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I 

Abstract 

Modern automotive systems integrate a variety of electrical and electronic compo-

nents. To estimate the radiated emissions, the standard CISPR 25 describes the ab-

sorber-lined shielded enclosure (ALSE) method, which is the most important standard-

ized field measurement method. However, it suffers from the need for a large anechoic 

chamber. To reduce costs and more conveniently integrate radiated emission investi-

gations into the product design cycle, alternative methods that predict emissions without 

such a chamber are necessary. These methods measure currents, voltages, or fields 

close to the setup’s vicinity, and with the help of appropriate models, CISPR 25 quanti-

ties can be calculated. However, the known methods often fail at frequencies below 

30 MHz. This dissertation introduces two new methods based on electric near-field 

measurements to overcome the problems. The first method uses extrapolation and in-

terpolation of the measured data to create a Huygens’ surface. The field at 1 m distance 

can be calculated from the Huygens’ surface. The second method finds electrostatic 

dipoles from the measured data. The fields from the dipoles can be estimated at 1 m 

distance. This dissertation uses measurements and full-wave simulation to verify the 

accuracy of the proposed methods. 
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𝜀 permittivity of the medium, in vacuum 𝜀 = 𝜀0 = 8.85 × 10
−12 F/m 

𝜇 permeability of the medium, in vacuum 𝜇 = 𝜇0 = 4𝜋 × 10
−7 H/m 

𝑛⃗  normal vector (surface) 

A⃗⃗  magnetic vector potential 

F⃗  electric vector potential 

𝑘 wave number, in vacuum 𝑘 = 𝑘0 = 𝜔√𝜇0𝜀0 

𝜂0 intrinsic impedance of vacuum, 𝜂0 = √𝜇0 𝜀0⁄ ≈ 377 Ω 

Φ electric scalar potential 

𝑓𝑛 basis function 
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𝐼CM common-mode current 
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δ Dirac delta function 
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𝑅𝑟𝑎𝑑 radiation resistance of antenna 

𝐶𝐴 antenna self-capacitance 
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1 Introduction 

1.1 Emission of Automotive Components 

Modern automotive electronic components provide much functionality with high 

clock and data rates, which also leads to new challenges to meet all electromagnetic 

compatibility (EMC) demands [1]. Different levels of problems can occur due to EMC 

issues, from losses in infotainment data transmission to severe failures of control sys-

tems or even physical damage. 

An EMC compliant electric/electronic system is supposed to meet the following cri-

teria: the system is immune to disturbance from other systems, and its interfer-

ences/emissions do not disturb the functionalities of nearby devices [2]. This criterion 

requires that the electric/electronic1 systems shall be EMC compliant with regard the 

electromagnetic emissions2 they produce and their exposure to electromagnetic fields, 

currents, and voltages. This work mainly focuses on field emissions caused by a system. 

A typical automotive system consists of electric/electronic components with an at-

tached cable bundle. In [2], it is pointed out that the cable bundle often acts as a much 

more efficient radiator than the connected components, as the length of the cable bun-

dle is much longer than the sizes of the electronic components. On-board antennas are 

important victims for the emissions from such structures. For example, at lower frequen-

cies, the emission may disturb the analog or digital broadcasting services in the fre-

quency range of 150 kHz - 2 MHz (LW/AM)3 or up to 7.3 MHz (SW in Germany in the 

past). Figure 1.1 shows the initial EMC problem. Disturbing voltages from electronic 

systems can couple to rod antenna (dark blue). A coaxial cable connects the rod an-

tenna to a high impedance antenna amplifier input of a radio (grey)4. Due to the rod 

                                            

1 In the following electronic systems are mostly talked about, as in most cases electronic components 
are involved.  

2 The “emissions” include conducted (voltages and currents) and field emissions, here only referred as 
field emissions. 

3 Many countries have switched off their AM broadcasting services but in some countries the AM fre-
quency band is extensively used for analog or digital radio. I.e., the global acting car manufacturers 
have to take care for good radio reception also at low frequencies which is a very challenging task, due 
to extensive use of power electronics with functional frequencies in the range of 100 kHz and first har-
monics in the AM frequency range. 

4 As for low frequencies, electrical short antennas have to be used. Rod structures or loop structures 
are possible. Loops are difficult to integrate in the shielding car body. Rods can be placed easily on the 
car body and were commonly used in the past. Today, antennas are often integrated in the windows, 
the basic principle remains the same. 
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structure and the high impedance of the antenna amplifier, capacitive coupling is dom-

inant. Inductive coupling is weak5. 

 

Figure 1.1: Initial problem of capacitive coupling to a short AM antenna. 

Generally, to determine the emissions of automotive systems, international stand-

ards, for example, CISPR 12 [3] and CISPR 25 [4] are commonly used. These stand-

ards usually specify a particular measurement method and propose limits for emissions. 

For example, the CISPR 25 standard [4] defines the limits for conducted and radiated 

emissions of automotive systems arising in a specific setup. The goal of the limits is to 

allow the system integrators such as car manufacturers to combine several systems in 

an automobile so that emission problems are unlikely to occur. 

1.2 Field Measurements According to CISPR 25 

The standardized methods for automotive components are commonly used to char-

acterize the field emissions. Radiated or near-field interferences are measured with de-

fined setups. Field emission measurements require the use of either an open-

area test site (OATS) or an absorber-lined shielded enclosure (ALSE), also often 

called anechoic chamber. In an anechoic chamber, high frequency absorbing material 

on the walls and the ceiling absorbs possible energy to reduce reflections. The shielding 

of the chamber isolates the ambient noise to avoid influences on the measurement re-

sult. Usually, chamber-based field measurements are preferred as the measurement 

environment is less noisy in comparison to an OATS. 

                                            

5 The role of both couplings will be investigated later in detail. 

Capacitive coupling 

to antenna 

Coaxial cable  

Radio with high impedance  
antenna input 

AM-rod-antenna, for LW, MW, 
SW (0.15 MHz - 7.3 MHz) 

Metallic car body Disturbing system with cable 

bundle, attached electronic units 

grounded to metallic car body 
Vehicle configuration leading 

to CISPR 25 ALSE setup 

EUT 

Load 
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The CISPR 25 standard [4] defines ALSE-measurement setups in detail. The 

measurements are performed inside a semi-anechoic chamber using a specified con-

figuration. Figure 1.2 illustrates the setup for the 150 kHz to 30 MHz frequency range. 

As defined in the standard, a typical measurement setup consists of the equipment un-

der test (EUT) with control units, loads, artificial networks (ANs), power supplies, the 

cable bundle, and other peripheral equipment. The EUT with the attached cable bundle 

needs to be placed on a table with a metal surface, which is bonded to the chamber 

ground and the chamber walls. The metal surface substitutes the car chassis, which is 

the reference ground of the measurement setup, and shall be made from well-conduct-

ing metal, such as copper or aluminum. The table’s height above the chamber floor is 

0.9 m. The cable bundle has a length of 1.5 m up to 2.0 m. It is positioned 0.05 m above 

the metal plate by a non-conductive, low permittivity material. The distance to the edge 

of the metal plate is 10 cm. A rod antenna is positioned 1 m in front of the measurement 

setup and represents the on-board antenna. It is located adjacent to the center of the 

cable bundle. The measured antenna voltage multiplied with the antenna factor, given 

by the antenna manufacturer, gives the electric field strength6. 

Different antennas have to be used depending on the frequency range of interest. 

The antenna types and the related field polarization are listed in Table 1. A 1 m long 

rod antenna is used for the frequency range from 150 kHz to 30 MHz. For the frequency 

range from 30 MHz to 1 GHz, a biconical antenna and a log-periodic antenna are used. 

Also, compact combinations can be applied, like a BiLog antenna [5]. At higher frequen-

cies, the emissions must be measured in both vertical and horizontal polarizations ref-

erenced to the ground plane of the test site. At lower frequencies (150 kHz to 30 MHz), 

only vertical polarization is required, as horizontal component is very small due to the 

metal surface. 

TABLE 1: RECOMMENDED ANTENNA TYPES AND RELATED FIELD POLARIZATION FOR FIELD 

MEASUREMENTS (ACCORDING TO ALSE METHOD) 

A measurement receiver, which is shown in Figure 1.2, is located outside the cham-

ber and measures the antenna voltages. If we focus on the differences in measurement 

setups, the first is that different antenna types and polarizations are used in the meas-

urements. Moreover, Figure 1.2 involves a metallic plane between the table and the rod 

                                            

6 This approach is specified in the standard, but from technical point of view problematic. Details are 
discussed later. 

Frequency range Antenna type Polarization 

150 kHz - 30 MHz 1-m-long vertical monopole Vertical 

30 MHz - 200 MHz Biconical antenna Vertical and horizontal 

200 MHz - 1 GHz Log-periodic antenna Vertical and horizontal 
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antenna, which ensures the rod antenna (vertical monopole) has the same ground as 

the reference ground. 

 

Figure 1.2: Sketch of a CISPR 25 measurement setup for frequency below 30 MHz. 

1.3 Motivation and Aim 

ALSE field measurements, according to the CISPR 25 standard, require much 

space, and the equipment is expensive to purchase and to maintain [6]; not all automo-

tive electronics suppliers can afford it. Many suppliers cooperate with external EMC 

laboratories for the measurement of their products. Most EMC measurement plans ask 

for measuring at different prototype stages during the development process of a new 

product to ensure in-time EMC performance of the final product [7]. Due to strict time 

schedules and limited access to EMC measurement equipment, EMC engineering is 

challenging. New substitution methods should be less expensive and space-consuming. 

The methods should provide at least estimations of the field data that a CISPR 25 

compliant measurement would yield to substitute the early development stage meas-

urements. Moreover, new methods should cover the frequency range from 150 kHz to 

1 GHz. This work focuses on finding an alternative method for the low frequency range 

up to 30 MHz. 

For frequencies above 30 MHz, common-mode current measurements combined 

with a multi-dipole model (MDM), e.g., described in [8] for field estimation has been 

applied successfully in different research works. For creating the MDM, the cable bun-

dle is often substituted as a single-wire cable carrying the common-mode currents. Be-

low 30 MHz, the MDM method has difficulty in retrieving the electric field at the antenna 

location. The underlying mathematical functions that convert the measured current to 

EUT 

Load 

Rod antenna 

150 kHz ~ 30 MHz 

Measurement receiver 
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the electric field at antenna location become at low frequencies very sensitive to small 

measurement errors. 

To substitute CISPR 25 measurements a closer look on the setup is needed. The 

standard specifies an E-field sensitive rod antenna, that supposes to reproduce the 

behavior of the vehicle receiving antenna, to measure the radiated emissions. In the 

measurement, the antenna outputs a voltage, but the standard defines the limits of 

emissions in terms of electric fields. To calculate the antenna field from the measured 

antenna voltage, the measured antenna voltage must be converted with the help of an 

antenna factor.  

At low frequencies, the rod antenna is placed in the near-field region of the structure. 

The antenna is mainly an electrical field sensor, and due to the length, it integrates the 

inhomogeneous E-field along the antenna. This means the full antenna characteristic, 

which leads to the antenna voltage, must be considered. Considering the field at a sin-

gle point does not make sense. Thus, the standard approach is problematic, where the 

electric field distribution is approximated by an average value, when using an antenna 

factor. Therefore, the prediction of a single field value is problematic. Deviations should 

be expected. This inconsistency can be considered as a deficiency of the standard. 

At low frequencies it would have been more consequent to consider the major cou-

pling mechanism, which is capacitive coupling and is illustrated in Figure 1.3. The po-

tential sources can be the cable bundle, the load, or the EUT. Often the coupling from 

the cable bundle dominates. Only when the EUT or the load is large, coupling to the 

antenna can be high. The antenna voltage would be much more expressive than the 

electric fields. 

 

Figure 1.3: Possible coupling (capacitive) from cable bundle, EUT, and load. 

If an alternative method can predict the voltage of a typical CISPR 25 low frequency 

antenna, it can be expected that the method works. 

Load 

EUT 

Rod antenna 
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This thesis proposes new methods for antenna voltage prediction at frequencies 

below 30 MHz to overcome the mentioned problems. The antenna voltage prediction 

should be based on local electric field measurements. The local field measurements, 

very close to the EUT, can be much more robust compared to measurements at 1 m 

distance. Thus, the measurement complexity can be reduced significantly. 

Computing the field distribution along the CISPR 25 rod antenna should be per-

formed by using the surface equivalence theorem (Huygens principle) or static dipoles. 

It is expected that the new methods lead to a much more robust antenna voltage pre-

diction, compared to common-mode current based methods [9],[10]. Moreover, by ap-

plying the field distribution with the Huygens principle, not only the emissions from the 

cable bundle structure are included, but also from all peripherals. Also, the cable bundle 

does not need to be substituted by a single wire. Thus, possible inaccuracies of wire 

approximations can be avoided. 

The Huygens principle originates from high frequency applications and is often 

used for antenna analysis [11],[12]. Many publications on antenna applications consider 

the Huygens principle to be a synonym of the surface equivalence principle, e.g. [13]. 

This work uses this definition too. The surface equivalence principle can be applied by 

distributing equivalent current sources over a defined, so-called Huygens’ surface [11] 

(pp. 229-233). The equivalent currents are often calculated by using measured field 

data that are obtained from a near-field scan firstly. Then, the field at any point can be 

predicted in front of the Huygens’ surface. Chapter 3 will describe the principle in detail. 

Figure 1.4 illustrates both substitution methods proposed in this work. Instead of 

direct measuring antenna voltage at 1 m distance (standard field measurement setup, 

see Figure 1.2), several electric field probes are introduced close to the structure (sub-

figure (a)). The measured field can be used either with the static dipole-based method 

or with the Huygens principle-based method to predict the fields at the antenna location. 

The static dipole-based method is shown in Figure 1.4 (b). A quasi-static charge 

distribution [14] represents the current through the cable at very low frequencies. A 

subdivision of the cable into short segments with constant charge can approximate a 

charge distribution. A set of static dipoles representing charged segments is applied, 

where the charges (charge densities) can be calculated based on measured electric 

fields. The charges with opposite polarity represent the influence of the metallic table. 

This method is simple to apply for low frequencies and is described in chapter 5, section 

5.3. The deficiency of this method is that the current is ignored, which can introduce a 

deviation in the predicted electric field at higher frequencies (here the magnetic field 

cannot be neglected any more). But for low frequencies this simplification should not be 

a problem in predicting the antenna voltage, as the CISPR 25 rod antenna is mainly 

sensitive to electric fields.  
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Figure 1.4: Proposed methods based on local field measurements. 

Figure 1.4 (c) illustrates the concept of the proposed Huygens principle-based sub-

stitution method. The field distribution on the Huygens’ surface is required here to apply 

the method. The near-field amplitudes are needed to be measured only at a few local 

positions. Interpolation and extrapolation methods can be applied to obtain an overall 

field distribution on a defined Huygens’ surface. In the figure, the red arrows represent 

measured fields, the green arrows represent interpolated fields, and blue arrows repre-

sent extrapolated fields. The obtained field distribution is used to calculate the equiva-

lent current sources, which are applied then to compute fields at the antenna location. 

By using this method, emissions of the whole structure (including the cable bundle, EUT, 

and load) are characterized by the equivalent currents on the Huygens’ surface accord-

ing to the surface equivalence principle. 

1.4 Structure of the Work 

This thesis is structured as follows: 

 Chapter 1 provides an introduction to the work. 

Huygens’ surface 
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 Chapter 2 summarizes the state of the art of the topic, and proposes the two 

main scientific questions that should be answered in this dissertation. 

 Chapter 3 describes the theoretical background of theorems used in this 

work, for example, the derivation of the Huygens principle, the electric field 

integral equation, and the numerical field integration methods. 

 Chapter 4 analyzes the field measurement setups defined in CISPR 25. The 

standard measurement setups are analyzed analytically and numerically. 

The influence of terminations to the fields, the field distribution at the rod 

antenna location, and the possible coupling mechanisms from cable struc-

ture to the rod antenna are investigated and discussed. 

 Chapter 5 describes electric field estimation methods, including the MDM 

method, electric field integral equation, static dipole-based method, and the 

Huygens principle-based method. Along with the description and discussion 

of the methods, the main research questions formulated in chapter 2 are 

answered. 

 Chapter 6 explains the local electric field measurements. 

 Chapter 7 validates the proposed near-field measurement-based methods 

with additional examples and compares the methods in the discussion. 

 Chapter 8 concludes this work and gives an outlook. 
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2 State-of-the-Art 

Over the years, many investigations had the goal of predicting field emissions of 

CISPR 25 ALSE setups based on simplified measurement setups. A simpler setup 

should substitute the complex CISPR 25 setup. Such substitution methods must con-

sider multiple aspects: the emission sources, including the EUT and the attached cable 

bundle, the effects of the ALSE, and the influence of the finite metallic table. As different 

measurement concepts are used below 30 MHz, and above 30 MHz in the CISPR 25 

ALSE method, the literature can be divided into two groups. In the low frequency range, 

approximately up to 30 MHz, the setup structures are electrically small. The rod antenna 

is sensitive mainly to electric fields and is placed in the near-field region. The antenna 

voltage will primarily be generated due to the voltage distribution on the cable bundle 

[15],[16]. At higher frequencies, the emission of the connected electric components, 

e.g., printed circuit boards (PCBs), have to be taken into account [17]. 

The various concepts proposed in the literature for the substitution of the CISPR 25 

ALSE method will be discussed in this chapter in detail concerning the frequency range 

above 30 MHz and below 30 MHz. 

2.1 Field Prediction Methods for Frequencies Above 30 MHz 

For frequencies above 30 MHz existing substitution methods can be roughly cate-

gorized into two groups. The first group is based on common-mode current measure-

ments over the cable bundle. The second group is based on near-field measurements. 

Several papers have discussed the first group of methods. This group is based on 

the dominant effects of the common-mode currents, as shown, e.g., in [18]. Common-

mode currents can easily be measured. The common-mode current measurement-

based methods can again be subdivided into two basic methods. The first one is based 

on transfer functions between the measured common-mode currents and the antenna 

voltage. The second one is based on creating a radiation model [8],[19],[20],[21], from 

the common-mode currents along the cable for the calculation of the antenna fields. 

Mainly a multi-dipole model (MDM) was proposed. Here first, a set of Hertzian dipoles 

[12] must be created, and then the dipole parameters have to be determined from the 

measured common-mode currents. Radiation can also be calculated using the elec-

tric field integral equation (EFIE), as described in section 3.3. 

A transfer function method for CISPR 25 has been discussed the first time in [22]. 

Here the cable bundle is segmented, and the common-mode current is measured along 

the cable bundle in the middle of each segment. With the measured antenna field, a 

transfer function for each cable segment current to antenna voltage can be found. The 
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measurements for obtaining the transfer functions are performed inside an ALSE. Thus 

the effects of the chamber, such as the anechoic chamber resonances, were included 

in the transfer functions. However, the transfer functions only describe the correlation 

between the current amplitudes and the received antenna fields. The phase distribution 

of the current is only considered by a simple estimation method. The approach achieved 

an agreement between the measured field and the predicted field of +/- 5 dB for fre-

quencies between 10 MHz and 190 MHz. More developments of the method were de-

scribed, for example, in [23]-[25]. Different from [22], in [23],  the phase information was 

extracted directly from scattering parameter measurements with a vector network ana-

lyzer (VNA). As VNA measurements are not compliant with the standards, their applica-

bility is limited. In [24], the common-mode current amplitudes, measured with an EMI 

test receiver in peak mode, were used to estimate current composite waves consisting 

of forward and reflected waves. The current phase distribution along the cable bundle 

can be retrieved by analyzing the current standing wave ratio (CSWR). This method 

achieved electric fields in both horizontal and vertical polarization at higher frequencies, 

but an error of around 10 dB from 30 MHz to 200 MHz is still high. Also, this method 

fails to predict fields at resonance points (as shown in the paper, the resonance point 

is at 𝜆/2). The abovementioned transfer functions based field prediction methods re-

quire that the transfer functions extracted inside an ALSE for a fixed setup and load 

condition. Applying the obtained transfer functions to more general measurement set-

ups and load conditions may cause wrong results. 

