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Abstract

Bilateral teleoperation systems are an active area of research with possible
applications in healthcare, remote surveillance and military, space and under-
water operations, allowing human operators to manipulate remote systems
and feel environment forces to achieve telepresence. The physical distance
between the local and remote systems introduces delay to the exchanged
signals between the two and cause instability in the bilateral teleoperation.
With the advent of the internet, possible applications of bilateral teleopera-
tion systems have proliferated, growing the interest and amount of research
in the field.

The delay compensation method for stable and force reflecting teleoper-
ation proposed in this thesis is based on utilization of three different types
of observers: A novel predictor observer that estimates the undelayed states
of the remote system based on a nominal model, disturbance observers that
eliminate internal and external disturbances and linearize the nonlinear dy-
namics of the two systems, and reaction torque observers that estimate the
net external forces on the two systems. The controller for the remote sys-
tem is placed at the local site, along with the predictor observer and the
control input is sent to the remote system through the communication chan-
nel. Force reflection is achieved using a modified version of the 4-channel
architecture where control input and position of the remote system and the
environment force estimations are exchanged between the two systems. Per-
formance of the proposed method is tested with Matlab/Simulink simulations
and compared to two other methods in the literature. Real-time experiments
under variable communication delay are also performed where the delay is
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both artificially created using Matlab/Simulink blocks and obtained via the
internet by bouncing signals off a remote computer outside the Sabancı Uni-
versity campus. Both the simulations and experiments are executed on a pair
of 1-DOF robot arms and a pair of 2-DOF pantograph robots. The results
show that stable and force reflecting teleoperation is achieved with successful
tracking performances of the remote system.
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Kuvvet Yansımalı İki Yönlü Teleoperasyona Gözlemci Tabanlı

Bir Yaklaşım

Duruhan Özçelik

ME, Master Tezi, 2011

Tez Danışmanı: Doç. Dr. Mustafa Ünel

Anahtar Kelimeler: İki yönlü teleoperasyon, iletişim gecikmesi, kestirici

gözlemci, bozucu gözlemcisi, tepki torku gözlemcisi, dört kanallı mimari

Özet

İki yönlü teleoperasyon sistemleri, sağlık, uzaktan gözetim, askeri, uzay ve
sualtı faaliyetleri alanlarında uygulamaları olan aktif bir araştırma alanıdır.
Bu sistemler, insan operatörlerin uzaktaki sistemleri kontrol etmelerini ve
bu sistemlere uygulanan çevresel kuvvetleri hissederek uzakta bulunmalarını
sağlar. Yakın ve uzak sistemler arasındaki fiziksel mesafe paylaşılan sinyaller-
de gecikmeye ve sistemde kararsızlığa neden olur. İnternetin yayılması sonucu
iki yönlü teleoperasyon sistemlerinin muhtemel uygulama alanlarının artması
konu üzerine ilgi ve araştırmaların artmasına sebep olmuştur.

Bu tezde kararlı ve kuvvet yansımalı teleoperasyon için önerilen zaman
gecikme telafi yönteminde üç adet gözlemci kullanılmıştır: Uzaktaki sistemin,
nominal bir model kullanarak, gecikmemiş durumlarını tahmin eden bir kes-
tirici gözlemci, sistemlere etki eden dahili ve harici bozucu etkileri kestirip
ortadan kaldıran ve böylece sistemleri doğrusallaştıran bozucu gözlemcileri ve
sistemlere etki eden net harici kuvveti tahmin eden tepki torku gözlemcileri.
Uzak sistemin denetleyicisi, kestirici gözlemci ile birlikte yakın tarafa konmuş
ve uzak sistemin denetim girdisi iletişim kanalından gönderilmiştir. Kuvvet
yansıması, 4-kanallı mimarinin modifiye edilmiş bir haliyle, uzak sistemin
denetim girdisi, pozisyonu ve kestirilen çevre kuvveti paylaşılarak sağlanmış-
tır. Önerilen yöntemin performansı Matlab/Simulink simülasyonlarında test
edilmiş ve literatürdeki iki farklı yöntemle karşılaştırılmıştır. Yöntem, za-
man gecikmesinin Matlab/Simulink ortamında yaratıldığı ve sinyallerin in-
ternet üzerinden Sabancı Üniversitesi kampüsü dışındaki bir bilgisayardan
yansıtılarak gerçek gecikmelerin kullanıldığı gerçek zamanlı deneylerle de test
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edilmiştir. Hem simülasyonlarda hem de deneylerde bir serbestlik dereceli
robot kolu ve iki serbestlik dereceli pantograf robot çiftleri kullanılmıştır.
Sonuçlarda kararlı ve kuvvet yansımalı teleoperasyon sağlandığı ve uzak sis-
temin takip performansının başarılı olduğu gözlemlenmiştir.
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Chapter I

1 Introduction

Robots have replaced humans in many repetitive and practical tasks such

as welding, painting, vacuuming, lawn moving, etc. However more sophisti-

cated tasks require a blend of robotic manipulation and human perception.

Robotic surgery, bomb diffusion and remote surveillance are examples of

such tasks where human operators manipulate robots in environments that

are hazardous, difficult, too distant or require too much precision to work

in. A system that enables real-time control of remotely located machines by

a human operator is called a teleoperation system. A teleoperation system

consisting of two identical or functionally similar machines at both ends it

can be called a bilateral teleoperation system. If the operator is able to feel

the forces present at the remote site, then the operation is called telepresence.

Bilateral teleoperation systems can be modeled as consisting of five ele-

ments: Operator, master (local) system, communication channel, slave (re-

mote) system and environment. Different signals can be shared amongst the

two systems to accomplish the two goals of bilateral systems: stability and

transparency. Stability refers to stable tracking of the master position by

slave system and transparency refers to successful reflection of environment

forces to the operator. In the literature, different methods are proposed to

share master and slave position, velocity and force information.



The physical distance between the master and slave systems causes delays

in the exchanged signals which is the reason of the main problem in bilateral

systems: instability. Time delay implies infinite dimensional systems and

injects energy to the exchanged signals that causes the instability. Whether

there is a reliable communication channel between the two systems where the

amount of delay is known or the signals are shared over an unreliable con-

nection like the internet with unpredictable delays, bilateral systems require

a delay compensation technique in order to deliver stable and transparent

operation.

1.1 Motivation

Bilateral teleoperation systems enable humans to manipulate remote envi-

ronments that are otherwise difficult or dangerous to access or inaccessible in

a safe and effortless manner. For example sending a remote controlled robot

to a deep sea research task at a depth of 5000 m, where the atmospheric

pressure reaches 500 atm, instead of building a vessel that will withstand the

pressure and ensure the safety of the people is definitely a less expensive and

safer option. This example can be extended to a repair task that take place

in space, a bomb diffusion task or a waste disposal task that takes place in a

radioactive zone. In other tasks, such as robotic surgery (Fig. 1.1), bilateral

systems are used to enhance the precision of the human operator. Robotic

telesurgery on the other hand, enables a surgeon to operate on a patient in

a different city or country without either of them spending time to adjoin in

an operating room.

There are examples of teleoperation systems that achieve some of these

tasks within a limited distance, but as the amount of communication delay
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Figure 1.1: da Vinci surgical system

increases with increasing physical distance between the operator and remote

system, stable and transparent teleoperation across great distances becomes

a challenge. Numerous researchers have published their work on stable and

transparent teleoperation since the first introduction of the problem in 1950s

and it continues to be an area of active research. With further advancements

in the area and the continuing growth of connectivity around the globe via

the internet, it is not a farfetched assumption that bilateral teleoperation

systems will enable humans to experience telepresence in the future. Aside

from dramatic advancements such as telesurgery systems, human controlled

humanoid robots, even a mundane one such an online shopping website that

allows its users to interact with their products much like a physical store

through the use of a bilateral system is an exciting view of the future.

The complexity of some of these tasks render the current research el-

ementary, consisting of limited degree-of-freedom stationary systems. Ad-

vancements in the area are necessary for complex techniques that control
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several multi degree of freedom manipulators simultaneously and send ac-

curate visual and force feedback to the operator for a realistic telepresence

operation.

1.2 Literature Review

The earliest work on the stability of bilateral systems under delay is by

Sheridan and Ferrell [1]. The authors experimented with a pair of “servo-

controlled minimal manipulators” and concluded that stable operation can

be achieved by adopting a simple strategy of moving open loop and then

waiting for correct feedback [1]. Although a pioneering work in the field,

transparency is not addressed by the authors. Ferrell considered force feed-

back and transparency in his subsequent works [2], [3] and experimentally

concluded that delays in the magnitude of 100 ms cause instability in the

bilateral system.

Theoretical works on stability of systems under time delay started being

produced after a relatively long period of time. In 1988 Anderson and Spong

published their groundbreaking work [4], which utilizes the so-called “scat-

tering operator” to prove that the communication channel is not passive

and injects energy to the system and introduces the “scattering transfor-

mation”, which renders the system passive, thus stable, by dampening the

energy injected by time delay. In their subsequent work, the authors proved

the asymptotic stability of scattering transformation [5]. Their work inspired

other researchers to produce passivity based methods. In 1991, Niemeyer and

Slotine extended the scattering theory by introducing “wave variables” [6].

In this technique, velocity and force signals are converted to wave variables

using wave transformation before they are sent through the communication

4



channel. Authors propose different techniques for achieving passivity us-

ing wave variables: imitating natural wave phenomena, matching the wave

impedance, wave filtering and using wave variable predictors. The stability

of these techniques are proven in the framework of passivity theory. The

authors analyze the transient behavior of the bilateral system and develop a

tuning mechanism to adjust the tradeoff between telepresence and operation

speed [7].

With the advent of the internet in the 1990s, possible applications of bi-

lateral systems increased drastically. The internet provides an inexpensive

data route between great distances and the infrastructure has been constantly

growing and improving since its inauguration in the early 1990s. With its

packet switched network it eliminates the need for building a dedicated com-

munication channel between bilateral systems. However, in a packet switched

network data may be transferred through inconsistent routes or the traffic

volume at a given instant through the channel may slow down transmission

speeds and affect the amount of delay between master and slave systems.

Since the previous research in the area considered a dedicated communi-

cation channel and constant delay, the variable delay characteristic of the

internet necessitated new methods to overcome the stability problem.

One of the earliest works on compensation of variable delay was by Ko-

suge et al. [8]. In their work the authors propose a straightforward method

to measure the maximum delay in the communication channel Tc and buffer

delayed signals until the delay is equal to Tc. They achieve this by sending

a timestamp along with exchanged signals. With this method they ensure a

constant delay and use scattering transformation to make the system passive.

In 1997, Oboe and Fiorini investigated the detrimental effects of variable de-
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lay on teleoperation [9]. In their work they compare Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) and provide a model for

internet connection so that existing control methods can be simulated under

variable delay. They developed a design environment for the identification,

control design and test of teleoperation systems connected to the internet [10]

in 1998. Niemeyer and Slotine extended their wave variables technique to

account for variable delays by applying reconstruction filters to the delayed

signals [11]. The filters utilize the integrals of both the wave variable u and

its square u2 to reconstruct distorted wave variable signals and achieve stable

and transparent teleoperation. In 2002, Lozano et al. proposed a modified

scattering transformation method to provide passivity under variable delay

[12]. The proposed method introduces two time-varying damping coefficients

to the scattering operation in order to dissipate the energy injected by delay

and achieve stable tracking of the master by slave with force reflection. In

2003, Chopra et al. proposed a similar method to achieve stable and trans-

parent teleoperation under variable delay by adding time-varying damping

coefficients to the scattering operation [13]. Chopra et al. extended their

work in 2004 by proposing an “adaptive coordination control” scheme based

on a passivity framework [14]. The method uses state feedback to define a

new passive output for the master and slave robots containing both position

and velocity information to “kinematically lock” the master and slave. The

results presented in their work show that stable and transparent teleoperation

is achieved under variable delay.

