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We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This
method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in
the image of a moving object in a scene. The method is simple and easy to implement because no complex struc-
tures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object
that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an
accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The
method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations
with a vision system. © 2015 Optical Society of America

OCIS codes: (120.7280) Vibration analysis; (070.4790) Spectrum analysis; (100.6640) Superresolution; (100.4999) Pattern

recognition, target tracking.
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1. INTRODUCTION

Movement detection and frequency measurements are of great
importance in many fields and can be monitored through con-
tact sensors, such as accelerometers, or noncontact methods,
such as laser vibrometers [1]. The use of accelerometers is
sometimes dismissed because of the complexity or accessibility
of the specimen to be measured, whereas a laser vibrometer’s
high cost is still a major drawback in most cases. Thus, com-
puter vision systems [2–8] have been demonstrated to be a re-
liable alternative to traditional methods in the last few years.
Independently, whether or not they use object recognition,
vision-based methods assume that object movement or vibra-
tion can be perceived through changes in the light reflected or
diffused by a moving target. Big movements may be easy to
detect, but small amplitude ones produce subtle changes, so
they usually require of high-resolution and low-noise cameras
in order to reduce false movement detection. Additionally, one
must take into account that those movements may not affect
the whole image but only very few unconnected pixels; thus,
special techniques must be applied in order to recognize and
track the object movement.

Subpixel techniques have been shown to produce accurate
results because they are able to detect object shifts even in those
cases where movement is not apparent. Their effect is to increase
the theoretical resolution of the system by several orders of mag-
nitude [2]. Basically, these techniques consist of capturing and

digitally postprocessing scenes containing targets of known shape.
These targets are recognized and extracted from the scene. Then,
through smart interpolation of their different features, it is pos-
sible to decrease the uncertainty in the object position, even below
the basic pixel unit. Therefore, a fully automated tracking method
with subpixel accuracy includes target recognition and location
through features extraction [9,10]. The most complicated task
is target recognition because it requires a proper analysis and
segmentation of the image, although it can be simplified using
targets easy to recognize [11].

After presenting the mathematical basis of the technique
[12] and discussing the maximum theoretical subpixel resolu-
tion achievable, in [5], the authors demonstrated the possibility
of measuring the vibration frequency of objects in a high-speed
video sequence simply by counting luminance changes in local
regions. The proposal consisted of selecting a local neighbor-
hood or region of interest and applying a multilevel binary
threshold to the image within this region. Then, different
binary versions of the region were obtained and analyzed. The
object did not have to fulfill any specific requirement, and no
special feature was detected or matched. Unfortunately, this tech-
nique did not provide information about the amplitude, so the
movement description was incomplete.

In this work, we go beyond [5] and propose a technique
to track the subpixel movement of an object besides using
its frequency of vibration and without using target or template
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matching, but with the specific need of the object image to have
two nonparallel straight segments and limited to in-plane trans-
lation. The manuscript is structured as follows. In the next
section, we describe and explain the requirements that the
object and the movement must meet. Then, we present the
experimental setup and the algorithm used to obtain the results
stated in the fourth section. Finally, we explain our conclusions.

2. LIMITS AND CONDITIONS

The movements of an object can be displacements and/or
rotations parallel and/or perpendicular to the image plane.
In principle, in this work, we only consider those movements
parallel to the image plane.

Let us suppose an object that horizontally moves within the
image plane and assume that it keeps its shape during the move-
ment. Generally, one can find straight edges that move with the
object in the scene and reduce the problem of object tracking
to detect and follow the movement of those straight edges or
segments.

A digital arc S is the digitization of a straight-line segment if
and only if it has the “chord property”: the line segment joining
any two points of S resides everywhere within a distance 1 of S
[13]. As an example, in Fig. 1(a), we represent an oblique seg-
ment over an array of sensors. The pixels of the sensor are rep-
resented as dotted–lined squares, and the background grid
divides each pixel into a 4 × 4 matrix. The segment is plotted
as a white line, and we assume that it activates all the pixels
where it falls (gray color pixels). If Fig. 1(a) shows a frame
with the digitization of a segment of the moving object, in
Figs. 1(b)–1(d), we illustrate the digitization of the segment
as the object displaces. Each frame corresponds to a horizontal
subpixel displacement of 0.25 px to the right, with respect to
the previous one, so the object has moved a distance equivalent
to one pixel over the array of sensors.