In the first group of methods, also the radiation-model-based methods can be found. 

The methods assume a simplification of the cable bundle to a single equivalent trans-

mission line [26] that carries the common-mode currents. Here mainly, the MDM is pro-

posed. The transmission line was segmented, and each segment substituted with a 

Hertzian dipole [27]. The center of the segment is the center of the dipole. Due to the 

metallic table, the dipoles are also placed on the image of the transmission line and 

oriented in reverse direction [2],[13]. The antenna fields are calculated by using the 

dipole model. 

For the transfer function methods and the MDM methods, the common-mode cur-

rents are needed, which were measured by a current probe. However, dynamic ranges 

and working frequency range of current probes are limited. For example, the current 

accuracy for a defined CISPR 25 setup was discussed for two different current probes 

in [28]. It has been shown that only current probes may not reach the required sensitivity, 

especially for local minima of current on the transmission line. Improvements like low 

noise amplifiers might be necessary. In many publications, e.g. [9], common-mode cur-

rent measurements were performed with a current probe (often the FCC F-65 [29] is 

applied) in the frequency domain. Only the current amplitude was measured. To obtain 

the phase, in [9] an optimization procedure is used to determine parameters of the 
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transmission line. By fitting the transmission line parameters, excitations, and imped-

ances to measured current amplitudes, some phase information of common-mode cur-

rents could be retrieved. In [19], the common-mode currents were measured in the time 

domain with an oscilloscope. An additional probe was involved at the EUT side as the 

phase reference. Both current amplitude and phase information can be obtained at the 

same time, as the phase was extracted as the difference between the current probe 

and the phase reference probe. 

Since the MDM only considers parts of the measurement setup’s geometry, addi-

tional considerations of the measurement setup are needed to improve the predicted 

fields. In [8] and [20], the influence from currents in the metallic table was considered, 

where the finite metallic table of the measurement setup was modeled by using a phys-

ical optics (PO) approach [30] with equivalent surface currents. [31] introduced addi-

tional correction functions to compensate the influence of the CISPR 25 setup for a 

created MDM. Here, the correction functions, obtained by a monopole or dipole antenna, 

in an ALSE represent the correlations between a measured antenna voltage and dipole 

moment in each direction and location in a Cartesian coordinate system. Furthermore, 

a magnetic field probe can be used to measure the magnetic near-field distribution over 

the cable. The equivalent current distribution can be retrieved using a dipole-moment 

based source reconstruction method [32]. The correction functions were applied to the 

retrieved current distribution to calculate the antenna voltage, including ALSE charac-

teristics, as the antenna effects are challenging to model and can have complex behav-

ior. In [19], an additional calibration procedure inside an ALSE is proposed. Finally, for 

frequencies above 30 MHz up to 1 GHz, an improved method considering many of the 

points mentioned above, including the calibration process and additional surface cur-

rents, was described in [8]. 

The second group of methods focuses on near-field measurements for field predic-

tion. For example, in [33], the Huygens principle and the image theory are applied for 

near-field to near-/far-field transformation for any arbitrary near-field geometry, where 

the equivalent magnetic currents were calculated based on measured electric field dis-

tribution over a defined scan plane. In [34], measured electric field data were used to 

calculate equivalent electric currents for near-field to near-/far-field transformation. The 

Huygens principle and the image theory were also used for field prediction of a radiating 

structure over a ground plane [35]. Here only the vertical electric fields and one tangen-

tial component (parallel to the ground plane) of magnetic fields were scanned to obtain 

equivalent current sources over a defined Huygens’ surface. The paper also suggested 

to scan near fields only on a small part of the Huygens’ surface (four lines) and the top 

plane instead of the whole defined Huygens’ cube in order to save scan time and cost. 

The application of the Huygens principle in [35] was simplified, for example, in [36] in 

which equivalent current sources were obtained from only measured tangential mag-

netic near-field data by applying the finite element method (FEM) [37]. For the 
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CISPR 25 setup at a frequency range from 30 MHz up to 1 GHz, the Huygens principle 

was applied but only validated with the help of simulated field data, for example, in [38]. 

No measured near-field data was used. [39] extended the application of [38] by adding 

S-parameter measurements for obtaining EUT-to-antenna couplings in CISPR 25 set-

ups, but still, it was only verified using simulation data. 

2.2 Field Prediction Methods for Frequencies Below 30 MHz 

For frequencies below 30 MHz, dimensions of the cable bundle length, antenna 

distance to EUT, and antenna length are in the range of 1-2 m. Even the other dimen-

sions, like the ALSE walls, are shorter than 5 m. In free space, the wavelength at 

30 MHz is 10 m, i.e., the dimensions are shorter or even much shorter than the wave-

length. Methods focusing at frequencies below 10 MHz can well assume for most cou-

pling effects quasi-static conditions. Such an assumption might fail for higher frequen-

cies. Furthermore, the requested CISPR 25 rod antenna is terminated with a high input 

impedance amplifier for frequencies below 30 MHz. I.e., the antenna is mainly sensitive 

to electric fields and not sensitive to the magnetic field. These special conditions lead 

to different field prediction approaches. There are many fewer publications on low fre-

quencies compared to the high frequencies. The literature can be divided into two 

groups. 

The first group is based on an equivalent circuit model, mainly considering the ca-

pacitive coupling between EUT and rod antenna, e.g., [15],[40],[41]. As for very low 

frequencies, quasi-static approaches are valid, and circuit theory can be a powerful tool 

for finding the antenna voltage for the lower frequency range [42]. For characterizing 

the EUT, the common-mode voltage distribution can be measured, as performed in 

[15],[16]. Possible electric couplings between the EUT and the rod antenna for the low 

frequency range were analyzed in a simplified CISPR 25 measurement setup, in which 

a cable has been excited by an ideal current source and has been terminated with an 

ohmic load. For the simplified configurations, which do not represent the full properties 

of a real setup, the results were acceptable. In [43], a hybrid circuit model is proposed, 

which includes a combination of measured S-parameters and equivalent circuits. Here, 

load and IC models were included in the model. The measured S-parameters consider 

the ALSE setup. As S-parameter measurements can be very complex for cable bundles, 

this method is very difficult to apply for bundles with a variety of wires. In [44], a method 

of measuring the common-mode voltage distribution is described, similar to [15],[16] 

with the same problems. In [45], the cable bundle was substituted by a charged straight 

wire. The fields caused by the wire were calculated by multiplying a measured common-

mode voltage spectrum with a constant transmission factor. The method showed a low 

accuracy. At about 250 kHz 20 dB deviation between the predicted field value and an 

ALSE measurement has been found. Also above 10 MHz, the method failed. 
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The second group is based, similar to the high frequency approaches, on measured 

common-mode currents. For example, in [10], an application of a single transfer func-

tion method for an electric drive system below 30 MHz was presented. It gave a maxi-

mal 9 dB deviation between the predicted fields and the standard field measurement 

result. However, the method is limited to setups of the same termination impedances. 

This is not valid in real applications. Transfer function or impedance measurement is 

complex and time-consuming and would not simplify ALSE in this case. The dissertation 

[21] tries to apply the MDM method to frequencies below 30 MHz. Since the currents in 

the MDM were based only on common-mode current measurements with limited accu-

racy, this method had to fail. The reasons will be discussed later in this work. 

Common to all proposed methods is that the cable structure was not a complex 

bundle. But complex cable bundles have to be expected in real applications. Here 

shielding effects of surrounding cable can significantly influence the results. Further-

more, the fields from the terminating devices were not considered. As long as there is 

no contribution to the antenna voltage, e.g., the devices are small or shielded, the re-

sults were satisfying. In real applications, the devices can even dominate the antenna 

voltage, e.g., when a large unshielded PCB is involved. In such cases, a purely single 

wire-based antenna voltage prediction will fail. 

2.3 Research Questions 

As described above, the CISPR 25 ALSE method should be substituted at least for 

pre-compliance measurements also for low frequencies. From the above analysis, it 

can be seen that radiation model-based techniques (e.g. [9],[20]) and transfer functions 

based methods (e.g. [22],[24]) provide good accuracy for frequencies above 30 MHz. It 

can be seen that radiation model-based methods have the advantage that they are not 

limited to fixed load conditions. Complex load impedance measurements are not re-

quired. However, the radiation model-based methods fail below 30 MHz. Therefore, the 

first major question is why the radiation model-based method fails. 

Another important aspect is the consideration of complex bundles and the field 

emitting termination devices. The common-mode voltage methods give satisfying re-

sults for simple configurations but fail with complex cable bundles and emitting termi-

nations. Here near-field scan methods are much more promising. 

The advantage of near-field scan methods is that a complex geometry of an original 

emission sources does not need to be considered, which could be any arbitrary struc-

ture since only near-field data is relevant for field calculation. Many publications assume 

simplified geometries with simple dominating field emitting structures. Real CISPR 25 

measurement setups can be very complex. Terminating devices can be large, and ca-

ble bundles can consist of 20 or more cables. As described above, a near-field scan 
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can obtain electric field data, e.g. [33],[34], or both electric and magnetic data, e.g. [35], 

or only magnetic field data, e.g. [36]. From a measured spatial field distribution, equiv-

alent sources can be calculated and used for field prediction based on the Huygens 

principle and the image theory. In literature, until now, near-field scan methods were 

only applied mainly to the frequency range above 30 MHz. In this work, near-field scan-

ning, in combination with the Huygens principle, should be investigated. Are such meth-

ods applicable for frequencies below 30 MHz and how methods can be applied? This 

is the second major question to be answered in this work. 
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3 Theoretical Background 

This dissertation focuses on alternative field prediction methods for low frequencies. 

As described in the previous chapter, the motivation of the work is to find a proper 

method capable of connecting low frequency and high frequency prediction for 

CISPR 25 standard field measurements. The Huygens principle is therefore introduced, 

which will be described in this chapter. In high frequencies applications, such as in an-

tenna analysis, the Huygens principle is often applied. As the principle has no frequency 

limitations, it can also be applied to low frequencies. This will be figured out in this 

chapter from a theoretical point of view. Furthermore, the theory will be prepared for the 

application of the Huygens principle to predict the CISPR 25 field values. 

Before summarizing the content of the surface equivalence theorem based on [13] 

(pp. 328-331), Maxwell’s equations will be repeated in a less commonly used form. The 

magnetic current density and magnetic charge density are used in the Maxwell’s equa-

tions according to the duality theorem [13] (p. 311). Although the magnetic current den-

sity and magnetic charge density do not have a physical representation, both terms are 

necessary for the explanation of the surface equivalence theorem. An equivalent sur-

face (so-called Huygens’ surface [11] (pp. 229-231)) should be defined to apply the 

surface equivalence theorem for field prediction in a real application. Furthermore, an 

integral over the sources distributed over the Huygens’ surface is required to find the 

external fields [11] (pp. 229-231). Therefore, after the introduction of the surface equiv-

alence theorem, a derivation of a general EFIE will be presented, in which both electric 

and magnetic sources contribute to the field at an observation point. 

Based on the fact that magnetic sources are not physical, this work further applies 

the more commonly used EFIE for metal structures, which considers only electric 

sources. The widely used EFIE is very helpful to analyze dominant emission sources 

(charges or currents) for the CISPR 25 structure (see chapter 4). In the end, the numer-

ical treatment of the EFIE will be discussed, as it is required to compute the electric field 

at the observation point based on the equivalent current sources on the Huygens’ sur-

face. 

3.1 Maxwell’s Equations 

Compared to the commonly used Maxwell’s equations, in this work, magnetic 

charge density and magnetic current density are considered in Maxwell’s equations by 

applying the duality theorem [13] (p. 311). The magnetic charges and magnetic currents 

have no physical nature. Here, the differential form for harmonic excitation is given: 

∇ × 𝐻⃗⃗ = 𝑗𝜔𝜀𝐸⃗ + 𝐽 , (3.1) 
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∇ × 𝐸⃗ = −𝑗𝜔𝜇𝐻⃗⃗ − 𝑀⃗⃗ , (3.2) 

∇ ∙ 𝐸⃗ =  
𝜌

𝜀
, (3.3) 

∇ ∙ 𝐻⃗⃗ =
𝜌m
𝜇
, (3.4) 

where: 

𝐸⃗  electric field intensity, 

𝐻⃗⃗  magnetic field intensity, 

𝐽  electric current density, 

𝑀⃗⃗  fictitious magnetic current density, 

𝜌 electric charge density, 

𝜌m fictitious magnetic charge density, 

𝜀 permittivity of the medium, in vacuum 𝜀 = 𝜀0 = 8.85 × 10
−12 F/m, 

𝜇 permeability of the medium, in vacuum 𝜇 = 𝜇0 = 4𝜋 × 10
−7 H/m. 

Furthermore, currents and charges of both types are related by the continuity equa-

tions, which can be expressed by: 

It has to be noted again that both the magnetic current density 𝑀⃗⃗   in (3.2) and the 

magnetic charge density 𝜌m in (3.4) are imaginary sources; they do not represent phys-

ical sources. The introduction of the imaginary sources is required for the derivation of 

the surface equivalence theorem, which will be presented in the following section. 

3.2 Surface Equivalence Theorem (Huygens Principle) 

The Huygens principle, named after the Dutch physicist Christiaan Huygens, ini-

tially introduced in physical optics to predict the propagation of light. It states that each 

point on a primary wavefront can be considered to be a new source of a secondary 

spherical wave and that a secondary wavefront can be constructed as the envelope of 

these secondary spherical waves [46] (p. 465). Figure 3.1 shows the fundamental prin-

ciple applied to physical optics. 

∇ ⋅ 𝐽 = −𝑗𝜔𝜌, (3.5) 

∇ ⋅ 𝑀⃗⃗ = −𝑗𝜔𝜌m. (3.6) 
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Figure 3.1: Huygens principle. 

Initially, the principle was applied to predict the propagation of light, respectively, 

electromagnetic waves that satisfy the electromagnetic wave equations in source-free 

regions. This means that source currents and charges were not included. Consequently, 

the effects of the reactive fields close to the radiating sources were not considered. 

Rigorous formulations of the Huygens principle, i.e., for the fields in terms of equiv-

alent surface current sources, can be found in [13],[46],[47] and [48]. The surface equiv-

alence theorem is consequently a more general formulation. In the literature, different 

“surface equivalence theorems” have been formulated, often subsumed as “Huygens 

principle”. A good introduction is given, for example, in [13] (pp. 328-331). Further ex-

planations are mostly taken from this textbook. In this dissertation, the more rigorous 

formulation of the Huygens principle is applied, as it was introduced first by Love [49], 

and then further extended by Schelkunoff [50] (Schelkunoff [50] cited Love [49] and 

proposed other forms of equivalence theorems). In later chapters of this work, the ex-

pression “Huygens principle” is used as a synonym for the “surface equivalence theo-

rem”, because “Huygens principle” seems to be more illustrative. 

 “Huygens principle” or “surface equivalence theorem” have been applied in many 

publications. For example, the theorem was applied for the analysis of antenna radia-

tion characteristics of wire antennas as well as aperture antennas, e.g. [51]. The major 

advantage of the theorem in practical applications is its ability to compute fields in an 

arbitrary point in space (far-field as well as near-field) without knowledge of the current 

distribution on the antenna structure itself. Only the fields close to the antenna structure 

that can be obtained from near-field measurements are required, e.g., [33]-[36]. 

Using the Huygens principle requires complete knowledge of the tangential electric 

and/or magnetic fields over a closed surface enclosing a radiating structure. As it is 

intuitive to compute fields from current sources, a set of equivalent electric and mag-

netic currents distributed over the closed surface is applied. A more detailed explanation 

of the main idea is given below. 
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The idea to use equivalent surface currents is based on Love’s equivalence princi-

ple [49], which states that the distribution of electric and magnetic currents on a given 

surface 𝑆 can be found such that outside of 𝑆, which produces the same field as that 

produced by given sources inside 𝑆. And equally the field inside 𝑆 can be produced by 

a distribution of currents on 𝑆 that can be the same as that derived from the fields out-

side 𝑆. A detailed proof from physical point of view can be found, e.g., in [50]. An ex-

ample of interpreting the principle is shown in Figure 3.2. 

 

Figure 3.2: Original problem (a) with radiating source densities 𝐽 1 and 𝑀⃗⃗ 1. According to Love’s equiva-

lence principle, (b) the original sources can be replaced by equivalent sources 𝐽 eq  and 𝑀⃗⃗ eq on a 

closed surface with a null field inside. 

The fields generated by actual sources can be characterized by the use of a set of 

equivalent current sources distributed on a closed fictitious surface (often-called Huy-

gens’ surface [11]), which encloses the original (actual) sources. Figure 3.2 (a) gives 

the original current source densities 𝐽 1 and 𝑀⃗⃗ 1. 𝑆 is the defined Huygens’ surface. 𝑉1 

and 𝑉2 are the two field regions divided by 𝑆. The original sources are inside 𝑉1, and 𝑉2 

is a source free region. Figure 3.2 (b) illustrates a case for Love’s equivalence principle, 

where the equivalent surface current sources 𝐽 eq and 𝑀⃗⃗ eq on the Huygens’ surface can 

replace the original sources, producing the same fields as the original sources in the 

region 𝑉2. A consequence of Love’s equivalence principle is that the equivalent sources 

produce a null field in region 𝑉1. 

The equivalent surface current sources can be obtained from the original electric 

and magnetic fields on 𝑆 and are expressed by: 

where the electric fields (𝐸⃗ s) and magnetic fields (𝐻⃗⃗ s) are fields over the defined Huy-

gens’ surface 𝑆 generated by the original sources in the region 𝑉1. 𝑛⃗  is the normal vec-

tor of Huygens’ surface pointing to the outer side in the case that the original sources 

are located inside of the surface 𝑆. Since the region 𝑉1 is a null field region (this region 

𝐽 eq = 𝑛⃗ × 𝐻⃗⃗ s, (3.7) 

𝑀⃗⃗ eq = 𝐸⃗ s × 𝑛⃗ , (3.8) 

(a) 

𝑗 
1
 

𝑀⃗⃗ 1 

𝑉1 𝑉2 
𝑛⃗  

𝑆 
𝜇,  𝜀 

𝜇,  𝜀 

(b) 

𝐽 eq = 𝑛⃗ × 𝐻⃗⃗ s 

𝑀⃗⃗ eq = 𝐸⃗ s × 𝑛⃗  

𝑉1 𝑉2 
𝑛⃗  

  

𝑆 

Null field 

𝜇,  𝜀 



3.2 Surface Equivalence Theorem (Huygens Principle) 

19 

is not of interest), the medium can be considered the same as that in region 𝑉2. Con-

sequently, the equivalent current sources radiate into an unbounded homogeneous 

medium, which means the equations (3.7)-(3.8) together with (3.12)-(3.13) and (9.32)-

(9.33) can be applied to find fields everywhere [51] (pp. 653-657)7. 

Auxiliary vector potentials are often applied to calculate the radiated fields based 

on (equivalent) current sources (in this case, the sources are equivalent electric and 

magnetic current sources over the defined Huygens’ surface). Later, a solution with the 

help of auxiliary vector potentials will be described, and a general formulation of field 

integral will be derived based on both electric and magnetic current sources. However, 

before that, to provide a complete description of the principle, two further variants will 

be introduced as they can simplify the calculation in some practical cases. 