Another shortcoming of packet switched networks is packet loss. Packet

loss can be caused by signal degradation, channel congestion, corrupted pack-

ets, faulty network hardware or other factors. Numerous studies have been
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produced to investigate the effects of lost packets on the teleoperation and

compensate for them. Secchi et al. proposed a passive linear interpolation

scheme where lost packets are interpolated from received ones [15]. The

method requires a buffer of signals greater than maximum number of consec-

utive lost packets, thus a priori knowledge about the communication channel.

By keeping a buffer, the receiver stores the future values of incoming signals

and can interpolate missing values using these future values. Although this

method provided a solution to the packet loss problem, the use of a buffer

caused extra delay in the system. Beretesky et al. proposed a solution to

this problem in which missing data is interpolated from previous values in

the buffer, thus eliminating the extra delay in the process [16]. In 2006, Mas-

tellone et al. proposed a different approach to compensate for lost packets in

the network [17]. By forming models of the master and slave systems, they

estimated the missing states of the systems and fed the estimated states to

their hybrid controller.

Other than the scattering and wave variable techniques presented pre-

viously, there are different approaches in the literature to provide passivity

under delay conditions. Park and Cho proposed a sliding mode based con-

troller with a nonlinear gain independent of the variable delay and showed

that the proposed method compensates the delay in 1999 [18]. However,

their method requires the maximum round-trip delay and the order of the

environment force to be measured in advance and the gains set accordingly.

In 2001, Cho et al. improved the sliding mode based controller to include

an impedance model and eliminate the need for a priori knowledge on the

delay charateristics [19]. In 2005, Chopra and Spong showed that exponen-

tial convergence of the master and slave positions can be achieved without
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encoding the exchanged signals as scattering or wave variables [20]. The

input forces were computed directly using the measured and received posi-

tion and velocity data and sent through the communication channel. Over

a series of publications, Lee and Spong devised a PD based control method

for bilateral systems with multi DOF robots under constant delay [21] - [22].

The proposed control scheme passifies the communication and control blocks

together - as opposed to previous works that passified them seperately - and

guarantees energetic passivity of the closed-loop teleoperator. Although their

method provided stable and transparent teleoperation, the constant delay as-

sumption was unrealistic for its time, and it was improved in 2006 by the

authors to compensate for variable delay as well. In order to achieve passivity

in the two channels in unity the authors used controller passivity concept, the

Lyapunov-Krasovskii technique and Parseval’s identity. Nuno et al. refuted

Lee and Spong’s approach by claiming that a L∞ stable mapping from ve-

locity to force cannot be defined [23]. They showed that the passivity of PD

like control structures can be achieved by injecting sufficiently large damp-

ing to the manipulator subsystems. In their simulations, they achieved stable

and transparent control of the master and slave systems using delayed force

or position signals. They concluded that large damping injections affected

the tracking performance adversely. In their subsequent work, the authors

developed a simple P-like and PD-like position controllers and proved their

stability using Lyapunov analysis [24].

Transparency in a bilateral system is a crucial requirement for telep-

resence. Passivity based techniques concentrate on achieving stability by

passifying the teleoperation systems, but many of them fail to deliver trans-

parency in the system. In the early 1990s, it was independently shown by
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Lawrence [25] and Yokokohji and Yoshikawa [26] that for achieving trans-

parency in a bilateral system both the position and force information of the

two systems need to be shared. This requires four information channels for

master position and force and slave position and force, and the implementa-

tion was named 4-channel architecture. Both works concluded that in order

to achieve perfect transparency in the bilateral system, the impedance felt

by the operator should equal to the impedance of the environment. While

Lawrence utilized the two-port “hybrid parameter matrix” to reach this con-

clusion, Yokokohji and Yoshikawa used the “chained matrix”. Lawrence also

concluded that stability and transparency are conflicting objectives in tele-

operator system design and a tradeoff between the two exists. In 1995, Zhu

and Salcudean developed on Lawrence’s work to show that transparency can

be achieved using the 4-channel architecture for systems that are driven by

velocity control [27]. Zaad and Salcudean proposed a method for eliminating

the need for force sensors and estimating the environment impedance from a

model of the environment [28]. In their subsequent work the authors further

improved their method by adopting an adaptive control method that does

not require a priori knowledge of the master, slave, environment and operator

impedances [29].

Prediction systems are proposed in various works for different purposes

in bilateral teleoperation. Communication network models are utilized for

determining delay characteristics of the communication channel, missing or

delayed states of the master and slave systems are estimated using appropri-

ate linear and nonlinear models, force predictors are used to eliminate the

need for costly force sensors and disturbance observers are utilized in several

works for linearizing system dynamics and rejecting internal and external
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disturbances on the system. The Smith predictor, developed by Otto J. M.

Smith in 1957 was first used for compensating “dead time” in 1959 [30]. In

2002, Arioui et al. proposed a modified Smith predictor for eliminating the

time delay from the characteristic equation of the closed loop system and

thus compensate for it [31]. Munir and Book integrated the modified Smith

predictor with a Kalman filter and an energy regulator to provide passivity

under constant and variable delay conditions [32],[33]. Shahdi and Sirous-

pour proposed a method that uses multi-model decentralized controllers for

the master and slave systems that are fed with estimated states from the

dynamical models of the systems [34]. The controllers implement a “Linear

Quadratic Gaussian (LQG)” algorithm and switch between two controllers

for free motion/soft contact and rigid contact. The authors developed their

work by incorporating a parameter adaptation law to improve the estima-

tion performance of the dynamical models and proved the stability of the

proposed method using Lyapunov analysis [35], [36]. In 2009, Gadamsetty

et al. proposed a sliding mode based novel observer to estimate the states

of the remote system using a nominal model of the system and an extended

Kalman filter based disturbance observer to linearize the remote system dy-

namics [37]. The control input driving the remote system is computed at

the local site using the estimated states and a “PD+” controller and sent

through the communication channel. This architecture creates an inevitable

delay in the execution of the task at the remote site since the control input

is computed locally but provides stable teleoperation.

Force observers are very practical in teleoperation systems. Acquisition

of physical force sensors can be costly for many practical tasks, especially

if the task does not require sensitive haptic feedback for completion. For

10



example loading a mobile surveillance robot sent to investigate the ruins of a

building damaged by an earthquake with expensive force sensing equipment

is unfeasible due to the high risk of losing the robot. Force sensors provide a

software solution to force measurement. In 2005, Mobasser and Zaad devel-

oped a “Model-Independent Force Observer (MIFO)” that utilizes a multi-

layer perceptron neural network for force estimations at the master and slave

systems [38]. The neural network is trained off-line with measured contact

force and motor torque samples from the entire workspace of the robots and

is used in real time to estimate force information during operation. Smith

et al. proposed a new neural network based method, “Inverse-Dynamics NN

(IDNN)” that uses the MIFO for motor torque estimations and uses the in-

verse dynamics of the robot to estimate force information [39]. The authors

show that operator and environment forces can be estimated with 98.3% ac-

curacy. Polushin et al. utilize “high-gain observer” to estimate the force

information and use these estimations to drive the master and slave systems

using novel “Force Reflection (FR)” [40], and “projection-based FR” algo-

rithms [41]. In 2009, Daly and Wang proposed the use of “Unknown Input

Observers” for estimating the force information of master and slave systems.

The authors developed on earlier work by Cho et al. [19] and implemented

the observers using the sliding mode theory liberating Park and Cho’s early

technique from the need for any a priori knowledge about the system or

communication channel [42].

In their series of works, Natori, Ohnishi et al. developed a purely ob-

server based technique for stable and transparent teleoperation. The au-

thors first proposed the novel observer “Communication Disturbance Ob-

server (CDOB)” in 2004 [43]. They claimed that CDOB treats time delay

11



in the communication channel as external disturbance and compensates it at

the local site to feed the controller with undelayed position information of

the remote system, and presented simulations where CDOB is implemented

and provides stable teleoperation under variable delay without the need for

a priori knowledge of the delay characteristics unlike the Smith predictor

based techniques. In 2006, they formalized the CDOB and mathematically

showed that the output of the CDOB yields undelayed position information

of the slave system [44]. In 2007, they presented the stability analysis of

CDOB and investigated the effects of natural angular frequency, damping

coefficient and cutoff frequency of CDOB on the system performance [45].

None of these presented a transparency argument since the CDOB is a dis-

turbance observer, therefore the net external disturbance due to environment

forces and disturbance due to delay in the communication channel are insep-

arable from its output. This problem was addressed in the authors’ more

recent work [46]. The authors propose the use of “Reaction Torque Observer

(RTOB)”, developed by Murakami, Yu and Ohnishi [47], to estimate the ex-

ternal forces at the master and slave systems. The main principle behind the

implementation of RTOB is the subtraction of known internal disturbances

and nonlinearities from the total disturbance estimated by a Disturbance

Observer (DOB) to yield the net external disturbance due to environment

forces. By incorporating three different observers (CDOB, RTOB and DOB),

the authors achieve stable and transparent teleoperation robust to variable

delay. The 4-channel architecture is used for transparency. In 2010, Natori et

al. published their latest work on their CDOB based approach to delay com-

pensation where they meticulously detailed the mathematical model of the

CDOB, DOB and RTOB and presented their results against a conventional

12



Smith predictor based technique [48].

1.3 Thesis Contributions and Organization

In this thesis, a delay compensation technique for stable and force reflect-

ing bilateral teleoperation under time delay is proposed. A novel predictor

observer (PROB) is developed and its stability is shown using Lyapunov

analysis. A 3-channel architecture, which is a derivation from the classic

4-channel architecture is utilized for force reflection and it is explained along

with the disturbance observers (DOB) and reaction torque observers (RTOB)

as the components of the proposed control architecture that delivers stable

and force reflecting teleoperation.

The proposed observer predicts the future states of the remote system

based on a linear and nominal model of the system and these estimated

states are used in the calculation of the control input for the system. Unlike

the conventional bilateral control schemes in the literature, the control input

for the remote system is computed at the local site and sent through the

communication channel allowing both the controllers and PROB run at the

same sampling rate and be robust to unexpected problems in the communi-

cation channel such as sampling and lost packets. Sampling problems with

the control input do not cause significant errors in the tracking performance.

In order to improve the accuracy of the PROB estimations, the nonlineari-

ties and parametric uncertainties of the remote system are eliminated by the

DOBs. DOB is also applied to the local system to render the systems iden-

tical. Operator and environment forces are estimated using RTOBs in order

to eliminate the need for costly force sensors. The 3-channel architecture is

realized by exchanging the control input for the remote system, the position
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of the remote system and estimated environment force acting on the remote

system.

Proposed delay compensation method is compared to two other tech-

niques in the literature: P-like controller [24] and Communication Distur-

bance Observer [46] in a Matlab/Simulink simulation environment. Simula-

tions are carried out for a pair of 1-DOF robot arms and 2-DOF pantograph

robots to validate the proposed method. For real-time experiments, these ma-

nipulators are produced at the Sabancı University Mechatronics laboratory

and experimental results are presented where the proposed method delivers

stable and force reflecting teleoperation.

The contributions of the thesis can be summarized as:

• An observer based approach to delay compensation in linear and non-

linear bilateral systems is proposed. For this purpose a novel predictor

observer is developed and its stability is shown by a Lyapunov analysis.

• Both the local and remote system controllers are implemented at the

local site along with the predictor observer allowing them to run at

their native sampling rate, robust to sampling problems in the commu-

nication channel.

• Force reflection is achieved using a modified version of the 4-channel

architecture, exchanging 3 signals.

• Both linear (1-DOF robot arms) and nonlinear (2-DOF pantograph

robots) are controlled in a stable and force reflecting teleoperation

scheme using the proposed method. Experiments are conducted in

real-time using dSpace1103 control card under artificial delay using

Matlab/Simulink and real internet delay.
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The thesis is organized as follows: Chapter II presents an overview of

bilateral teleoperation systems. A model for bilateral teleoperation systems

is presented and the control model for observer based approaches is given.