Cartesian coordinates of the activated pixels from the digi-
tization of a segment can be fitted to a straight-line equation in
order to obtain parameters (slope and y intersect) that charac-
terize that segment. Obviously, the shape of the segment that
the sensor “sees,” i.e., the set of activated pixels, is different to
the shape of the segment itself due to the digitization process.
However, we know that it corresponds to the digitization of a
straight segment, so we force the fitting to a straight line.
Moreover, note that the set of activated pixels can change at

a subpixel displacement, although the original segment main-
tains its shape, as we illustrate in Figs. 1(a)–1(d). There, each
0.25 px horizontal displacement completely changes the acti-
vated pixels, so the Cartesian coordinates fitting to a straight line
will provide different parameters at each subpixel displacement.

Tracking the straight-line parameters allow tracking the
movement of the segment. Thus, if the segment rotates, both
slope and y intersect will change, whereas, if it just displaces, the
slope should remain constant and only vary the y intersect.
However, this does not frequently happen due to the discreti-
zation process of the image over the sensor array; thus, it is
difficult to affirm whether or not the segment has slightly
rotated. A clear example is shown in Fig. 1, where the slope
resulting from the fitting changes frame to frame, although
the segment just displaces. The best-fitting straight lines are
plotted in red in Fig. 2 for each one of the frames from Fig. 1.
Therefore, from these parameters, we are unable to distinguish
small rotations from displacements.

Let us further limit the movements parallel to only transla-
tions within the image plane and therefore exclude rotations.
Thus, we can take advantage in the fact that we know that the
segment does not rotate and impose the slope of the straight
segment by fixing this parameter in the least-squares fitting.
Turning back to the above example, in Fig. 2 we have repre-
sented in blue the best-fitting slope-imposed straight line for
each frame. We imposed the slope resulting in the average slope
of the previously obtained best-fitting lines. There, the reader
can appreciate how the y intersect of the blue line changes
frame to frame and its slope remains constant.

This way, it seems that we will be able to track subpixel dis-
placements just by obtaining and tracking the y intersect of
a straight line—but not yet. We still cannot distinguish the
direction and sense of the displacement. To get a better under-
standing, in Fig. 3(a), we represent in blue a straight line
together with the lines after independent shifts of Δx, Δy,
and Δd in the horizontal, vertical, and normal to the segment
axis directions (red, green, and blue dashed lines, respectively).
Black dots represent x and y intersects. One can see that the
three dashed lines intersect at the same points, although the
line has displaced different distances in different directions.
Therefore, the y intersect does not allow distinguishing between
these three different situations.

The problem can be overcome if we take two secant straight
lines and track the intersection of both lines. In Fig. 3(b), we
represent two blue lines that intersect (black ring) together with

Fig. 1. (a) Oblique segment projected on an array of pixels (dotted–
lined squares). Gray-color pixels are those activated. Each pixel is divided
into 4 × 4 areas. The array of activated pixels change if the segment
horizontally displaces (b) 0.25 px, (c) 0.50 px, and (d) 0.75 px.

Fig. 2. Activated pixels of the sequence in Fig. 1 together with best-
fitting straight line (red lines) and slope-forced best-fitting straight line
(blue lines) if the segment horizontally displaces (a) 0 px, (b) 0.25 px,
(c) 0.50 px, and (d) 0.75 px.
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the intersections resulting from displacing them Δx horizon-
tally, Δy vertically, and Δd arbitrarily (red, green, and blue
rings, respectively). There, we can clearly distinguish each dis-
placement. However, if the object rotates, we cannot distin-
guish the movement from a displacement simply by tracking
the intersection of two secant lines. We illustrate this case in
Fig. 3(b), where the intersection of the displaced and rotated
object (pink dotted lines) coincides with the point corresponding
to one only displaced (blue dashed lines).

In summary, if we limit the movement of an object to only
translations within the image plane, we propose to describe that
motion simply by tracking the intersection of two straight lines.
These lines are the best-fitting straight lines of the digitization
of two nonparallel segments of the object image.

