ Pi do3

eijk = rijk ListUnpro = ListUnpro ∪ (i, j)4

end5

end6

Processing while ListUnpro 6= ∅ do7

Find (i, j) such that min(i,j)∈ListUnpro(sij) foreach (u, v) ∈ Predij do8

if (u, v) ∈ ListPro then9

if euvk ≥ eijk then10

euvk = euvk − eijk ListPro = ListPro ∪ (i, j)11

ListUnpro = ListUnpro\(i, j) eijk = rijk break

end12

if euvk < eijk then13

eijk = eijk − euvk ListPro = ListPro\ (u, v)14

end15

end16

end17

if eijk > 0 then18

Find (u, v) max(u,v)∈ListPro(euvk) such that fuv ≤ sij if euvk ≥ eijk then19

euvk = euvk − eijk ListPro = ListPro ∪ (i, j)20

ListUnpro = ListUnpro\(i, j) Predij = Predij ∪ (u, v) eijk = rijk

end21

if euvk < eijk then22

eijk = eijk − euvk ListPro = ListPro\ (u, v) Predij = Predij ∪ (u, v)23

end24

end25

end26

end27

Algorithm 1: LP Constraint Generation Algorithm.
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Appendix B

SETTINGS FOR DATA SET PROJECT POOL GENERATION

Table B.1: Settings for project pool generation.
# of Activities OS RU RC # of Unique Projects

5 0.25 4 0.25 3
0.50 4 0.50 10
0.75 5 0.50 9
0.50 5 0.25 10

10 0.25 4 0.25 10
0.5 5 0.25 10
0.75 5 0.25 10
0.75 4 0.50 10
0.25 5 0.50 10

20 0.25 5 0.25 10
0.50 5 0.25 10
0.75 5 0.25 10
0.25 4 0.50 10
0.75 4 0.50 10

30 0.25 5 0.25 10
0.50 5 0.25 10
0.75 5 0.25 10
0.25 4 0.50 10
0.75 4 0.50 10
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Appendix C

RESULTS

The results of the experimental analysis are provided below. Four different methods

are tested: the exact solution method MIP, the LP-Based method LP, the local

search approach LS and the hybrid approach H. The instances with 20, 30, and 40

activities are solved by all these four methods. MIP is not applied to remaining

data sets. The objective function values and CPU times are given for each method.

CPU times are given in seconds. Optimality gap is also provided for MIP, which

is the gap reported by CPLEX after termination. Comparisons between solution

methods are also performed. For each method, the gap is calculated by comparing

the result obtained with this method and the best solution value found for a par-

ticular instance. That means if a solution method obtained the best solution value

among these four methods, a gap of 0.00% stands for the gap value. Furthermore,

an additonal column (LS + H) is added to present the combined performance of the

original LS with the hybrid appraoch. For this case, the initial population consists