The adopted observers DOB and RTOB are explained and the 4-channel

architecture, basis for the proposed 3-channel architecture, is presented in

this chapter as well. In Chapter III, the proposed control architecture is ex-

plained. The PROB is developed and its stability is shown using a Lyapunov

analysis, the master and slave control inputs are designed in a Lyapunov

framework and the position tracking performance and steady state analysis

of the proposed method are investigated. The simulation results for the pro-

posed method and two other methods are presented and analyzed in Chapter

IV. Chapter V presents the experimental results on the performance of the

proposed method on two different test beds and two delay conditions and

their discussion. Finally, Chapter VI concludes the thesis with an overall

discussion of the proposed method and its performance and discusses possi-

ble future work on the subject.
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1.5 Nomenclature

List of symbols and their descriptions used in this thesis are given in order

of appearance.

Symbol Description

xo Operator state
xm Master system state
xs Slave system state
Fe Environment force
Fs Force sensed by slave system
Fm Force exerted on operator by master system
x̂s Estimated slave state
Js Inertia of linear slave system
qs Slave position
bs Damping of linear slave system
τs Control input for slave system
Js Slave robot Jacobian
Jm Master robot Jacobian
Jm Inertia of linear master system
qm Master position
bm Damping of linear master system
τm Control input for master system
Fh Human force
Ds(qs) Inertia matrix of nonlinear slave system
Cs(qs, q̇s) Coriolis-centripetal matrix of nonlinear slave system
FGs

(qs) Gravitational force vector on nonlinear slave system
Bs Damping matrix of nonlinear slave system
Dm(qm) Inertia matrix of nonlinear master system
Cm(qm, q̇m) Coriolis-centripetal matrix of nonlinear master system
FGm

(qm) Gravitational force vector on nonlinear master system
Bm Damping matrix of nonlinear master system
τd External disturbance
τdis Total disturbance
Pnom Nominal transfer function
P Actual transfer function
G Transfer function of the low-pass filter
τint Internal disturbance
τext Net external force
F Coulomb friction
Zt Transmitted impedance
Ze Environment impedance
Zm Master impedance
Zs Slave impedance
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Symbol Description

xe Estimated slave state
Kp Proportional control gain for position error
Kd Derivative control gain for position error
Kf Proportional control gain for force error
F̂e Estimated environment force
F̂h Estimated human force
T1(t) Time delay from master to slave side
T2(t) Time delay from slave to master side
T (t) Roundtrip time delay in the system
p̂ Intermediate observer variable
pe Estimated slave position
u0 Observer control input
u0eq Equivalent part of observer control input
pd Delayed slave position
e(t) Observer error
σ Sliding surface
C Slope of the sliding surface
V Lyapunov function
K Discontinuous control gain
r Filtered error
λ Filtered error parameter
ef Force error
g Cut-off frequency of disturbance observer
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Chapter II

2 Overview of Bilateral Teleoperation Sys-

tem

In this chapter, a bilateral teleoperation system is modeled and the control

structure for an observer based approach is given. Linear and nonlinear

dynamics of manipulators used in bilateral systems are shown and the two

observers (Disturbance Observer and Reaction Torque Observer) used in the

system are explained. The 4-channel architecture proposed by Lawrence,

which serves a basis for the 3-channel architecture used in this work is also

presented in this chapter.

2.1 Bilateral Teleoperation System Model

A bilateral system generally consists of five components: Operator, mas-

ter (local) system, communication channel, slave (remote) system and en-

vironment. The goal of the system is to make the slave system track the

master system position while reflecting the environment forces back to the

operator. In the literature, proposed techniques require the exchange of posi-

tion, velocity and force information between the two systems to achieve this

goal. Figure 2.1 shows the block diagram for a bilateral teleoperation sys-

tem model. In this model, xo, xm, xs are the states of the human operator,



master and slave systems respectively, Fe, Fs, Fm denote the environment

force, force sensed by the slave system and force exerted on the operator

by the master system respectively and T1, T2 are the amounts of delay in

the communication channel in both directions. In a stable and transparent

Figure 2.1: Model of a bilateral teleoperation system

teleoperation, the states of the master and slave should be equal and the en-

vironment force should be reflected to the operator. To achieve this, a delay

compensation method is necessary to extract the necessary information from

the delayed signals. Depending on the delay compensation technique, the

exchanged signals may differ. In an observer based technique, such as the

one presented in this work, the measured signals from the slave system are

input to an estimation system and the control signal for the slave is com-

puted at the local site and sent through the communication channel. Figure

2.2 shows the block diagram for an observer based bilateral teleoperation

system model. Different to the previous model, the slave control signal us is

sent to the slave side, slave state xs is received to run the estimation system

and the estimated slave state x̂s is fed to the master system to run the slave

controller.

2.1.1 Linear Manipulator Dynamics

Linear manipulators are often used in bilateral system modeling for their

simplicity. In this section, the bilateral system is assumed to be consisting
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Figure 2.2: Model of an observer based bilateral teleoperation system

of two 1-DOF robot arms acting as the master and slave. The dynamical

equation for the slave 1-DOF robot arm can be written as

Jsq̈s(t) + bsq̇s(t) = τs(t)− JTs Fe(t) (2.1)

where Js, bs, q̈s, q̇s, denote the moment of inertia, damping coefficient, an-

gular acceleration and angular velocity of the robot arm, respectively. The

input torque is denoted by τs, the Jacobian of the slave robot arm is denoted

by Js and environment torque acting on the slave system is denoted by Fe.

The master 1-DOF robot arm which is manipulated by a human operator

can be described similarly as

Jmq̈m(t) + bmq̇m(t) = JTmFh(t)− τm(t) (2.2)

where subscript m stands for the master robot, Fh is the operator force and

τm is the input torque for the master robot which reflects the environment

forces back to the operator.
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2.1.2 Nonlinear Manipulator Dynamics

For a more complex model consisting of a pair of n-DOF nonlinear robot

arms, the dynamical equation equation for the slave robot are given as

Ds(qs)q̈s + Cs(qs, q̇s)q̇s + FGs(qs) +Bsq̇s = τs − J
T
s Fe (2.3)

where qs is the vector of joint angles, Ds(qs) is the n × n positive-definite

inertia matrix, Cs(qs, q̇s) is the n × n Coriolis-centripetal matrix, FGs(qs)

is the n × 1 gravitational force vector, Bs is the viscous friction (damping)

matrix, Js is the Jacobian matrix and Fe is the vector of environment forces

acting on each joint. The input torque vector is denoted by τs. The master

robot dynamics can be written similarly as

Dm(qm)q̈m + Cm(qm, q̇m)q̇m + FGm(qm) +Bmq̇m = JTmFh − τm (2.4)

where, as in the linear dynamical equation subscript m stands for the master

robot and Fh is the vector of operator forces acting on each joint.

2.2 Disturbance Observer

Disturbance observers (DOBs) are established at both master and slave

systems to linearize the dynamics and eliminate internal disturbances due to

parametric uncertainties and external disturbance. This enables the control

of nonlinear systems using controllers based on linear system models.

Nonlinear dynamics of an n DOF robot manipulator can be written as

τ = D(q)q̈ + C(q, q̇)q̇ + FG(q) +Bq̇ + τd (2.5)
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where q is the vector of joint angles, D(q) is the n×n positive-definite inertia

matrix, C(q, q̇) is the n × n Coriolis-centripetal matrix, FG(q) is the n × 1

gravitational force vector, B is the viscous friction (damping) matrix, τd is

an external disturbance vector and τ is the control input vector.

Inertia and damping matrices can be written as the sum of a nominal

matrix and an unknown disturbance matrix which consists of the parametric

uncertainties and disturbance:

D(q) = Dnom + D̃(q), B = Bnom + B̃

where the nominal inertia and damping matrices are defined as

Dnom = diag(Jnom1
, Jnom2

, . . . , Jnomn
), Bnom = diag(bnom1

, bnom2
, . . . , bnomn

)

Rewriting equation (2.5) in terms of nominal inertia and damping matrices

implies

Dnomq̈ +Bnomq̇ + τdis = u (2.6)

where u is the control input and τdis is the total disturbance acting on the

system which is defined as

τdis = D̃(q)q̈ + C(q, q̇)q̇ + B̃q̇ + FG(q) + τd (2.7)

In order to estimate the total disturbance at each joint, a disturbance ob-

server [49] is integrated to each joint of the robot (see Fig. 2.3). In Figure

2.3, Pnomi
(s) denotes the nominal transfer function of a linear system, char-

acterized by the actual transfer function Pi(s), modeling each joint (i) and

G(s) = g
s+g

is the transfer function of the low-pass filter used to estimate the
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Figure 2.3: Disturbance Observer

total disturbance. By using superposition, the system output can be written

[50] as

yi = Gui−yi(s)ui +Gτdis−yi(s)τdis (2.8)

where

Gui−yi(s) =
Pi(s)Pnomi

(s)

Pnomi
(s) + (Pi(s)− Pnomi

(s))G(s)
(2.9)

and

Gτdis−yi(s) =
Pi(s)Pnomi

(s)(1−G(s))

Pnomi
(s) + (Pi(s)− Pnomi

(s))G(s)
(2.10)

IfG(s) ≈ 1, then the transfer functions given in (2.8)-(2.10) are approximated

as

Gui−yi(s) ≈ Pnomi
(s) =

1

Jnomi
s+ bnomi

(2.11)

and

Gτdis−yi(s) ≈ 0 (2.12)

Equations (2.11) and (2.12) show that the total disturbance acting on the

24



system is eliminated in the low frequency region characterized by the filter’s

cut-off frequency and the input/output relationship of the system is linear

with nominal parameters. As a result, the nonlinear robot dynamics given

in (2.5) will be reduced to the following linear dynamics

Jnomi
q̈i + bnomi

q̇i = ui, i = 1, 2, . . . , n (2.13)

Notice that equation (2.13) can be used for both slave and master robots.

Thus, the linear controllers can be used to control the robots.

2.3 Reaction Torque Observer

Reaction Torque Observer (RTOB) enables sensorless force estimations at

master and slave systems. The total disturbance estimated by DOB includes

the parametric uncertainties, system nonlinearities, friction, coupling, gravity

and the net external force applied to the systems. Although not exactly

known, all the terms in the total disturbance can be approximated to a

degree, and subtracted from total disturbance to yield the net external force.

The more precise the approximations are, the better the force estimation

becomes. RTOBs are used in this work to eliminate the need for costly force

sensors.

For a nonlinear system, total disturbance calculated by a DOB for each

joint is given as

τdis = τint + τext + Fi +Diq̇i + (Ji − Jnomi
)q̈i + (bi − bnomi

)q̇i (2.14)

where τint is the interactive torque, including the coupling inertia torque,

25



Coriolis forces, gravitation etc., τext is the reaction torque which is nonzero

when the system contacts with the environment, Fi andDiq̇i are the Coulomb

and viscous friction respectively, (Ji − Jnomi
)q̈i is the self-inertia variation

torque and lastly (bi−bnomi
)q̇i is the torque pulsation due to the flux distribu-

tion variation of the motor. As explained in the previous section, subtracting

these forces from the nonlinear system dynamics yields a linear system with

nominal parameters given in equation (2.13). With a nonlinear model of the

system, these terms in total disturbance can be approximated and subtracted

to find the net external torque.

τext = τdis − τint − Fi −Diq̇i − (Ji − Jnomi
)q̈i − (bi − bnomi

)q̇i (2.15)

2.4 4-Channel Architecture

Stable manipulation and transparency are the two main goals in bilat-

eral control architecture design. Transparency requires that transmitted

impedance is matched with the environment impedance (Zt = Ze) or the

following conditions are satisfied:

xs = xm

Fh = −Fe

the slave tracks the master position precisely and the environment force is

perceived by the human operator. Stable tracking can be achieved by pas-

sivity. According to the passivity theory, if the subsystems (master, slave,

communication channel, environment and human) are passive, then the in-

terconnected bilateral teleoperation system is also passive. In the literature,
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two, three and four channel architectures have been proposed for stable force

reflecting teleoperation. In this work, a modified version of the 4-channel

architecture is used in which the master and slave positions and operator

and environment forces are exchanged. In Figure 2.4 the master and slave

dynamics are represented by the impedances Zm and Zs respectively. Sim-

ilarly, Cm and Cs represent the master and slave controllers and C1 − C4

blocks denote the position and force controllers in both directions.