For the sake of reducing the required equivalent sources on the Huygens’ surface 

and consequently the required fields (less effort in the application of the method), two 

different variations of the equivalence principle can be derived, where only 𝑀⃗⃗ eq or only 

𝐽 eq over the Huygens’ surface is needed [13]. As the Love’s principle states that fields 

within the imaginary surface are zero, these fields do not interact with the material inside 

and therefore cannot be disturbed, if the properties of 𝑉1 are changed. Fields in 𝑉2 are 

also not affected, since the boundary conditions on 𝑆 are still satisfied. Filling 𝑉1 with a 

perfect electric conductor (PEC, see Figure 3.3 (a)) or perfect magnetic conductor 

(PMC, see Figure 3.3 (b)) does not change the conditions inside 𝑉1. However, the in-

troduction of a PEC in 𝑉1 will short-circuit the equivalent electric current sources 𝐽 eq. 

Hence, they will not radiate but according to the uniqueness theorem [13] only magnetic 

surface current density 𝑀⃗⃗ eq is necessary over 𝑆 to reconstruct the field in 𝑉2 in the pres-

ence of a PEC inside 𝑉1. In case of a PMC inside 𝑉1 the equivalent magnetic current is 

short-circuited and again according to the uniqueness theorem, only electric surface 

current density 𝐽 eq is necessary to reconstruct the field in 𝑉2. 

                                            

7 The equations (3.12) and (3.13) are solutions of the inhomogeneous vector potential wave equations 
(3.9) and (3.10). The derivation of the inhomogeneous vector potential wave equations can be found in 

appendix A. 𝐸⃗  and 𝐻⃗⃗  fields can be obtained by applying the solutions (3.12) and (3.13) to (9.32) and 
(9.33). 
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Figure 3.3: Equivalence principle models with radiating equivalent magnetic current sources due to 
PEC (a), and radiating equivalent current sources due to PMC (b) [51] (p. 657). 

The involvement of PEC or PMC causes the equivalent source densities 𝑀⃗⃗ eq or 𝐽 eq 

to radiate into a bounded field region respectively. Consequently, additional techniques 

are required to consider the boundary condition to find the fields. 

In many practical applications, the Huygens’ surface is assumed to be an infinite 

large plane (closed in the infinite), whereby the field calculation can be simplified [51] 

(pp. 657-658). The idea is also described in [13] (pp. 329-331). Supposing a PEC or 

PMC within 𝑉1, the boundary between 𝑉1 and 𝑉2 can be considered by applying the im-

age theory (described later in section 3.8). To explain how the simplification works, Fig-

ure 3.4 gives an infinite large planar Huygens’ surface and equivalent current sources 

𝐽 eq and 𝑀⃗⃗ eq  on the surface which are related to original sources inside 𝑉1 [51] (p. 658). 

By filling the volume 𝑉1 with PEC and by applying the image theory, it can be seen that 

the images of 𝑀⃗⃗ eq and 𝐽 eq are parallel to the plane. The image of the 𝑀⃗⃗ eq is pointing to 

the same direction as the direction of the 𝑀⃗⃗ eq, whereas the image of the 𝐽 eq is pointing 

to the opposite direction compared with the direction of the 𝐽 eq. By superimposing 𝑀⃗⃗ eq, 

𝐽 eq and their images, the resulting 𝐽 eq is zero, but 𝑀⃗⃗ eq doubles. As a result, 2𝑀⃗⃗ eq can be 

considered as the equivalent current source. Therefore, there is no need to use 𝐽 eq. 

More important is that by applying the image theory, the equivalent current source 2𝑀⃗⃗ eq 

radiates again into an unbounded medium. The equations (3.7)-(3.8) together with 

(3.12)-(3.13) and (9.32)-(9.33) can be used to calculate the fields on the right side of 

the plane. In a similar way, by applying PMC and the image theory, the 𝑀⃗⃗ eq will be zero, 

and the 𝐽 eq doubles (which will not be applied in the work, and is not shown in the figure). 
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Figure 3.4: Application of the image theory to radiating equivalent source on an infinite large planar 
Huygens’ surface with assuming PEC within 𝑉1 [51] (p. 658). 

This work will apply the idea of the simplification shown in the Figure 3.4, which 

requires only 2𝑀⃗⃗ eq  as the equivalent current source for predicting electric fields of 

CISPR 25 measurement setups. 𝑀⃗⃗ eq will be determined by the equation (3.8) and local 

E-field measurements (see chapter 6). In chapter 5, section 5.4, the method will be 

described in detail. 

3.3 Formulation of the Electric Field Integral Equation 

The electric or magnetic fields from known electric and magnetic source densities 

(either actual or equivalent) can be calculated using the electric field integral equation 

(EFIE) that can be found, for example in [13] (pp. 679-688). In this dissertation, a deri-

vation using auxiliary vector potentials is presented [51] (pp. 133-142). Auxiliary vector 

potential functions are often introduced to compute fields, as they can simplify the so-

lution. The vector potentials do not represent any physically measurable quantities and 

are used only as a mathematical aid. The resulting electrical field integral equation 

serves as a basis in this dissertation to calculate the fields in an arbitrary point from the 

equivalent surface current sources described in the previous chapter. 

The most common vector potentials are the magnetic vector potential A⃗⃗  and the 

electric vector potential F⃗ . A detailed derivation of the auxiliary vector potentials and the 

resulting field equations can be found in appendix A. The following explanations are 

related to finding the electric field resulting from an electric current source density 𝐽  and 

magnetic current source density 𝑀⃗⃗ . This requires in a first step to find auxiliary vector 

potentials A⃗⃗  and F⃗ , which satisfy the inhomogeneous vector potential wave equations 

(see appendix A)  

where 𝛽2 = 𝜔2𝜇𝜀. Once the auxiliary vector potentials are found, the resulting field 

from the source densities 𝐽  and 𝑀⃗⃗  can be calculated in general with 
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Here only a surface current density is required. Thus, solutions for the inhomoge-

neous vector potential wave equations (3.9) and (3.10) in case of surface current source 

densities are [13] (pp. 133-142): 

where 𝐽 s(𝑥
′, 𝑦′, 𝑧′) and 𝑀⃗⃗ s(𝑥

′, 𝑦′, 𝑧′)  represent electric and magnetic surface current 

densities in the Cartesian coordinate system. G(𝑟 , 𝑟 ′) is the Green’s function in free 

space, written as: 

The parameter 𝑘 is the wavenumber, which can be expressed as: 

𝑘 = 𝜔√𝜇𝜀, (3.15) 

𝑅 is the distance between the current source point to the observation point, which can 

be calculated by: 

𝑅 = |𝑟 − 𝑟 ′| = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2, (3.16) 

where 𝑟  is a vector from the origin of the coordinate system to the observation point. 

𝑟 ′ is a vector from the origin of the coordinate system to the current source densities. 

Substituting the solutions (3.12) and (3.13) of the inhomogeneous vector potential 

wave equations into (3.11) leads to 

For a better presentation of the formulas the variables 𝑟  and 𝑟 ′ will be omitted in 

the following. The next steps are performed according to [52] (pp. 33-36) to reduce the 

equation mentioned above. The third term in (3.17) can be converted by applying the 

vector identity 

∇2A⃗⃗ + 𝛽2A⃗⃗ = −𝜇𝐽 , (3.9) 

∇2F⃗ + 𝛽2F⃗ = −𝜀𝑀⃗⃗ , (3.10) 

𝐸⃗ = −𝑗𝜔A⃗⃗ − 𝑗
1

𝜔𝜇𝜀
∇(∇ ⋅ A⃗⃗ ) −

1

𝜀
∇ × F⃗ , (3.11) 

A⃗⃗ =  
𝜇

4𝜋
∬𝐽 s(𝑥′, 𝑦

′, 𝑧′)

 

𝑆

G(𝑟 , 𝑟 ′)𝑑𝑠′, (3.12) 

F⃗ =  
𝜀

4𝜋
∬𝑀⃗⃗ s(𝑥′, 𝑦

′, 𝑧′)

 

𝑆

G(𝑟 , 𝑟 ′)𝑑𝑠′, (3.13) 

G(𝑟 , 𝑟 ′)  =  
e−𝑗𝑘𝑅

𝑅
, (3.14) 

𝐸⃗ (𝑟 ) = −
1

4𝜋
∬[𝑗𝜔𝜇𝐽 s(𝑟 ′)G(𝑟 , 𝑟 ′) + 𝑗

1

𝜔𝜀
∇ (∇ ⋅ (𝐽 s(𝑟 ′)G(𝑟 , 𝑟 ′))) + ∇

 

𝑆

× (𝑀⃗⃗ s(𝑟 ′)G(𝑟 , 𝑟 ′))] 𝑑𝑠
′. 

(3.17) 
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and considering that 𝑀⃗⃗ 𝑠 is constant, related to the operator ∇. The second term can be 

converted by using the vector identities  

and  

which leads to the reduced form of (3.17), 

Considering the symmetry of Green’s function, the following relations are valid [52] (p. 

34): 

where the prime indicates the relation to the coordinate system of the sources. The 

order of the divergence operation of 𝐽 s in (3.21) can be interchanged (𝐽 s ⋅ ∇
′= ∇′ ⋅ 𝐽 s). 

The resulting electric field integral equation can then be written as 

The equation (3.24) is a general electric field integral equation formulation, which 

represents a sum of the electric field contributed from both electric and magnetic current 

source densities on a surface. This formulation is also the basis of this work for calcu-

lating the electric field. The equivalent electric and magnetic current source densities 

are retrieved from near-fields by applying the surface equivalence theorem described 

in section 3.2. As the surface equivalence theorem states that the equivalent currents 

on a closed surface include all information about the enclosed sources, the electric field 

integral equation (3.24) considers both near and far-field effects from the original 

sources. 

The integral equation for the magnetic field 𝐻⃗⃗  can be also derived by performing 

similar steps like (3.11)-(3.24) to the equation (9.33) in Appendix A. Since the work 

focuses mainly on 𝐸⃗ , the detailed derivation for 𝐻⃗⃗  will not be given here. A detailed der-

ivation can be found in e.g. [11] (pp. 229-233) or [48] (pp. 464-468). 

∇ × (𝑓A⃗⃗ ) = ∇𝑓 × A⃗⃗ + 𝑓(∇ × A⃗⃗ ) (3.18) 

∇ ⋅ (𝑓𝐴 ) = ∇𝑓 ⋅ A⃗⃗ + 𝑓∇ ⋅ A⃗⃗  (3.19) 

∇ ⋅ (A⃗⃗ ⋅ B⃗⃗ ) = (A⃗⃗ ⋅ ∇)B⃗⃗ + (B⃗⃗ ⋅ ∇)A⃗⃗ + A⃗⃗ × (∇ × B⃗⃗ ) + B⃗⃗ × (∇ × A⃗⃗ ) (3.20) 

𝐸⃗ = −
1

4𝜋
∬[𝑗𝜔𝜇𝐽 sG + 𝑗

1

𝜔𝜀
∇(𝐽 s ⋅ ∇)∇G + ∇G × 𝑀⃗⃗ s]

 

𝑆

𝑑𝑠′. (3.21) 

∇G = −∇′G, (3.22) 

(𝐽 s ⋅ ∇)∇G = (𝐽 s ⋅ ∇′)∇
′G, (3.23) 

𝐸⃗ = −
1

4𝜋
∬[𝑗𝜔𝜇𝐽 sG + 𝑗

1

𝜔𝜀
(∇ ⋅ 𝐽 s)∇

′G − ∇′G × 𝑀⃗⃗ s]

 

𝑆

𝑑𝑠′. (3.24) 
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The general electric field integral equation (3.24) can also be applied to electromag-

netic radiation/scattering problems of metallic structures. In this work, it will be used to 

analyze the emissions of CISPR 25 structures. In this case, boundary conditions of the 

structure (conductivity) have to be considered. The derivation is shown in the next sec-

tion. 

3.4 Electric Field Integral Equation for Metallic Structures 

We start with the derivation of the electric field integral equation for scattering prob-

lems based on the boundary condition of a scatter (metallic surface or wire), which is 

assumed to be a perfect electric conductor (PEC). This is described, e.g., [13]. Although 

in this work, the scattering solution is not needed, the derivation is very helpful in un-

derstanding the contribution of the possible field sources. By illuminating a metallic 

structure (PEC) with an incident electric field, a total field can be expressed by 

𝐸⃗ = 𝐸⃗ i + 𝐸⃗ s, (3.25) 

where 𝐸⃗  is the total field,  𝐸⃗ i is the incident field and 𝐸⃗ s is the scattered field. The tan-

gential component of the electric field on the surface of the PEC has to be zero, which 

means (3.26) has to satisfy the boundary condition, for example, described in [13] (p. 

704) or [53] (p. 17) 

𝐸⃗ tan = (𝐸⃗ i + 𝐸⃗ s)
tan
= 0. (3.26) 

The incident field  𝐸⃗ i induces an electric current density 𝐽 s on the conducting surface 

of the scatter, which in turn emits the scattered field  𝐸⃗ s. For the surface current density 

and the fields on the surface 

can be written [52] (p. 62). The auxiliary vector potential based general field equation 

(3.11) can then be written as 

Inserting the solution for the auxiliary vector potential wave equation (3.12) to (3.29) 

and applying vector identities (3.19), (3.20) and (3.23), the EFIE for a PEC-structure 

can be written to 

𝑛⃗ × 𝐻⃗⃗ tan = 𝐽 s, (3.27) 

𝐸⃗ tan × 𝑛⃗ = 0, (3.28) 

𝐸⃗ = −𝑗𝜔A⃗⃗ − 𝑗
1

𝜔𝜇𝜀
∇(∇ ⋅ A⃗⃗ ). (3.29) 

𝐸⃗ s = −
1

4𝜋
∬[𝑗𝜔𝜇𝐽 sG + 𝑗

1

𝜔𝜀
(∇′ ⋅ 𝐽 s)∇G]

 

𝑆

𝑑𝑠′. (3.30) 
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When applying the continuity equation for the electric surface charge density (3.5), 

𝜌s = −
1

𝑗𝜔
 ∇ ∙ 𝐽 s, (3.31) 

and inserting (3.31) into (3.30),  𝐸⃗ s can be expressed as 

𝐸⃗ s = −
1

4𝜋
∬[ 𝑗𝜔𝜇𝐽 sG⏟    

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠

−
1

𝜀
𝜌s∇

′G
⏟    

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑠

]

 

𝑆

𝑑𝑠′. (3.32) 

It can be seen that both electric current density distribution and electric surface charge 

density distribution over the surface contribute to the scattered field. If we consider wire 

structures, the surface integral in (3.30) and (3.32) can be reduced to a line integral. 

Comparing (3.24) with (3.30), one can see that (3.30) can be transformed to (3.24) 

when 𝐽 s is known and 𝑀⃗⃗ s = 0. The formulation (3.30) therefore can be applied to the 

surface filled with PMC according to the equivalence principle described in the section 

3.2 (see Figure 3.3 (b)). In this case, the related formulation (3.32) gives an explanation 

for the contribution of the charge distribution, when the equivalence principle is applied. 

This proves that the Huygens principle (the surface equivalence theorem) is applicable 

for the near-field region, as the contribution of charges is included. 

Usually, for a closed surface filled with PMC where 𝐽 s is known, 𝑀⃗⃗ s must be re-

trieved, e.g., by applying FEM [36]. However, if the defined surface is an infinite large 

plane which is closed in the infinite and is filled with PEC (see Figure 3.4), the known 𝐽 s 

should be doubled, and there is no need to retrieve 𝑀⃗⃗ s. But still, the charge distribution 

is already considered. It is just not so obvious to be seen. A similar derivation is also 

applicable for a surface filled with PEC, where 𝑀⃗⃗ s is known and 𝐽 s = 0. Here, it should 

be noted that the rule described in Figure 3.4 gives an example for the usage of 𝑀⃗⃗ s. 

The rule is also applicable for 𝐽 s, when the infinite large plane is closed in the infinite 

and is filled with PMC. 

The formulation (3.32) is often introduced for metallic structures but expressed by 

a sum of the contribution of a vector potential and a scalar potential, which can be ob-

tained by introducing the so-called Lorenz condition 

∇ ∙ A⃗⃗ = −𝑗𝜔𝜇𝜀Φ. (3.33) 

By inserting (3.33) into (3.29), one obtains: 

 𝐸⃗ s = −𝑗𝜔A⃗⃗ − ∇Φ. (3.34) 

Φ is the electric scalar potential, which can be expressed by [53] (p. 16), or [54] (p. 31) 
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Φ =
1

4𝜋𝜀
∬𝜌sG𝑑𝑠

′

 

𝑆

. (3.35) 

If using the solution for the inhomogeneous vector potential wave equation (3.12)-

(3.13) and the electric scalar potential (3.35), one can obtain that the formulation (3.34) 

equals (3.32). 

As in this dissertation, in most cases, “thin-wire” structures were used. The surface 

integral in (3.32) is reduced to a line integral [53] (p. 16). Here, the definition of the “thin-

wire” approximation for the wire structures requires: (1) the wire length 𝑙 >> wire radius 

 𝑟w; (2)  𝑟w << 𝜆 (the related wave length). The “thin-wire” approximation restricts the 

current flow along the wire structure concentrated in the axis. In this work, the “thin-wire” 

approximation was applied to all considered wire structures. Supposing a z-aligned 

straight “thin-wire” has the length 𝑙, 𝐸⃗ s is then a line integral over the wire length 𝑙. The 

integral (3.32) can be written as [53] (p. 18) 

The related line charge density 𝜌l can be expressed as 

Inserting (3.37) into (3.36) gives: 

From (3.32), it can be found that the electric field can be expressed by the contri-

bution of currents and line charge densities over the involved metallic structure. Equa-

tion (3.32) can be used for calculating the electric field if field sources (currents and 

charges) are known. It should be noted that the scattered fields/incident fields are intro-

duced only for the derivation of EFIE. In later sections/chapters of this work, the electric 

field, generated from equivalent current sources (by applying surface equivalence the-

orem) or wire currents (common-mode currents from CISPR 25 structures), will be dis-

cussed. 

3.5 Numerical Treatment of Electric Field Integral Equation (EFIE) 

In this work, the fields have to be calculated from a given current distribution. This 

can be done with the EFIE. In this equation, a function for the current distribution is 

 𝐸⃗ s = −
𝑗𝜔𝜇

4𝜋
∫ 𝐼(𝑧′)G(𝑟 , 𝑟 ′)

 

𝑙

𝑑𝑧′ −
𝑗

4𝜋𝜔𝜀
∫
𝑑𝐼(𝑧′)

𝑑𝑧′
∇′G(𝑟 , 𝑟 ′)

 

𝑙

𝑑𝑧′. (3.36) 

𝜌l(𝑧′) = −
1

𝑗𝜔

𝑑𝐼(𝑧′)

𝑑𝑧′
. (3.37) 

 𝐸⃗ s = −
𝑗𝜔𝜇

4𝜋
∫ 𝐼(𝑧′)G(𝑟 , 𝑟 ′)𝑑𝑧′
 

𝑙

−
1

4𝜋𝜀
∫𝜌l(𝑧

′)∇′G(𝑟 , 𝑟 ′)𝑑𝑧′
 

𝑙

. (3.38) 
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needed. As for complex structures, an analytic representation for this function cannot 

be found, numerical techniques are needed. For the treatment of an arbitrary current 

distribution, methods from the numerical technique - method of moments (MoM) (e.g. 

described in [55],[56],[57]) can be used. Here an unknown current distribution can be 

found based on given boundary conditions using the EFIE. The unknown current distri-

bution in MoM is represented by a set of so-called basis functions that must be defined 

prior. The task of an unknown current distribution calculation is then reduced to finding 

weights of the known basis functions. For MoM also different techniques for field com-

putation in space from arbitrary current distributions were developed. In this work, es-

pecially these techniques will be used intensively. 