of randomly generated activity lists and the end nodes of the tree in LP method.
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Table C.6: Results for instances with 50, 100, 150, and 200 activities.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A50 1 1 0 0 2 11 1886 2.63 114.32 880 7.56 0.00 1869 2.66 112.39 0.00
A50 1 1 0 0 2 22 2559 4.02 45.40 1760 7.36 0.00 1961 3.53 11.42 0.00
A50 1 1 0 0 5 18 1672 53.00 22.76 1362 12.47 0.00 1369 60.28 0.51 0.00
A50 1 1 0 0 5 9 1106 36.91 37.22 806 12.78 0.00 990 49.27 22.83 0.00
A50 1 1 0 1 2 12 1302 3.97 35.91 958 7.39 0.00 1144 3.39 19.42 0.00
A50 1 1 0 1 2 24 1741 2.67 21.66 1507 7.27 5.31 1431 3.42 0.00 0.00
A50 1 1 0 1 5 14 1434 45.20 33.52 1074 12.66 0.00 1138 50.64 5.96 0.00
A50 1 1 0 1 5 28 1754 33.80 29.16 1634 12.27 20.32 1358 33.66 0.00 0.00
A50 1 2 0 0 2 12 1417 3.73 56.06 908 6.91 0.00 1360 3.30 49.78 0.00
A50 1 2 0 0 2 24 2216 3.91 25.06 1772 6.83 0.00 1896 3.36 7.00 0.00
A50 1 2 0 0 5 13 1819 54.58 91.07 952 12.59 0.00 1027 64.45 7.88 0.00
A50 1 2 0 0 5 26 1863 51.27 24.78 1494 12.55 0.07 1493 53.28 0.00 0.00
A50 1 2 0 1 2 11 461 3.48 19.43 397 6.44 2.85 386 2.92 0.00 0.00
A50 1 2 0 1 2 22 917 3.56 63.75 655 6.36 16.96 560 2.91 0.00 0.00
A50 1 2 0 1 5 18 932 28.56 46.54 636 11.25 0.00 652 45.09 2.52 0.00
A50 1 2 0 1 5 9 645 32.67 81.69 355 11.22 0.00 371 41.88 4.51 0.00
A50 1 3 0 0 2 12 1622 4.31 113.70 759 6.48 0.00 1552 3.45 104.48 0.00
A50 1 3 0 0 2 24 2146 4.03 46.28 1467 6.48 0.00 1862 3.33 26.93 0.00
A50 1 3 0 0 5 16 1531 16.83 61.16 950 10.83 0.00 1351 35.11 42.21 0.00
A50 1 3 0 0 5 8 1243 48.59 160.04 478 10.94 0.00 1069 48.38 123.64 0.00
A50 1 3 0 1 2 13 1192 3.83 77.65 671 6.14 0.00 810 3.03 20.72 0.00
A50 1 3 0 1 2 26 1490 4.00 38.22 1078 6.09 0.00 1106 3.20 2.60 0.00
A50 1 3 0 1 5 10 499 36.47 7.08 526 10.59 12.88 466 46.28 0.00 0.00
A50 1 3 0 1 5 20 742 41.84 15.22 778 10.72 20.81 644 42.92 0.00 0.00
A50 1 4 0 0 2 11 2033 4.53 146.42 825 7.08 0.00 2021 3.80 144.97 0.00
A50 1 4 0 0 2 22 3909 3.55 136.91 1650 7.06 0.00 3390 3.47 105.45 0.00
A50 1 4 0 0 5 11 3090 77.11 183.75 1089 14.00 0.00 2997 77.14 175.21 0.00
A50 1 4 0 0 5 22 4404 60.42 109.91 2098 14.13 0.00 3630 65.11 73.02 0.00
A50 1 4 0 1 2 13 2245 3.50 100.27 1121 7.11 0.00 1727 3.36 54.06 0.00
A50 1 4 0 1 2 26 2617 4.36 28.47 2037 7.13 0.00 2370 3.63 16.35 0.00
A50 1 4 0 1 5 12 2877 70.50 142.17 1188 13.84 0.00 2352 74.36 97.98 0.00
A50 1 4 0 1 5 24 3679 62.70 57.22 2340 14.22 0.00 2808 74.38 20.00 0.00
A50 1 5 0 0 2 10 980 2.64 50.77 650 6.73 0.00 980 2.48 50.77 0.00
A50 1 5 0 0 2 20 1399 4.17 8.96 1284 6.72 0.00 1338 3.25 4.21 0.00
A50 1 5 0 0 5 16 1359 36.69 12.41 1241 12.92 2.65 1209 49.14 0.00 0.00
A50 1 5 0 0 5 8 1119 36.59 64.08 682 12.91 0.00 865 47.89 26.83 0.00
A50 1 5 0 1 2 14 438 3.69 24.79 398 6.16 13.39 351 2.61 0.00 0.00
A50 1 5 0 1 2 7 322 3.67 37.61 234 6.19 0.00 280 2.63 19.66 0.00
A50 1 5 0 1 5 11 620 29.41 83.43 338 12.20 0.00 388 36.77 14.79 0.00
A50 1 5 0 1 5 22 838 30.69 55.76 538 12.19 0.00 600 40.84 11.52 0.00
A50 2 1 0 0 2 10 789 1.92 16.03 680 8.06 0.00 789 2.17 16.03 0.00
A50 2 1 0 0 2 20 959 1.94 3.90 923 7.77 0.00 959 2.25 3.90 0.00
A50 2 1 0 0 5 12 862 31.55 1.77 847 13.31 0.00 893 43.53 5.43 0.00
A50 2 1 0 0 5 24 1063 27.86 0.00 1159 13.27 9.03 1063 42.59 0.00 0.00
A50 2 1 0 1 2 11 593 1.89 9.01 544 7.36 0.00 578 2.00 6.25 0.00
A50 2 1 0 1 2 22 944 1.89 8.01 906 7.39 3.66 874 2.06 0.00 0.00
A50 2 1 0 1 5 12 512 17.23 0.00 648 12.56 26.56 512 34.63 0.00 0.00
A50 2 1 0 1 5 24 1022 26.63 25.71 981 12.80 20.66 813 41.66 0.00 0.00
A50 2 1 1 0 2 2 1116 1.97 580.49 164 7.45 0.00 891 2.11 443.29 0.00
A50 2 1 1 0 2 4 1212 2.00 269.51 328 7.44 0.00 730 2.14 122.56 0.00
A50 2 1 1 0 5 2 800 31.83 381.93 166 12.69 0.00 642 42.28 286.75 0.00
A50 2 1 1 0 5 4 952 30.88 186.75 332 12.80 0.00 908 48.94 173.49 0.00
A50 2 1 1 1 2 2 88 1.94 10.00 90 7.03 12.50 80 1.95 0.00 0.00
A50 2 1 1 1 2 4 377 1.95 124.40 168 7.06 0.00 377 1.98 124.40 0.00
A50 2 1 1 1 5 2 243 30.31 182.56 86 12.33 0.00 243 44.88 182.56 0.00
A50 2 1 1 1 5 4 637 34.23 270.35 172 12.23 0.00 204 45.70 18.60 0.00
A50 2 2 0 0 2 16 1069 4.25 28.95 862 7.27 3.98 829 3.34 0.00 0.00
A50 2 2 0 0 2 8 877 4.25 90.65 460 7.34 0.00 686 3.30 49.13 0.00
A50 2 2 0 0 5 14 1584 24.88 11.71 1585 15.38 11.78 1418 41.88 0.00 0.00
A50 2 2 0 0 5 28 1920 24.09 5.73 1965 15.36 8.20 1816 42.53 0.00 0.00
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Table C.7: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A50 2 2 0 1 2 18 377 4.19 1.62 378 6.31 1.89 371 3.08 0.00 0.00
A50 2 2 0 1 2 9 213 4.13 12.70 189 6.33 0.00 195 2.95 3.17 0.00
A50 2 2 0 1 5 18 1295 24.20 69.06 766 14.97 0.00 964 41.63 25.85 0.00
A50 2 2 0 1 5 9 734 24.22 31.31 559 15.19 0.00 734 41.22 31.31 0.00
A50 2 2 1 0 2 2 360 4.20 181.25 128 6.72 0.00 360 3.28 181.25 0.00
A50 2 2 1 0 2 4 462 4.27 95.76 236 6.67 0.00 449 3.33 90.25 0.00
A50 2 2 1 0 5 2 1241 17.92 490.95 210 15.56 0.00 1196 36.17 469.52 0.00
A50 2 2 1 0 5 4 1618 24.89 285.24 420 15.30 0.00 1618 41.31 285.24 0.00
A50 2 2 1 1 2 2 44 3.34 10.00 40 6.13 0.00 44 2.23 10.00 0.00
A50 2 2 1 1 2 4 84 3.31 5.00 80 6.16 0.00 84 2.25 5.00 0.00
A50 2 2 1 1 5 2 214 17.80 22.99 174 14.42 0.00 214 38.42 22.99 0.00
A50 2 2 1 1 5 4 1001 17.94 207.06 326 14.41 0.00 1001 37.95 207.06 0.00
A50 2 3 0 0 2 12 1623 2.13 55.76 1042 8.53 0.00 1311 2.61 25.82 0.00
A50 2 3 0 0 2 24 2210 2.13 47.53 1498 8.47 0.00 2122 2.61 41.66 0.00
A50 2 3 0 0 5 10 1508 21.95 25.67 1200 14.84 0.00 1450 40.83 20.83 0.00
A50 2 3 0 0 5 20 1874 21.16 0.21 2190 14.92 17.11 1870 39.84 0.00 0.00
A50 2 3 0 1 2 11 1482 2.08 19.32 1242 8.56 0.00 1482 2.48 19.32 0.00
A50 2 3 0 1 2 22 2077 2.11 0.00 2105 8.44 1.35 2113 2.50 1.73 1.35
A50 2 3 0 1 5 13 941 25.00 0.00 1340 14.78 42.40 941 40.73 0.00 0.00
A50 2 3 0 1 5 26 1663 22.36 20.16 2161 14.45 56.14 1384 37.77 0.00 0.00
A50 2 3 1 0 2 2 808 2.06 270.64 218 8.08 0.00 567 2.58 160.09 0.00
A50 2 3 1 0 2 4 1630 2.05 273.85 436 8.19 0.00 1618 2.56 271.10 0.00
A50 2 3 1 0 5 2 433 24.72 88.26 230 14.17 0.00 417 40.30 81.30 0.00
A50 2 3 1 0 5 4 1032 25.50 124.35 460 14.30 0.00 1010 40.81 119.57 0.00
A50 2 3 1 1 2 1 515 2.02 340.17 117 7.83 0.00 513 2.33 338.46 0.00
A50 2 3 1 1 2 2 949 1.98 305.56 234 7.83 0.00 949 2.38 305.56 0.00