Figure 2.4: Block diagram of a four channel bilateral teleoperation system

The overall force reflecting bilateral teleoperation system can be defined

using the hybrid matrix




Fh(s)

−Vs(s)



 =




h11(s) h12(s)

h21(s) h22(s)





︸ ︷︷ ︸

!H(s)




Vm

Fe



 (2.16)

The parameters of the hybrid matrix are calculated by solving the equation

(2.16) and they are defined in terms of the subsystems of the bilateral system
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designed based on 4-channel control structure as

h11 = (Zm + Cm)D(Zs + Cs − C3C4) + C4

h12 = −(Zm + Cm)D(I − C3C2)− C2

h21 = D(Zs + Cs − C3C4)

h22 = −D(I − C3C2)

where D = (C1 +C3Zm +C3Cm)−1. The ideal hybrid matrix that yields the

perfect transparency is

Hideal(s) =




0 1

−1 0





In order to satisfy the ideal condition of the hybrid matrix, the control pa-

rameters C1 − C4 should be chosen as

C1 = Zs + Cs C2 = I

C3 = I C4 = −(Zm + Cm)

where acceleration measurements are required to design the master and slave

controllers Cm and Cs since the master and slave impedances contain ‘s’ terms

([25],[29],[51]). A method to avoid this problems is proposed in [52] provid-

ing transparency by designing the controllers as C1 = Cs, and C4 = −Cm.

Lawrence concludes that stability and transparency are two conflicting char-

acteristics, and use of 4-channel architecture increases transparency while

decreasing stability.
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Chapter III

3 Delay Compensation in Bilateral Control

Systems Using Predictor Observer (PROB)

In this chapter, the control architecture and components of an observer

based approach to communication delay problem are presented. Slave con-

troller is designed at the master side, whose feedback is generated by an ob-

server which predicts the states of the slave. In the subsequent subsections

three channel control architecture is explained, a novel predictor observer

and two controllers are designed and their stability is shown in a Lyapunov

framework, the position tracking performance is analyzed and the steady

state analysis is given.

3.1 Proposed Control Architecture

In the proposed delay compensation scheme, control input is designed

at the master side by using the future values of the slave’s states estimated

by a predictor observer designed in a sliding mode control framework and

sent to the slave. Thus, the slave system does not require any information

from master side except the control input. Therefore for the delay compen-

sation technique that combines both the Predictor Observer (PROB) and

4-channel architecture, the fourth channel is revealed as unnecessary. Then,



the proposed control architecture becomes 3-channel architecture where con-

trol input, environment force and slave position are transmitted (Fig. 3.1).

Master and slave systems are linearized and external disturbances are elimi-

nated by the Disturbance Observer (DOB). Net external forces are estimated

using Reaction Torque Observer (RTOB), eliminating the need to use costly

force sensors.

Figure 3.1: Three channel controller architecture

Acceleration control is performed on both the master and slave robots. In

the master controller a Proportional-Derivative (PD) controller that pushes

master’s position to slave’s estimated position and a Proportional force con-

troller that defines the force error as the sum of estimated environment and

human forces is used. The equation that provides control reference in accel-

eration dimension for master is given as

ẍm(t) = Kpm(xe(t)− xm(t)) +Kdm(ẋe(t)− ẋm(t))

−Kfm(F̂e(t− T2(t)) + F̂h(t)) (3.1)
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where xm, ẋm, ẍm are the position, velocity and acceleration of the master

robot, respectively. xe, ẋe denote the estimated slave position and veloc-

ity and F̂e and F̂h denote the estimated environment and human forces by

Reaction Torque Observer (RTOB), respectively. Kpm, Kdm , Kfm are the

gains for the proportional, derivative and proportional force controllers, re-

spectively.

For the slave, a PD controller is designed at the master side to push

the slave’s position to master’s position and is combined with the estimated

human force (F̂h(t)). The estimated environment force (F̂e(t)) is not included

in the control input since it is subtracted from the control input at the slave

side to avoid an unnecessary delay of the signal . The acceleration controller

that is designed at the master side is defined as

ẍs(t) = Kps(xm(t)− xe(t)) +Kds(ẋm(t)− ẋe(t))−KfsF̂h(t) (3.2)

where the subscript s stands for the slave robot.

The use of disturbance observers at the master and slave sides eliminate

all internal and external forces acting on the systems, necessitating the in-

clusion of force terms in the control input. In this architecture, human and

environment forces are applied to the systems via the designed controllers.

3.2 Predictor Observer (PROB)

An observer that predicts the states of the slave is designed at the master

side. The predictor observer is designed over a linear and nominal slave model

that is obtained by disturbance observers in the master and slave sides.

The linear slave dynamics can be expressed by the following scalar differ-
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ential equations in state-space

ṗ(t) = ω(t)

Jsω̇(t) + bsω(t) = τs(t)− J
T
s Fe(t) (3.3)

where Js is the Jacobian of the slave manipulator and Fe(t) is the environment

force acting on the slave.

Suppose the time delays from master to slave and from slave to master

are denoted by T1(t) and T2(t), respectively. The input to the slave robot

will be τs = u(t− T1(t))− JTs Fe(t), since the environment force is estimated

on the slave side and therefore will be added to the delayed control signal at

the slave side. On the other hand, the position of the slave will reach to the

master side as pd(t) = ps(t− T2(t)) as depicted on Fig. 3.1.

Considering contact with environment and delay in the communication

channel, the equations for the proposed observer are given as

˙̂p(t) = ω̂(t)

Js
˙̂ω(t) + bsωe(t) = us(t)− JTs F̂e(t− T2(t)) + u0(t) (3.4)

ṗe(t) = ωe(t)

Jsω̇e(t) = Jsω̇d(t)− u0eq(t) (3.5)

where p̂ and ω̂ are the intermediate observer variables, pe(t) and ωe(t) are the

estimated position and velocity of the slave system, us(t) is the control input

for the slave system, F̂e(t− T2(t)) is the environment force estimated at the

slave side by RTOB that has undergone an inevitable delay of T2(t) in the

communication channel, u0 and u0eq are the observer control input and its
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equivalent part respectively. For the sake of the stability analysis, we should

note that the environment force (F̂e) is assumed to be bounded at all times

(F̂e ∈ L∞). This assumption is valid since the physical force exerted by the

environment will always be a measurable quantity, and thus stay bounded.

In order to design the observer control input u0, the observer error is

defined as the difference between delayed position (pd) and observer variable

(p̂). The error, its first and second derivatives are

e(t) = pd(t)− p̂(t), ė(t) = ωd(t)− ω̂(t), ë(t) = ω̇d(t)− ˙̂ω(t) (3.6)

If the value of ˙̂ω(t) is substituted from equation (3.4) into the second

derivative of the observer error

ë(t) = ω̇d(t) +
1

Js

(bsωe(t)− us(t)− u0(t) + JTs F̂e(t− T2(t))) (3.7)

is obtained. In order to achieve finite time convergence of the observer error

to 0, observer input u0 is designed using Sliding Mode Control (SMC) theory,

therefore a sliding surface σ is defined as

σ = ė(t) + Ce(t) (3.8)

where C is the slope of the sliding surface. If the first derivative of the sliding

surface is taken and the value of second derivative of the error from equation

(3.7) is substituted

σ̇ = ω̇d(t) +
1

Js

(bsωe(t)− us(t)− u0(t) + JTs F̂e(t− T2(t))) + Cė(t) (3.9)
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is obtained. The equivalent control value can be calculated by setting σ̇ = 0

since this condition implies that σ = 0 and is not changing. Then, u0eq

becomes:

u0eq(t) = Jsω̇d(t) + bsωe(t)− us(t) + JTs F̂e(t− T2(t)) + JsCė(t) (3.10)

If both sides of the equation (3.9) are multiplied by Js, and equation (3.10)

is used,

Jsσ̇ = Jsω̇d(t) + bsωe(t)− us(t) + JTs F̂e(t− T2(t)) + JsCė(t)− u0(t)

= u0eq(t)− u0(t) (3.11)

is obtained. A positive definite Lyapunov function, and its first derivative

are defined as:

V =
1

2
Jsσ

2 ≥ 0 ⇒ V̇ = σJsσ̇ (3.12)

If the value of Jsσ̇ is substituted from equation (3.11), V̇ can be rewritten

as:

V̇ = σ(u0eq(t)− u0(t)) (3.13)

If a discontinuous function u0eq − u0 = −Ksgn(σ) is defined where K > 0,

and the fact that xsgn(x) = |x| is considered, V̇ reduces to:

V̇ = σ(u0eq(t)− u0(t)) = −Kσsgn(σ) = −K|σ| < 0 (3.14)

which is a negative definite function.

We should note that K > 0 is the gain parameter of discontinuous control

and sgn(.) is the well known signum function. Since the Lyapunov function
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V (t) is positive definite and decreasing ( ˙V (t) < 0), we can conclude that

V (t) is bounded (V (t) ∈ L∞). Therefore, from equation (3.12), σ2 and σ

are bounded (σ ∈ L∞). From equation (3.8), it can be seen that e(t) and

ė(t) are bounded (e(t), ė(t) ∈ L∞). Since the sliding surface (σ = 0) will be

reached in finite time (0 ≤ τr < ∞) [53], for t ≥ τr, equation (3.8) becomes:

ė(t) + Ce(t) = 0 (3.15)

and it can be concluded that the observer error and its first derivative con-

verge to zero.

lim
t→∞

e(t), ė(t) = 0

Since equation (3.8) is linear and C is constant, this convergence is expo-

nential. If the equivalent control value is substituted into equation (3.5)

Jsω̇e(t) = −bsωe(t) + us(t)− J
T
s F̂e(t− T2(t))− JsCė(t) (3.16)

is obtained. It has been shown that ė(t) ∈ L∞ and assumed that F̂e(t −

T2(t)) ∈ L∞, therefore it is needed to show that ωe(t) and us(t) are also

bounded in order to conclude that the observer is stable.

3.3 Design of Master Control Input

In this section a Lyapunov based controller for the master system is de-

signed. First, the position tracking error is defined as the difference between

estimated position of slave (pe) from the predictor observer and position of

the master (pm), and the first and second derivatives of the error are given

35



as

em(t) = pe(t)− pm(t), ėm(t) = ωe(t)− ωm(t), ëm(t) = ω̇e(t)− ω̇m(t) (3.17)

As a preliminary to the Lyapunov function, a filtered error rm is defined as:

rm = ėm(t) + λmem(t) (3.18)

where λm > 0 is a design parameter. Using the filtered error, a positive defi-

nite Lyapunov function is defined. Its first derivative is taken, the derivative

of rm is computed from equation (3.17) and the value of ë is substituted from

(3.18):

V =
1

2
Jmr

2
m ≥ 0 ⇒ V̇ = Jmrmṙm

= rmJm(ëm + λmėm) = rm(Jmω̇e(t)− Jmω̇m(t) + λmJmėm) (3.19)

Nominal master dynamics are given as JmΘ̈m+bmΘ̇m = τm. If this expression

is substituted into equation (3.19)

V̇ = rm(Jmω̇e(t) + bmωm(t)− τm(t) + λmJmėm) (3.20)

is obtained. If ωm(t) = ωe(t) − ėm(t) is further substituted into equation

(3.20), V̇ can be rewritten as:

V̇ = rm (Jmω̇e(t) + bmωe(t)− τm(t) + (λmJm − bm)ėm) (3.21)

In order to achieve force reflecting bilateral operation, the force error is de-

fined as ef = Fh+Fe. Since the external forces are estimated by the RTOBs,
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they are denoted as F̂h and F̂e. Since the environment force estimation

reaches the master side with a delay of T2(t), the force error is written as:

ef (t) = F̂h(t) + F̂e(t− T2(t))

Similar to the previous assumption, it is assumed that the estimated human

force will always be bounded (F̂h(t) ∈ L∞) since a human operator will

always exert a finite amount of force on the master system. Using these two

assumptions, it can be concluded that the force error will always be bounded

(ef ∈ L∞).