Commonly used techniques apply subdomain-basis functions that are valid only for 

a part of the current carrying structure. This work mainly considers wire and surface 

structures; therefore, the basis functions for these structures will be introduced. Surface 

structures are required for the defined Huygens’ surface. Here, the “roof-top” basis func-

tions [58],[59], will be applied. For a wire structure, triangular basis functions [53] (p. 29) 

will be used. Both kinds of basis functions for current distribution will be discussed in 

the next sections. It will be shown how fields can be computed from the currents. 

 

A Huygens’ surface can be defined by a set of discrete points, sufficiently close to 

each other. The electric and magnetic fields over the surface can be found, e.g., with 

field probes. From the fields the equivalent electric and magnetic sources 𝐽 eq and 𝑀⃗⃗ eq 

can be calculated. Equivalent currents and surface geometry can be used in integral 

(3.24). The integral must be treated numerically. In this section, the integration process 

is explained by defining a closed Huygens’ surface that is composed of six plane sur-

faces, as it is a general integral process. Later, the integral of one large surface will be 

used. This closed surface is also called Huygens’ box [60] and is located in the Carte-

sian coordinates system, as shown in Figure 3.5. Flat rectangular patches are applied 

to discretize all six sides of the surfaces of the box. As an example, rectangular patches 

on plane 2 and plane 3 are illustrated in the figure. At the observation point 𝑃(𝑥, 𝑦, 𝑧) 

the field outside of the Huygens’ box should be calculated. In the figure, the equivalent 

current sources 𝐽 eq and 𝑀⃗⃗ eq at one source point over one patch are shown by different 

colors. 𝑅  represents the distance between the field observation point and the source 

point on Huygens’ box whereas 𝑄⃗  is an arbitrary inner point inside the Huygens’ box, 

which can be used to determine the normal direction (𝑛⃗ ) of the surface. 
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Figure 3.5: A closed Huygens’ box with six sides and rectangular discretization. 

In this subsection, the numerical treatment of the EFIE for a surface structure will 

be described with the following steps: 

Step 1: The “roof-top” basis functions are defined, and the surface current densi-
ties/charge densities will be expressed with the help of these basis func-
tions and surface currents. 

Step 2: From known electric and magnetic fields, equivalent surface currents can 
be found. The way how to handle the currents over each surface patch is 
described. 

 

Step1: 

The “roof-top’’ basis function has already been described for example, in [61] or 

[62]. It is illustrated in Figure 3.6. To express one basis function, the subfigure (a) shows 

two adjacent rectangular patches (patch 1 and 2) with a common edge. An electric 

current 𝐼 (in case of surface equivalence theorem 𝐼 is an equivalent electric current) 

flows from patch 1 to patch 2 (parallel to the x-axis). The basis function for the common 

edge of patch 1 is given by, e.g., [62] (pp. 41-43): 

𝐽 sb =
𝐼

∆𝑦

𝑥

𝑥1
𝑒 𝑥 =

𝐼

∆𝑆1
𝑥 𝑒 𝑥 , (3.39) 

where ∆𝑆1(= ∆𝑦 ∙ 𝑥1) is the area of patch 1. From the figure, when 𝑥 reaches 𝑥1, 𝐽 sb 

has the maximal value of 
𝐼

∆𝑦
. Typically, the unit of 𝐼 is [A], and the unit of 𝐽 sb is [A/m]. 

Hence, the physical meaning of 𝐽 sb  is the electric current density of the surface 

patches. 𝑀⃗⃗ sb can be similarly defined, which gives the magnetic current density of sur-

face patches based on the magnetic current across the common edge. 

o 𝑥 
𝑦 

𝑧 

Plane 1 

Plane 2 

Plane 4 Plane 3 

Plane 6 

Plane 5 

𝑃(𝑥, 𝑦, 𝑧)  

𝑛⃗  

  

𝑄⃗  

𝑀⃗⃗ eq 𝑗 eq 

𝑅 
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According to the continuity equation given in (3.5), the divergence of the surface 

electric current density 𝐽 sb gives the surface charge density written as: 

∇ ∙ 𝐽 sb =
𝐼

∆𝑆1
. (3.40) 

The charge density is a constant over a part of the basis function, as illustrated in figure 

(b). The sign of the charge depends on the direction of the current flow. 

 

Figure 3.6: Current basis function and charge distribution for rectangular patches, (a) roof-top function 
straddling two square cells [62], where the vector direction by an arrow indicates the current direction, 
(b) charge density, represented as constant blocks. 

Figure 3.7 (a) illustrates one surface patch with four vertexes, denoted as 𝑉⃗ 1, 𝑉⃗ 2, 𝑉⃗ 3, 

and 𝑉⃗ 4. The four formed edges from the vertexes are denoted as 𝑣 1, 𝑣 2, 𝑣 3, and 𝑣 4. The 

centroid of the patch (𝑆 ) can be calculated by: 

𝑆 =
1

4
(𝑉⃗ 1 + 𝑉⃗ 2 + 𝑉⃗ 3 + 𝑉⃗ 4). (3.41) 

Figure 3.7 (b) illustrates four electric currents (𝐼1, 𝐼2, 𝐼3, 𝐼4) flowing out of the patch given 

in Figure 3.6 (a). In this case, the electric surface current density 𝐽 s and surface charge 

density (∇ ∙ 𝐽 s) can be expressed respectively as: 

𝐽 s =
𝐼1
∆𝑆
(𝑥 − 𝑥1)𝑒 𝑥 +

𝐼2
∆𝑆
(𝑦 − 𝑦

1
)𝑒 𝑦 +

𝐼3
∆𝑆
(𝑥2 − 𝑥)𝑒 𝑥 +

𝐼4
∆𝑆
(𝑦
2
− 𝑦)𝑒 𝑦, (3.42) 

∇ ∙ 𝐽 𝑠 =
1

∆𝑆
(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4), (3.43) 

where ∆𝑆 = (𝑦2 − 𝑦1)(𝑥2 − 𝑥1) is the area of the patch. 

𝑥 
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Figure 3.7: Definition of the rectangular patch and the surface current densities. (a) description of the 
patch, (b) four currents are flowing out of the patch. 

Step 2: 

According to Huygens principle, both electric current (𝐼J) and magnetic current (𝐼M) 

exist at the same time. In general, the magnitude of currents flowing into/out of one 

edge can be determined by [61] (pp. 98-99): 

𝐼J =  𝑣 ∙ 𝐻⃗⃗  , (3.44) 

𝐼M =  𝑣 ∙ 𝐸⃗  , (3.45) 

where 𝐻⃗⃗  and 𝐸⃗  are the fields at the center of the corresponding edge. The fields will 

be considered as known parameters, which can be captured with field probes in a 

measurement. For the patch in the Figure 3.7 (a), the positions of the edge centers are 

marked by the red cross and 𝑣  represents the edge vector. 

By inserting (3.44) for each edge of the patch defined in Figure 3.7 (b) to the ex-

pressions (3.42), (3.43) respectively, the surface electric current density 𝐽 s and surface 

charge density (∇ ∙ 𝐽 s) can be expressed: 

𝐽 s =
𝐼𝐽1
∆𝑆
(𝑥 − 𝑥1)𝑒 𝑥 +

𝐼𝐽2
∆𝑆
(𝑦 − 𝑦

1
)𝑒 𝑦 +

𝐼𝐽3
∆𝑆
(𝑥2 − 𝑥)𝑒 𝑥 +

𝐼𝐽4
∆𝑆
(𝑦
2
− 𝑦)𝑒 𝑦, (3.46) 

∇ ∙ 𝐽 𝑠 =
1

∆𝑆
(𝐼𝐽1 + 𝐼𝐽2 + 𝐼𝐽3 + 𝐼𝐽4). (3.47) 

If inserting (3.45) to a defined magnetic current density 𝑀⃗⃗ s, surface current density 

𝐽 s and surface charge density (∇ ∙ 𝐽 s) for a patch can be expressed generally as: 

𝑀⃗⃗ s =
𝐼𝑀1
∆𝑆
(𝑥 − 𝑥1)𝑒 𝑥 +

𝐼𝑀2
∆𝑆
(𝑦 − 𝑦

1
)𝑒 𝑦 +

𝐼𝑀3
∆𝑆
(𝑥2 − 𝑥)𝑒 𝑥 +

𝐼𝑀4
∆𝑆
(𝑦
2
− 𝑦)𝑒 𝑦, (3.48) 

∇ ∙ 𝑀⃗⃗ s =
1

∆𝑆
(𝐼𝑀1 + 𝐼𝑀2 + 𝐼𝑀3 + 𝐼𝑀4). (3.49) 

In equations (3.46)-(3.49), it is important to determine the current directions correctly. 

Figure 3.8 demonstrates an example of current flow over patch 1 (as described in [62] 
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(p. 42)). The currents 𝐼1, 𝐼2  flow out of the patch in positive direction, whereas the cur-

rents 𝐼3, 𝐼4 flow into the patch in negative direction. For patch 2, 𝐼1 is negative, as the 

current flows into the patch. 

 

Figure 3.8: Superposition of four current basis functions for patch 1 [62] (p. 42). 

The method to determine the current direction is described in [61] and [62]. Here, it 

is shortly presented in Appendix B. 

The “roof-top” basis function 𝐽 sb (see (3.40)) introduced in section 3.5.1 describes 

only the electric current flowing out of one common edge along the x-axis. For all four 

edges of the patch in the 𝑥𝑦-plane, 𝐽 s (see (3.42)) gives the electric current density con-

sisting of overlapping basis functions that include both for 𝑥- and 𝑦- directions. Usually, 

for a surface structure, two basis functions are required (𝐽 sx for x- and 𝐽 sy for y-direction 

respectively). In this work, 𝐽 sn(𝑟 
′) is defined as the electric surface current basis function 

of the 𝑛-th patch and can be obtained by the expression (3.46). Similarly, 𝑀⃗⃗ sn(𝑟 
′) is 

defined as the magnetic surface current basis function of the 𝑛-th patch of total 𝑁 

patches. 

Using the defined basis functions 𝐽 sn(𝑟 
′) and 𝑀⃗⃗ sn(𝑟 

′), the electric field in the ex-

pression (3.24) for equivalent current sources over the Huygens’ surface can be nu-

merically calculated. The surface integration over the patches must be numerically per-

formed, i.e., by a 2D Gaussian integration described in Appendix C. 

 

Wire structures are subdivided into a number of segments. Triangular basis function 

can be used to describe the current distribution along the wire structure. 

Figure 3.9 (a) illustrates a triangular basis function 𝑓𝑛(𝑧′), that is defined over two 

𝑧-oriented segments limited by their 𝑧-coordinates: one between 𝑧𝑛−1 and 𝑧𝑛, and the 

other between 𝑧𝑛 and 𝑧𝑛+1. Figure 3.9 (b) gives the current at 𝑧𝑛 represented by the 

current basis function, where 𝐼𝑛 is the current at 𝑧𝑛. 

𝐼1 flows out of patch 

1, into patch 2 

𝑥 
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Figure 3.9: Triangular basis functions. (a) one basis function, (b) the current at 𝐼𝑛, (c) 𝑁 basis func-
tions, with the current distributions over the wire. 

The given triangular basis function 𝑓𝑛(𝑧′) is only defined inside the two segments, 

which can be written as [63] (p. 28): 

Based on the defined basis function, the current can be expressed by (e.g., described 

in [53] (p. 29)): 

The charge density over the wire segment between 𝑧𝑛−1 and 𝑧𝑛 and the segment be-

tween 𝑧𝑛 and 𝑧𝑛+1 can be obtained by inserting (3.51) into (3.37), as written in [53], as: 

 𝑓𝑛(𝑧′) =

{
  
 

  
 
𝑧′ − 𝑧𝑛−1
𝑧𝑛 − 𝑧𝑛−1

 
𝑧𝑛+1 − 𝑧′
𝑧𝑛+1 − 𝑧𝑛

 
 0

 

for the region:   𝑧𝑛−1 ≤ 𝑧′ ≤ 𝑧𝑛, 

(3.50) 
for the region:  𝑧𝑛 ≤ 𝑧′ ≤ 𝑧𝑛+1, 

other. 

𝐼𝑛(𝑧′) =

{
  
 

  
 𝐼𝑛

𝑧′ − 𝑧𝑛−1
𝑧𝑛 − 𝑧𝑛−1

 

  

𝐼𝑛
𝑧𝑛+1 − 𝑧′
𝑧𝑛+1 − 𝑧𝑛

 

  

0

  

for the region:   𝑧𝑛−1 ≤ 𝑧′ ≤ 𝑧𝑛, 

(3.51) 
for the region:  𝑧𝑛 ≤ 𝑧′ ≤ 𝑧𝑛+1, 

other. 

𝜌𝑙𝑛 =

{
 
 

 
 
𝑗

𝜔

𝐼𝑛
𝑑𝑙𝑛−1
 

 

−
𝑗

𝜔

𝐼𝑛
𝑑𝑙𝑛
 

   
for the rising edge from 𝑧𝑛−1 to 𝑧𝑛, 

(3.52) 

for the falling edge from 𝑧𝑛 to 𝑧𝑛+1, 

(b) 

𝑧′ 
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where 𝑑𝑙𝑛−1 = 𝑧𝑛 − 𝑧𝑛−1  and 𝑑𝑙𝑛 = 𝑧𝑛+1 − 𝑧𝑛 . A constant charge block exists for a 

given frequency 𝜔. Figure 3.9 (c) gives the total number 𝑁 of triangular basis functions 

for a wire of length 𝑙, where 𝐼1, 𝐼2, 𝐼3, ⋯ , 𝐼𝑁−1, 𝐼𝑁 are the current weights for the triangular 

basis function. The current function for the wire can be written as a sum: 

Note, here the current is zero at both ends; therefore, no additional basis functions 

are needed for the beginning and the end of the wire. Depending on the physical con-

figuration of a structure, the basis function may need correction at the ends of a wire, 

as discussed in [53]. For a wire connection, an additional triangular basis function with 

current 𝐼com must be introduced to keep a continuous current flow. This will be de-

scribed in chapter 5, section 5.1.2.3. 

The expression (3.53) describes the current distribution along a thin-wire of length 

𝑙, by the sum of all 𝑁 current basis functions (see Figure 3.9 (c)). By inserting (3.53) 

into (3.36), the electric field is obtained: 

𝐸⃗ = −
1

4𝜋
∑ 𝐼𝑛

𝑁

𝑛=1

∫ 𝑗𝜔𝜇𝑓𝑛(𝑧
′)G(𝑟 , 𝑟 ′)𝑑𝑧′

 

Δ𝑙

−
𝑗 

4𝜋𝜔𝜀
∑ 𝐼𝑛

𝑁

𝑛=1

∫
𝑑𝑓𝑛(𝑧

′)

𝑑𝑧′
𝜕G(𝑟 , 𝑟 ′)

𝜕𝑧
𝑑𝑧′

 

Δ𝑙

. (3.54) 

Δ𝑙 is the length of the segment 𝑛. The integral in (3.54) is a 1D integral, which can be 

numerically integrated. This can be done, e.g., by Gaussian integration, which is shown 

in Appendix C. 

3.6 Electric Field of a Hertzian Dipole 

In the previous section, the EFIE was discussed as a method for the calculation of 

the electric field in free space generated from a current carrying structure. Another 

method for calculating the field from a known current distribution along a wire is the 

MDM method. This method is used in this work too. The MDM is based on the theory 

of a Hertzian dipole (e.g., described in [2], (pp. 422-426) or [12], (pp. 215-226)). The 

theory is shortly summarized in this section.  

In MDM, the basic electric radiating element is an infinitesimally short electric dipole. 

The emission of wire structures can be calculated by subdividing the wire into very short 

segments and treating the radiation of each segment by a Hertzian dipole with the 

length of the segment. This method can be applied to a cable bundle structure in 

CISPR 25 measurement setups. The total electric field is the sum of electric fields gen-

erated from all dipoles. 

𝐼(𝑧′) = ∑ 𝐼𝑛

𝑁

𝑛=1

𝑓𝑛(𝑧′). (3.53) 
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For an accurate calculation three conditions must be fulfilled: (1) the length 𝑑𝑙 must 

satisfy the condition 𝑑𝑙 ≪ 𝜆; (2) 𝑟w ≪ 𝜆, where  𝑟w is the radius of the wire and 𝜆 is the 

wavelength; (3) the distance from dipole to the point of observation should be much 

larger than 𝑑𝑙. 

An infinitesimal dipole in free space of length 𝑑𝑙 carrying a phasor current 𝐼 = 𝐼0𝑒 𝑧 

is shown in Figure 3.10. The dipole is located at the origin of the Cartesian coordinate 

system and orientated along the 𝑧-axis. The arrow indicates the positive direction of the 

current flow and the orientation of the dipole. The current density of the dipole at the 

location 𝑟 𝑂 can be described by introducing the Dirac delta function, which can be writ-

ten as [12]: 

𝑗 s(𝑟 ′) = 𝐼0𝑑𝑙δ(𝑟 ′ − 𝑟 𝑂)𝑒 𝑧, (3.55) 

where 𝛿 is the Dirac delta function, expressed as: 

δ(𝑟 ′ − 𝑟 𝑂) = {
0,        𝑟 ′ ≠ 𝑟 𝑂 

→∞, 𝑟 ′ = 𝑟 𝑂  
. (3.56) 

 

Figure 3.10: An infinitesimal dipole having length 𝑑𝑙 in the origin of the Cartesian coordinates. 

Recalling the expression (3.12) related to the infinitesimal dipole, the magnetic vec-

tor potential 𝐴  can be written as: 

A⃗⃗ =
𝜇0𝐼0𝑑𝑙

 4𝜋

e−𝑗𝑘0𝑅

𝑅
𝑒 𝑧 . (3.57) 

The radiated fields at an observation point 𝑃 are usually given in spherical coordi-

nates [2], using the orthogonal unit vectors 𝑒 𝑟 , 𝑒 𝜃 , and 𝑒 𝜑. Applying transformation rules 

the components of the magnetic and electric fields can be written as [2] (pp. 422-423): 

𝐻⃗⃗ 𝑟 = 𝐻⃗⃗ 𝜃 = 0, (3.58) 

𝐻⃗⃗ 𝜑 = 
𝑗𝑘0𝐼0𝑑𝑙

4𝜋𝑅
sin𝜃 (1 +

1

𝑗𝑘0𝑅
) e−𝑗𝑘0𝑅𝑒 𝜑, (3.59) 

𝑜 

𝑥 

𝑦 

𝑧 𝑃(𝑥, 𝑦, 𝑧)  
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𝐸⃗ 𝜃 = 𝑗𝜂0
𝑘0𝐼0𝑑𝑙

4𝜋𝑅
sin𝜃 (1 +

1

𝑗𝑘0𝑅
−

1

(𝑘0𝑅)2
) e−𝑗𝑘0𝑅𝑒 𝜃, (3.60) 

𝐸⃗ 𝑟 = 𝜂0
𝐼0𝑑𝑙

2𝜋𝑅2
cos𝜃 (1 +

1

𝑗𝑘0𝑅
) e−𝑗𝑘0𝑅𝑒 𝑟, (3.61) 

𝐸⃗ 𝜑 = 0. (3.62) 

where: 

𝑅 the distance between the dipole center and the observation point 𝑃; 

𝜂0 the intrinsic impedance of vacuum, 𝜂0 = √𝜇0 𝜀0⁄ ≈ 377 Ω; 

𝑘0 the wave number in vacuum, 𝑘0 = 𝜔√𝜇0𝜀0. 

Now, some characteristics of the field regions will be discussed by analyzing the 

expressions (3.59)-(3.61). 