A50 2 3 1 1 5 2 902 25.55 313.76 218 13.25 0.00 539 39.50 147.25 0.00
A50 2 3 1 1 5 4 1311 23.80 200.69 436 13.09 0.00 677 38.45 55.28 0.00
A50 2 4 0 0 2 14 868 2.80 16.98 742 6.52 0.00 759 2.38 2.29 0.00
A50 2 4 0 0 2 7 623 3.33 67.92 371 6.53 0.00 623 2.56 67.92 0.00
A50 2 4 0 0 5 16 1826 17.39 13.98 1728 16.52 7.87 1602 36.78 0.00 0.00
A50 2 4 0 0 5 8 1610 17.59 86.34 864 16.73 0.00 1370 37.41 58.56 0.00
A50 2 4 0 1 2 10 210 0.77 0.00 210 6.13 0.00 210 0.92 0.00 0.00
A50 2 4 0 1 2 5 105 0.78 0.00 105 6.14 0.00 105 0.94 0.00 0.00
A50 2 4 0 1 5 12 1357 16.83 5.85 1282 16.28 0.00 1347 36.73 5.07 0.00
A50 2 4 0 1 5 24 1887 16.55 14.57 1747 16.09 6.07 1647 36.45 0.00 0.00
A50 2 4 1 0 2 1 53 1.97 1.92 52 6.47 0.00 53 1.94 1.92 0.00
A50 2 4 1 0 2 2 296 1.98 190.20 102 6.47 0.00 259 1.91 153.92 0.00
A50 2 4 1 0 5 2 750 17.03 257.14 210 15.25 0.00 696 36.16 231.43 0.00
A50 2 4 1 0 5 4 989 24.23 135.48 420 15.23 0.00 844 43.06 100.95 0.00
A50 2 4 1 1 2 1 21 0.22 0.00 21 5.70 0.00 21 0.70 0.00 0.00
A50 2 4 1 1 2 2 42 0.20 0.00 42 5.73 0.00 42 0.69 0.00 0.00
A50 2 4 1 1 5 2 990 24.69 338.05 226 14.52 0.00 928 41.08 310.62 0.00
A50 2 4 1 1 5 4 1151 15.16 185.61 403 14.33 0.00 1016 34.69 152.11 0.00
A50 2 5 0 0 2 11 1935 4.78 117.17 891 8.23 0.00 1851 3.89 107.74 0.00
A50 2 5 0 0 2 22 2111 2.88 19.94 1760 8.27 0.00 2111 2.83 19.94 0.00
A50 2 5 0 0 5 10 1382 15.92 74.49 792 14.19 0.00 1069 35.03 34.97 0.00
A50 2 5 0 0 5 20 1775 15.91 12.91 1572 14.17 0.00 1775 34.23 12.91 0.00
A50 2 5 0 1 2 12 563 2.16 17.54 576 7.45 20.25 479 2.11 0.00 0.00
A50 2 5 0 1 2 24 1167 3.22 22.33 965 7.42 1.15 954 2.64 0.00 0.00
A50 2 5 0 1 5 11 563 16.30 10.83 508 13.16 0.00 534 33.66 5.12 0.00
A50 2 5 0 1 5 22 906 22.36 4.98 947 13.22 9.73 863 37.88 0.00 0.00
A50 2 5 1 0 2 2 579 2.98 271.15 156 7.56 0.00 423 2.83 171.15 0.00
A50 2 5 1 0 2 4 828 2.98 165.38 312 7.56 0.00 795 2.81 154.81 0.00
A50 2 5 1 0 5 1 81 17.13 3.85 78 13.47 0.00 81 34.44 3.85 0.00
A50 2 5 1 0 5 2 231 17.41 48.08 156 13.16 0.00 231 33.92 48.08 0.00
A50 2 5 1 1 2 2 168 4.38 29.23 130 6.86 0.00 162 3.09 24.62 0.00
A50 2 5 1 1 2 4 510 2.25 107.32 246 6.84 0.00 510 2.13 107.32 0.00
A50 2 5 1 1 5 1 45 15.59 2.27 47 12.14 6.82 44 32.64 0.00 0.00
A50 2 5 1 1 5 2 90 15.80 2.27 94 12.11 6.82 88 32.56 0.00 0.00
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Table C.8: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A100 1 1 0 0 2 11 3589 8.16 47.82 2428 14.11 0.00 3218 7.67 32.54 0.00
A100 1 1 0 0 2 22 3985 7.61 8.61 3692 13.70 0.63 3669 7.33 0.00 0.00
A100 1 1 0 0 5 14 7441 194.17 97.32 3771 27.55 0.00 4178 185.59 10.79 0.00
A100 1 1 0 0 5 28 7991 178.70 74.78 5286 27.56 15.62 4572 163.42 0.00 0.00
A100 1 1 0 1 2 14 1253 7.23 64.87 760 11.52 0.00 907 6.42 19.34 0.00
A100 1 1 0 1 2 7 854 7.44 88.94 466 11.50 3.10 452 6.55 0.00 0.00
A100 1 1 0 1 5 14 1917 151.00 119.84 992 23.66 13.76 872 137.50 0.00 0.00
A100 1 1 0 1 5 28 2421 150.41 65.48 1734 23.67 18.52 1463 138.09 0.00 0.00
A100 1 2 0 0 2 14 10693 9.64 247.85 3074 18.61 0.00 10693 8.28 247.85 0.00
A100 1 2 0 0 2 7 4029 9.27 156.30 1572 18.59 0.00 4029 8.17 156.30 0.00
A100 1 2 0 0 5 14 13925 179.97 293.14 3542 37.38 0.00 8836 206.34 149.46 0.00
A100 1 2 0 0 5 28 15986 196.98 125.66 7084 36.83 0.00 10933 191.63 54.33 0.00
A100 1 2 0 1 2 10 7976 9.20 200.41 2655 18.72 0.00 7976 7.73 200.41 0.00
A100 1 2 0 1 2 20 8919 9.73 84.09 4845 18.52 0.00 8586 7.94 77.21 0.00
A100 1 2 0 1 5 16 12046 132.50 181.19 4284 36.19 0.00 6751 159.38 57.59 0.00
A100 1 2 0 1 5 8 13120 127.97 506.28 2164 36.36 0.00 6024 154.25 178.37 0.00
A100 1 3 0 0 2 14 4598 7.98 79.96 2555 13.17 0.00 3546 7.14 38.79 0.00
A100 1 3 0 0 2 28 6083 7.23 42.63 4265 12.97 0.00 4572 6.95 7.20 0.00
A100 1 3 0 0 5 15 7275 122.95 144.29 2978 22.61 0.00 4773 132.14 60.28 0.00
A100 1 3 0 0 5 30 7418 106.25 69.67 4372 22.39 0.00 5063 125.61 15.81 0.00
A100 1 3 0 1 2 14 3553 7.06 96.84 1805 12.64 0.00 2502 6.73 38.61 0.00
A100 1 3 0 1 2 7 3213 7.22 189.98 1108 12.56 0.00 1847 6.84 66.70 0.00
A100 1 3 0 1 5 13 4712 116.78 175.72 1792 23.14 4.86 1709 137.17 0.00 0.00
A100 1 3 0 1 5 26 4303 108.56 88.89 3176 22.84 39.42 2278 127.42 0.00 0.00
A100 1 4 0 0 2 14 9191 8.08 210.40 2961 14.56 0.00 7896 7.34 166.67 0.00
A100 1 4 0 0 2 7 3924 8.13 143.27 1613 14.72 0.00 3779 7.42 134.28 0.00
A100 1 4 0 0 5 14 12059 173.83 151.28 4799 25.53 0.00 8151 175.23 69.85 0.00
A100 1 4 0 0 5 28 12871 182.98 88.48 6829 25.50 0.00 9209 184.20 34.85 0.00
A100 1 4 0 1 2 14 4171 7.17 78.10 2342 14.30 0.00 2537 6.73 8.33 0.00
A100 1 4 0 1 2 7 3595 7.17 168.08 1341 14.19 0.00 2546 6.88 89.86 0.00
A100 1 4 0 1 5 14 5785 154.17 112.61 2721 27.00 0.00 2934 179.23 7.83 0.00
A100 1 4 0 1 5 7 6255 149.91 299.17 1567 27.05 0.00 2269 173.64 44.80 0.00
A100 1 5 0 0 2 10 8679 8.38 225.06 2670 14.97 0.00 8679 7.39 225.06 0.00
A100 1 5 0 0 2 20 9898 8.42 124.34 4412 14.73 0.00 9877 7.66 123.87 0.00
A100 1 5 0 0 5 13 11110 184.45 200.60 3696 25.00 0.00 7331 178.45 98.35 0.00
A100 1 5 0 0 5 26 12393 157.77 104.78 6052 24.88 0.00 8199 171.23 35.48 0.00
A100 1 5 0 1 2 10 7278 8.11 175.89 2638 14.97 0.00 5300 7.48 100.91 0.00
A100 1 5 0 1 2 20 6888 8.70 57.12 4384 14.89 0.00 6342 7.77 44.66 0.00
A100 1 5 0 1 5 12 7153 150.27 150.81 2899 25.78 1.65 2852 163.33 0.00 0.00
A100 1 5 0 1 5 6 5913 118.97 287.48 1526 26.11 0.00 2615 143.19 71.36 0.00
A100 2 1 0 0 2 11 9275 9.36 71.82 5398 17.41 0.00 8131 8.02 50.63 0.00
A100 2 1 0 0 2 22 11014 9.45 57.43 6996 17.42 0.00 10959 8.22 56.65 0.00
A100 2 1 0 0 5 14 8413 95.78 57.75 5333 29.36 0.00 8229 106.59 54.30 0.00
A100 2 1 0 0 5 28 10856 97.30 47.34 7368 28.98 0.00 8970 119.61 21.74 0.00
A100 2 1 0 1 2 14 8742 9.70 72.22 5076 17.30 0.00 8213 7.89 61.80 0.00
A100 2 1 0 1 2 7 4789 5.55 18.36 4046 17.20 0.00 4789 6.08 18.36 0.00
A100 2 1 0 1 5 11 8290 80.97 147.68 3347 28.81 0.00 7674 103.64 129.28 0.00
A100 2 1 0 1 5 22 10615 80.25 106.08 5151 28.78 0.00 9099 109.31 76.65 0.00
A100 2 2 0 0 2 10 10367 7.75 122.23 4665 19.58 0.00 8177 7.81 75.28 0.00
A100 2 2 0 0 2 20 11022 7.75 83.36 6011 19.53 0.00 7576 7.88 26.04 0.00
A100 2 2 0 0 5 14 5949 77.66 50.34 3957 31.28 0.00 4818 101.91 21.76 0.00
A100 2 2 0 0 5 28 7664 77.86 34.86 5683 30.94 0.00 5871 99.75 3.31 0.00