In light of equation (3.21), the master control input is designed to be

τm(t) = um(t) = Jmω̇e(t) + bmωe + (λmJm − bm)ėm + kmrm −Kfmef (3.22)

where km, Kf > 0 are control gain parameters. If the control input from

equation (3.22) is substituted into equation (3.21), the derivative of the Lya-

punov function becomes

V̇ = −kmr
2
m +Kfmrmef (3.23)

The control gain km can be written as the sum of products of different positive

gains (km = k1m + k2mK2
fm
). Then equation (3.23) becomes

V̇ = −k1mr
2
m +Kfmrmef − k2mK

2
fm
r2m (3.24)

Utilizing the nonlinear damping property (see Appendix A), the last two
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terms in equation (3.24) can be rewritten as

Kfmrmef − k2mK
2
fm
r2m ≤

e2f
k2m

(3.25)

then equation (3.24) can be rewritten as

V̇ = −k1mr
2
m +Kfmrmef − k2mK

2
fmr

2
m ≤ −k1mr

2
m +

e2f
k2m

(3.26)

In light of equation (3.19), the inequality (3.26) can be rewritten as

V =
1

2
Jmr

2
m ⇒ r2m =

2V

Jm

⇒ V̇ ≤ −
2k1m
Jm

︸ ︷︷ ︸

≡βm

V +
e2f
k2m
︸︷︷︸

≡εm

⇒ V̇ ≤ −βmV + εm (3.27)

Since ef ∈ L∞, it can be concluded from that εm ∈ L∞. The solution to the

inequality (3.27) is

V̇ ≤ −βmV + εm ⇒ V (t) ≤ V (0)exp(−βmt) +
εm
βm

(1− exp(−βmt)) (3.28)

In light of equations (3.19), (3.27) and (3.28) it is concluded that

1

2
Jmr

2
m(t) ≤

1

2
Jmr

2
m(0)exp(−βmt) +

Jmεm
2k1m

(1− exp(−βmt)) (3.29)

Simplifying the inequality and using the property εm ≤ ‖εm‖∞, the following

expression for rm is obtained

r2m(t) ≤ r2m(0)exp(−βmt) +
‖εm‖∞
k1m

−
‖εm‖∞
k1m

exp(−βmt)
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Since the last term of this expression is always negative, the inequality can

be reduced to

r2m(t) ≤ r2m(0)exp(−βmt) +
‖εm‖∞
k1m

(3.30)

which implies that r2m, thus rm is ultimately bounded (rm ∈ L∞). Using

equation (3.18) and the fact that rm is bounded, it can be concluded that

em(t) and ėm(t) are bounded (em(t), ėm(t) ∈ L∞). Since the master is con-

trolled by the operator, it can be assumed that the master position and its

derivatives are bounded (pm,ωm, ω̇m ∈ L∞), thus we can conclude that the

estimated position and its derivatives are bounded (pe,ωe, ω̇e ∈ L∞).

It has been shown that all the signals on the right side of the equation

(3.22) are bounded. Thus the control input um is bounded at all times

(um ∈ L∞). The first two terms on the right side of equation (3.22) represent

a model based feedforward controller and the third and fourth terms represent

a PD controller.

3.4 Design of Slave Control Input

In this section a Lyapunov based controller for the slave system is de-

signed. This is the last term (us(t)) in equation (3.16) that is to be shown

to be bounded. Similar to the master controller, the position tracking error

and its derivatives are defined as

es(t) = pm(t)− pe(t), ės(t) = ωm(t)− ωe(t), ës(t) = ω̇m(t)− ω̇e(t) (3.31)

We should note that these errors are simply the negative of the errors defined

in the previous section. It was previously shown that em(t), ėm(t), ëm(t) ∈

L∞, therefore it follows that es(t), ės(t), ës(t) ∈ L∞. The control input will
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be designed in a Lyapunov framework, thus a filtered error is defined as a

preliminary to the Lyapunov function

rs = ės(t) + λses(t) (3.32)

where λs is a design parameter. Using the filtered error rs, a positive definite

Lyapunov function and find its first derivative are defined as:

V =
1

2
Jsr

2
s ≥ 0 ⇒ V̇ = Jsrsṙs = rsJs(ës + λsės) (3.33)

V̇ = rsJs(ω̇m(t)− ω̇e(t) + λsės) = rs(Jsω̇m(t)− Jsω̇e(t) + Jsλsės) (3.34)

Using equation (3.16), equation (3.33) can be rewritten as:

V̇ = rs(Jsω̇m(t) + bsωe − us(t) + JTs F̂e(t− T2(t)) + Js(Cė+ λsės)) (3.35)

Then the control input us can be designed in light of equation (3.35) as

us(t) = Jsω̇m(t) + bsωe + JTs F̂e(t− T2(t)) + CJsė + (λsJs − bs)ės

+ ksrs −KfsF̂h(t) (3.36)

where ks, Kf > 0 are control gain parameters. When the control input in

equation (3.36) is substituted into equation (3.35)

V̇ = −ksr
2
s +KfsrsF̂h(t) (3.37)

is obtained. Similar to the previous section, the control gain ks can be written

as sum of products of different gains (ks = k1s + k2sK2
fs
), and substituted
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into equation (3.37)

V̇ = −k1sr
2
s +KfsrsF̂h(t)− k2sK

2
fs
r2s (3.38)

Using the nonlinear damping property, the last two terms in equation (3.38)

can be written as

KfsrsF̂h − k2sK
2
fs
r2s ≤

F̂ 2
h

k2s
(3.39)

which leads to this inequality for V̇ :

V̇ = −k1sr
2
s +KfsrsF̂h(t)− k2sK

2
fsr

2
s ≤ −k1sr

2
s +

F̂ 2
h

k2s
(3.40)

Using equation (3.19), inequality (3.40) can be rewritten as

V =
1

2
Jsr

2
s ⇒ r2s =

2V

Js

⇒ V̇ ≤ −
2k1s
Js

︸︷︷︸

≡βs

V +
F̂ 2
h

k2s
︸︷︷︸

≡εs

⇒ V̇ ≤ −βsV + εs (3.41)

Since the human force estimated by RTOB is bounded (F̂h ∈ L∞), εs is

bounded (εs ∈ L∞). The solution to the inequality (3.41) is

V̇ ≤ −βsV + εs ⇒ V (t) ≤ V (0)exp(−βst) +
εs
βs

(1− exp(−βst)) (3.42)

Using equations (3.19), (3.41) and (3.42), it can be concluded that

1

2
Jsr

2
s(t) ≤

1

2
Jsr

2
s(0)exp(−βst) +

Jsεs
2k1s

(1− exp(−βst)) (3.43)
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Simplifying the inequality and using the property εs(t) ≤ ‖εs‖∞, the follow-

ing expression for rs is obtained

r2s(t) ≤ r2s(0)exp(−βst) +
‖εs‖∞
k1s

−
‖εs‖∞
k1s

exp(−βst) (3.44)

Since the last term of this expression is always negative, the inequality can

be reduced to

r2s(t) ≤ r2s(0)exp(−βst) +
‖εs‖∞
k1s

(3.45)

which implies that the position tracking error is bounded from above and

can be reduced by increasing the controller gain k1s. Notice that equation

(3.45) is equivalent to equation (3.30), thus the boundedness arguments in

the previous section follow. Since all the signals on the right side of equation

(3.36) are bounded, control input us is bounded (us ∈ L∞). At this point

the boundedness of all the signals on the right side of equation (3.16) has

been shown, thus ωe, ω̇e ∈ L∞.

3.5 Position Tracking Performance and Steady State

Analysis

In order to analyze the position tracking performance of the controller, it

needs to be shown that the predictor observer estimates the future states of

the slave system. Initially, the delayed dynamics of the slave are written

ṗd(t) = ωd(t)

Jsω̇d(t) + bsωd(t) = us(t− T1(t)− T2(t))− JTs F̂e(t− T2(t)) (3.46)
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where T1(t) and T2(t) denote the time delays from master to slave and slave

to master respectively and T (t) is defined as the roundtrip delay T1(t) +

T2(t). Delayed velocity ωd denotes the velocity of the slave delayed by T2(t)

(ωd(t) = ω(t− T2(t))), similarly delayed acceleration ω̇d denotes the accelera-

tion of the slave delayed by T2(t) (ω̇d(t) = ω̇(t− T2(t)) and slave control input

us is delayed by the roundtrip delay T (t) (us(t− T1(t)− T2(t)) = us(t− T (t))).

If t is substituted with t+ T in equation (3.46)

Jsω̇d(t+ T ) + bsωd(t + T ) = us(t)− JTs F̂e(t+ T1(t)) (3.47)

is obtained. Subtracting equations (3.16) and (3.47) yields

Js(ω̇e(t)− ω̇d(t + T ) + bs(ωe(t)− ωd(t + T )))

= −JsCė(t) + JTs (F̂e(t+ T1(t))− F̂e(t− T2(t))) (3.48)

Defining ω̃ as the difference between estimated velocity ωe and the future of

delayed velocity ωd by an amount equal to the round-trip delay T (ω̃(t) =

ωe(t)−ωd(t + T )) and substituting it into the equation (3.48) gives

Js
˙̃ω(t) + bsω̃(t) = −JsCė(t) + JTs (F̂e(t + T1(t))− F̂e(t− T2(t))) (3.49)

It was previously shown that e, ė ∈ L∞, and the forces estimated by RTOB

are bounded (F̂e(t + T1(t)), F̂e(t − T2(t)) ∈ L∞). Since all the signals on

the right side of equation (3.49) are bounded, it can be concluded that

ω̃e(t), ˙̃ω(t) ∈ L∞. Similarly, ωe(t), ω̇e(t) ∈ L∞ implies that ωd(t+T (t)), ω̇d(t+
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T (t)) ∈ L∞. Since ωd(t) = ω(t− T2(t)), it can be rewritten as

ωd(t + T (t)) = ω(t+ T (t)− T2(t)) = ω(t+ T1(t)) (3.50)

which implies that the slave velocity and acceleration is bounded at all times

(ω(t + T1(t)), ω̇(t + T1(t)) ∈ L∞). Since all the signals in equation (3.49)

are bounded, a steady state analysis can easily be made. Since the observer

error converges to 0 in steady state, and

lim
t→∞

F̂e(t + T1(t)) = lim
t→∞

F̂e(t− T2(t))

it can be concluded that ω̃(t) and ˙̃ω(t) will also converge to 0.

lim
t→∞

ω̃(t), ˙̃ω(t) = 0 (3.51)

Since equation (3.49) is linear and has constant coefficients, this convergence

will be in exponential time and the rate of convergence will depend on bs/Js

parameter. From definition of ω̃(t), it can be inferred that ω̃(t) = ωe(t) −

ωd(t+T (t)) = ωe(t)−ω(t+T1(t)), since the round-trip delay T (t) = T1(t)+

T2(t) and ωd = ω(t− T2(t)). Thus

lim
t→∞

ωe(t) = lim
t→∞

ωd(t + T (t)) = lim
t→∞

ω(t+ T1(t)) (3.52)

lim
t→∞

ω̇e(t) = lim
t→∞

ω̇d(t + T (t)) = lim
t→∞

ω̇(t + T1(t)) (3.53)

It is shown that the estimated velocity and acceleration converge to the

future states of the slave. It was shown that the first term in equation (3.10)

is bounded (ω̇d(t + T (t)) ∈ L∞). The rest of the terms were also shown to
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be bounded, thus the equivalent control signal is bounded (u0eq(t) ∈ L∞).

Since the observer control input u0(t) = u0eq(t) + Ksgn(σ) is the sum of a

bounded signal and a discontinuous constant term, it is also bounded at all

times (u0(t) ∈ L∞).

The convergence shown in equation (3.52) is in terms of velocities. In

order to investigate the relationship between positions, the expression ω̃(t) =

ωe(t)− ω(t+ T1(t)) needs to be integrated.