3. METHOD

We assume that we are able to extract two nonparallel seg-
ments, s1 and s2, from the edges of the intensity image of any
moving object in a scene. As we previously stated, best-fitting
straight lines to each segment intersect in a point �xc; yc� that
will move like the object will do. If the object simply translates
parallel to the image plane, tracking that intersection will allow
describing object motion with subpixel accuracy. Next, we
present the experiment performed in order to test our proposal,
thus measuring displacement and frequency of vibration. Then,
we describe the algorithm used to compute the intersection of
that segment from a recorded sequence of a moving object in a
scene. Briefly, we first obtained the slopes of a segment using
the Hough transform from the Canny edges of the image.
These slopes were then used to compute the forced best-fitting
straight lines that provided the intersection point coordinates at
each frame of the sequence �xc�t�; yc�t��.
A. Experimental Setup
We have implemented our technique to measure the move-
ment of a complex pattern situated on a vibrating platform.
We have used a Vibe-Tribe Troll vibrating loudspeaker con-
nected to a computer in order to induce a vertical vibration
movement. The speaker was installed upside down on isolating
Sorbothane foam. The object was a frame with a QR code,

and the speaker vibrated at frequencies of 330 and 445 Hz.
Moreover, a ceramic shear ICP accelerometer with a sensitivity
of 1000 mV∕g and frequency range from 0.5 to 3 kHz was
glued at the top of the frame in order to check the vibration
frequency and to obtain an estimation of the movement.

The measurement was taken with an AOS X-PRI camera,
working at 1000 fps and located at 50 cm from the object. A
50 W standard halogen lamp connected to a stabilized AC/DC
converter illuminated the scene. The target side was 40 mm
with a frame size of 800 × 600 px, thus giving a resolution
of 5.30 px∕mm. Figure 4 shows the first frame of the sequence.

B. Algorithm
The captured sequences were processed off-line. The edges
from the intensity image were extracted from each frame of
a sequence using the Canny method [14]. This method finds
edges by looking for local maxima of the gradient of the image.
The gradient is calculated using the derivative of the Gaussian
filtered image. The method uses two thresholds, to detect
strong and weak edges, and includes the weak edges in the out-
put only if they are connected to strong edges. This method is
therefore less likely than the others to be fooled by noise and
better to detect true weak edges. Next, in the first frame of the
recorded sequence, we selected and cropped two regions of the
processed image containing two nonparallel segments (s1 and
s2). These regions were later automatically cropped in all frames
of the sequence.

The set of Cartesian coordinates Xq and Yq of the activated
pixels that form s1 and s2 were then fitted to two straight lines:

Yq � mkXq � nk; k � 1; 2; q � i; j; (1)

where i � 1;…; N 1 and j � 1;…; N 2, being N 1 and N 2 the
number of the activated pixels of each segment. These straight
lines intersect at a point �xc; yc�. Let us remember that the
object under study did not rotate or change shape nor did
the edges; thus, the slopes of the straight lines must remain
constant. Therefore, we looked for the best-fitting slope-
imposed straight line for each segment. In order to estimate the
slopes (mk) of the segments, we used the standard Hough trans-
form [12], which is designed to detect lines, using the Hesse
normal form [15] of a line:

ρ � x cos�θ� � y sin�θ�: (2)

The variable ρ is the distance from the origin to the line
along a vector perpendicular to the line, and θ is the angle
between the x axis and this vector. The Hough function

Fig. 3. (a) Straight line (blue solid line) that displaces horizontally,
vertically, and arbitrarily (red, green, and blue dashed lines, respec-
tively). (b) Intersections of two straight lines (blue solid lines) that
displace horizontally, vertically, and arbitrarily (red, green, and blue
dashed lines, respectively) and two straight lines that displace and
rotate (pink dotted lines).

Fig. 4. First frame of the sequence of the QR code used as an object.
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generates a parameter space matrix whose rows and columns
correspond to these ρ and θ values, respectively. We computed
the Hough transform at each cropped area in the first frame and
looked for the peak value in the parameter space, which rep-
resents the line in the input image; therefore, we obtain the
values for the slopes of segments s1 and s2.