A100 2 2 0 1 2 13 7708 7.25 199.69 2572 17.77 0.00 4445 7.30 72.82 0.00
A100 2 2 0 1 2 26 8706 7.59 109.33 4159 17.55 0.00 5298 7.70 27.39 0.00
A100 2 2 0 1 5 13 6591 75.36 110.44 3132 29.31 0.00 4507 98.16 43.90 0.00
A100 2 2 0 1 5 26 7735 82.02 80.18 5029 29.58 17.14 4293 110.28 0.00 0.00
A100 2 3 0 0 2 13 3621 7.44 62.23 2232 13.41 0.00 2831 7.00 26.84 0.00
A100 2 3 0 0 2 26 4357 7.64 24.27 3506 13.25 0.00 3845 7.05 9.67 0.00
A100 2 3 0 0 5 15 4114 153.52 51.03 2724 23.81 0.00 2876 154.45 5.58 0.00
A100 2 3 0 0 5 30 4346 156.47 24.78 4337 23.61 24.52 3483 154.95 0.00 0.00
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Table C.9: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A100 2 3 0 1 2 18 1399 6.91 34.00 1044 11.95 0.00 1123 6.13 7.57 0.00
A100 2 3 0 1 2 9 923 7.33 76.82 522 11.94 0.00 736 6.22 41.00 0.00
A100 2 3 0 1 5 15 1323 103.95 45.23 911 22.05 0.00 976 123.72 7.14 0.00
A100 2 3 0 1 5 30 1967 101.16 20.23 1800 21.95 10.02 1636 106.69 0.00 0.00
A100 2 4 0 0 2 12 3366 7.08 71.73 1960 12.88 0.00 2715 6.59 38.52 0.00
A100 2 4 0 0 2 24 3867 7.41 43.81 2689 12.69 0.00 3259 6.75 21.20 0.00
A100 2 4 0 0 5 12 4498 120.23 75.84 2558 25.05 0.00 3327 139.73 30.06 0.00
A100 2 4 0 0 5 6 3475 144.14 82.41 1905 25.00 0.00 2549 157.92 33.81 0.00
A100 2 4 0 1 2 10 1187 7.11 148.85 477 11.20 0.00 639 6.27 33.96 0.00
A100 2 4 0 1 2 5 749 7.13 212.08 240 11.27 0.00 482 6.20 100.83 0.00
A100 2 4 0 1 5 18 1666 144.11 79.72 927 22.48 0.00 982 133.47 5.93 0.00
A100 2 4 0 1 5 9 1365 124.95 182.02 484 22.20 0.00 766 144.92 58.26 0.00
A100 2 5 0 0 2 16 7204 5.11 240.29 2117 14.89 0.00 6532 5.38 208.55 0.00
A100 2 5 0 0 2 8 5109 5.03 297.59 1285 15.02 0.00 4594 5.44 257.51 0.00
A100 2 5 0 0 5 13 9212 100.80 291.00 2356 25.59 0.00 7347 126.61 211.84 0.00
A100 2 5 0 0 5 26 10385 133.44 187.12 3617 25.42 0.00 7514 141.05 107.74 0.00
A100 2 5 0 1 2 10 3522 5.02 213.62 1123 14.72 0.00 2407 5.30 114.34 0.00
A100 2 5 0 1 2 5 2403 4.97 319.37 573 14.70 0.00 1626 5.28 183.77 0.00
A100 2 5 0 1 5 16 6517 107.69 258.87 1816 24.75 0.00 4306 141.50 137.11 0.00
A100 2 5 0 1 5 8 5211 113.28 468.89 916 24.80 0.00 3599 139.66 292.90 0.00
A100 3 1 0 0 2 11 3508 4.09 83.19 1915 17.00 0.00 3409 5.14 78.02 0.00
A100 3 1 0 0 2 22 3954 4.16 9.65 3606 17.39 0.00 3779 5.27 4.80 0.00
A100 3 1 0 0 5 11 3530 44.95 89.58 1862 27.84 0.00 3607 79.36 93.72 0.00
A100 3 1 0 0 5 22 4167 42.86 22.49 3402 28.09 0.00 4255 77.13 25.07 0.00
A100 3 1 0 1 2 12 1501 3.83 40.02 1072 14.84 0.00 1334 4.75 24.44 0.00
A100 3 1 0 1 2 24 2005 3.73 18.08 1698 14.97 0.00 1772 4.73 4.36 0.00
A100 3 1 0 1 5 12 1906 41.03 22.81 1568 26.50 1.03 1552 73.05 0.00 0.00
A100 3 1 0 1 5 24 2661 41.78 34.12 2204 25.67 11.09 1984 74.63 0.00 0.00
A100 3 1 1 0 2 2 2681 4.19 119.93 1219 15.00 0.00 2656 4.69 117.88 0.00
A100 3 1 1 0 2 4 2843 4.16 87.66 1515 15.38 0.00 2822 4.80 86.27 0.00
A100 3 1 1 0 5 2 2928 47.06 81.53 1755 25.88 8.80 1613 78.92 0.00 0.00
A100 3 1 1 0 5 4 3208 46.58 69.29 2005 25.98 5.80 1895 79.39 0.00 0.00
A100 3 1 1 1 2 3 1476 3.97 196.98 497 14.42 0.00 1194 4.55 140.24 0.00
A100 3 1 1 1 2 6 1841 3.94 90.19 968 14.33 0.00 1790 4.56 84.92 0.00
A100 3 1 1 1 5 2 716 44.13 96.70 364 23.70 0.00 554 77.48 52.20 0.00
A100 3 1 1 1 5 4 1735 42.08 144.37 710 23.70 0.00 1148 76.17 61.69 0.00
A100 3 2 0 0 2 14 5665 5.42 119.06 2586 17.78 0.00 4667 5.81 80.47 0.00
A100 3 2 0 0 2 28 7276 10.09 45.29 5008 17.33 0.00 5511 8.28 10.04 0.00
A100 3 2 0 0 5 12 11690 57.69 357.71 2554 34.20 0.00 7887 91.63 208.81 0.00
A100 3 2 0 0 5 6 13332 64.33 935.09 1288 34.27 0.00 7981 97.36 519.64 0.00
A100 3 2 0 1 2 14 3560 8.72 64.81 2160 15.72 0.00 2539 7.38 17.55 0.00
A100 3 2 0 1 2 7 3492 8.59 140.00 1455 15.95 0.00 1753 7.59 20.48 0.00
A100 3 2 0 1 5 14 7904 51.45 145.47 3220 33.63 0.00 4215 88.70 30.90 0.00
A100 3 2 0 1 5 7 5146 52.56 216.09 1628 33.52 0.00 3733 83.13 129.30 0.00
A100 3 2 1 0 2 3 3261 5.55 441.69 602 15.72 0.00 3063 5.55 408.80 0.00
A100 3 2 1 0 2 6 6361 5.58 464.42 1127 15.72 0.00 6406 5.48 468.41 0.00
A100 3 2 1 0 5 4 9560 52.84 355.02 2101 31.25 0.00 4619 90.02 119.85 0.00
A100 3 2 1 0 5 8 14561 56.80 394.43 2945 31.38 0.00 10140 93.73 244.31 0.00
A100 3 2 1 1 2 3 1371 5.53 113.22 643 14.78 0.00 1995 5.25 210.26 0.00
A100 3 2 1 1 2 6 2307 5.55 85.15 1246 14.69 0.00 1687 5.27 35.39 0.00
A100 3 2 1 1 5 3 7423 53.88 935.29 717 31.00 0.00 3551 86.09 395.26 0.00
A100 3 2 1 1 5 6 9867 86.25 593.88 1422 30.89 0.00 6543 106.06 360.13 0.00
A100 3 3 0 0 2 15 2338 3.67 31.35 1780 12.20 0.00 2159 4.42 21.29 0.00
A100 3 3 0 0 2 30 2808 3.72 11.43 3228 12.70 28.10 2520 4.38 0.00 0.00
A100 3 3 0 0 5 11 2229 57.59 3.58 2152 22.30 0.00 2229 88.95 3.58 0.00
A100 3 3 0 0 5 22 2772 72.23 1.95 2762 22.27 1.58 2719 96.64 0.00 0.00
A100 3 3 0 1 2 11 773 3.31 64.82 469 10.91 0.00 686 3.95 46.27 0.00
A100 3 3 0 1 2 22 1068 3.30 21.50 883 10.98 0.46 879 4.02 0.00 0.00
A100 3 3 0 1 5 12 593 39.58 45.34 412 19.19 0.98 408 67.66 0.00 0.00
A100 3 3 0 1 5 24 836 38.17 17.09 724 19.25 1.40 714 65.70 0.00 0.00
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Table C.10: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A100 3 3 1 0 2 2 1769 3.80 94.18 911 11.77 0.00 1769 4.31 94.18 0.00
A100 3 3 1 0 2 4 1831 3.80 66.00 1103 11.98 0.00 1828 4.27 65.73 0.00
A100 3 3 1 0 5 3 1613 57.61 24.46 1296 20.30 0.00 1613 83.16 24.46 0.00
A100 3 3 1 0 5 6 1839 61.02 16.32 1581 20.30 0.00 1831 86.19 15.81 0.00
A100 3 3 1 1 2 3 292 3.86 111.59 138 10.63 0.00 292 3.97 111.59 0.00
A100 3 3 1 1 2 6 409 3.84 51.48 270 10.78 0.00 409 3.88 51.48 0.00
A100 3 3 1 1 5 3 1039 47.38 724.60 126 18.23 0.00 409 70.00 224.60 0.00
A100 3 3 1 1 5 6 1221 45.95 384.52 252 18.22 0.00 597 72.56 136.90 0.00
A100 3 4 0 0 2 14 3719 4.19 101.46 1846 15.09 0.00 2897 4.88 56.93 0.00
A100 3 4 0 0 2 28 4114 4.16 77.17 2322 15.28 0.00 3035 4.92 30.71 0.00
A100 3 4 0 0 5 11 2649 32.77 48.32 1786 25.67 0.00 2069 68.88 15.85 0.00
A100 3 4 0 0 5 22 4510 34.41 63.47 2759 25.47 0.00 2983 66.36 8.12 0.00
A100 3 4 0 1 2 15 3771 4.13 117.60 1733 15.30 0.00 3266 4.98 88.46 0.00
A100 3 4 0 1 2 30 4117 4.13 78.46 2307 15.13 0.00 3758 4.98 62.90 0.00
A100 3 4 0 1 5 12 4026 33.67 80.46 2231 25.67 0.00 3114 65.20 39.58 0.00
A100 3 4 0 1 5 24 3791 33.75 47.68 2567 25.78 0.00 3124 65.59 21.70 0.00