∫ t

0

ωe(τ) dτ −

∫ t

0

ω(τ + T1(τ)) dτ =

∫ t

0

ω̃(τ) dτ

⇒ pe(t)− pe(0)− (p(t+ T1(t))− p(T1(0))) =

∫ t

0

ω̃(τ) dτ

⇒ pe(t)− p(t + T1(t)) =

∫ t

0

ω̃(τ) dτ + pe(0)− p(T1(0))
︸ ︷︷ ︸

ε1

=

∫ t

0

ω̃(τ) dτ + ε1 (3.54)

As it can be seen from equation (3.54), the difference between the initial

conditions of the observer and slave is represented by a constant ε1. Since

ω̃(t) is bounded, the integral
∫

ω̃(τ) dτ is bounded at all times. This indicates

that pe(t)− p(t + T1(t)) is bounded at all times (pe(t)− p(t+ T1(t)) ∈ L∞).

We have previously shown that pe ∈ L∞, therefore p(t + T1(t)) ∈ L∞, the

slave is position is bounded at all times.
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If equation (3.54) is analyzed at t → ∞

lim
t→∞

(pe(t)− p(t+ T1(t))) = lim
t→∞

∫ t

0

ω̃(τ) dτ
︸ ︷︷ ︸

≡ε2

+ε1

= ε2 + ε1 = ε (3.55)

In light of equations (3.32) and (3.45) it can be concluded that the difference

between estimated position and master position is ultimately bounded

| lim
t→∞

(pe(t)− pm(t))| ≤
‖εs‖∞
k1s

(3.56)

The following can be deduced from equations (3.55) and (3.56)

| lim
t→∞

(pm(t)− p(t+ T1(t)))|

= | lim
t→∞

(pm(t)− pe(t) + pe(t)− p(t+ T1(t)))|

≤ | lim
t→∞

(pm(t)− pe(t))|+ | lim
t→∞

(pe(t)− p(t+ T1(t)))|

=
‖εs‖∞
k1s

+ |ε| (3.57)

Equation (3.57) shows that position tracking error is ultimately bounded.

The estimation performance of the predictor observer in simulations can

be seen in Figure 3.2. Estimated position line is exactly on top of the master

position, and approximately 0.5 sec ahead of the slave position, supporting

the conclusion that the observer predicts the future states of the slave. Force

estimation performance with RTOB is shown in Figure 3.3. The human force

is estimated with an error of approximately 0.1 N . This error is due to the

parametric uncertainties introduced to the simulations.
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Figure 3.2: Master, slave and estimated slave positions
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Chapter IV

4 Simulation Results and Discussions

In order to test the proposed control architecture and delay compensa-

tion method and compare it to two other techniques in the literature, sim-

ulations for 1-DOF robot arms and 2-DOF pantograph robots are carried

out in the Matlab/Simulink environment. The two other methods are Natori

and Ohnishi’s “Communication Disturbance Observer” [46] and the P-like

controller of Nuno, Ortega et al [24]. The simulations are executed under

variable delay and for free motion and environment contact cases.

4.1 1-DOF Robot Arm Simulations

The manipulators are modeled as two 1-DOF robot arm with uniform

rectangular prism rods as the arm. The nominal values of the moment of

inertia of the rod and motor constants used in the simulations are given

in Table 4.1. A parametric uncertainty of 10% is added to the nominal

parameters during simulations.

4.1.1 P-like Controller Simulations

The simple P-like controller consists of a proportional control gain on the

position error of the two systems and a damping gain on the velocity of the

controlled system. There is not an explicit delay compensation method, the



Table 4.1: 1-DOF Robot Arm Parameters

Value Unit

Moment of Inertia of Rod (Iz) 0.00667 kgm2

Rotor Inertia (J) 167 gcm2

Torque Constant (Kt) 1 Nm/A
Damping Constant (B) 300 gcm2

delayed signals are used in the control. The equations for master and slave

control input are given as

τm(t) = Km(xs(t− T2)− xm(t))−Bmẋm(t) (4.1)

τs(t) = Ks(xm(t− T1)− xs(t))− Bsẋs(t) (4.2)

where τm is the master control input, xm, xs, ẋm are the master and slave

positions and master velocity respectively and Km, Bm are the proportional

and damping terms. The subscript s stands for the slave robot and T1, T2

are the amount of delay in both directions. The method requires a simple

inequality to be satisfied for the four gains:

4BmBs > (∗T 2
1 +∗ T 2

2 )KmKs (4.3)

where ∗T1, ∗T2 are the upper bounds on the delay in both directions. The

gain values that the authors experimented with are asymmetric since the

two manipulators they use are a PHANTOM Desktop and a 6-DOF TX-90

Staubli robot. Since identical 1-DOF manipulators are used in the simula-

tions, the gains were recalculated for the purpose of these simulations. The

variable delay is characterized as a normally distributed random variable
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with a mean of 0.4 sec and standard deviation of 0.05 sec, and an upper

bound of 0.6 sec is chosen to be appropriate for the delay. Then, the gains

are chosen as

Km = Ks = 10

Bm = Bs = 4.5

satisfying the inequality

4(4.5)2 > (0.62 + 0.62)100 ⇒ 81 > 72

The results for the free motion simulation are presented in Figure 4.1 The
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Figure 4.1: 1-DOF P-like controller free motion simulation

slave tracks the master successfully, with an error of less than 0.1 rad. For

the contact experiment, two stiff walls are modeled at p = π/2 and p = −π/2.

The results for the contact simulation are shown in Figure 4.2. The slave

tracks the master until it contacts the wall and stays stationary until master

leaves the obstructed zone. Then it continues tracking normally. Notice

that during contact, the environment force initially oscillates to a large value
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Figure 4.2: 1-DOF P-like controller contact simulation

and then becomes a smooth signal. The reason for this oscillation is the

model of the wall used in the simulation. The stiff wall is modeled as a

spring with a relatively large spring constant of K = 1500 N/m, the slave

inevitably penetrates the wall during the first milliseconds of contact and

results in a large impulse reaction from the spring. Then the environment

force balances the input torque and keeps the slave manipulator stationary.

Since the method does not include any force terms, it is not transparent. This

can be observed both in the master position and operator force, as neither

respond to the environment force during the slave contacts the obstacle.

4.1.2 CDOB Simulations

Similar to the method proposed in this work, Natori and Ohnishi’s method

[46] depends on three observers: Communication Disturbance Observer, Dis-

turbance Observer and Reaction Torque Observer. As explained in Section

1, CDOB estimates undelayed slave states using delayed signals. Figure 4.3

presents the block diagram of the CDOB architecture. The other two ob-

servers were explained in Section 2.2 and 2.3. There are three control gains
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Figure 4.3: Block diagram of CDOB architecture

for each controller in the CDOB method: A Proportional-Derivative control

on the position error of the two systems (Kp, Kd) and a proportional gain

on the force error of the two systems (Kf ). The acceleration control input

for the master and slave systems are given as

ẍm(t) = Kpm(xe(t)− xm(t)) +Kdm(ẋe(t)− ẋm(t))−Kfm(F̂e(t− T2) + F̂h(t))

ẍs(t) = Kps(xm(t− T1)− xs(t)) +Kdm(ẋm(t− T1)− ẋs(t))

−Kfm(F̂h(t− T1) + F̂e(t))

where xe, xm, ẋm, ẍm are the estimated position of the slave and position,

velocity and acceleration of the master manipulator respectively. F̂e, F̂h

denote the estimated environment and human forces and the subscript s

stands for the slave manipulator. The authors choose the PD control gains

relatively large at Kp = 900, Kd = 60, but keep the force control gain only at

Kf = 1. During the simulations these gains were tuned to be Kp = 90, Kd =

20, Kf = 2 and the cut-off frequency of CDOB and DOB were chosen to be

g = 1250 rad/sec to produce the following results.
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The first simulation demonstrates a free motion scenario where the slave

robot tracks the master robot freely. Figure 4.4 shows the results of the

simulation. The tracking outperforms the P-like controller. The measured
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Figure 4.4: 1-DOF CDOB free motion simulation

tracking error is approximately 0.02 rad. A small oscillation around F = 0

can be observed in the estimated environment force, albeit the free motion

scenario. This is due to the difference between external disturbance esti-

mated by DOB and the computed forces based on nominal parameters for

the RTOB estimation. The parametric uncertainties introduced to the sim-

ulation cause this difference. Wall model is unchanged from the previous

contact simulation. The results for the contact simulation are given in Fig-

ure 4.5. Tracking is successful until contact with the obstacle (t , 5 sec),

at which point the slave stops its movement and the master overshoots the

position of the obstacle by 0.25 rad. After approximately 0.5 sec, similar

to the amount of delay in the communication channel, the master position

is retracted by the environment force demonstrating the force reflection in

the system. The delay is expected since the master can only feel the delayed

force signal from the communication channel. The reflection of forces in the
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Figure 4.5: 1-DOF CDOB contact simulation

system is also visible in the force estimations. Between t , 5.5 sec and

t , 9.5 sec the operator force increases to compensate for the environment

force, but is overcome by the environment force peaking to approximately

18 N . The same phenomenon is observed after t , 17 sec when the slave

contacts the second obstacle. After oscillating around the position of the

obstacle, the master leaves the obstructed zone at t , 19 sec and the slave

continues tracking until it contacts the second obstacle. The results show

that the system is stable and environment forces are reflected to the opera-

tor.

4.1.3 PROB Simulations

Finally, the same scenarios are simulated using the proposed control ar-

chitecture and delay compensation method. The control gains and cut-off

frequency of the DOBs used in the CDOB simulations are unchanged at

Kp = 90, Kd = 20, Kf = 2, g = 1250 rad/sec. The results of the free mo-

tion simulation are given in Figure 4.6. The slave position tracks the master

position with an error of less than 0.02 rad, with better performance than the
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Figure 4.6: 1-DOF PROB free motion simulation

CDOB simulations. Force estimation oscillations are also visible in the re-

sults. The contact simulation is also repeated using the proposed method and

the results are presented in Figure 4.7. Both the master and slave responses
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Figure 4.7: 1-DOF PROB contact simulation

vary from the CDOB simulation. The overshoot of the master position is

greater, at approximately 0.42 rad, and it does not oscillate around the ob-

stacle position. The master trajectory is smoother. It is also observed that

the slave response is faster than the CDOB simulation. The contact with

the wall occurs at t , 4.5 sec instead of t , 5 sec, a difference approxi-

mately equal to the amount of delay in the communication channel. This

55



observation supports the conclusion in Section 3.5 that the predictor observer

estimates the future of the slave system (limt→∞ ωe(t) = limt→∞ ω(t+T1(t)))

thus eliminates delay. The control signals are computed for an undelayed

state of the slave and a faster response is obtained from the slave.

4.2 2-DOF Pantograph Robot Simulations

The performance of the proposed method is further tested with simu-

lations of a nonlinear 2-DOF pantograph robot. The pantograph robot is

modeled as consisting of four identical lightweight uniform rod links. The

moment of inertia of the rods are calculated for with the assumption that

axis of rotation is at the end. Moment of inertia and friction at the joints

are not considered for simplicity. The parameters of the pantograph robot

model are given in Table 4.2. The parameters of the motors (active joints)

Table 4.2: 2-DOF Pantograph Robot Parameters

Mass (g) Length (mm) Inertia (gcm2)

Link 1 30 200 4000
Link 2 30 200 4000
Link 3 30 200 4000
Link 4 30 200 4000
Link 5 - 120 -

are unchanged from the 1-DOF simulations, and a parametric uncertainty

of 10% is added to the motor parameters. For simplicity and comparabil-

ity of the results, a sinusoidal reference with an amplitude of π/2 rad and

frequency of 1/15 rad/sec is given to both joints in the joint space. This

reference translates as an arc in the work space. In the results presented in

56



this section, a single cycle representative of the work space trajectory is given

for clarity.

4.2.1 P-like Controller Simulations

Although it is not suggested in the authors’ work, the nonlinear panto-

graph models are linearized using disturbance observers in an effort to make

the results comparable to the other two methods which use disturbance ob-

servers. Due to the increased nonlinearity of the system, control gains are

tuned to be Km = Ks = 15, Bm = Bs = 6.5, satisfying the inequality. The

results of a free motion simulation are given in Figures 4.8-4.10. The track-
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Figure 4.8: Pantograph P-like controller free motion simulation

ing performance is successful, with the slave position exceeding the master

position slightly in the x-axis at the peak of the trajectory. For the contact

simulation, a stiff wall is modeled at x = 0.2 m as a spring with a spring

constant of K = 2000 N/m. The results are presented in Figures 4.11-4.13.