The best estimation of y intersections was obtained by
solving the linear least-squares problem described by the system
of equations that can be deduced from Eq. (1). Our basic equa-
tion isY − mX � nO, where n is the y intersect,O is a vector of
ones with the same number of elements than activated pixels,
and m is the slope previously estimated using the Hough trans-
form. The problem is the choice of the coefficients n in order to
minimize the sum of squared errors. The function to be mini-
mized is [16,17]

ϕ�n� � nT nT � tT �Y − mX − nO�; (3)

where t is the vector of Lagrange multipliers, and the super
index T means matrix transposition. The minimization yields

n � O��Y − mX�; (4)

where the super index + stands for matrix pseudoinverse,
developed by Moore and later by Penrose [18]. In order to cal-
culate the pseudoinverse, we used a method called singular
value decomposition implemented in MATLAB based in
LAPACK routines [19]. This method provides a solution to
Eq. (4) regardless of being a determined, undetermined, or
overdetermined system.

Once we had obtained the straight-line parameters, we com-
puted the intersection coordinates �xc ; yc�:

xc �
Δn
Δm

; yc � mkxc � nk: (5)

Finally, the movement was tracked from the computed
intersection coordinates at each frame of the sequence
�xc�t�; yc�t��. We were also interested in evaluating the fre-
quency of vibration of the movement, so we obtained the
Fourier transform modulus of the evolution in time of each
coordinate. In the Fourier spectrum, we looked for the main
frequencies of vibration that appear as peaks. In the case of
having a clear unique main peak, we assumed that the signal
was a harmonic vibration and reconstructed it by means of the
inverse Fourier transform.

4. RESULTS

Following the procedure stated in Section 3, in the initial frame
of the recorded sequence, we have first extracted edges using the
Canny method and selected two areas where we could find two
nonparallel segments (s1 and s2). From them, we have com-
puted the intersection and tracked its movement. In Fig. 5,
we show the edges computed using the Canny algorithm from
a cropped region around a corner of the QR code and the areas
that we have selected to obtain the segments.

Note that the movement produced by the vibrating plat-
form in the experimental setup is mainly in the vertical direc-
tion; thus, we only have to track the y coordinate of the
intersection point to describe the movement and to find the
vibration frequencies. First, we would like to highlight that
the platform was set to vibrate at 330 Hz during approximately

the first second and after that, at 445 Hz. Figure 6(a) shows the
evolution in time of the computed y coordinate of the inter-
section point, and Fig. 6(b) represents its Fourier spectrum.
The change in frequency of vibration cannot be appreciated
in Fig. 6(a), but both frequencies are present in the Fourier
spectrum in Fig. 6(b) together with a peak around 5 Hz.

In order to perform a better analysis, we have cut the
sequence in two and then looked for a unique vibrating fre-
quency. Thus, we have chosen around a half second from each
part of the signal (vibrating at 330 and 445 Hz). The displace-
ment values have been compared with those computed from
the acceleration data that were captured by the accelerometer.
The double integration of acceleration consisted of several
steps. First, the acceleration signal was filtered with a sixth-
order high-pass Butterworth filter and a cut-off frequency of
40 Hz. This frequency has been set where the magnitude
response of the filter is

ffiffiffiffiffiffiffiffi
1∕2

p
. Next, in order to obtain the

velocity, we computed the cumulative integral of the filtered
acceleration with respect to time using trapezoidal integration.
Then, the resulting velocity was a sixth-order high-pass
Butterworth filtered with a cut-off frequency of 40 Hz.
Finally, the filtered signal of velocity was again integrated to
obtain the displacement signal.

Fig. 5. Image obtained after cropping and Canny edge extraction.
Red boxes indicate the areas from where we extracted the nonparallel
segments.