A100 3 4 1 0 2 1 1901 4.00 967.98 178 13.53 0.00 1828 4.86 926.97 0.00
A100 3 4 1 0 2 2 2031 3.98 470.51 356 13.50 0.00 1958 4.88 450.00 0.00
A100 3 4 1 0 5 2 2968 31.11 729.05 358 23.19 0.00 2263 64.56 532.12 0.00
A100 3 4 1 0 5 4 3131 31.20 337.29 716 23.30 0.00 3131 64.36 337.29 0.00
A100 3 4 1 1 2 2 3352 4.14 263.16 923 12.95 0.00 1476 4.81 59.91 0.00
A100 3 4 1 1 2 4 3550 4.14 246.34 1025 12.92 0.00 1562 4.78 52.39 0.00
A100 3 4 1 1 5 2 2322 30.56 545.00 360 22.91 0.00 2094 63.77 481.67 0.00
A100 3 4 1 1 5 4 2779 30.78 285.97 720 23.11 0.00 2504 63.50 247.78 0.00
A100 3 5 0 0 2 11 1367 7.98 43.14 955 13.53 0.00 1414 6.72 48.06 0.00
A100 3 5 0 0 2 22 2183 7.95 89.33 1153 13.63 0.00 1901 6.64 64.87 0.00
A100 3 5 0 0 5 18 3980 38.27 103.16 1959 29.78 0.00 2753 90.14 40.53 0.00
A100 3 5 0 0 5 9 2886 45.30 80.49 1599 29.88 0.00 2555 94.89 59.79 0.00
A100 3 5 0 1 2 13 556 7.39 59.31 366 11.16 4.87 349 5.88 0.00 0.00
A100 3 5 0 1 2 26 923 7.55 31.86 717 11.20 2.43 700 5.88 0.00 0.00
A100 3 5 0 1 5 13 3498 46.08 58.78 2203 29.27 0.00 2492 84.64 13.12 0.00
A100 3 5 0 1 5 26 4303 44.50 63.24 2636 28.98 0.00 2765 80.63 4.89 0.00
A100 3 5 1 0 2 2 1550 7.91 110.03 738 12.42 0.00 1404 6.33 90.24 0.00
A100 3 5 1 0 2 4 1486 7.98 55.11 958 12.61 0.00 1486 6.42 55.11 0.00
A100 3 5 1 0 5 2 3764 42.03 171.77 1385 26.95 0.00 2193 78.33 58.34 0.00
A100 3 5 1 0 5 4 3102 44.28 115.87 1437 26.91 0.00 3005 81.88 109.12 0.00
A100 3 5 1 1 2 2 120 5.02 71.43 70 10.48 0.00 115 4.48 64.29 0.00
A100 3 5 1 1 2 4 164 5.00 17.14 140 10.31 0.00 159 4.48 13.57 0.00
A100 3 5 1 1 5 2 3977 33.97 75.20 2270 26.23 0.00 2545 68.86 12.11 0.00
A100 3 5 1 1 5 4 4049 33.83 57.55 2570 26.25 0.00 3064 69.09 19.22 0.00
A150 1 1 0 0 2 14 22034 11.98 186.27 7697 29.83 0.00 18309 12.14 137.87 0.00
A150 1 1 0 0 2 28 24104 12.36 129.02 10525 29.75 0.00 19250 12.44 82.90 0.00
A150 1 1 0 0 5 14 55146 197.73 459.01 9865 84.53 0.00 30300 260.86 207.15 0.00
A150 1 1 0 0 5 7 30582 184.02 234.08 9154 84.58 0.00 18886 259.75 106.31 0.00
A150 1 1 0 1 2 11 12024 12.31 368.04 2569 27.84 0.00 7205 12.17 180.46 0.00
A150 1 1 0 1 2 22 14759 12.44 204.81 4842 28.03 0.00 10492 12.25 116.69 0.00
A150 1 1 0 1 5 10 36842 165.44 284.49 9582 85.13 0.00 21113 276.08 120.34 0.00
A150 1 1 0 1 5 5 24655 187.98 239.09 7271 84.86 0.00 13375 268.66 83.95 0.00
A150 1 2 0 0 2 16 39044 13.25 143.92 16007 35.09 0.00 35791 13.52 123.60 0.00
A150 1 2 0 0 2 8 14096 12.75 8.51 12991 34.89 0.00 13759 13.16 5.91 0.00
A150 1 2 0 0 5 10 63684 290.66 360.18 13839 60.86 0.00 42406 298.48 206.42 0.00
A150 1 2 0 0 5 20 65071 251.08 258.74 18139 60.77 0.00 46619 267.34 157.01 0.00
A150 1 2 0 1 2 14 26581 13.41 73.74 15299 34.81 0.00 26855 13.58 75.53 0.00
A150 1 2 0 1 2 28 35400 14.17 71.21 20676 34.44 0.00 34606 13.64 67.37 0.00
A150 1 2 0 1 5 10 46911 323.28 331.92 10861 61.83 0.00 25603 330.67 135.73 0.00
A150 1 2 0 1 5 5 36023 262.50 317.37 8631 61.31 0.00 13963 300.20 61.78 0.00
A150 1 3 0 0 2 18 30584 12.41 243.22 8911 34.61 0.00 25843 13.03 190.01 0.00
A150 1 3 0 0 2 9 26481 12.55 305.71 6527 34.47 0.00 21643 12.84 231.59 0.00
A150 1 3 0 0 5 12 40992 254.98 321.73 9720 60.77 0.00 24840 278.84 155.56 0.00
A150 1 3 0 0 5 24 39532 248.86 204.73 12973 61.00 0.00 26320 282.34 102.88 0.00
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Table C.11: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A150 1 3 0 1 2 12 15767 12.19 330.56 3662 31.55 0.00 8560 12.61 133.75 0.00
A150 1 3 0 1 2 6 12867 12.02 572.26 1914 31.06 0.00 6937 12.28 262.43 0.00
A150 1 3 0 1 5 16 24099 241.45 345.12 5414 58.27 0.00 10517 279.81 94.26 0.00
A150 1 3 0 1 5 8 20432 235.09 528.10 3253 58.59 0.00 9815 275.67 201.72 0.00
A150 1 4 0 0 2 11 12671 11.64 145.94 5152 25.28 0.00 10971 11.47 112.95 0.00
A150 1 4 0 0 2 22 15284 11.80 108.74 7322 25.28 0.00 13577 11.52 85.43 0.00
A150 1 4 0 0 5 13 21706 250.44 206.63 7079 46.89 0.00 14703 266.72 107.70 0.00
A150 1 4 0 0 5 26 21887 269.94 132.22 9425 46.86 0.00 16015 278.75 69.92 0.00
A150 1 4 0 1 2 12 4823 12.58 142.48 1989 21.19 0.00 4146 11.19 108.45 0.00
A150 1 4 0 1 2 6 4222 12.14 292.74 1075 21.30 0.00 3023 10.92 181.21 0.00
A150 1 4 0 1 5 10 5524 211.95 160.94 2117 39.67 0.00 3320 247.20 56.83 0.00
A150 1 4 0 1 5 20 8170 215.52 110.84 3875 39.69 0.00 4271 239.03 10.22 0.00
A150 1 5 0 0 2 13 20477 13.52 110.89 9710 31.41 0.00 18255 12.92 88.00 0.00
A150 1 5 0 0 2 26 22563 13.66 60.77 14034 31.41 0.00 20442 12.64 45.66 0.00
A150 1 5 0 0 5 14 31000 231.81 160.24 11912 54.27 0.00 20945 255.94 75.83 0.00
A150 1 5 0 0 5 7 25791 216.16 152.19 10227 54.05 0.00 18754 252.20 83.38 0.00
A150 1 5 0 1 2 18 22983 13.88 70.26 13499 32.19 0.00 22736 13.16 68.43 0.00
A150 1 5 0 1 2 9 20076 13.47 88.74 10637 32.05 0.00 20070 12.89 88.68 0.00
A150 1 5 0 1 5 14 21998 220.66 216.61 6948 52.25 0.00 14445 244.22 107.90 0.00
A150 1 5 0 1 5 28 22827 163.52 94.04 11764 52.16 0.00 16146 228.00 37.25 0.00
A150 2 1 0 0 2 18 29646 14.02 92.78 15378 35.75 0.00 29088 13.63 89.15 0.00
A150 2 1 0 0 2 9 18527 15.91 48.13 12507 35.95 0.00 19248 14.48 53.90 0.00
A150 2 1 0 0 5 10 38537 261.34 145.44 15701 66.58 0.00 25777 279.22 64.17 0.00
A150 2 1 0 0 5 20 64473 239.42 234.21 19291 66.88 0.00 36428 267.33 88.83 0.00
A150 2 1 0 1 2 10 22607 13.09 33.73 16905 35.92 0.00 20371 13.23 20.50 0.00
A150 2 1 0 1 2 5 20065 15.66 31.23 15290 35.69 0.00 19328 14.20 26.41 0.00
A150 2 1 0 1 5 18 46957 270.42 259.47 13063 65.91 0.00 28521 290.64 118.33 0.00
A150 2 1 0 1 5 9 30476 263.59 209.12 9859 66.28 0.00 15393 281.17 56.13 0.00
A150 2 2 0 0 2 11 17951 12.77 384.25 3707 28.55 0.00 17061 12.47 360.24 0.00
A150 2 2 0 0 2 22 19631 12.45 205.07 6435 28.38 0.00 19391 12.13 201.34 0.00
A150 2 2 0 0 5 18 22339 126.69 203.02 7372 46.69 0.00 16806 174.66 127.97 0.00
A150 2 2 0 0 5 9 19696 115.72 275.73 5242 46.73 0.00 15454 164.64 194.81 0.00
A150 2 2 0 1 2 12 9752 12.16 207.44 3172 25.97 0.00 8915 11.66 181.05 0.00
A150 2 2 0 1 2 24 11562 11.86 92.19 6016 25.64 0.00 9350 12.45 55.42 0.00
A150 2 2 0 1 5 10 7358 108.19 215.12 2335 43.06 0.00 6139 158.09 162.91 0.00
A150 2 2 0 1 5 5 4310 123.95 253.28 1220 42.47 0.00 3669 171.77 200.74 0.00
A150 2 3 0 0 2 16 7452 11.64 99.57 3734 22.48 0.00 6435 11.36 72.34 0.00