The slave motion in the x-axis stops during contact with the wall while
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Figure 4.9: Joint positions for Pantograph P-like controller free motion sim-
ulation
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Figure 4.10: External forces on the joints for Pantograph P-like controller
free motion simulation

it continues in the y-axis. This is expected since the obstacle is modeled

as a frictionless wall on the x-axis. Master x position exceeds the obstacle

position and repeats its trajectory in the free motion simulation, as a result

of the non-transparent nature of the controller. In Figure 4.13, it is observed

that the environment forces applied to the two joints are asymmetric. This is

due to the fact that environment force is calculated in cartesian coordinates

and mapped to the joint space using the Jacobian matrix of the pantograph

model.
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Figure 4.11: Pantograph P-like controller contact simulation
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Figure 4.12: Joint positions for Pantograph P-like controller contact simula-
tion

4.2.2 CDOB Simulations

The communication disturbance observer method is applied to the pan-

tograph model, albeit the authors merely use a pair of 1-DOF robot arms in

their experiments. However, the method is expected to perform successfully

since the nonlinear dynamics of the pantograph are linearized and in prac-

tice the controller controls two independent linear joints. Control gains are
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Figure 4.13: External forces on the joints for Pantograph P-like controller
contact simulation

unchanged at Kp = 90, Kd = 20, Kf = 2, however the cutoff frequency of

the disturbance observers are increased to g = 1500 rad/sec to account for

the nonlinearities of the pantograph model. The results of the free motion

simulation are shown in Figures 4.14-4.16. As in the 1-DOF simulations, the
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Figure 4.14: Pantograph CDOB free motion simulation

slave tracks the master trajectory exactly. The environment force oscillation

can be observed in Figure 4.16. Contact simulation is repeated for the CDOB
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Figure 4.15: Joint positions for Pantograph CDOB free motion simulation
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Figure 4.16: External forces on the joints for Pantograph CDOB free motion
simulation

method and results are presented in Figures 4.17-4.19. The master and slave

robot trajectories resemble the 1-DOF simulation. During contact with the

obstacle, slave motion in the x direction stops while the master overshoots

the obstacle position by approximately 3 cm at which point it is retracted by

the delayed environment force feedback, demonstrating that transparency is

achieved to a certain extent by reflection of environment forces in the system.

After the force input, the master position undershoots the obstacle position,

deflecting from its trajectory in the free motion simulation. The sluggish
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Figure 4.17: Pantograph CDOB contact simulation
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Figure 4.18: Joint positions for Pantograph CDOB contact simulation

response of the slave under this control architecture can be observed in this

simulation. The slave does not immediately resume tracking the master once

the master returns to the unobstructed zone. Master and slave trajectories

eventually converge and slave resumes tracking the master successfully.
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Figure 4.19: External forces on the joints for Pantograph CDOB contact
simulation

4.2.3 PROB Simulations

Pantograph simulations are repeated for the proposed control architecture

and delay compensation method utilizing predictor observer. These simula-

tions also serve as a basis for the experiments presented in this work. The

control gains are chosen as the same in CDOB simulations, atKp = 90, Kd =

20, Kf = 2, g = 1250 rad/sec. Results of the free motion simulation are

given in Figures 4.20-4.22. Tracking is successful except for the extrema

in the x direction. At the extrema, slave trajectory overshoots the master

trajectory by approximately 0.5 cm. This error is due to the parametric

uncertainties introduced to the simulations. Since the slave control input

is computed at the master side based on the predictions of the PROB on

a nominal slave model, parametric uncertainties yield a difference between

real and estimated positions of the slave. Oscillation of the force estimation

around F = 0 is visible. Finally, the contact scenario is simulated using

the proposed architecture and the results are presented in Figures 4.23-4.25.

The master trajectory overshoots the obstacle position by approximately
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Figure 4.20: Pantograph PROB free motion simulation
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Figure 4.21: Joint positions for Pantograph PROB free motion simulation

3 cm, in accordance with the 1-DOF results and the results of the CDOB

method. Once the delayed environment force reaches the master side, both

the trajectory and operator force are affected, demonstrating a degree of

transparency of the system. Master position is retracted towards the obsta-

cle and it resumes its original trajectory from free motion simulation. The

trajectory does not deflect as in the CDOB contact simulation, another ad-

vantage of the proposed method over CDOB. Also, as in the 1-DOF contact

64



4 5 6 7 8 9 10 11 12 13
−1

0

1

2

3

4

5

6

Time (sec)

Fo
rc

e 
(N

)

Joint 1 Forces

 

 
Human
Environment

4 5 6 7 8 9 10 11 12 13
−1

0

1

2

3

4

5

6

Time (sec)

Fo
rc

e 
(N

)

Joint 2 Forces

 

 
Human
Environment

Figure 4.22: External forces on the joints for Pantograph PROB free motion
simulation
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Figure 4.23: Pantograph PROB contact simulation

simulation, retraction of the master position is smoother than the CDOB

method. This is due to the proposed control architecture that relies on the

estimations from the PROB. The predictor observer depends on delayed en-

vironment force information and inevitably makes the faulty prediction that

the slave is moving until the force information is received through the com-

munication channel. It is at this point that the estimated slave trajectory
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Figure 4.24: Joint positions for Pantograph PROB contact simulation
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Figure 4.25: External forces on the joints for Pantograph PROB contact
simulation

comes to a halt and starts retracting the master position towards itself. For

the purposes of the two controllers at the master side, the obstacle exists at

a position slightly greater than its actual position. As a result of the dis-

crepancy, the controller does not exert a large force on the master to retract

it and does not cause an undershoot as in the CDOB case. The trajectory

of the master is smoother and it does not deflect to an undesired position

as observed in the CDOB simulation. This conclusion is also supported by

the fact that the master position is retracted approximately 1 cm and then
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continues its trajectory.

4.3 Discussion

The simulation results presented in this chapter reveal that the proposed

method delivers stable and force reflecting teleoperation. The P-like con-

troller method delivers stable teleoperation, as claimed by the authors, how-

ever it is not transparent. The results of the proposed method outperforms

the P-like controller in both 1-DOF and 2-DOF contact simulations. Force

reflection is clearly visible in the force estimations and the master position

retracts to the obstacle position, demonstrating a desirable behavior. Com-

pared to the CDOB approach, the master trajectories are smoother during

the slave’s contact with environment and the master is not forced into a dif-

ferent trajectory than the free motion scenario. The claim in Section 3.5 that

the predictor observer estimates the future states of the slave is demonstrated

in the simulations as well, by the responsiveness of the slave system.

The stable and smooth response of the master system to the environment

forces show that the proposed method achieves a tradeoff between stability

and transparency that provides more stable contact behavior for the mas-

ter. A degree of transparency is preserved while the master is smoothly

retracted towards the obstacle, as opposed to the oscillatory retraction be-

havior demonstrated in CDOB simulations.
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Chapter V

5 Experimental Results and Discussions

After obtaining satisfactory tracking performance in the simulations, ex-

periments are carried out to test the performance and robustness of the

proposed control architecture in physical bilateral teleoperation. Two exper-

imental test beds are used for the experiments: a pair of 1-DOF revolute

arm manipulators and a pair of 5-link, 2-DOF pantograph robots (Fig. 5.1).

The testbeds are designed and assembled at the Sabancı Mechatronics lab-

oratory to be used in a bilateral teleoperation system as master and slave

systems. For a more detailed analysis of the dynamics of the pantograph

Figure 5.1: Master and slave pantograph robots

robot, please refer to [54]. The nonlinear dynamical equations of pantograph



robots are linearized using DOBs. Three channel control architecture utiliz-

ing the predictor observer is implemented to control the pantograph robots

and the performance of the proposed approach in tracking stability and force

reflection under time delay are investigated. The pantograph robots are con-

trolled by a dSpace 1103 real-time control card. The experimental setups are

demonstrated in Figure 5.2. In the experiments, the end-effector positions

Figure 5.2: 1-DOF and pantograph robot experimental setups

of the pantographs in x − y plane, joint angles and estimated forces at the

joints are examined. The aim is to achieve stable tracking of the master

trajectories while reflecting environment forces to the human operator.

5.1 Artificial Delay Experiments

The communication channel is modeled in Matlab/Simulink by introduc-

ing a variable time delay characterized by a normally distributed random

variable with a mean of 0.5 sec and standard deviation of 0.025 sec using

Matlab’s Time-Variable Delay block. The Matlab/Simulink model is run in

real-time on the dSpace 1103 control card. The control parameters of the

modified 3-channel controller (Kp, Kd, Kf ) are selected to be the same as in
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simulations Kp = 90, Kd = 20 and Kf = 2 for both joints. The cut-off fre-

quency of the low-pass filter, G(s), used in the DOB and RTOB estimations

is set to g = 1250 rad/sec.

The delay compensation method is first tested on the 1-DOF experimental

setup. Human operator moves the master arm in an arbitrary trajectory and

the tracking of the slave is observed. In this experiment the slave does not

contact the environment. Figure 5.3 shows the master and slave joint angles,

and estimated forces at the joints. Slave tracks the master successfully with
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Figure 5.3: 1-DOF free motion experiment

an approximate delay of 0.5 sec. It is observed that the slave trajectory

is smoother at the corners than the master trajectory (at t , 8.5 sec and

t , 18 sec), however the error does not exceed 0.1 rad. As expected, the force

estimations at the slave joint oscillate around F = 0 as in the simulations

due to the internal disturbances at the joint and the parametric uncertainty.

As explained in the RTOB section, net external force estimation is as precise

as the estimation of other terms in the total disturbance.

Next, the 1-DOF system is tested under contact with the environment and

same delay conditions. Figure 5.4 shows the system setup and the vertical
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rod used as an obstacle. Slave contacts the obstacle at t , 18 sec and stays

in contact until t , 26 sec. The results are shown in Figure 5.5 The tracking

Figure 5.4: 1-DOF contact experiment setup
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Figure 5.5: 1-DOF contact experiment

performance in the unobstructed zone is similar to the previous experiment.

The tracking errors at the corners do not exceed 0.1 rad. The environment

force is clearly visible between t , 18 sec and t , 26 sec and it is reflected to

the operator. Although the magnitude of the operator force increases in this
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timeframe, the master position is observed to be retracting to the obstacle

position. This shows that the operator needs to exert a larger force to keep

the master position beyond the obstacle position. This force is the reflection

of the environment force to the operator.

After validating the performance of the control architecture in 1-DOF ex-

periments, the nonlinear pantograph robots are introduced for further test-

ing. The delay characteristics and control parameters are unchanged, but the

cut-off frequency of the DOBs and RTOBs is increased to g = 1500 rad/sec

to compensate for the increased complexity of the system. In the first ex-

periment, a closed curve is drawn by the operator. There is not any contact

with environment. The end-effector positions, joint positions and estimated

forces at the joints are shown in Figures 5.6-5.8. As shown in Figure 5.6,
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Figure 5.6: Pantograph free motion experiment: Tracking a closed curve

the end-effector of slave pantograph (dashed line) tracks the end-effector of

master pantograph (solid line) with a maximum error of approximately 2 cm.

It should be noted that the oscillations about F = 0 in the force estimation
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Figure 5.7: Joint positions for Pantograph free motion experiment
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Figure 5.8: External forces on the joints for Pantograph free motion experi-
ment

at the joints of the slave pantograph are greater than that of the 1-DOF

case. This is due to the increased number of nonlinear terms and coupling

forces at the passive joints of the pantograph that are more difficult to be

modeled accurately for the RTOB output. The decreased accuracy causes

a greater magnitude of total disturbance to be estimated as net external

force. However, as will be seen in contact experiments, the magnitudes of

the forces during contact are significantly greater than the oscillations and

realistic estimations can be obtained.
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In another experiment, a spiral reference (an open curve) is drawn by

the operator. The reason for choosing a spiral shape for reference to the

slave is the observation that tracking errors increase during circular motions,

therefore a spiral trajectory is considered as a worst case scenario for track-

ing performance. Results of the experiment are given in Figures 5.9-5.11.
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Figure 5.9: Pantograph free motion experiment: Tracking a spiral trajectory
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Figure 5.10: Joint positions for Pantograph free motion experiment

The reason for the relatively large margin of error is evident from the joint
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Figure 5.11: External forces on the joints for Pantograph free motion exper-
iment

positions in Figure 5.10. The circular motion of the end-effector requires

frequent changes in the direction in the motion of the joints. As observed in

the 1-DOF experiments, tracking error increases at the corners of the joint

position. However, as observed in Figure 5.9, the tracking error stays less

than 2 cm during the experiment.