Looking at electric fields for a large distance 𝑅 (𝑅 ≫ 𝜆), the point of observation can 

be considered to be in the far-field region. The reason is that 𝐸⃗ 𝑟 is inversely proportional 

to 𝑅2, whereas 𝐸⃗ 𝜃 is inversely proportional to 𝑅. 𝐸⃗ 𝑟 is much smaller than 𝐸⃗ 𝜃. By neglect-

ing 𝐸⃗ 𝑟, the far fields can be obtained by considering only the first term of (3.59) and 

(3.60) respectively [51] (p.159): 

𝐻⃗⃗ 𝜑𝑓𝑓 = 𝑗𝑘0
𝐼0𝑑𝑙

4𝜋

e−𝑗𝑘𝑅

𝑅
sin𝜃𝑒 𝜑 , 

(3.63) 

𝐸⃗ 𝜃𝑓𝑓 = 𝜂0𝑗𝑘0
𝐼0𝑑𝑙

4𝜋

e−𝑗𝑘0𝑅

𝑅
sin𝜃 = 𝑗𝜔𝜇0

𝐼0𝑑𝑙

4𝜋

e−𝑗𝑘0𝑅

𝑅
sin𝜃𝑒 𝜃. 

(3.64) 

𝐸⃗ 𝜃𝑓𝑓 and 𝐻⃗⃗ 𝜑𝑓𝑓 are orthogonal, and the ratio of 𝐸⃗ 𝜃𝑓𝑓/𝐻⃗⃗
 
𝜑𝑓𝑓 is 𝜂0 ≈ (377 Ω for free-space). 

(3.64) contains (3.57) and can be expressed in terms of the vector potential. In the far-

field region the vertical component of the electric field (𝐸⃗ 𝑧) can be obtained when 𝜃 =

90° by: 

𝐸⃗ 𝑧 = −𝑗𝜔A⃗⃗  sin𝜃|𝜃=90° = −𝑗𝜔A⃗⃗ . 
(3.65) 

Therefore, in the far-field, the vertical electric field depends on the magnetic vector 

potential 𝐴 . 

The near-field region is defined by 𝑅 ≪ 𝜆. The magnetic field is dominated by the 

second term of (3.59), which can be expressed by [51] (p.158): 
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𝐻⃗⃗ 𝜑𝑛𝑓 = 
𝐼0𝑑𝑙

4𝜋𝑅2
e−𝑗𝑘0𝑅sin𝜃𝑒 𝜑. (3.66) 

The electric fields from (3.60) and (3.61) can be approximated by firstly neglecting the 

first term as: 

𝐸⃗ 𝜃𝑛𝑓 = 𝑗𝜂0
𝐼0𝑑𝑙

4𝜋𝑅
(
1

𝑗𝑘0𝑅
−

1

(𝑘0𝑅)2
) e−𝑗𝑘0𝑅sin𝜃𝑒 𝜃. (3.67) 

𝐸⃗ 𝑟𝑛𝑓 = 𝜂0
𝐼0𝑑𝑙

2𝜋𝑅2
(1 +

1

𝑗𝑘0𝑅
) e−𝑗𝑘0𝑅cos𝜃𝑒 𝑟 . (3.68) 

For a very small distance 𝑅, the term with 1/𝑅3 dominates, (3.67) and (3.68) can be 

again simplified to have only the term with 1/𝑅3, as: 

In the near-field region, electric and magnetic fields are independent. This is important 

when analyzing later (in chapter 4) near-field coupling mechanisms in the CISPR 25 

measurement setup. 

3.7 Electric Field of a Static Dipole 

The expressions (3.69) and (3.70) describe the electric field in the near-field region, 

where a frequency-dependent factor 
1

𝑗𝜔
 is contained. Especially for low frequencies this 

them tends to become very large. Therefore, in measurement-based methods the di-

pole moment 𝐼0 needs to be measured very precisely. In this section, we discuss the 

static dipole to overcome this issue, which has a length of 2ℎ and charge 𝑄, as shown 

in Figure 3.11. The electric field can be calculated with: 

𝐸⃗ 𝜃 =
2ℎ𝑄

4𝜋𝜀0𝑅3 
sin𝜃𝑒 𝜃, (3.71) 

𝐸⃗ 𝑟 =
2ℎ𝑄

2𝜋𝜀0𝑅3 
cos𝜃𝑒 𝑟 , (3.72) 

where 𝑅 is the distance between the center of the dipole and the field observation 

point. The calculation in the Cartesian coordinates can also be found in [14]. 

𝐸⃗ 𝜃𝑛𝑓 =
1

𝑗𝜔

𝐼0𝑑𝑙

4𝜋𝜀0𝑅3
e−𝑗𝑘0𝑅sin𝜃𝑒 𝜃, (3.69) 

𝐸⃗ 𝑟𝑛𝑓 =
1

𝑗𝜔

𝐼0𝑑𝑙

2𝜋𝜀0𝑅3
e−𝑗𝑘0𝑅cos𝜃𝑒 𝑟 . (3.70) 
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Figure 3.11: Static dipole above ground, where a negative image charge considers the ground influ-
ence. 

The expressions (3.71) and (3.72) of the static dipole can be compared with (3.69) 

and (3.70). Without considering the time dependency e−𝑗𝑘0𝑅, the difference between 

the expressions is only the factor 
1

𝑗𝜔
. The factor 

1

𝑗𝜔
 results from the time integral of the 

current 𝐼: 

∫𝐼𝑑𝑡 = 𝑄     →   𝐼 = 𝑗𝜔𝑄. (3.73) 

3.8 Image Theory 

The image theory is often applied for electric/magnetic sources placed close to an 

infinite conducting plane, for example, in [2],[13], and can be a good approximation also 

for parts of CISPR setups. In those setups, a large metal plate is used (see Figure 1.2), 

which can be considered approximately as PEC. In this work, electric and magnetic 

sources close to a PEC are applied, as illustrated in Figure 3.12. The Subfigure (a) 

shows an electric source with black color (e.g., electric dipole or electric current) in the 

horizontal and vertical direction, respectively. The gray image sources consider the in-

fluence of PEC. Similarly, subfigure (b) shows the images of a magnetic source (e.g., 

magnetic current) in horizontal and vertical directions.  

 

Figure 3.12: Electric and magnetic sources and their images close to a PEC. (a) electric sources, (b) 
magnetic sources. 
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4 Analysis of the Standard CISPR 25 Measurement Setup 

Before introducing the proposed new methods, one should understand the charac-

teristics of the standard measurement setup. For example, the typical field sources, the 

dominant coupling mechanisms, and the rod antenna characteristics. 

Most important in the considered setup is the field coupling between the cable bun-

dle and rod antenna. Therefore, in this chapter, the cable structure will be analyzed with 

the help of the transmission line theory. The voltage and current distribution, as the root 

cause for the fields, caused by different load impedance conditions will be analyzed. 

Since the rod antenna is in the near-field region of the cable structure for the relevant 

frequencies, the near-field couplings and feedback effects between the rod antenna 

and cable structure, as well as the rod antenna characteristics, will be described and 

analyzed in detail. Furthermore, the influence of the metallic table, the metallic chamber 

floor, and the connections between the metallic table and the chamber floor will be dis-

cussed. Possible resonances will be investigated with the help of numerical MoM sim-

ulations. 

First, the applied field analysis methods are depicted. Second, the CISPR 25 meas-

urement setup is analyzed regarding the critical points mentioned above. 

4.1 Calculation Methods for Setup Analysis  

Both analytical and numerical methods can be applied separately or combined to 

calculate the electric field from CISPR 25 measurement setups. Here, analytical and 

numerical methods were combined, as illustrated in Figure 4.1. The analytical method 

(top of the left path) provides the currents and voltages over a cable bundle. The cable 

bundle can be handled by using the multiconductor transmission line (MTL) theory, e.g., 

[26]. As the application of MTL theory is complex and results can be less intuitive, here 

it is assumed that the cable bundle can be substituted by a single-wire cable carrying 

the common-mode currents. Such simplifications are commonly used, e.g., in 

[15],[21],[64], to reduce the computational efforts. The common-mode current distribu-

tion can be used in the EFIE for the numerical computation of the near- and far-fields. 

Alternatively, an MDM model with a sufficient number of dipoles can be parameterized 

with the common-mode currents for near- and far-field calculation. 

As the cable is often the dominant but not the only structure responsible for field 

generation, more powerful and flexible analysis methods can be useful for validation of 

the methods given in the left path in Figure 4.1. Field simulation programs (the right 

path in Figure 4.1) provides computational methods for even complex geometries and 

materials. As powerful programs are very expensive for commercial applications and 
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thus often not available in the industry, such programs cannot substitute the approach 

shown in the left path in Figure 4.1. 

Several programs for time and frequency domain are available such as CST Micro-

wave Studio [65], FEKO [66], or CONCEPT-II [67]. In this work, the frequency domain 

program CONCEPT-II [67] has been used. CONCEPT-II is based on the EFIE that is 

formulated for wires, surfaces, and voluminous structures. The discretized EFIE is 

solved with the help of the MoM, e.g., [55]. One might wonder why a full-wave field 

simulation program is involved since this work focuses on low frequency problems. This 

will be explained in section 4.1.2. 

 

Figure 4.1: Field calculation methods for cable structures. 

 

Analytical methods can be helpful for simple structures. In this work, the electric 

currents and voltages along a single-wire cable are calculated using the transmission 

line theory (described in section 4.2.3). The needed per-unit length parameters are ob-

tained analytically as a homogeneous cable structure can be assumed. The influence 

of different terminations is analyzed. The calculated current distribution along the cable 

can be used in the EFIE or the MDM method for field calculation. As the EFIE becomes 

quite complex and the superposition of a large number of dipole fields is necessary, the 

fields have to calculated with numerical methods. 

 

Most commercial computer simulation programs for electromagnetic field analysis 

have many important features to analyze large and complex geometries with more or 

less arbitrary excitations. For many field problems, the computational time is not the 
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main issue. Often, most time consuming is the modeling process. Here, most commer-

cial programs contain powerful functions for a fast model generation with the help of an 

easy to use graphical user interface. Such user interfaces require much programming 

time, and development costs are very high. Solver programming can be challenging, 

but in general, it is not a time-consuming process. Therefore, it might be the reason why 

most field simulation programs have no solver limitations and can handle the full set of 

Maxwell’s equations. As only electrical large structures (which means the physical size 

of the structure is much larger compared with related wavelength) require the solution 

of the full set of Maxwell’s equations, so-called full-wave solvers are not needed here. 

In this work, the considered frequency range is below 30 MHz. The standard CISPR 25 

setups can be regarded as electrically small. Quasi-static or static solvers should be 

sufficient for the needs of this thesis. The underlying equations could be simpler. 

There are some quasi-static or static solvers available. However, the known pro-

grams are very basic and not very user-friendly. The modeling process can become 

extremely time-consuming or even fail for complex geometries. Solvers for resulting 

equations systems are often not optimized and cannot handle modern multi-core pro-

cessor architectures. The underlying potentials due to the simple mathematical formu-

lations regarding a faster calculation are not used. For example, FastHenry2 [68] or 

FastCap [69] are static solvers, which are capable of computing the self- and mutual-

inductances, capacitances, and resistances of a 3D structure. The simulation model 

geometry has to be defined by text files, and there are many limitations in this process. 

The main core of the programs was written in the 80th. There were no significant opti-

mizations since release. From the calculated capacitances, inductances, and re-

sistances, an equivalent circuit has to be generated that might be ambiguous and error-

prone. Most full-wave field computation programs provide reliable solutions with pow-

erful user interfaces for pre- and post-processing not only for high frequencies but also 

for low frequencies, and highly optimized computational cores. There are no alterna-

tives to such programs regarding modeling and computation speed. 

Here, the used commercial full-wave field simulation program CONCEPT-II is 

based on the solution of EFIE. The numerical MoM-approach requires a discretization 

of the sources of the electromagnetic fields. The scalar potential term is predominant at 

very low frequencies and must be calculated from the current gradient (3.37), which is 

difficult to obtain at low frequencies. A wire structure is discretized into current segments. 

At very low frequencies, the calculated currents show only tiny differences, and the 

precision of the calculation limits the accuracy. In CONCEPT-II, the low frequency prob-

lem has been investigated intensively, and solutions were found. In [62] (pp. 86-89), it 

is described how the impedance matrix is created to give stable and accurate solutions. 

The developers of CONCEPT-II in [70] pointed out that for the classical MoM, this low 

frequency limit depends on the geometrical size of the structure and is somewhere in 

the range of 50 Hz to 1 kHz. 
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4.2 Characterization of the Test Cable Structure 

 

The cable bundle in the CISPR 25 setup can be calculated using the MTL theory 

[26]. As parameterization can be complex and all sources and terminations are often 

not known or very difficult to be found. In this work, common-mode voltages/currents 

and charges are considered as the root cause of emission problems. This approach is 

in line with other investigations regarding the cable bundle in EMC [16]. A simplified 

substitution model consisting of a single-wire cable is therefore introduced to replace 

the cable bundle under investigation. The single substitution cable used here carries 

only the common-mode currents. 

The configuration of the single-wire cable structure is shown in Figure 4.2. The ca-

ble is above the conducting table (simplified as an infinite PEC ground plane) at 

height ℎ, and the table forms the signal return path. The cable length is 𝑙, and it is par-

allel to the x-axis. The disturbance source is represented by a Thevenin’s source [56] 

consisting 𝑉𝑆 and 𝑍𝑆. The cable is terminated by a load impedance 𝑍𝐿. In the next sec-

tion, the transmission line theory will be shortly summarized to calculate voltages and 

currents along the cable structure. 

 

Figure 4.2: A single-wire cable above an infinite PEC ground plane as a common-mode substitution 
model for a cable bundle. 

 

When the length of the two-conductor structure is not much shorter than the wave-

length of the propagating signals along the conductor structure, the transmission line 

theory is required for the calculation of spatial and temporal voltage and current distri-

bution. A two-conductor structure can be represented by a circuit model given in Figure 

4.3. Here the conductors are subdivided into segments. Each segment has a length of 

∆𝑙.  𝑅′, 𝐿′, 𝐺′, 𝐶′ are distributed parameters, defined by per-unit-length values. Specifi-

cally, 𝐿′and 𝐶′ are distributed inductance and distributed capacitances; 𝑅′ represents 

the conductor loss and 𝐺′ represents losses in the dielectric material separating the 

conductors. 
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Figure 4.3: Representation of distributed lumped-circuit model of a transmission line. 

Transmission line theory can be used to describe a segment circuit of infinitesimal 

length ∆𝑙. The relation between voltage and current along the segment can be ex-

pressed by Telegrapher’s equations [2], which are given, e.g., in [26] as: 

{

𝑑

𝑑𝑥
𝑉(𝑥) = −(𝑅′ + 𝑗𝜔𝐿′)𝐼(𝑥)

𝑑

𝑑𝑥
𝐼(𝑥) = −(𝐺′ + 𝑗𝜔𝐶′)𝑉(𝑥)

 . (4.1) 

In many cases, especially in short structures, the losses represented by 𝑅’ and 𝐺′ 

can be neglected. The CISPR 25 setup cable structure is short, and losses can be ne-

glected.  

𝐿′ and 𝐶′ can easily be calculated for the case of a single circular wire above ground, 

by [2]: 

𝐿′ =
𝜇0
2𝜋
cosh−1(ℎ/𝑟w), (4.2) 

𝐶′ =
2𝜋𝜀0

cosh−1(ℎ/𝑟w)
, (4.3) 

in which cosh−1(ℎ/𝑟w) = ln [
ℎ

𝑟w
+√(

ℎ

𝑟w
)
2

− 1] (𝑟𝑤 is the wire radius). The voltage 𝑉(𝑥) 

and current  𝐼(𝑥) along the transmission line are respectively given by [2]: 

𝑉(𝑥) =  
1 + Γ𝐿e

−𝑗2𝛽𝐿e𝑗2𝛽𝑥

1 − Γ𝑆ΓLe−𝑗2𝛽𝐿
𝑍𝐶

𝑍𝐶 + 𝑍𝑆
𝑉𝑆e

−𝑗𝛽𝑥, (4.4) 

𝐼(𝑥) =  
1 − Γ𝐿e

−𝑗2𝛽𝐿e𝑗2𝛽𝑥

1 − Γ𝑆Γ𝐿e−𝑗2𝛽𝐿
𝑍𝐶

𝑍𝐶 + 𝑍𝑆
𝑉𝑆e

−𝑗𝛽𝑥, (4.5) 

where: 

 𝛽 =
2𝜋

𝜆
 is the phase constant; 

𝐺′Δ𝑙 𝐺′Δ𝑙 𝐺′Δ𝑙 

𝐿′Δ𝑙 𝐿′Δ𝑙 𝐿′Δ𝑙 
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𝑍C is the characteristic impedance of the homogeneous wire, which can be obtained 

by 

𝑍𝐶 = √
𝐿′

𝐶′
, (4.6) 

ΓS is the source reflection coefficient, which can be expressed as 

Γ𝑆 =
𝑍𝑆 − 𝑍𝐶
𝑍𝑆 + 𝑍𝐶

, (4.7) 

and ΓL is the load reflection coefficient, which can be written as 

Γ𝐿 =
𝑍𝐿 − 𝑍𝐶
𝑍𝐿 + 𝑍𝐶

. (4.8) 

 

Based on transmission line theory, voltage and current distribution over a cable 

structure can be calculated through the equations (4.4) and (4.5) when the source im-

pedance and load impedance are known. However, impedances within a CISPR 25 

measurement setup usually is not a fixed value depending on the kind of equipment. In 

general, the values are unknown. For the following investigations, a fixed source im-

pedance 𝑍𝑆 (= 50 Ω) is used in order to quantitative investigate the changes in voltage 

and current distribution caused by varying load impedances. The reason is that a fixed 

source impedance 𝑍𝑆 is given when an artificial network is involved. In this case, the 

impedance value of 50 Ω is a good approximation. The characteristic impedance 𝑍𝐶 of 

the CISPR 25 cable bundle substitution single-wire cable is about 270 Ω. 

For the CISPR 25 cable geometry the voltage and current distribution over the ca-

ble are calculated now for load impedances of 5 Ω, 50 Ω, 500 Ω, and 5 kΩ. Figure 4.4 

depicts the voltage and current distribution at 1 MHz and 10 MHz respectively. The volt-

ages and currents are normalized to the voltage and the current at the beginning of the 

cable. The figure shows that with the increased frequency (from 1 MHz to 10 MHz), 

both voltage and current vary significantly along the cable, especially for the mis-

matched cases. 
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Figure 4.4: Variation of voltage and current distribution for different loads at 1 MHz and 10 MHz. 

 

Charges are the sources for the electric near-field and can be calculated from a 

current or voltage distribution along a cable structure. Equation (3.34) contains two 

terms, in which the vector potential A⃗⃗  is linked to the current, and the scalar potential Φ 

is related to the charge distribution. To analyze the contribution of each term, the setup 

in Figure 4.2 was used. The analysis was done for a frequency range from 1 kHz up to 

200 MHz, as such a large frequency range considers both quasi-static near-field 

sources that cause non-radiating near fields, and radiating sources at higher frequen-

cies. The parameters of the setup are (Figure 4.2) ℎ = 5 cm, 𝑉𝑆 = 1 V, 𝑍𝑆 = 50 Ω, and 

 𝑍𝐿 = 50 Ω. The observation point for field calculation is located 1 m away from the cable 

center, and 10 cm above the conducting plane. 

The calculated horizontal component 𝐸horizontal (= 𝐸𝑥 in Figure 4.2) (upper figure) 

and vertical component 𝐸vertical = (𝐸𝑧 in Figure 4.2) (bottom figure) of the electric field 

are given in Figure 4.5. The red curve is directly taken from the MoM simulation as a 

reference. The blue curve was numerically calculated using the “thin-wire” approxima-

tion (3.54) of the electric field integral equation (3.34), where the triangular basis func-

tions from (3.50) are used. For the electric field calculation, one can either use currents 

calculated by the transmission line theory or exported from CONCEPT-II. Here the cur-

rents from CONCEPT-II are used. These currents provide a reference to validate the 
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Current at 1 MHz 
Current at 10 MHz 



4.2 Characterization of the Test Cable Structure 

46 

numerical calculation of the EFIE (3.54). It can be observed that the blue curve matches 

the red curve from both subfigures, i.e., the calculation is correct. 