A150 2 3 0 0 2 8 6827 11.44 169.42 2534 22.42 0.00 5478 11.17 116.18 0.00
A150 2 3 0 0 5 13 8047 233.77 104.24 3940 40.61 0.00 5155 254.63 30.84 0.00
A150 2 3 0 0 5 26 10161 212.23 70.80 6007 40.34 0.97 5949 254.19 0.00 0.00
A150 2 3 0 1 2 14 1647 10.77 38.40 1190 18.42 0.00 1681 10.03 41.26 0.00
A150 2 3 0 1 2 7 1213 10.95 103.87 595 18.45 0.00 1106 10.08 85.88 0.00
A150 2 3 0 1 5 12 2101 212.42 103.59 1032 33.94 0.00 1152 225.06 11.63 0.00
A150 2 3 0 1 5 24 2692 215.64 50.14 2054 34.22 14.56 1793 230.31 0.00 0.00
A150 2 4 0 0 2 14 13901 11.81 125.37 6168 28.94 0.00 12777 11.59 107.15 0.00
A150 2 4 0 0 2 7 13105 11.36 167.18 4905 28.89 0.00 12555 11.36 155.96 0.00
A150 2 4 0 0 5 10 12722 202.52 161.39 4867 46.80 0.00 11186 206.64 129.83 0.00
A150 2 4 0 0 5 20 13830 186.52 104.89 6750 46.67 0.00 11295 217.86 67.33 0.00
A150 2 4 0 1 2 14 6477 10.91 275.70 1724 23.30 0.00 4664 11.22 170.53 0.00
A150 2 4 0 1 2 28 8024 11.00 135.58 3406 23.31 0.00 5466 10.92 60.48 0.00
A150 2 4 0 1 5 18 7243 162.36 232.40 2179 40.11 0.00 5158 222.50 136.71 0.00
A150 2 4 0 1 5 9 5457 166.83 396.54 1099 40.41 0.00 4012 190.58 265.06 0.00
A150 2 5 0 0 2 10 11000 8.38 251.21 3132 25.48 0.00 10992 9.09 250.96 0.00
A150 2 5 0 0 2 20 12030 9.23 159.66 4633 25.56 0.00 12372 9.77 167.04 0.00
A150 2 5 0 0 5 12 19718 110.84 285.27 5118 70.28 0.00 15733 174.33 207.41 0.00
A150 2 5 0 0 5 24 21679 112.53 172.69 7950 69.83 0.00 16216 180.34 103.97 0.00
A150 2 5 0 1 2 12 5970 11.91 330.12 1388 21.78 0.00 4655 10.91 235.37 0.00
A150 2 5 0 1 2 6 1624 12.45 103.25 799 22.42 0.00 1772 10.88 121.78 0.00
A150 2 5 0 1 5 16 8898 95.30 146.28 3613 57.33 0.00 6743 160.75 86.63 0.00
A150 2 5 0 1 5 8 9369 107.97 394.93 1893 57.66 0.00 5670 172.83 199.52 0.00
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Table C.12: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A150 3 1 0 0 2 12 7909 7.94 83.63 4307 23.17 0.00 7850 8.63 82.26 0.00
A150 3 1 0 0 2 6 3647 8.11 1.84 3581 23.08 0.00 3635 8.61 1.51 0.00
A150 3 1 0 0 5 14 7504 83.39 60.17 4685 37.80 0.00 7108 125.45 51.72 0.00
A150 3 1 0 0 5 7 7020 84.97 83.24 3831 37.67 0.00 6566 126.28 71.39 0.00
A150 3 1 0 1 2 14 3042 7.02 78.94 1700 18.69 0.00 2346 7.63 38.00 0.00
A150 3 1 0 1 2 28 3874 7.08 32.13 2932 18.98 0.00 3237 7.58 10.40 0.00
A150 3 1 0 1 5 12 2707 66.19 79.75 1506 32.86 0.00 2271 114.09 50.80 0.00
A150 3 1 0 1 5 24 3482 71.19 24.54 2796 33.11 0.00 2812 125.03 0.57 0.00
A150 3 1 1 0 2 10 5453 11.50 40.25 3888 21.55 0.00 5467 9.80 40.61 0.00
A150 3 1 1 0 2 5 5225 8.30 64.67 3173 21.52 0.00 4853 8.25 52.95 0.00
A150 3 1 1 0 5 4 3331 73.77 25.79 2648 35.86 0.00 2915 118.41 10.08 0.00
A150 3 1 1 0 5 8 5087 83.13 48.14 3434 36.05 0.00 5089 132.69 48.19 0.00
A150 3 1 1 1 2 10 2866 7.02 138.44 1202 18.89 0.00 2699 7.22 124.54 0.00
A150 3 1 1 1 2 5 2381 7.00 270.87 642 18.59 0.00 2374 7.06 269.78 0.00
A150 3 1 1 1 5 4 1120 67.02 60.92 696 32.95 0.00 1028 113.47 47.70 0.00
A150 3 1 1 1 5 8 3157 86.86 175.00 1148 32.81 0.00 2628 127.61 128.92 0.00
A150 3 2 0 0 2 16 15067 8.53 254.60 4249 29.55 0.00 15475 9.98 264.20 0.00
A150 3 2 0 0 2 8 13838 8.61 510.95 2265 29.66 0.00 13085 10.09 477.70 0.00
A150 3 2 0 0 5 12 15843 79.95 310.23 3862 45.92 0.00 14595 131.05 277.91 0.00
A150 3 2 0 0 5 6 11534 53.06 385.85 2374 45.81 0.00 11534 111.06 385.85 0.00
A150 3 2 0 1 2 18 10680 6.61 123.90 4770 27.58 0.00 10419 8.81 118.43 0.00
A150 3 2 0 1 2 9 9042 6.53 277.69 2394 27.45 0.00 9809 8.70 309.73 0.00
A150 3 2 0 1 5 16 11898 52.03 180.88 4236 43.20 0.00 10200 110.97 140.79 0.00
A150 3 2 0 1 5 8 10188 88.72 379.66 2124 43.16 0.00 9495 140.78 347.03 0.00
A150 3 2 1 0 2 3 6285 8.28 126.00 2781 25.05 0.00 3702 8.86 33.12 0.00
A150 3 2 1 0 2 6 6985 8.20 98.66 3516 24.73 0.00 4431 9.08 26.02 0.00
A150 3 2 1 0 5 3 8893 50.95 142.38 3669 38.97 0.00 8887 107.48 142.22 0.00
A150 3 2 1 0 5 6 9609 53.11 113.11 4509 39.13 0.00 9624 108.94 113.44 0.00
A150 3 2 1 1 2 4 5981 13.69 462.12 1064 24.81 0.00 1870 11.59 75.75 0.00
A150 3 2 1 1 2 8 13286 8.39 524.34 2128 24.64 0.00 12998 9.30 510.81 0.00
A150 3 2 1 1 5 3 8220 52.73 911.07 813 38.03 0.00 7996 104.95 883.52 0.00
A150 3 2 1 1 5 6 10726 74.08 559.66 1626 38.09 0.00 8727 126.13 436.72 0.00
A150 3 3 0 0 2 13 3302 7.97 43.63 2299 18.78 0.00 3058 7.89 33.01 0.00
A150 3 3 0 0 2 26 5597 8.02 59.55 3508 18.92 0.00 5448 7.98 55.30 0.00
A150 3 3 0 0 5 10 3907 106.86 80.13 2169 33.97 0.00 2867 157.58 32.18 0.00
A150 3 3 0 0 5 20 6482 114.52 108.49 3109 34.14 0.00 5275 163.03 69.67 0.00
A150 3 3 0 1 2 13 1231 5.56 29.72 949 17.30 0.00 1231 6.41 29.72 0.00
A150 3 3 0 1 2 26 2035 9.16 15.17 1767 17.34 0.00 2035 8.23 15.17 0.00
A150 3 3 0 1 5 10 1380 94.95 81.82 759 31.67 0.00 976 150.31 28.59 0.00
A150 3 3 0 1 5 20 1942 94.63 31.13 1530 31.59 3.31 1481 148.53 0.00 0.00
A150 3 3 1 0 2 2 1555 5.86 8.29 1741 17.06 21.24 1436 6.56 0.00 0.00
A150 3 3 1 0 2 4 1810 5.86 9.04 1927 17.27 16.08 1660 6.58 0.00 0.00
A150 3 3 1 0 5 2 1773 95.95 34.52 1342 31.20 1.82 1318 145.95 0.00 0.00
A150 3 3 1 0 5 4 2011 95.58 31.96 1524 31.58 0.00 1980 146.94 29.92 0.00
A150 3 3 1 1 2 3 739 5.67 242.13 216 15.64 0.00 649 6.34 200.46 0.00
A150 3 3 1 1 2 6 901 5.59 108.56 432 15.59 0.00 730 6.27 68.98 0.00
A150 3 3 1 1 5 4 414 81.36 36.18 304 29.03 0.00 331 113.66 8.88 0.00
A150 3 3 1 1 5 8 1627 114.92 167.60 608 28.95 0.00 1023 159.14 68.26 0.00
A150 3 4 0 0 2 12 5346 11.98 167.30 2000 19.98 0.00 5346 10.67 167.30 0.00
A150 3 4 0 0 2 24 6593 11.91 89.67 3476 20.14 0.00 6435 10.84 85.13 0.00
A150 3 4 0 0 5 10 10956 62.70 360.14 2381 45.17 0.00 9064 132.19 280.68 0.00
A150 3 4 0 0 5 20 12061 74.86 204.49 3961 45.55 0.00 10496 130.06 164.98 0.00
A150 3 4 0 1 2 13 1724 11.33 37.15 1257 17.55 0.00 1704 9.98 35.56 0.00
A150 3 4 0 1 2 26 2671 7.73 23.94 2155 17.69 0.00 2479 8.03 15.03 0.00
A150 3 4 0 1 5 10 2453 63.83 84.44 1330 37.78 0.00 1973 125.83 48.35 0.00
A150 3 4 0 1 5 20 4067 65.13 75.23 2321 38.00 0.00 2544 122.70 9.61 0.00
A150 3 4 1 0 2 3 2337 12.03 42.07 1645 18.81 0.00 2220 10.41 34.95 0.00
A150 3 4 1 0 2 6 2682 12.13 34.37 1996 18.63 0.00 2553 10.59 27.91 0.00
A150 3 4 1 0 5 4 2679 76.61 58.61 2654 39.61 57.13 1689 126.02 0.00 0.00
A150 3 4 1 0 5 8 8791 83.33 168.84 3270 39.48 0.00 8791 131.27 168.84 0.00