After the free motion experiments, contact experiments are conducted

to observe the performance of the control architecture with nonlinear sys-

tems under contact with environment. In this experiment, a wall obstacle

is introduced to the experimental setup. The obstacle consists of a wrench

fixed horizontally to a vertical column. Figure 5.12 shows this experimental

setup. Results of the first contact motion experiment are given in Figures

5.13-5.15. Tracking in the unobstructed zone is successful, with errors

much less than 2 cm. As seen in Figure 5.13, master position enters the

obstructed zone while the slave position cannot. Similar to the simulation

results, slave motion stops in the perpendicular direction to the wall while

tracking continues in the parallel direction. Once the master position returns

to the unobstructed zone, tracking continues successfully. Contact forces are
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Figure 5.12: Pantograph contact experiment setup
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Figure 5.13: Pantograph contact experiment: Wall contact

clearly visible between t , 10 sec and t , 25 sec in Figure 5.15. Oscillations

about F = 0 were observed to have magnitudes less than 0.03 N in the free

motion experiments, but reach magnitudes of 0.2 N in during contact. We

can conclude that the amount of disturbance that is added to the force esti-

mations is insignificant with respect to the total force estimations. It can be
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Figure 5.14: Joint positions
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Figure 5.15: External forces on the joints

seen that the environment force estimated at the slave side is reflected to the

master side, thus providing a degree of transparency in the system. Master

force between t , 10 sec and t , 25 sec in Figure 5.15a shows an increase

from free motion forces and the trough and crest of the force estimations are

reciprocals of each other. The similarities of the wave forms imply that the

operator feels the environment forces.

In another contact experiment, the same wall obstacle is positioned at

a different location in the workspace and the experiment is repeated. The

results of the experiment are shown in Figures 5.16-5.18. The tracking
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Figure 5.16: Pantograph contact experiment: Wall contact
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Figure 5.17: Joint positions

performance and contact behavior are very similar to the previous experi-

ment. Albeit greater than the previous experiment, the tracking error in the

unobstructed zone does not exceed 2 cm.
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Figure 5.18: External forces on the joints

5.2 Internet Delay Experiments

After the performance of the proposed method under artificial delay is

verified, the system is modified to replace Matlab’s Time Variable Delay block

with real delay from an internet connection. In order to achieve this, three

computer programs are written in C++ language. The programs running at

the master and slave sides read the slave control input, position and force

signal values from the dSpace1103 card, send these signals to the opposite side

and write the received signal values back to the dSpace1103 card, achieving

the three channel control architecture. Since both master and slave system

are connected to a computer at the Sabancı University campus, a third

computer is necessary to merely bounce signals and introduce internet delay.

All communication is executed using the User Datagram Protocol (UDP) due

to its robustness and speed advantage over Transmission Control Protocol

(TCP). The third computer is located in Beşiktaş, in the European side

of Istanbul, providing a physical distance of approximately 100 km for the

roundtrip delay.

During the experiments, it is observed that along with a time delay of ap-
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proximately 150ms, a sampling time problem is introduced to the exchanged

signals. Although the dSpace1103 cards run at 1 kHz, received signals were

measured to be at approximately 20 Hz. Figure 5.19 shows a 1 sec section

of a position signal before and after transmission. The sampling problem
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Figure 5.19: Position signal before and after transmission

extends the scope of test of the control architecture’s robustness. As the

results presented in the section show, performance degradation due to the

sampling problem is insignificant. Experiments are performed with similar

trajectories to the artificial delay experiments in order to make them com-

parable. Control parameters and cut-off frequency of disturbance observers

remain unchanged at Kp = 90, Kd = 20, Kf = 2 and g = 1250 rad/sec for

the 1-DOF manipulators and g = 1500 rad/sec for the pantographs. For

the 1-DOF manipulators, only a contact experiment with the same setup

shown in Figure 5.4 is presented. Results are shown in Figure 5.20 It is ob-

served that the tracking error at the corners are about 0.2 rad, only slightly

greater than artificial delay experiments. The main reason for this robustness
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Figure 5.20: 1-DOF contact experiment

against sampling issue is the system architecture. Placement of both master

and slave controllers and PROB at the master side enables all components of

the system to run at the native sampling rate of 1 kHz. Although the PROB

input is updated at 20 Hz, the slave controller is supplied with estimated

slave position at a rate of 1 kHz. The down-sampling of the control input

does not cause significant errors in the tracking.

After obtaining successful results for the 1-DOF manipulators, the panto-

graph experiments are repeated under internet delay. The results for closed

curve tracking are given in Figures 5.21-5.23. As in artificial delay experi-

ments, slave pantograph tracks the master position with an error less than

2 cm. The oscillatory behavior of the environment force estimation is also

observed to be similar to the artificial delay experiments. The sampling prob-

lem does not induce a tangible performance degradation. The results for the

open curve tracking experiment are given in Figures 5.24-5.26. It is observed

that the tracking error increases at t , 22 sec at which point the slave joint

positions undershoot the master joint positions. The maximum tracking er-

ror is approximately 2 cm. However, this error is still bounded and only
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Figure 5.21: Pantograph free motion experiment: Tracking a closed curve
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Figure 5.22: Joint positions

slightly greater than the errors encountered in artificial delay experiments.

The contact experiments are also repeated using the same obstacle setup in

Figure 5.12. The results are presented in Figures 5.27-5.29. Tracking in the

unobstructed zone is achieved with a maximum error of about 1 cm. Force

reflection can be observed in the reciprocal addition of the environmental

force to the operator force in Figure 5.29b. After t , 16 sec, estimated hu-

man force increases from 0.15 N to 0.3 N , equal to the peak of estimated
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Figure 5.23: External forces on the joints
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Figure 5.24: Pantograph free motion experiment: Tracking an open curve

environment force. The waveforms of the two signals are also reciprocals of

each other.

Another contact experiment is carried out with a different contact setup.

As shown in Figure 5.30 a vertical bar is placed in front of the slave panto-

graph and the end-effector contacts the obstacle at a single point. It does

not move while in contact with the obstacle. The greek letter alpha is drawn

by the operator and the slave pantograph contacts the obstacle at the inter-
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Figure 5.25: Joint positions
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Figure 5.26: External forces on the joints

section point of the letter. The results are presented in Figures 5.31-5.33.

Tracking error in the unobstructed zone is larger than other experiments

at approximately 2.5 cm. The contact forces are visible between t , 8 sec

and t , 13 sec. It should be noted that the joint positions in Figure 5.32

are stationary during contact, since the motion of the slave completely stops

during contact.
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Figure 5.27: Pantograph contact experiment: Wall contact
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Figure 5.28: Joint positions

5.3 Discussion

Experimental results presented in this chapter indicate that the nonlinear

dynamics of pantograph robots are successfully linearized and the parameter

uncertainties in the system are adequately eliminated by the DOBs, which in

turn allows the implementation of PROB for delay compensation and three

channel control architecture for stable and force reflecting bilateral operation.
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Figure 5.29: External forces on the joints

Figure 5.30: Pantograph contact experiment setup

In both artificial and internet delay experiments, it is observed that the slave

system tracks the trajectory of the master pantograph successfully with a

maximum error of 0.1 rad for the 1-DOF manipulators and 2.5 cm for the

pantographs. It is also shown by the results that the proposed architecture

and delay compensation method is robust to the unpredictable delay and

low-sampling problems introduced by internet communication. Stable and

force reflecting teleoperation is achieved in all experiments.
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Figure 5.31: Pantograph contact experiment: Point contact
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Figure 5.32: Joint positions
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Figure 5.33: External forces on the joints
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Chapter VI

6 Conclusion and Future Work

In this thesis, an observer based delay compensation method for linear

and nonlinear bilateral teleoperation systems is proposed. The necessity for

consideration of nonlinear tele-operators arises from the fact that nonlinear

robots are commonly used in many modern tele-robotics applications to han-

dle complex tasks and will be more so in the future. The method involves

three observers: Predictor observer, disturbance observer and reaction torque

observer. A novel predictor observer (PROB) is developed, its stability is

shown by a Lyapunov analysis and it is shown that it estimates the future

states of the remote manipulator. These estimations are fed to the controller

of the remote manipulator so that the control input can be computed at

the local site and sent through the communication channel, separating the

approach proposed in this work from the commonly used passivity based

techniques in the literature. The proposed method provides a robust control

architecture that delivers stable and force reflecting bilateral teleoperation

under unpredictable internet delay conditions. The systems are run by ac-

celeration control that consists of a Proportional-Derivative control over the

error between master position and estimated position of the slave and a Pro-

portional control over the estimated operator and environment forces. The

stability of the control inputs for both the local and remote operators are



shown in a Lyapunov framework.

The performance of the proposed method is verified with simulations

and compared to two other techniques in the literature. It is further tested

with experiments performed under variable delay generated in the Mat-

lab/Simulink environment and real internet delay by bouncing signals be-

tween the Sabancı University campus and Beşiktaş on two different testbeds:

linear 1-DOF robot arms and nonlinear 2-DOF pantograph robots. The pro-

posed method performs successfully in both the simulations and experiments,

delivering stable and force reflecting teleoperation under delay conditions. Its

advantages over the two other methods in stability and force reflection are

demonstrated in the simulations. It is shown in the experiments that the

proposed method is robust to the sampling rate problems introduced by the

internet connection.

The robustness of the proposed method can be further tested with longer

delays over greater distances and different manipulators with more degrees

of freedom. In future experiments, the exchanged signals can be bounced

off a computer in a different country or even continent to analyze the effects

on the stability and force reflection of the system. The 2-DOF pantograph

robots can be changed with 6-DOF robotic manipulators, also linearized

using DOBs, and the effectiveness of the PROB in estimating the states of

these manipulators can be investigated. Another direction in this research

can be to modify the predictor observer to incorporate a nonlinear model

of the remote system. This approach can improve the tracking performance

of the remote system since the accuracy of state predictions will not only

rely on the effectiveness of the DOBs in linearizing the system. Finally, the

symmetric nature of the bilateral system can be changed by employing the
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position and force scaling techniques in the literature or developing novel

ones. In a realistic bilateral teleoperation system, the need to control a 6-

DOF industrial robot arm is a very acceptable condition and relying on an

identical manipulator as a master system is both expensive and impractical.

Forming a bilateral teleoperation system that consists of a master desktop

system such as the PHANTOM Desktop or a simple joystick and a slave

6-DOF manipulator is more feasible but requires position and force scaling

methods to compensate for the difference in their sizes and workspaces.
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Appendix A

Nonlinear Damping Property

Nonlinear damping property can be described as completing the square op-

eration. The last two terms of Equation (3.24)

Kfmrmef − k2mK
2
fm
r2m

can be simplified to

−k2mK
2
fm
(r2m −

1

k2mKfm

rmef)

and the terms inside the parantheses can be completed to a difference of

squares

−k2mK
2
fm
[(rm −

1

2k2mKfm

ef)
2 −

1

4k2
2mK

2
fm

e2f ]

then the parantheses can be distributed to yield

1

4k2m
e2f − k2mK

2
fm(rm −

1

2k2mKfm

ef )
2

︸ ︷︷ ︸

≥0

since the last term of the this expression is always greater than or equal to

0, provided that k2m ≥ 0, the inequality

Kfmrmef − k2mK
2
fm
r2m ≤

1

4k2m
e2f



can be formed which can be further simplified to

Kfmrmef − k2mK
2
fm
r2m ≤

1

k2m
e2f

as used in Equation (3.25).
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