 

Figure 4.5: Electric field contributions from currents and charges. 

Furthermore, the total electric fields from the two terms of (3.38) were separated to 

show the effect of the currents and charges. Since the formula (3.54) is only a numerical 

treatment, here, the original integral (3.38) is introduced for a clear explanation. The 

term depending on ∇Φ (𝐸⃗ ∇Φ = −
1

4𝜋𝜀
∫ 𝜌l(𝑧

′)∇′G(𝑟 , 𝑟 ′)
 

𝑙
𝑑𝑧′) represents the contribution 

from the charges, and the term depending on 𝑗ω𝐴 (𝐸⃗ j𝜔𝐴 = −
𝑗𝜔𝜇

4𝜋
∫ 𝐼(𝑧′)G(𝑟 , 𝑟 ′)
 

𝑙
𝑑𝑧′) rep-

resents contribution from the currents. One can see that the charges are dominant for 

the horizontal electric field (the upper subfigure) from 1 kHz up to around 100 kHz. With 

increasing frequency, the currents become the dominant electric field sources. Similar 

results were also observed for the vertical electric field (the lower subfigure), where the 

charges dominate up to about 30 MHz. 

 

From the analysis shown in Figure 4.5, one can see that at the low frequencies for 

both horizontal and vertical electric field components, the charge-dependent term of the 

Charge  Current 
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EFIE is dominant. The charge distribution can be found based on the continuity equa-

tion (3.37). The voltage and current distribution along a cable structure are related to 

the load impedance. In this section, the variation of 𝐸𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 depending on the load im-

pedance will be analyzed. 

Firstly, it is assumed that load impedances are purely resistive. Figure 4.6 shows 

the variation of 𝐸𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  over the load resistance from 10 Ω to 10 MΩ for a 
1 

4
𝜆-long 

transmission line. The markers indicate the points where the field was calculated. The 

blue curve shows a linear interpolation. A change of about 15 dB can be observed. 

 

Figure 4.6: Electric fields related to resistive loads. 

Loads may also have capacitive or inductive impedance characteristics. Therefore, 

an R-L-C series circuit was investigated, as shown in Figure 4.7. 𝑍𝐿 is a frequency-

dependent complex function. Here, the influence of 𝑍𝐿 is investigated by changing only 

the phase of 𝑍𝐿. The absolute value was constant, i.e., the |𝑍𝐿| = 100 Ω was chosen. 

The cable length was 
1 

4
𝜆 (= 1.5 m), and a frequency of 50 MHz was considered. 𝐸vertical 

was calculated for different phase angles. Figure 4.8 shows changes of around 5.5 dB 

in 𝐸vertical caused by phase shifts of the load from −90o to +90o. 

 

Figure 4.7: Cable configuration with RLC load impedance for 𝑍𝐿. 
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Figure 4.8: Electric field over the phase for a load impedance with constant absolute value. 

Figure 4.9 shows the result for the frequencies 1 MHz, 10 MHz, and 30 MHz to 

illustrate the behavior of cable lengths that are shorter than 
1 

4
𝜆. It is obvious that the 

phase of the load impedance affects the emissions and near-field coupling also for 

lower frequencies. The influence increases with increasing frequency; for example, at 

30 MHz, a 180o phase difference produces about 6 dB field difference. For higher fre-

quencies, the field difference caused by the phase shift should be more significant. As 

an example, Figure 4.10 shows a maximum deviation of about 8 dB caused by phase 

changes of the load impedance for a frequency of 100 MHz. 

 

Figure 4.9: Electric field over the phase of the load impedance for different frequencies. 
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Figure 4.10: Electric field over the phase of the load impedance for 100 MHz. 

4.3 Characterization of the Rod Antenna  

The rod antenna specified in the standard is a one-meter long vertical monopole 

antenna. This antenna is used to capture the antenna voltage. The voltage multiplied 

with the antenna factor given by the antenna manufacturer gives the electric field in 

vertical polarization (perpendicular to the metallic table/chamber floor). Due to the low 

frequency and the metallic table, there are no significant other field components. In the 

following sections, the characteristics of the rod antenna will be discussed. 

 

In general, field regions are fundamental parameters of the antenna. The boundary 

between near-field and far-field for antennas can be vaguely defined depending on the 

dimension of the antenna and the longest dominant wavelength of the system [51] (pp. 

34-36). It should be noted that the boundary formulas are rules of thumb, and there are 

no precise cutoffs between regions. Mathematically, the boundaries can be defined, 

e.g., for a Hertzian dipole from formulas given in chapter 3, section 3.6, or described in 

[51] (pp. 154-160). When frequency approaches zero, formula (3.60) for 𝐸⃗ 𝜃 becomes 

(3.69) and finally (3.71). The formula (3.69) and (3.71) are special cases of (3.60), and 

valid in the near-field region. On the other hand, (3.64) is a special case of (3.60) for 𝐸⃗ 𝜃 

in the far-field region. By comparing the contributions of the terms in parenthesis of 

formula (3.60) for 𝐸⃗ 𝜃, the near- and far-field regions can be defined.  

In detail, for the Hertzian dipole, the field regions can be found by looking at the 

term 𝑘0𝑅 in the formula (3.60) [51] (pp. 156-160). When 𝑘0𝑅 ≫ 1 far-field conditions 

can be assumed. With 𝑘0 = 2𝜋/𝜆 it can be found that for the far-field region, 𝑅 ≫
𝜆

2𝜋
 

should be valid. Vice versa the near-field region can be defined by 𝑅 ≪
𝜆

2𝜋
. For many 
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engineering purposes the relation ≫ is often defined as a factor of 10, the accuracy is 

then sufficient for most purposes, which means a distance 𝑅 of more than 2𝜆 from the 

Hertzian dipole can be considered well as in the far-field region. 

In the far-field region, some far-field characteristics are shown, such as electric and 

magnetic fields are coupled (see formula (3.63) and (3.64)); in free space, electric and 

magnetic fields are in phase with each other, and the intrinsic impedance 𝜂0 (defined 

as the ratio of the electric and magnetic field strengths) is about 377 Ω; the field ampli-

tudes drop with 1/𝑅.  

In the near-field region where 𝑅 ≪
𝜆

2𝜋
 , electric fields 𝐸⃗ 𝜃𝑛𝑓  (in (3.69)) and 𝐸⃗ 𝑟𝑛𝑓  (in 

(3.70)) are in time-phase, but they are in time-phase quadrature with the magnetic field 

𝐻⃗⃗ 𝜑𝑛𝑓 (in (3.66)) [51] (p. 157). 

The used rod antenna in this work can be considered as electrically short, as its 

geometrical length (= 1 m) is much shorter than the dominant wavelength 𝜆 (= 10 m) at 

30 MHz. The boundaries found for the Hertzian dipole can be assumed to be valid.  

 

The authors of the CISPR 25 standard wanted to provide a simple to use instruction 

for quantifying the emissions from automotive electronic systems. Even when the ex-

pression of antenna factor might not be used properly, it is helpful to use the wording 

for the measurement specifications at high frequencies also for low frequencies. There-

fore, an antenna factor is defined to calculate an electric field from a measured voltage. 

More accurate, it would have been to talk about a “sensor factor” as the antenna is more 

an electric field sensor [71]. In this work, the rod antenna Schwarzbeck, VAMP 9243 

[72], is used. It is constructed according to the standard and consists of a vertical rod 

of one-meter length with a diameter of 16 mm and an amplifier with very high input 

impedance. The antenna factor of about +10 dB is given in the antenna manual, which 

was measured by a substitution method described in the CISPR standard16-1-4 [73]. 

Using the antenna voltage 𝑉𝐴𝑛𝑡 with the manufacturer-provided antenna factor (AF) the 

vertical polarized electric field can be calculated: 

The obtained electric field is only an approximated value. The AF of the VAMP 9243 

is plotted in Figure 4.11. Variation of the AF along the whole frequency range is within 

1 dB.  

𝐸[dBμV/m] = 𝑉𝑀[dBμV] + 𝐴𝐹[dB(1/m)]. (4.9) 
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Figure 4.11: Antenna factor of VAMP 9243 [72]. 

 

It is very important to analyze the field distribution at antenna location for CISPR 25 

rod antenna for frequencies below 30 MHz. At such low frequencies, the antenna is in 

the near-field and the field at the antenna is not homogeneous. Furthermore, the 

CISPR 25 rod antenna is an active antenna, equipped with an amplifier with very high 

input impedance. In this section, the electric field distribution will be discussed at the 

antenna location, since the antenna is an electric antenna, i.e., mainly sensitive to elec-

tric fields. Furthermore, the influence of the rod antenna to the E-field distribution close 

to the cable structure will be investigated by comparing the E-field distribution on the 

defined Huygens’ surface with and without the rod antenna. This is important, because 

the field prediction relies on the field distribution on the Huygens surface. To predict 

correct CISPR 25 results, the rod antenna should not disturb significantly the fields on 

the Huygens’ surface. 

The CISPR 25 rod antenna is specified especially for the CISPR 25 setup. The cal-

ibration and antenna factor calculation consider the special usage already. Calibration 

is defined in the standard CISPR 16-1-4 [73] by a pragmatic substitution approach. As 

the field along the rod antenna is not homogeneous, the question about the degree of 

inhomogeneity must be answered, i.e., can the field along the rod antenna approxi-

mated by a single value. 

Electric field homogeneity analysis can be done directly with the CISPR 25 setup. 

The simplified model illustrated in Figure 4.2 is still used. The source impedance is 

assumed to be 50 Ω. The load impedances are set to be 5 Ω and 5 kΩ, to investigate 

some corner points. 

Figure 4.12 and Figure 4.13 show the electric field distribution of the area calculated 

with CONCEPT-II between the center of cable and the location of the rod antenna for 

the 5 Ω and 5 kΩ load impedances at 1 MHz and 10 MHz respectively. The rod antenna 

was not included in the model.  Shown is a side view of the structure (facing the cross-
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section of cable). When load impedance is 5 Ω, the cable self-inductance must be con-

sidered. Figure 4.12 illustrates the electric field distribution (magnitude of all field com-

ponents) at 1 MHz (subfigure (a)) and 10 MHz (subfigure (b)). The field at rod antenna 

location gives a deviation within 5 dB at 1 MHz, and about 3 dB at 10 MHz. The devia-

tion will become smaller with increased frequency, as far-field conditions result in a 

more uniform distribution. So the field distribution at 30 MHz is not shown here. With a 

load impedance of 5 kΩ, the current through the cable structure is small. At 10 MHz, 

the influence of cable self-capacitance to the metallic table becomes obvious. Figure 

4.13 gives for both 1 MHz and 10 MHz a deviation of less than 5 dB. 

 

Figure 4.12: Electric field distribution between the location of the rod antenna and cable structure for 
load 5 Ω at 1 MHz (a) and 10 MHz (b). 

 

Figure 4.13: Electric field distribution between the location of the rod antenna and cable structure for 
load 5 kΩ at 1 MHz (a) and 10 MHz (b). 

It can be seen from the above discussion that the electric field at the rod antenna 

location is weakly non-uniform, where a deviation within 5 dB is shown for the extreme 

cases. The field at the top of the rod antenna is smaller than the field close to the plate. 

At the height of 0.5 m, an average value can be assumed. Nevertheless, in this work, 

the reference field point is chosen to be at 10 cm above the plate. This gives a good 
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consistency to the reference height used for frequencies above 30 MHz. Furthermore, 

a quite high field value can be found at this height. For pre-compliance analysis it is 

important not to underestimate the emissions of a system. 

To find out if the presence of the rod antenna influences the field distribution over 

the Huygens’ surface significantly, further simulations were done in CONCEPT-II by 

applying a simplified simulation model in Figure 4.2. The defined Huygens’ surface has 

5 cm distance to the cable structure, and the rod antenna location has 1 m distance to 

the cable structure. The configuration is specified in Figure 4.14. The Huygens’ surface 

is parallel to 𝑥𝑧-plane, which has 1.5 m width (parallel to 𝑥-axis) and 1 m height (parallel 

to z-axis). 

 

Figure 4.14: The location of the Huygens’ surface and antenna location to the cable structure. 

As an example, comparison of the electric field (expressed by the magnitude of all 

field components on the Huygens’ surface) are shown in Figure 4.15 and Figure 4.16 

for the model with 5 Ω load impedance at 1 MHz and 5 kΩ load impedance at 10 MHz 

respectively. The two cases are related to the cases that were studied in Figure 4.12 

and Figure 4.13. Both Figure 4.15 and Figure 4.16 show a deviation within 0.01 dB, 

which confirms that the involvement of the rod antenna has a negligible influence on 

the E-field distribution close to the cable structure. This observation can be seen as 

proof that the feedback effect to the E-field distribution of cable structure caused by the 

rod antenna is minimal. The detailed analysis of the feedback effect influence will be 

described in chapter 4.4. Moreover, since the influence on the E-field distribution is 

negligible, it gives the possibility of applying the Huygens principle for electric field pre-

diction at the rod antenna location without the existence of the antenna. 
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Figure 4.15: Comparison of electric field distribution on the Huygens’ surface with and without antenna 
for 5 Ω load impedance at 1 MHz. 

 

Figure 4.16: Comparison of electric field distribution on the Huygens’ surface with and without antenna 
for 5 kΩ load impedance at 10 MHz. 
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An equivalent circuit of the rod antenna can be derived according to [15], which is 

shown in Figure 4.17. In the figure, (a) shows the rod antenna with a length ℎ𝐴 and 

thickness 2𝑟𝐴 perpendicular to the ground plane, where 𝑟𝐴 is the radius of the rod an-

tenna. The electric field 𝐸 is assumed to be uniformly distributed (see the section 4.3.3). 

𝑍𝐴 is the rod antenna input impedance seen at the feed point of the rod antenna. The 

electrical equivalent circuit can be formulated as an ideal current source 𝐼𝐴 in parallel 

to 𝑍𝐴 and  𝑍𝑀 (Norton equivalent circuit), as shown in (b). The voltage drop 𝑉𝑀 over the 

load impedance 𝑍𝑀 is the actual antenna voltage.  

 

Figure 4.17: Illustration of a rod antenna (a), and the rod antenna’s equivalent circuit (b). 

The rod antenna’s input impedance 𝑍𝐴, in general, is a complex value, which de-

pends on antenna size (length, thickness) and wavelength. It can be written as [51]: 

𝑍𝐴 = 𝑅𝐴 + 𝑗𝑋𝐴. (4.10) 

The real part 𝑅𝐴 consists of two components: 

𝑅𝐴 = R𝑙𝑜𝑠𝑠 + R𝑟𝑎𝑑 , (4.11) 

where 

𝑅𝑙𝑜𝑠𝑠 : Loss resistance of the antenna;  

𝑅𝑟𝑎𝑑 : Radiation resistance of the antenna. 

The losses of the antenna (𝑅𝑙𝑜𝑠𝑠) are frequency- and material-dependent, and usu-

ally can be neglected as 𝑅𝑙𝑜𝑠𝑠 ≪ 𝑅𝑟𝑎𝑑[74]. 𝑅𝑟𝑎𝑑 relates to the energy that radiates into 

space in case the antenna is used as a transmitting antenna. For a short monopole 

antenna, [75] gives an approximation of 𝑅𝑟𝑎𝑑 valid as long as the antenna length ℎ <

0.14𝜆, 

𝑅𝑟𝑎𝑑 ≈ 40𝜋
2 (
ℎ

𝜆
)
2

. 
(4.12) 

For example, if the antenna is 1 m long at a frequency of 10 MHz, the radiation re-

sistance is only 0.4386 Ω. The reactance part, 𝑋𝐴, is capacitive for an electrically short 

antenna [77],[78]. Therefore, the input impedance can be approximated to 
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𝑍𝐴 ≈
1

jω𝐶𝐴
. (4.13) 

𝐶𝐴 is antenna capacitance, which is frequency independent as long as the antenna is 

electrically short. The value can be approximated as [15]: 

The simplified equivalent circuit is shown in Figure 4.18. 

 

Figure 4.18: Equivalent circuit of an electrically short rod antenna. 

Equivalent source current 𝐼𝐴 of the antenna is given by [15]: 

𝐼𝐴 = 𝑗𝜔𝜀𝐸𝐴𝑒𝑓𝑓 , (4.15) 

in which 𝐴𝑒𝑓𝑓 is the effective antenna area, 

𝐴𝑒𝑓𝑓 =
𝐶𝐴
𝜀
∙ ℎ𝑒𝑓𝑓 , (4.16) 

and ℎ𝑒𝑓𝑓 is the effective height of the antenna. For an electrically short antenna ℎ𝑒𝑓𝑓 is 

given by [75]: 

ℎ𝑒𝑓𝑓 =
ℎ

2
. (4.17) 

The voltage 𝑉𝑀 can be expressed as [77]: 

𝑉𝑀 = 𝐼𝐴
𝑍𝐴𝑍𝑀
𝑍𝐴 + 𝑍𝑀

= 𝑗𝜔𝜀𝐸𝐴𝑒𝑓𝑓
𝑍𝐴𝑍𝑀
𝑍𝐴 + 𝑍𝑀

. (4.18) 

By inserting formula (4.13) and (4.16) to the expression (4.18), 𝑉𝑀 can be written as: 

𝑉𝑀 = 𝑗𝜔𝐶𝐴𝐸ℎ𝑒𝑓𝑓  

1
𝑗𝜔𝐶𝐴

𝑍𝑀

1
𝑗𝜔𝐶𝐴

+ 𝑍𝑀

. (4.19) 

𝐶𝐴 =
2𝜋𝜀0ℎ𝐴

ln (
ℎ𝐴
𝑟𝐴
) − 1

. 
(4.14) 
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𝑍𝑀 is defined by the load, i.e., the amplifier with very high input impedance and should 

be as high as possible ( 𝑍𝑀 ≫
1

𝑗𝜔𝐶𝐴
). In this case, the voltage 𝑉𝑀 in (4.19) can be ap-

proximated as  𝑉𝑀 ≈ 𝐸 ∙ ℎ𝑒𝑓𝑓, which means the antenna is a self-integrating antenna 

with constant frequency response. It can be shown that high-impedance load 𝑍𝑀 gives 

the highest antenna voltage for practical applications. 

EMI measurement receivers are terminated with 50 Ω. Since this impedance is too 

low,  𝑍𝑀 ≫
1

𝑗𝜔𝐶𝐴
 is not valid. Thus, an impedance matching unit/amplifier with very high 

input impedance is needed between the high-impedance load 𝑍𝑀 and receiving system 

(50 Ω). Such impedance is implemented with transistor (FET) circuits; the antenna is 

connected to the gate of the transistor. Such circuits can offer an impedance of approx-

imately 10 pF in parallel with more than about100 kΩ [76]. 

4.4 Analysis of Coupling Mechanisms and Feedback Effects 

Based on the assumption that the wavelength 𝜆 of a disturbing signal is much larger 

than the overall dimension of a measurement setup (including cable bundle and rod 

antenna), near-field simplifications can be applied to analyze the coupling mechanisms. 

There are two fundamental coupling mechanisms: inductive coupling and capacitive 

coupling. Figure 4.19 gives a sketch of the capacitive coupling (represented by the mu-

tual capacitance 𝐶𝐶) and inductive coupling (represented by mutual coupling inductance 

𝑀).  

As the short ground-based rod antenna required for CISPR 25 setups is not a loop 

antenna and is terminated with a high impedance amplifier, the rod antenna is very 

sensitive to electric fields, i.e., capacitive coupling, and insensitive to magnetic fields, 

i.e., inductive coupling. A short rod antenna terminated with high impedance can be 

also called an E-field sensor [71]. Typically, the amplifier is a transistor (FET) circuit, 

providing a high termination input impedance for the rod antenna (described in section 

4.3). The output impedance of the amplifier is typically 50 Ω for connecting the meas-

urement devices. This way, an antenna voltage measurement can be realized.  