83



Table C.13: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A150 3 4 1 1 2 3 1278 7.92 235.43 381 16.39 0.00 781 8.19 104.99 0.00
A150 3 4 1 1 2 6 1261 7.73 99.21 633 16.41 0.00 995 8.22 57.19 0.00
A150 3 4 1 1 5 10 4609 66.72 138.81 1930 33.97 0.00 3919 116.30 103.06 0.00
A150 3 4 1 1 5 5 1255 71.14 17.84 1065 34.19 0.00 1193 119.89 12.02 0.00
A150 3 5 0 0 2 11 5311 11.66 48.43 3578 21.17 0.00 4604 11.25 28.68 0.00
A150 3 5 0 0 2 22 5778 11.72 20.95 4777 21.25 0.00 5136 11.06 7.52 0.00
A150 3 5 0 0 5 14 7906 136.34 60.40 4929 43.31 0.00 6488 163.50 31.63 0.00
A150 3 5 0 0 5 28 7786 102.80 14.15 6821 43.47 0.00 7384 162.97 8.25 0.00
A150 3 5 0 1 2 12 1287 10.91 84.91 696 17.17 0.00 1051 9.95 51.01 0.00
A150 3 5 0 1 2 24 1834 11.03 31.75 1392 17.70 0.00 1530 10.00 9.91 0.00
A150 3 5 0 1 5 18 2722 71.48 59.55 1706 34.75 0.00 2131 113.20 24.91 0.00
A150 3 5 0 1 5 9 1879 68.16 123.96 839 34.66 0.00 1523 112.63 81.53 0.00
A150 3 5 1 0 2 2 3092 11.64 78.83 1729 19.11 0.00 2613 10.78 51.13 0.00
A150 3 5 1 0 2 4 3375 12.00 59.27 2119 19.22 0.00 2640 10.64 24.59 0.00
A150 3 5 1 0 5 3 3354 56.36 1.88 3896 37.59 18.35 3292 114.22 0.00 0.00
A150 3 5 1 0 5 6 6617 56.09 53.53 4310 37.45 0.00 6431 106.44 49.21 0.00
A150 3 5 1 1 2 3 308 11.84 68.31 183 15.63 0.00 281 9.31 53.55 0.00
A150 3 5 1 1 2 6 470 12.00 12.44 418 15.95 0.00 441 9.48 5.50 0.00
A150 3 5 1 1 5 3 1314 80.75 318.47 314 30.77 0.00 914 112.83 191.08 0.00
A150 3 5 1 1 5 6 2390 57.50 301.01 596 30.64 0.00 1513 99.88 153.86 0.00
A200 1 1 0 0 2 11 11910 15.33 65.81 7183 31.25 0.00 8534 15.11 18.81 0.00
A200 1 1 0 0 2 22 19912 15.56 115.33 9247 31.47 0.00 18715 15.34 102.39 0.00
A200 1 1 0 0 5 10 28462 138.17 108.85 13628 100.44 0.00 22970 248.66 68.55 0.00
A200 1 1 0 0 5 20 33274 136.39 97.03 16888 100.11 0.00 24570 245.69 45.49 0.00
A200 1 1 0 1 2 12 6505 14.25 194.34 2210 26.64 0.00 5259 13.45 137.96 0.00
A200 1 1 0 1 2 6 1950 14.89 66.81 1169 26.70 0.00 1634 13.78 39.78 0.00
A200 1 1 0 1 5 10 25398 136.81 99.15 12753 97.78 0.00 20127 256.97 57.82 0.00
A200 1 1 0 1 5 5 21416 174.13 90.38 11249 97.78 0.00 17625 246.88 56.68 0.00
A200 1 2 0 0 2 16 35096 17.05 160.22 13487 43.02 0.00 34272 17.36 154.11 0.00
A200 1 2 0 0 2 8 32259 16.72 208.55 10455 41.28 0.00 29750 17.17 184.55 0.00
A200 1 2 0 0 5 12 46059 268.77 320.71 10948 68.38 0.00 33025 323.39 201.65 0.00
A200 1 2 0 0 5 24 47130 282.94 199.28 15748 68.09 0.00 36271 318.00 130.32 0.00
A200 1 2 0 1 2 10 26953 16.80 178.38 9682 39.27 0.00 17729 17.13 83.11 0.00
A200 1 2 0 1 2 5 22695 16.84 195.24 7687 39.81 0.00 13235 16.95 72.17 0.00
A200 1 2 0 1 5 13 28519 226.67 223.31 8821 66.77 0.00 13111 305.08 48.63 0.00
A200 1 2 0 1 5 26 31928 277.31 125.42 14164 66.97 0.00 15964 337.08 12.71 0.00
A200 1 3 0 0 2 14 16484 16.25 53.73 10723 30.45 0.00 15977 14.41 49.00 0.00
A200 1 3 0 0 2 7 12471 16.16 31.88 9456 30.61 0.00 12055 14.55 27.49 0.00
A200 1 3 0 0 5 10 16577 268.06 85.24 8949 51.23 0.00 9009 305.55 0.67 0.00
A200 1 3 0 0 5 20 20299 259.11 93.34 10499 51.45 0.00 17254 305.45 64.34 0.00
A200 1 3 0 1 2 11 5820 16.30 262.17 1607 26.09 0.00 3056 14.11 90.17 0.00
A200 1 3 0 1 2 22 6238 16.48 107.66 3004 25.80 0.00 3902 13.64 29.89 0.00
A200 1 3 0 1 5 12 3560 272.48 107.10 1719 44.94 0.00 3061 274.23 78.07 0.00
A200 1 3 0 1 5 24 3976 204.28 56.29 2863 45.00 12.54 2544 241.27 0.00 0.00
A200 1 4 0 0 2 13 15258 15.75 72.29 8856 32.66 0.00 14477 14.73 63.47 0.00
A200 1 4 0 0 2 26 16159 15.64 42.02 11378 32.38 0.00 15231 14.91 33.86 0.00
A200 1 4 0 0 5 14 24732 156.53 209.69 7986 58.67 0.00 15509 237.09 94.20 0.00
A200 1 4 0 0 5 7 18612 148.08 143.52 7643 58.94 0.00 8809 228.88 15.26 0.00
A200 1 4 0 1 2 10 1789 15.67 51.48 1181 23.89 0.00 1671 13.28 41.49 0.00
A200 1 4 0 1 2 20 2593 10.44 29.59 2069 23.77 3.40 2001 10.61 0.00 0.00
A200 1 4 0 1 5 16 4692 147.08 167.50 1754 44.27 0.00 2100 200.58 19.73 0.00
A200 1 4 0 1 5 8 3830 140.69 294.85 970 43.89 0.00 1568 205.11 61.65 0.00
A200 1 5 0 0 2 14 26406 20.14 67.64 15752 42.52 0.00 26600 17.81 68.87 0.00
A200 1 5 0 0 2 7 24678 20.03 95.07 12651 42.50 0.00 24654 17.91 94.88 0.00
A200 1 5 0 0 5 16 24460 255.23 61.57 15139 73.08 0.00 19946 326.14 31.75 0.00
A200 1 5 0 0 5 8 22698 226.64 93.45 11733 73.03 0.00 18357 336.19 56.46 0.00
A200 1 5 0 1 2 12 20498 12.72 59.37 12862 42.30 0.00 20498 14.16 59.37 0.00
A200 1 5 0 1 2 24 29927 21.53 68.41 17770 42.47 0.00 25342 18.23 42.61 0.00
A200 1 5 0 1 5 10 22432 290.36 86.90 12002 71.39 0.00 18169 331.47 51.38 0.00
A200 1 5 0 1 5 20 21149 285.34 31.84 16042 71.02 0.00 18697 324.25 16.55 0.00
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Table C.14: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A200 2 1 0 0 2 10 17830 17.30 150.99 7104 40.41 0.00 17837 15.75 151.08 0.00
A200 2 1 0 0 2 20 20932 16.67 116.91 9650 40.08 0.00 20225 15.98 109.59 0.00
A200 2 1 0 0 5 12 17702 115.98 86.67 9483 63.09 0.00 13655 195.25 43.99 0.00
A200 2 1 0 0 5 24 21184 113.45 69.87 12471 63.17 0.00 14906 198.27 19.53 0.00
A200 2 1 0 1 2 16 4810 13.95 73.08 2779 28.95 0.00 4304 13.55 54.88 0.00
A200 2 1 0 1 2 8 3301 13.22 106.44 1599 29.19 0.00 2927 12.98 83.05 0.00
A200 2 1 0 1 5 12 7138 114.03 263.63 1963 48.16 0.00 4417 197.81 125.01 0.00
A200 2 1 0 1 5 6 5206 92.92 425.33 991 48.28 0.00 3367 207.33 239.76 0.00
A200 2 2 0 0 2 14 9887 15.63 97.35 5010 28.06 0.00 9579 14.80 91.20 0.00
A200 2 2 0 0 2 28 10637 15.70 65.30 6435 27.94 0.00 9486 15.08 47.41 0.00
A200 2 2 0 0 5 16 46325 79.72 139.06 19378 96.30 0.00 41544 189.38 114.39 0.00
A200 2 2 0 0 5 8 27562 114.53 61.84 17030 96.14 0.00 25612 215.59 50.39 0.00
A200 2 2 0 1 2 10 4128 14.13 251.92 1173 25.75 0.00 3143 14.44 167.95 0.00
A200 2 2 0 1 2 20 4830 14.47 129.67 2103 25.48 0.00 3872 14.20 84.12 0.00
A200 2 2 0 1 5 12 19009 72.44 220.02 5940 86.53 0.00 14405 179.86 142.51 0.00
A200 2 2 0 1 5 6 7727 68.78 90.51 4056 86.77 0.00 7717 183.09 90.26 0.00
A200 2 3 0 0 2 14 20288 8.89 144.35 8303 33.88 0.00 20706 10.61 149.38 0.00
A200 2 3 0 0 2 28 21954 8.95 86.45 11775 33.95 0.00 21954 10.53 86.45 0.00
A200 2 3 0 0 5 12 18305 157.70 161.09 7011 56.36 0.00 15700 215.75 123.93 0.00
A200 2 3 0 0 5 24 20210 141.97 102.12 9999 56.06 0.00 17512 213.95 75.14 0.00
A200 2 3 0 1 2 10 4483 8.17 90.20 2357 29.23 0.00 4397 9.73 86.55 0.00
A200 2 3 0 1 2 20 5504 7.83 35.00 4077 28.83 0.00 5549 9.98 36.10 0.00
A200 2 3 0 1 5 10 5601 120.59 118.96 2558 49.73 0.00 4316 198.58 68.73 0.00
A200 2 3 0 1 5 5 5425 119.14 293.12 1380 49.81 0.00 4072 191.19 195.07 0.00
A200 2 4 0 0 2 13 11495 14.45 174.21 4192 30.34 0.00 10359 13.98 147.11 0.00
A200 2 4 0 0 2 26 13501 11.05 126.56 5959 30.41 0.00 12108 11.69 103.19 0.00
A200 2 4 0 0 5 11 26086 75.05 153.51 10290 97.56 0.00 24419 188.34 137.31 0.00
A200 2 4 0 0 5 22 28742 72.39 105.87 13961 96.25 0.00 25437 187.17 82.20 0.00
A200 2 4 0 1 2 10 3740 9.44 317.88 895 25.42 0.00 2858 9.95 219.33 0.00
A200 2 4 0 1 2 20 4391 9.38 163.09 1669 25.53 0.00 3079 10.19 84.48 0.00
A200 2 4 0 1 5 16 10588 79.48 158.75 4092 75.52 0.00 7162 180.28 75.02 0.00
A200 2 4 0 1 5 8 9142 70.47 219.65 2860 75.84 0.00 5896 173.73 106.15 0.00
A200 2 5 0 0 2 12 21516 17.39 168.31 8019 41.06 0.00 20020 16.59 149.66 0.00
A200 2 5 0 0 2 6 10064 11.28 42.75 7050 41.28 0.00 8875 13.28 25.89 0.00
A200 2 5 0 0 5 12 37669 217.72 283.40 9825 77.66 0.00 23471 309.39 138.89 0.00
A200 2 5 0 0 5 24 40359 228.44 217.94 12694 77.31 0.00 24717 312.88 94.71 0.00
A200 2 5 0 1 2 10 6691 16.16 137.61 2816 35.20 0.00 6460 15.67 129.40 0.00
A200 2 5 0 1 2 20 7795 16.83 79.40 4345 35.22 0.00 7593 16.08 74.75 0.00
A200 2 5 0 1 5 14 21261 219.47 435.81 3968 67.36 0.00 5582 308.94 40.68 0.00
A200 2 5 0 1 5 28 25328 216.59 251.73 7277 66.38 1.06 7201 304.00 0.00 0.00
A200 3 1 0 0 2 10 8687 9.25 251.27 2473 32.81 0.00 8458 11.06 242.01 0.00
A200 3 1 0 0 2 5 3022 9.08 64.42 1838 32.58 0.00 2533 10.97 37.81 0.00
A200 3 1 0 0 5 16 17855 108.09 288.07 4601 82.13 0.00 15432 211.05 235.41 0.00
A200 3 1 0 0 5 8 18789 110.02 431.36 3536 82.06 0.00 14841 218.98 319.71 0.00
A200 3 1 0 1 2 11 5318 8.38 254.77 1499 29.03 0.00 4805 10.59 220.55 0.00
A200 3 1 0 1 2 22 6523 8.41 120.37 2960 28.92 0.00 6000 10.72 102.70 0.00
A200 3 1 0 1 5 10 10003 109.84 362.25 2164 70.59 0.00 5363 214.08 147.83 0.00
A200 3 1 0 1 5 5 7158 99.84 459.66 1279 70.73 0.00 3384 218.78 164.58 0.00
A200 3 1 1 0 2 3 4971 8.80 110.19 2365 29.38 0.00 4312 10.42 82.33 0.00
A200 3 1 1 0 2 6 5682 8.75 38.75 4095 29.50 0.00 5135 10.27 25.40 0.00
A200 3 1 1 0 5 4 5812 112.61 140.26 2419 75.41 0.00 5986 210.91 147.46 0.00
A200 3 1 1 0 5 8 6484 113.09 109.23 3099 75.00 0.00 6350 210.38 104.90 0.00
A200 3 1 1 1 2 3 1371 8.13 79.45 764 26.11 0.00 1783 9.88 133.38 0.00
A200 3 1 1 1 2 6 1791 8.28 52.82 1172 26.25 0.00 2367 9.98 101.96 0.00
A200 3 1 1 1 5 3 4616 113.86 420.99 886 60.75 0.00 2659 202.97 200.11 0.00
A200 3 1 1 1 5 6 3993 109.19 180.01 1426 61.09 0.00 2956 203.02 107.29 0.00
A200 3 2 0 0 2 14 5169 15.42 67.17 3092 28.53 0.00 5117 15.38 65.49 0.00
A200 3 2 0 0 2 28 6172 12.56 46.53 4212 28.44 0.00 5981 14.25 42.00 0.00
A200 3 2 0 0 5 14 20751 154.48 266.30 5665 87.88 0.00 17199 276.67 203.60 0.00
A200 3 2 0 0 5 7 18576 160.70 323.53 4386 88.16 0.00 11950 276.86 172.46 0.00
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Table C.15: Results for instances with 50, 100, 150, and 200 activities-cont.
LP LS H H+LS