Fig. 6. (a) y coordinate of the intersection. (b) Main frequencies in
the Fourier spectrum.
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In Fig. 7(a), we represent the computed Fourier spectrum
of the y coordinate of the intersection point in a 0.5 s fragment
of the sequence vibrating at 330 Hz. There, we have found
the expected frequency of 330 Hz together with a low fre-
quency peak of 8 Hz. The main frequency peak was selected
to reconstruct the signal through the inverse Fourier transform.
In Fig 7(b), we represent with blue dots the y coordinate of the
intersection computed using our technique and, with black
dots, the main frequency peak reconstructed signal. In this
graph, a short time interval of only 0.05 s has been selected for
better display. The red line and circles represent the displace-
ment obtained from the accelerometer subsampled at the rate
of the camera. In order to check the accuracy of our method, we
compare the y coordinate and the reconstructed signals with
that from the accelerometer using the root mean square error
(RMSE). They, respectively, resulted 3.6 and 0.73 μm, i.e.,
a subpixel accuracy of around 0.02 and 0.004 px.

Regarding the fragment of the sequence vibrating at 445 Hz,
in Fig. 8(a), we represent the computed Fourier spectrum of
the y coordinate of the intersection point. There, we have found
the expected frequency of 445 Hz (main peak), a low band
of frequencies between 5 and 8 Hz together, and a peak at
110 Hz. In Fig 7(b), we represent, again in a time interval
of 0.05 s, the y coordinate of the intersection computed using
our technique (blue dots), the main frequency peak recon-
structed signal (black dots) and the displacement obtained from
the accelerometer subsampled at the rate of the camera (red line
and dots). The RMSE between the y coordinate and the signal
from the accelerometer was 3.3 μm, and the RMSE between
the reconstructed signal and that from the accelerometer was
0.47 μm, i.e., a subpixel accuracy of around 0.02 and 0.003 px.

Therefore, the use of the presented method allows tracking
in plane translation with a subpixel accuracy of 0.02 px.
Moreover, one can deduce from the Fourier analysis that the
tracked movement is a periodic vibration and reconstruct
the signal using only the main frequency peak. If that is the
case, the obtained accuracy reaches one order of magnitude less.

Regarding the x coordinate, although the object was ex-
pected not to vibrate or move in a horizontal direction, we have
performed an analysis similar to that done to the y coordinate.
We have found in the Fourier spectrum the frequencies of 330
and 445 Hz together with some low frequencies. This may be
due to an imperfect alignment between the camera and the
vibrating platform. We have separated the same fragments
of the sequence (Fig. 9) and have found that the peaks at
the frequencies of vibration are not as dominant as previously
noted, being the height of low frequency peaks similar to that of
those expected.

5. CONCLUSIONS

We have proposed a method to track movements with a sub-
pixel accuracy of 0.02 px simply by tracking the intersection of
the best-fitting straight lines of the digitization of two non-
parallel segments of the object. Moreover, if the movement
is a harmonic vibration, the accuracy can be increased up to
0.003 px. The subpixel accuracy is therefore improved with
respect to previous works [6], whose authors claimed they were
able to resolve movements up to 0.16 px on the CCD sensor.

The movement must be limited to only translations parallel
to the image plane. Rotations cannot be distinguished by

Fig. 7. (a) Fourier spectrum and main frequency peak selected to
reconstruct the signal of a fragment of the y-coordinate signal when
the object vibrates at 330 Hz. (b) Blue dots represent the y coordinate
of the intersection, black dots are the reconstructed signal, and red
line and circles represent the displacement from the accelerometer
subsampled at the rate of the camera.

Fig. 8. (a) Fourier spectrum and main frequency peak selected to
reconstruct the signal of a fragment of the y coordinate signal when
the object vibrates at 445 Hz. (b) Blue dots represent the y coordinate
of the intersection, black dots are the reconstructed signal, and red line
and circles represent the displacement from the accelerometer sub-
sampled at the rate of the camera.

Fig. 9. (a) x coordinate of the intersection computed in the two
selected fragments. (b) Main frequencies in the Fourier spectrum.
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tracking only one moving point. Regarding the movements in
the axial direction, they would be appreciated in the image as a
change in the size of the object, or they would simply blur the
image. In this case, our method will not work correctly.

The method simultaneously provides a 2D description of
the displacement, which is a significant advantage in front
of uniaxial accelerometers besides being a noncontact measur-
ing technique. It also may be more affordable than standard
laser vibrometers.

In our experiment, we have used a high-speed camera, but it is
not necessary for this method because it depends on the magnitude
of the amplitude and frequency of the motion to be measured.
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