Equivalent circuit models [42] are commonly used to analyze low frequency cou-

pling mechanisms. Most existing circuit models are used mainly to analyze the influence 

of the capacitive coupling, e.g., in [15],[40],[41],[79]. Inductive coupling is not discussed 

and neglected, as it is very weak. As proves for this assumption are rare, inductive 

coupling contribution will be discussed in this work together with capacitive coupling. 
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Figure 4.19: Sketch of capacitive and inductive coupling between on table structure and rod antenna. 

 

The capacitive coupling (mutual capacitance 𝐶𝐶) and inductive coupling (mutual 

coupling inductance 𝑀) in Figure 4.19 are represented in a simplified equivalent circuit 

model in Figure 4.20. In the figure, the on-table cable structure is modeled by a lumped-

circuit model consisting of a voltage source 𝑉𝑆, a source impedance 𝑍𝑆, a load imped-

ance 𝑍𝐿. The cable structure is represented by 𝐿𝑇𝐿 and 𝐶𝑇𝐿 (based on the transmission 

line theory, see the model in Figure 4.3, losses can be neglected). The antenna equiv-

alent circuit consists of the lumped self-capacitance 𝐶𝐴 and self-inductance 𝐿𝐴. A load 

𝑍𝑀 is attached. 

 

Figure 4.20 Simple equivalent circuit model for the CISPR 25 measurement setup. 

The capacitive coupling can be considered as follows: the varying voltage on the 

cable structure generates a time-varying electric field. A portion of the field lines termi-
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nates at the antenna rod, and a current is generated in the rod. The small current gen-

erates a voltage drop at the high impedance termination 𝑍𝑀 of the rod antenna. Mainly 

the electric field will be measured. The coupling capacitance is in fF range [40],[41]. For 

example, in [40] a mutual capacitance of 15-24 fF was applied depending on the con-

figurations. Similar investigations can be found in [41], where the mutual capacitance 

was found to be 52 fF or 146 fF. Since the purpose of this section is to investigate the 

behavior of coupling mechanisms, instead of finding an exact equivalent model, the 

coupling capacitance from [41], 52 fF, is applied here. 

The inductive coupling can be considered as follows: in case of the grounded rod 

antenna, the inductive coupling can only take place by the loop, which is formed by the 

antenna, the antenna self-capacitance to ground, and the antenna load realized by an 

amplifier with very high input impedance. As the self-capacitance of the antenna 𝐶𝐴 is 

about 10 pF (approximated by (4.14)), the voltage drop across the self-capacitance is 

much larger than the voltage drop across the inductance of the antenna structure. The 

inductive coupled voltage is split mainly between the antenna amplifier impedance and 

the antenna self-capacitance. The orthogonality and symmetry of the rod structure with 

the cable furthermore reduce the inductive coupling. These considerations are sup-

ported by mutual inductance calculations. The mutual coupling inductance 𝑀 is respon-

sible for the inductive coupling between the cable structure and the antenna. Determi-

nation of the mutual inductance is not trivial, because the overall geometry of the setup 

is complex. With the quasi-static numerical solver FastHenry2 [68] a mutual coupling 

inductance of 0.3 nH could be calculated (see Appendix D) for the CISPR 25 geometry. 

In [15] a mutual inductance between cable and the receiving antenna in a vehicle was 

found in a range of 0.1 nH and 1 nH. This confirms the FastHenry2 result. 

Typical antenna parameters (𝐶𝐴 = 10 pF, 𝐿𝐴 = 1 µH, 𝑍𝑀 = 100 kΩ) combined with 

𝐶𝐶 and 𝑀 will be used to analyze the influence of the capacitive and inductive couplings 

in the coming section. Here, 𝐶𝐴 can be approximated using (4.14); 𝐿𝐴 describes the self-

inductance of the antenna, which can be estimated using (9.50) in Appendix E. 

As the mutual capacitance 𝐶𝐶 (= 52 fF) from cable structure to the rod antenna is 

much smaller than self-capacitance from rod antenna to the ground plane (𝐶𝐴 = 10 pF), 

the small antenna voltage does not significantly affect the voltage from source cable to 

ground. Furthermore, both high impedance of the antenna amplifier input and high im-

pedance of self-capacitance limit the currents flowing through the antenna due to in-

ductive coupling. I.e., mutual back coupling to the cable structure can be neglected. The 

feedback effects caused by the mutual back couplings can be also observed by ana-

lyzing voltage at the load 𝑉𝐿 of the cable structure. Both 𝑉𝑀 and 𝑉𝐿 will be calculated in 

the next two sections. 



4.4 Analysis of Coupling Mechanisms and Feedback Effects 

60 

 

The circuit model in Figure 4.20 was calculated with a circuit simulator. The param-

eters of cable structure ( 𝑉𝑆 = 1 V, 𝑍𝑆 = 50 Ω, 𝑍𝐿 = 100 Ω, 𝐿𝑇𝐿 = 1.5 uH, 𝐶𝑇𝐿 = 18 pF ) 

were used, as well as the abovementioned antenna parameters and mutual coupling 

parameters. Figure 4.21 gives the influence of the antenna voltage 𝑉𝑀 caused by both 

capacitive and inductive couplings. The green curve and red curve show respectively 

the contribution of the capacitive coupling and inductive coupling to the antenna voltage. 

The blue curve shows the contribution of both couplings. It can be seen that compared 

with inductive coupling, the capacitive coupling dominates. The inductive coupling can 

be neglected at low frequencies. 

 

Figure 4.21: Influence of capacitive and inductive couplings to the antenna voltage. 

 

Feedback effect caused by the mutual capacitive coupling and the mutual inductive 

coupling is analyzed by observing the voltage drop 𝑉𝐿 at the load of the cable structure, 

as shown in Figure 4.22. As pointed out already in section 4.4.1, feedback effects can 

be theoretically neglected. The model in Figure 4.20 is also used now for quantifying 

the effects. The idea is that if the feedback effect dominant, the voltage drop 𝑉𝐿 should 

be varied with/without the presence of the antenna. In the figure, the black curve gives 

the voltage drop 𝑉𝐿 over frequency from only the cable structure, where the antenna is 

not included. The dark blue curve gives the voltage drop 𝑉𝐿 when the antenna is present. 

It can be seen that both curves are close together, which means the feedback effect 

from both the capacitive and inductive coupling can be neglected. 
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Figure 4.22: Analyzing feedback effects by observing voltage at the load of the cable structure.  

A more detailed derivation for the mutual inductive coupling and the capacitive cou-

pling and the related feedback effects can be found in Appendix E. 

 

As described in the above sections, inductive coupling is very weak, and capacitive 

coupling is dominant. The model used in the section 4.4.1 is a simple model. Now, a 

refined model considering the voltage and current distribution along the cable structure 

is presented. The model is shown in Figure 4.23. 

 

Figure 4.23: Circuit model of CISPR 25 measurement setup. 

In this more accurate model, the cable (length 𝑙) is segmented into 𝑁 subsegments. 

The length of each segment is expressed as ∆𝑙(= 𝑙/𝑁). The per-unit-length capaci-

tance 𝐶′  and inductance 𝐿′  are used to model each segment (see Figure 4.3). 
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𝑉1, 𝑉2, ⋯ , 𝑉𝑁  represent the common-mode voltages at discrete locations. 

𝐶𝐶1 , 𝐶𝐶2 , ⋯ , 𝐶𝐶𝑁 describe the parasitic capacitances between the cable bundle segments 

and the receiving antenna [79]. The receiving antenna (1-m-long vertical monopole an-

tenna) is modeled by its self-capacitance 𝐶𝐴 in parallel with 𝑍𝑀 (as the antenna amplifier 

impedance). The self-inductance of the antenna 𝐿𝐴 is ignored, as the contribution of 𝐿𝐴 

is very weak compared with that of 𝑍𝑀. The considered monopole antenna has a value 

𝐶𝐴 of 10 pF. 

To verify the proposed circuit model, a cable having a radius of 0.4 mm and 5 cm 

height above ground was used. The source 𝑉𝑆 is set to 1 V with 𝑍𝑆 = 50 Ω. The load 

impedance 𝑍𝐿 is set to 100 Ω. In the circuit, the per-unit-length inductance 𝐿′ and ca-

pacitance 𝐶′ were calculated using (4.2) and (4.3), respectively. The circuit is calculated 

with SPICE. Also, the structure was simulated with MoM (CONCEPT-II). Figure 4.24 

compares the antenna voltage from the SPICE model with the MoM result. The devia-

tion is only about 1 dB, which shows again, as discussed in chapter 2, that equivalent 

circuit models work well for simple structures in the low frequency range. 

 

Figure 4.24: Comparison of antenna voltages from MoM (CONCEPT-II) and the circuit model. 

4.5 Analysis of Table and Shielded Room Influence 

Resonance problems are often reported for CISPR 25 field measurements at low 

frequencies, for example, in [80] and [81]. To investigate the root cause of such reso-

nances introduced by measurement setup itself, [82] used the field simulation program 

CST MWS [65] to model different configurations of the measurement setup. The con-

figurations include varying chamber sizes and different bonding schemes of the receiv-

ing antenna counterpoise, as well as variations in the grounding scheme of the con-

ducting metallic table. It could be found that: resonance caused by chamber size can 

be important. For example, in [82] a large chamber was investigated; here, the first 

resonance appears already at 23 MHz. In [83] and [41] chambers were investigated, 

which came into a resonance above 30 MHz. More important is the grounding scheme 
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of conducting metallic table. The capacitance of the metallic table to the chamber floor 

and the grounding inductance cause a resonance below 30 MHz [81]. 

In this work, considering that the cable structure involved in CISPR 25 setups is 

less than a half wavelength up to 30 MHz, it is assumed that possible resonances can 

only be introduced by the chamber and the table grounding scheme inside setups. The 

analysis is based on a simplified model (see Figure 4.2) and CONCEPT-II simulations. 

 

A metallic chamber is needed to have a noise-free environment for sensitive and 

reproducible measurements. Often absorbing material on walls and ceilings should po-

tentially minimize reflections from the metallic walls. However, at lower frequencies, the 

absorbing material does not work. CISPR 25 demands for the absorber materials only 

a minimum performance below 70 MHz. In [65], a measurement setup below 30 MHz 

was simulated in the field simulation program CST MWS to observe whether absorbers 

influence the electric field. A setup placed on an elevated ground plane with perfect 

absorbers on the walls contrasts a setup that used PEC on the walls. The results 

showed large differences above 20 MHz, which can be attributed to the chamber ab-

sorbers. The absorbing walls may start to absorb in the range of 10-20 MHz. 

As at higher frequencies, cavity resonances have to be considered. Depending on 

the size of the chamber, the resonance frequency can be calculated by [84] 

𝑓𝑚,𝑛,𝑝 =
1

2√𝜀0𝜇0
√(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

+ (
𝑝

𝑑
)
2

. (4.20) 

𝑚, 𝑛, 𝑝 are integer (≥ 0), where at least two of the three must be non-zero; 𝑎, 𝑏, 𝑑 

describes the chamber dimensions. The used chamber dimensions for this work: 𝑎 =

 6.45 m, 𝑏 = 4.2 m, 𝑑 = 3.1 m. The calculated lowest resonance frequency appears at 

42.6 MHz. Therefore, the cavity resonances of the shielding room can be neglected 

below 30 MHz. 

 

Resonances can also be caused by the capacitor formed by the metallic table and 

the chamber floor and by the inductive ground connection of the metallic table. Typical 

ground connections between the metallic table and the chamber floor are studied. The 

configurations shown in Figure 4.25 are screenshots from CONCEPT-II simulations. 

The metallic table has a length of 2 m and a width of 1 m. The antenna-table bond-

ing is 1.5 m long and 1 m wide. Figure 4.25 (a) creates the connection through a vertical 

metal plane of 2 m long and 0.9 m high, which is similar to the configuration in [81]. 



4.5 Analysis of Table and Shielded Room Influence 

64 

Figure 4.25 (b) shows a connection with eight metal stripes, that is used in [56], [85] 

and [86]. 

 

Figure 4.25: CONCEPT-II models for different ground connections between the metallic plane and 
chamber ground, (a) grounding through a vertical plane, (b) grounding through eight metal stripes. 

The electric fields obtained from the simulations are presented in Figure 4.26. The 

red curve is obtained from CONCEPT-II, where the simplified model shown in Figure 

4.2 is used, the table with the antenna is here in free space. The solid blue line shows 

the results from a ground connection in Figure 4.25 (a). The dashed black line gives the 

electric field from the setup shown in Figure 4.25 (b). The solid blue curve matches well 

with the dashed black curve. Both curves show a resonance at approximately 18 MHz. 

This resonance is known from several investigations [81],[83] and is caused by the in-

ductance of the ground connection together with the table capacitance. Depending on 

the termination impedances, this resonance can become stronger or weaker. Both 

curves follow the red curve with about 2 dB deviation below 10 MHz. The deviation is 

introduced by the involved metal structures. 

 

Figure 4.26: CONCEPT-II results showing the influence of different grounding schemes between the 
metallic table and chamber floor. 
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5 Electric Field Estimation Methods 

The emissions and the near fields are caused by the common-mode current/voltage 

distributions along the cable bundle. In chapter 2, it is mentioned that the MDM method 

for predicting the electric fields shows deficiencies when used with measurement data. 

The first major research question of this thesis is to find the root cause of these defi-

ciencies. In this chapter, the MDM method is described in detail, and an answer will be 

found for the question, why the MDM method fails. 

To answer the second major research question of this thesis, in this chapter, a Huy-

gens principle-based approach will be introduced, which uses near-field distribution in-

stead of the common-mode currents as the sources to predict the electric fields in space. 

The Huygens principle is used here with a truncated Huygens’ surface. This approach 

is later verified based on simulation data. Furthermore, a static dipole-based approach 

is introduced. 

5.1 Multi-Dipole Model (MDM) for Low Frequencies 

Modeling near- and far-fields of CISPR 25 measurement setups using equivalent 

dipole radiation models based on measured common-mode currents have already been 

discussed, for example, in [31]. However, at low frequencies, this method fails. In this 

chapter, the limitations of the MDM method will be investigated.  

In this chapter, the creation of the MDM model is described. After that, the accuracy 

of the method will be analyzed. It will be shown that the accuracy of the current distri-

bution is the limiting reason for the poor performance of the MDM method at low fre-

quencies. 

 

To create a MDM radiation model from a current-carrying cable bundle, several 

steps are needed, as shown as follows: 

Step 1: Subdivide the involved cable bundle into short sections (cable seg-
ments) and identify the centers of each segment. 

Step 2: Conduct common-mode current measurements at the centers of ca-
ble segments. 

Step 3: Assign the currents from current measurements as constant current 
to each cable segment. 

Step 4: Model the radiation of each current segment as the radiation of an 
ideal dipole with the length of the segment and carrying the segment 
current. 
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Step 5: Add a set of image dipoles, replace the good conducting ground plane 
by applying the image theory. 

Step 6: Combine the dipoles from Step 3 and the image dipoles from Step 5 
to obtain the full multi-dipole model (MDM).  

The radiated fields can be considered as a superposition of fields produced by the 

dipoles of the MDM, where the fields contributed from each current segment are con-

sidered from the ideal dipole through (3.59)-(3.61). An example of MDM creation is il-

lustrated in Figure 5.1. The cable bundle with a length 𝑙 placed above ground at  height 

ℎ is oriented parallel to the x-axis. The cable bundle is subdivided into 𝑁 segments. The 

common-mode currents along the cable segments are known. They are denoted by 

𝐼1, 𝐼2, ⋯ , 𝐼𝑁 . Each cable segment’s common-mode current is modeled by an ideal dipole. 

The arrow over the dipole indicates the direction of the current flow and the dipole ori-

entation. To include the ground plane effect into the model, the image theory is used by 

introducing a set of images.  Therefore, the PEC ground plane (plane z=0) is not shown 

here. 

The EUT and the load connect the cable to the ground plane. Thus, they are in-

cluded by equivalent vertical connecting currents 𝐼𝑠 and 𝐼𝐿, respectively. Introducing the 

vertical dipoles at both ends of the cable bundle creates a physical meaningful common-

mode current flow path from the cable bundle to the ground plane that forms a closed 

circuit. Figure 5.1 shows the EUT and load replaced by one dipole. Real modeling may 

include many dipoles, as this increases the accuracy of the estimated fields. 

 

Figure 5.1: A sketch of a MDM for a cable above a PEC plane connected at both ends to the PEC 
plane. 

 

This section focuses on the fields calculated with MDM at low frequencies from 

measured currents. As mentioned already, the method suffers from inaccuracies in the 

low frequency range [21]. First, the errors of the MDM method will be illustrated by using 

the measured currents. Then, in this section, it will be analyzed why the method fails at 

low frequencies. 
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 MDM at Low Frequencies Using Measured Currents 

The structure given in Figure 4.2 was used for investigation. The cable was driven 

with the first port of a VNA (Agilent E5071B [87]) and terminated with 10 Ω. The currents 

were measured using an FCC-F65 current probe at different locations along the cable. 

The second port of the VNA was connected with the probe to record the measured data. 

A VNA was used here, as with the VNA measurements, a quite accurate phase-re-

solved current distribution can be obtained. Since the short vertical ground connections 

are very short and difficult to measure. The measured currents at both ends of the cable 

were used to represent the vertical parts in the model. 

The MDM-estimated electric field is shown in Figure 5.2. The red curve represents 

the field reference (obtained directly from CONCEPT-II simulation). The black curve 

gives the MDM result, where the measured currents (captured by the VNA) are used 

for creating the model. The blue curve gives the MDM result where a special measure-

ment uncertainty is added to the simulated currents (extracted from CONCEPT-II). Here 

the measurement uncertainty is realized by shifting the position of dipoles within 5 mm 

in a random way [88] for modeling possible dipole positioning errors. The curves show 

that for frequencies above 10 MHz, all three curves have a good match. A large devia-

tion can be seen below 10 MHz between the MDM results and the reference field. Since 

the currents obtained from the VNA based measurements are considered to be quite 

accurate, the deviation observed in the blue curve is mainly caused by the added posi-

tioning errors, which means the current distribution along the cable influences the ac-

curacy of the MDM method. 

 

Figure 5.2: Field Evertical calculated with the multi-dipole model from measured currents and MoM. 

 Minimum Usable Frequencies for MDM 

It was shown in the last section that there is a frequency limit, where MDM accuracy 

decreases significantly. The configuration in Figure 4.2 was used for further investiga-

tion to find the minimum usable frequencies for the MDM method. The cable was driven 

by an ideal voltage source of 1 V with 50 Ω source impedance and terminated with 
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100 Ω. A screenshot of the model in the CONCEPT-II is shown in Figure 5.3 (a). Thirty 

basis functions were used for the horizontal cable, and three basis functions were used 

for each vertical connection. An observation line indicated by the red dashed line in the 

figure was set at 1 m from the center of the cable and 10 cm above the ground plane. 

 

Figure 5.3: Model of a cable above ground. (a) a sketch of the model with segmentation, (b) the di-
poles used for creating the MDM. 

The MDM procedure needs the cable current as an input parameter. Different from 

the MDM creation process illustrated in the section 5.1.1, the current distribution was 

obtained using MoM. The location, direction, and the number of dipoles and their im-

ages are shown in Figure 5.3 (b). The segment length of the horizontal cable is 5 cm 

and the segment length of the vertical connection is 2 cm. 

Figure 5.4 compares the calculated vertical components of the electric fields (𝐸𝑧) 

along the observation line. In the figure, (a) illustrates the field distribution from the field 

integral formulation (𝐸𝑧(MoM)) and (b) shows the data obtained from the MDM (𝐸𝑧(MDM)). 