Dataset OFV CPU Gap OFV CPU Gap OFV CPU Gap Gap
A200 3 2 0 1 2 10 2168 14.45 202.79 716 24.92 0.00 1719 15.11 140.08 0.00
A200 3 2 0 1 2 20 2804 14.44 96.63 1426 25.09 0.00 1952 14.36 36.89 0.00
A200 3 2 0 1 5 14 13640 154.50 346.48 3055 78.41 0.00 8445 263.02 176.43 0.00
A200 3 2 0 1 5 28 13865 171.94 147.02 5613 78.45 0.00 9706 262.19 72.92 0.00
A200 3 2 1 0 2 3 3537 15.61 17.27 3016 26.00 0.00 3499 15.42 16.01 0.00
A200 3 2 1 0 2 6 3953 15.45 18.89 3325 26.27 0.00 3870 14.56 16.39 0.00
A200 3 2 1 0 5 4 13831 132.94 151.70 5495 76.28 0.00 12955 239.77 135.76 0.00
A200 3 2 1 0 5 8 14442 139.92 132.07 6223 77.61 0.00 13321 241.20 114.06 0.00
A200 3 2 1 1 2 3 882 10.81 292.00 225 23.14 0.00 836 12.20 271.56 0.00
A200 3 2 1 1 2 6 737 14.52 67.12 441 23.05 0.00 874 14.95 98.19 0.00
A200 3 2 1 1 5 3 8795 145.20 293.86 2233 66.19 0.00 5889 258.48 163.73 0.00
A200 3 2 1 1 5 6 9787 145.88 267.79 2661 65.67 0.00 7496 253.34 181.70 0.00
A200 3 3 0 0 2 12 47127 14.33 739.16 5616 60.38 0.00 46067 17.63 720.28 0.00
A200 3 3 0 0 2 6 24405 14.08 699.12 3054 60.55 0.00 22955 17.36 651.64 0.00
A200 3 3 0 0 5 12 50422 98.05 706.62 6251 87.30 0.00 45213 196.66 623.29 0.00
A200 3 3 0 0 5 6 18357 98.89 395.20 3707 87.39 0.00 13442 201.88 262.61 0.00
A200 3 3 0 1 2 12 41874 14.52 505.55 6915 59.47 0.00 36538 17.89 428.39 0.00
A200 3 3 0 1 2 6 21226 14.67 391.00 4323 59.59 0.00 20438 17.83 372.77 0.00
A200 3 3 0 1 5 12 49474 89.45 381.78 10269 86.81 0.00 46742 189.33 355.18 0.00
A200 3 3 0 1 5 6 19745 92.09 149.46 7915 86.78 0.00 11206 188.92 41.58 0.00
A200 3 3 1 0 2 3 20761 13.66 439.53 3848 50.20 0.00 20224 16.39 425.57 0.00
A200 3 3 1 0 2 6 21512 13.81 87.84 11452 50.75 0.00 21290 16.09 85.91 0.00
A200 3 3 1 0 5 3 20535 92.22 383.52 4247 71.27 0.00 16519 184.64 288.96 0.00
A200 3 3 1 0 5 6 21987 88.77 296.66 5543 71.78 0.00 17947 182.53 223.78 0.00
A200 3 3 1 1 2 3 15620 13.69 157.63 6063 50.27 0.00 13871 15.94 128.78 0.00
A200 3 3 1 1 2 6 17758 13.66 140.33 7389 50.11 0.00 16140 15.89 118.43 0.00
A200 3 3 1 1 5 3 24340 121.11 316.71 5841 73.59 0.00 20014 203.58 242.65 0.00
A200 3 3 1 1 5 6 28788 112.13 105.80 13988 74.66 0.00 23713 193.78 69.52 0.00
A200 3 4 0 0 2 10 27613 10.86 512.67 4507 62.63 0.00 25447 15.72 464.61 0.00
A200 3 4 0 0 2 5 19411 10.63 598.99 2777 62.59 0.00 17825 15.27 541.88 0.00
A200 3 4 0 0 5 16 47365 104.47 583.18 6933 103.09 0.00 25775 233.25 271.77 0.00
A200 3 4 0 0 5 8 41127 98.98 951.04 3913 103.13 0.00 21872 244.22 458.96 0.00
A200 3 4 0 1 2 16 17324 10.33 119.76 7883 56.22 0.00 15607 15.16 97.98 0.00
A200 3 4 0 1 2 8 14217 9.91 216.99 4485 56.58 0.00 14215 14.91 216.95 0.00
A200 3 4 0 1 5 16 41804 96.09 363.25 9024 92.13 0.00 20851 226.23 131.06 0.00
A200 3 4 0 1 5 8 40980 102.13 375.85 8612 92.94 0.00 17887 221.73 107.70 0.00
A200 3 4 1 0 2 2 19425 10.38 541.94 3026 49.20 0.00 17671 14.14 483.97 0.00
A200 3 4 1 0 2 4 23381 10.38 526.50 3732 49.80 0.00 23381 14.13 526.50 0.00
A200 3 4 1 0 5 3 40865 108.25 502.02 6788 88.14 0.00 29732 224.33 338.01 0.00
A200 3 4 1 0 5 6 54399 111.63 310.62 13248 89.34 0.00 36179 225.67 173.09 0.00
A200 3 4 1 1 2 3 18367 9.41 201.35 6095 43.73 0.00 18367 13.19 201.35 0.00
A200 3 4 1 1 2 6 21237 9.61 180.13 7581 44.05 0.00 21237 13.05 180.13 0.00
A200 3 4 1 1 5 2 30145 100.00 511.96 4926 80.30 0.00 15309 215.55 210.78 0.00
A200 3 4 1 1 5 4 31688 104.23 452.63 5734 81.19 0.00 15765 220.63 174.94 0.00
A200 3 5 0 0 2 14 5602 8.73 89.07 2963 25.84 0.00 5516 10.11 86.16 0.00
A200 3 5 0 0 2 7 3589 8.64 73.63 2067 25.86 0.00 3547 9.88 71.60 0.00
A200 3 5 0 0 5 10 9419 108.33 304.60 2328 57.73 0.00 9261 200.77 297.81 0.00
A200 3 5 0 0 5 20 10707 149.86 167.81 3998 57.69 0.00 10614 234.11 165.48 0.00
A200 3 5 0 1 2 14 1049 7.55 15.27 910 21.13 0.00 915 8.42 0.55 0.00
A200 3 5 0 1 2 28 1980 7.53 8.79 1820 21.13 0.00 1825 8.53 0.27 0.00
A200 3 5 0 1 5 14 2234 119.27 70.14 1313 43.06 0.00 1735 192.02 32.14 0.00
A200 3 5 0 1 5 7 970 92.28 46.53 662 43.16 0.00 669 173.84 1.06 0.00
A200 3 5 1 0 2 1 1435 8.16 306.52 353 22.75 0.00 1435 9.34 306.52 0.00
A200 3 5 1 0 2 2 2703 7.97 459.63 483 22.88 0.00 2492 9.27 415.94 0.00
A200 3 5 1 0 5 1 2823 134.42 61.96 1743 50.56 0.00 2757 210.30 58.18 0.00
A200 3 5 1 0 5 2 3815 140.53 63.24 2337 50.53 0.00 3790 208.98 62.17 0.00
A200 3 5 1 1 2 1 70 7.44 7.69 65 20.03 0.00 65 6.95 0.00 0.00
A200 3 5 1 1 2 2 140 7.44 7.69 130 19.78 0.00 130 6.86 0.00 0.00
A200 3 5 1 1 5 1 444 80.84 367.37 95 38.77 0.00 108 151.95 13.68 0.00
A200 3 5 1 1 5 2 552 81.48 190.53 190 38.86 0.00 200 149.09 5.26 0.00
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