Differences in the fields mainly occur at low frequencies. 𝐸𝑧(MoM) is almost constant for 

frequencies up to 100 kHz in (a), whereas two areas of strong fields and one symmetry 

plane of field cancellation exists exactly in the middle of the observation line in (b). The 

absolute deviation of 𝐸𝑧 in dB is illustrated in the subfigure (c). The deviation at low 

frequencies reaches about 60 dB, but almost no deviation can be observed over the 

symmetry plane. Above about 100 kHz, the deviation tends to be very low. This finding 

is different from the results in Figure 5.2. Here only the termination was different. The 

reasons are investigated now. 
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Figure 5.4: Comparison of Evertical of the field observation line. (a) fields are obtained from electric field 
integral formulation, (b) fields are obtained from the MDM, (c) absolute deviation in dB. 

To investigate the minimum usable frequency of the MDM, the loop model in Figure 

5.3 was used, where the source impedance was 50 Ω and the load impedances varied 

from 1 Ω to 1 kΩ. Fields were calculated at 1 m, 5 m, and 10 m away from the structure. 

To avoid the symmetry plane of the model, that is not critical for the MDM, the observa-

tion points were shifted to -0.1 m and -0.75 m in the x-direction along the observation 

line shown in Figure 5.3 (a). The number of dipoles used for MDM creation is the same 

as that specified in Figure 5.3 (b). For each observation point and load impedance, the 

frequency which causes a deviation between 𝐸𝑧(MoM) and 𝐸𝑧(MDM) of 3 dB is considered 

as the minimum usable frequency. The results are shown in Figure 5.5. The star mark-

ers in the figure indicate the configured load impedances. The increase in the distances 

between the observation points and the cable structure causes the minimum usable 

frequency to decrease. Furthermore, the observation points closer to the symmetry 

plane of the model (x = -0.1 m, (a)) have smaller minimum usable frequencies than the 

observation points away from the symmetry plane of the model (x = -0.75 m, (b)). The 

minimum usable frequencies decrease when lower load impedances are used. The ac-

curacy of MDM is very low at low frequencies under low load impedance conditions. 

(c) 

Deviation [𝑑𝐵] 
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Figure 5.5: Minimum usable frequency of MDM related to the configuration from Figure 5.3, for differ-
ent load impedances and observation points. (a) x = -0.1 m, (b) x = -0.75 m. 

 Current and Charge Distribution  

The last section explained that the MDM has a minimum usable frequency. When 

the field observation points are close to the sharp bends of the cable structure, the 

minimum usable frequency decreases. This section identifies the root cause of the fail-

ure of the MDM at low frequencies. In doing so, the current distribution at the cable 

bending location, and the dominant charge distribution over the given cable will be com-

pared using MoM and MDM. Again, the MoM solution is considered as a reference 

solution. 

Figure 5.6 illustrates the current distribution for the MoM approximation (a), and the 

MDM approximation represented as a set of rectangular functions (or piecewise con-

stant functions [53]) (b) over a cable bend. The cable bend is formed by cable 1 and 

cable 2, where the end of cable 1 connects to the beginning of cable 2. Cable 1 consists 

of 𝑁 segments, where the currents over the last two segments are denoted by 𝐼𝑙1,𝑁−1 

and 𝐼𝑙1,𝑁, respectively, and the related lengths of the segments are 𝑑𝑙1,𝑁−1 and 𝑑𝑙1,𝑁. 

The currents for the first two segments of cable 2 are denoted by 𝐼𝑙2,1 and 𝐼𝑙2,2. The 

implementation for MoM uses triangular basis functions in the EFIE for cable structures. 

The segment length 𝑑𝑙 (=
𝑑𝑙1,𝑁−1

2
+
𝑑𝑙1,𝑁

2
) length shown in Figure 5.6 (b) is a result of 

segmentation used for MDM. 
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Figure 5.6: Current distribution over the connecting point of the cables. (a) MoM-based on triangular 
basis functions, (b) MDM. 

The reason for the rectangular current distributions is that the MDM is composed of 

a set of dipoles. From the definition of the dipole moment, it is known that the current 

density of the segment only exists at the middle of the segment due to the involved 

Dirac function (see chapter 3 section 3.6). It is a good approximation to assume a con-

stant current within the segment, as long as the segment length is short enough. By 

comparing the current distribution between (a) and (b), a continuous current distribution 

can be observed in (a). An additional triangular basis function (𝐼com) is therefore intro-

duced at the bending point (the end of cable 1 and the beginning of cable 2). It ensures 

a continuous current flow from cable 1 to cable 2. A discontinuous transition at the bend 

can be observed in subfigure (b) due to the change of the current direction. 

The charges also need to be considered since they dominate the field at low fre-

quencies (see chapter 4, section 4.2.4). For MoM, chapter 3 (Figure 3.9 (b)) describe 

the charge density 𝜌𝑙𝑛 for the current 𝐼𝑛 over the 𝑛𝑡ℎ triangular basis function as a rec-

tangular block. The rectangular block is shown again in Figure 5.7 (a). According to 

(3.52), the residual of the charge density distribution 𝜌res over the segment length 𝑑𝑙 (=
𝑑𝑙𝑛−1

2
+
𝑑𝑙𝑛

2
) is a summation of the charge density over both the rising and the falling 

edge [53], which can be expressed as: 

𝜌res(𝑑𝑙𝑛) =
𝑗 

𝜔
 
𝐼𝑛+1 − 𝐼𝑛
𝑑𝑙𝑛

. (5.1) 

The same 𝜌res is also illustrated in Figure 5.7 (b) for MDM. The location of the charge 

density distribution is slightly shifted in the figure for better visualization. To simplify the 

interpretation, assume the segment length is 𝑑𝑙𝑛−1 = 𝑑𝑙𝑛 . Therefore, the discrete 

charge density 𝜌𝑙𝑛 over the segment length 𝑑𝑙 can be written as: 

𝜌𝑙𝑛 =
𝑗

𝜔

𝑑𝐼𝑛(𝑧′)

𝑑𝑧′
=

{
 
 

 
 𝑗

𝜔
𝐼𝑛δ(𝑧′)
 

−
𝑗

𝜔
𝐼𝑛δ(𝑧′)

  
for 𝑧′ = −

𝑑𝑙

2
; 

(5.2) 

for 𝑧′ = +
𝑑𝑙

2
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As a result, the 𝜌res represented by the term 𝜌𝑙𝑛 from (5.2) is discrete, which leads 

to problems with the numerical treatment. When using the current distribution on the 

cable structure for MDM creating (see Figure 5.1), a distribution of residual charges 

(determined by 𝜌res obtained from (5.1) and (5.2)) will be created, which results in 𝐸𝑧 

field component (orientation see Figure 5.1). 

Due to the residual charge distribution, more basis functions are required for a bet-

ter representation of the current (charge) distribution; in other words, much more dipoles 

are required for MDM than basis functions in MoM to get better modeling accuracy. 

 

Figure 5.7: Charge density along a cable for (a) MoM and (b) MDM (charge density is shifted for better 
visibility). 

It can be derived from the above considerations that the discontinuous transition at 

the sharp bending and using too few dipoles cause the error in the MDM. The accuracy 

of the calculated electric field was expected to improve if more dipoles at the transition 

were added to model the continuity of the current flow. To verify that assumption, the 

model in Figure 5.3 was utilized again. The cable was terminated with 5 Ω and the 

source impedance was chosen to 5 Ω. This is a critical case. The influence of the num-

ber of dipoles on result accuracy was investigated. The field observation point was set 

at 1 m distance with a 0.1 m shift in 𝑥-direction (x = -0.1 m) from the cable center. Figure 

5.8 illustrates Evertical calculated from MDM with a different number of dipoles. 
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Figure 5.8: Accuracy of the electric field is associated with the number of dipoles used in the MDM. 

In the figure, the field from the MoM calculation (red curve) is the reference. The 

star markers indicates the simulated frequencies. nvertical and nhorizontal denote the number 

of dipoles used in the MDM. Using more dipoles for the MDM creation improved the 

accuracy of the MDM at low frequencies. For example, the minimum usable frequency 

can be shifted from more than 100 kHz to less than 1 kHz when comparing the black 

curve (nvertical = 3 and nhorizontal = 251) and the green curve (nvertical = 31 and nhorizontal = 

351). However, the measurement time will be very long for such a large number of 

dipoles. The additional effects of measurement and positioning errors need to be con-

sidered too. 

 Current Amplitude and Phase Distribution 

The current distribution along cable structure needs to be known for MDM creation. 

The accuracy of the current distribution can influence the accuracy of the MDM field 

estimation. Figure 5.9 illustrates the structure used for investigation. The structure was 

stimulated with an ideal current source 𝐼𝑠 of 1 A, and 𝑍𝐿 varied from 10 Ω to 1 kΩ. More 

dipoles are required to improve the low frequency accuracy of MDM. Hence, for this 

investigation, 15 dipoles were set for each vertical section represented by wire 1 and 

wire 3, and 251 dipoles were set for wire 2 to create the MDM. 

 

Figure 5.9: Configuration to analyze the current distribution. 
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Figure 5.10: Current amplitude and phase distribution at 10 kHz. 

The current distribution along wire 2 at 10 kHz is illustrated in Figure 5.10. The cur-

rent amplitude is almost constant of 1 A (shown in the upper figure), and the phase 

variation along the wire (shown in the bottom figure) is less than 0.06o, which is a value 

that cannot be measured without extraordinary effort. The steps in the current amplitude 

curves are from the numerical solution. According to (5.1), the charge density distribu-

tion can be determined, but the numerator (𝐼𝑛+1 − 𝐼𝑛) of the expression tends towards 

zero. However, it has a relevant, non-zero value. The numerator (𝐼𝑛+1 − 𝐼𝑛) is hard to 

determine if measurement data is used. Noise from the measurement dominates. Fur-

thermore, 𝜔 is included in the denominator. The factor (1/𝜔) leads to a magnification 

for the charge density distribution if the frequency is reduced. Hence, for low frequen-

cies, it is almost impossible to use measured data for MDM creation. 

As the variation of the phase is very small (less than 0.06o), arguably no phase is 

required at low frequencies for MDM creation. To check if the MDM works without phase 

distribution, the field observation point was set at 1 m distance facing the center of wire 

2 and 10 cm above the ideal ground. To avoid the field cancellation over the symmetry 

plane of the structure, the field point was shifted 10 cm in 𝑥-direction. Figure 5.11 com-

pares Evertical for two cases: the MDM is first created with the accurate varying phase 

and then with a constant phase. The figure illustrates first the remarkable difference 

between MoM and MDM; the deviation is caused by the limited usable frequency range 

of MDM. Above 1 kHz, the electric field generated by the MDM based on amplitude data 

Less than 0.06
o
  

Phase cannot be measured 

Amplitude is almost 1 A 
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with constant phase (the dashed black curve) is far away from the MoM reference so-

lution. When phase is considered (blue curve) above 1 kHz the MDM is quite accurate. 

Although phase variation is very small, the influence is very large. 

 

Figure 5.11: Evertical calculated with MDM and correct amplitude and correct phase function (MDM), and 
correct amplitude but constant (wrong) phase (only current amplitudes). 

In Figure 5.12, the current shape for 1 MHz is shown. The magnitude is nearly a 

constant of 1 A. However, the phase changes by about 6o. Although the variation de-

pends on the termination conditions, the phase variation can already be measured us-

ing a standard current clamp measurement setup. 

 

Figure 5.12: Current amplitude and phase distribution at 1 MHz. 

This raises an interesting question: Even if the current can be measured exactly, 

how sensitive is MDM to phase errors? The configuration in Figure 5.3 was again in-

vestigated, and terminations of 50 Ω were selected. To simulate the phase error, a uni-

formly distributed random phase noise with a mean value of zero was added to an “ideal” 
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current distribution extracted from MoM (CONCEPT-II calculation). The field observa-

tion point was 1 m away from the center of the structure and 10 cm above the ideal 

ground. Figure 5.13 illustrates Evertical (the upper figure) and Ehorizontal (the bottom figure) 

as the phase errors influence the calculated electric field. The labels are associated 

with different levels of maximum phase perturbations; for example, ±20° means the 

phase noise is between +/−  20°. The markers in the figure indicate the simulated fre-

quency points. Only one group of random numbers was generated for this investigation 

to show a simple visualization of the effect of the noise in the phase data. The effect of 

the phase noise decreases with increased frequency. Especially above 10 MHz, the 

deviations of Evertical mainly occur at the minimums. Here the variations are not important 

in EMC. At low frequencies, the curves show dramatic deviations up to 10 MHz for both 

vertical and horizontal field components. For example, for the vertical field component, 

where ±3° phase noise (magenta curve in the top figure) causes more than 10 dB de-

viation at 1 MHz compared with the result from MoM. Furthermore, there is a large offset 

of Ehorizontal at very low frequencies when only ±1° phase noise level is added. 

 

Figure 5.13: Influence of phase error on the calculated electric field. 

The results can be summarized shortly. The first research question can be an-

swered. Firstly, the MDM method gives worse estimated electric fields if measured com-

mon-mode current data is used as an input variable. Secondly, theoretical improve-

ments are possible by increasing the number of segments, especially in the regions in 

which the current direction changes. Thirdly, if measured common-mode current data 
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is applied, which means many measurements are required to be done, and each of 

them must be able to resolve very small differences. Nevertheless, this cannot be real-

ized due to the limitation of measurement accuracy. Therefore, in practical applications 

electric fields cannot be predicted from currents at low frequencies. 

5.2 Electrical Field Integral Equation 

The EFIE introduced in chapter 3 provides another possibility for electric field cal-

culation when the current distribution of a source structure is known (see formula (3.38)). 

The formula (3.38) can be directly applied to CISPR 25 measurement setup when the 

current distribution over the cable structure is known. By applying triangular basis func-

tions, the formula (3.38) was expressed as (3.54). An example was already described 

in chapter 4 section 4.2.4, where the current distribution extracted from CONCEPT-II 

was used. In real setups, the common-mode currents can be captured, e.g., using a 

current probe (described in section 5.1). However, it was noted in section 5.1 that EFIE 

works accurately only with a precisely given current distribution along the cable struc-

ture. At low frequencies, the charge distribution dominates the electric fields; when ap-

plying measured currents, no precise currents can be obtained due to the limited meas-

urement accuracy, and charge distribution cannot be calculated. Therefore, EFIE will 

fail if it is applied to real setups for electric field estimation. This method will not be 

discussed further. 

5.3 Static Dipole-Based Method 

As described in chapter 3 section 3.7, when the frequency is very low, the frequency 

dependency of a current distribution can be neglected. The Hertzian dipole can be con-

sidered as a static dipole, which provides another possibility of electric field estimation. 

The static dipole is therefore introduced and described in detail in the following sections. 

 

It is known that the electric field is a contribution of both the electric current and the 

electric charge on a cable structure. This can be seen, e.g., in the electric field integral 

equation in (3.32). In chapter 4, section 4.2.4, this relation was verified, and it was 

pointed out that the contribution of charges dominates the electric field particularly in 

the very low frequency range. 

From a theoretical point of view, it is possible to predict both electric and magnetic 

field exactly by using a set of Hertzian dipoles based on the current distribution in the 

cable structure for the whole frequency range (MDM). However, in real applications, the 
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limited accuracy of current measurements (related to discretization and current magni-

tude/phase along the cable structure) limits the accuracy of MDM at low frequencies 

(see chapter 5 section 5.1.2). 

To overcome the limitations, a static dipole approach can be applied to predict only 

the electric field from a cable. The reason is that only the electric field is interesting in 

CISPR 25 measurement setups at low frequencies since the rod antenna is mainly sen-

sitive to the electric field). At the same time, the magnetic field can be neglected (see 

chapter 4, section 4.3). This approach does not provide a general solution and can only 

be applied to the specific setup at low frequency range in the electric near-field. Ne-

glecting the current can introduce an error at higher frequencies. 

To emphasize the idea of using only static dipoles, Figure 5.14 shows the arrange-

ment of a static dipole in comparison with a Hertzian dipole applied to a cable segment 

over a conductive ground plane and applied image theory. The Hertzian dipole requires 

the current in the segment and should be arranged in the direction of the physical path 

of the current. In comparison, the static dipole, or better to say the charge in a segment, 

is placed at the physical position of the wire segment. By applying the image theory, a 

static dipole is formed. 

 

Figure 5.14: Comparison of the arrangement of a static dipole and a Hertzian dipole in a cable seg-
ment. 

In case of a time-dependent excitation, the static dipole does not consider any 

changing current flow. It only considers the amount of charges and whether the charge 

is positive or negative in the segment related to the time dependency. 

Based on the continuity equation, the charge density inside a volume, in this case, 

the cable segment, depends on the amount of charges per time (current) which flows 

into the segment and which flows out of the segment (neglecting the displacement cur-

rent for simplification). Therefore, the segment is assumed to be a point charge. 

 

Figure 3.11 shows the calculation of the electric field from a static dipole. In Figure 

5.15, subfigure (a) illustrates a charged cable segment parallel to the x-axis. The plane 

𝑧 = 0 is the infinite PEC-ground plane. The cable segment has a length of ∆𝑙 and is 

placed above the ground at a height of ℎ. 𝜌l is the area charge density over the cross-

𝑄 𝐼 

Static dipole Hertzian dipole 

Image charge Image current 
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section of the segment. The vector 𝑟 𝑖 points to the middle of the segment. Subfigure (b) 

illustrates a static dipole model for the cable segment, where the distance between the 

positive and the negative charge is 2ℎ. The position of the static dipole is in the middle 

of the cable segment. The total charge of the cable segment 𝑄 can be obtained by 𝜌n∆𝑙, 

if the cable segment is short enough such that the charges over the segment have a 

uniform distribution and the area charge density is constant over the cross-section of 

the segment. 

 

Figure 5.15: Static dipole-based model for a charged cable segment over the ground (plane z = 0). (a) 
the cable segment is of length ∆𝑙, placed above ground at height of h, (b) the static dipole model, 
where the ground influence is replaced by a negative charge. 

 

Now a set of static dipoles is used to model the cable of a typical CISPR 25 setup. 

Figure 5.16 shows the static dipole-based model. Subfigure (a) illustrates the cable 

structure with positive charges. The cable structure is divided into 𝑁 short segments, 

where the length of each segment is ∆𝑙(= 𝑙/𝑁). Subfigure (b) shows the static dipole 

model, where 𝑁 dipoles are used. The negative charges are used to reproduce the ef-

fects of the ideal ground. The dipole centers correspond to the related center of the 

segments. 

 

Figure 5.16: A static dipole-based model for cable structure of a CISPR 25 setup. (a) the cable struc-
ture above ideal ground, (b) the static dipole model. 
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The charge density distribution along the cable can be found through near-field 

measurements, e.g., with an electric field probe. Based on the measured electric fields, 

the charge density distribution can be calculated by using (5.4) based on the assump-

tion that the segment length ∆𝑙 can be considered as infinite when compared with the 

distance between the segment length and the field observation point. With the obtained 

charge density distribution, the vertical component of the electric field (𝐸𝑧,𝑛) for 𝑛𝑡ℎ ca-

ble segment can be obtained using (3.71) under the condition that 𝜃 = 90𝑜. The contri-

bution of all the cable segments gives the total electric fields: 

𝐸𝑧 = ∑ 𝐸𝑧,𝑛

𝑛=𝑁

𝑛=1

. (5.3) 

To investigate the accuracy of the static dipole model, the parameter settings of the 

equivalent circuit model (see chapter 4, section 4.4.4) were used again. The cable was 

divided into four segments, where each segment has a length of 0.375 m. The four 

cable voltages are related to the charges (𝑄1, … , 𝑄4), extracted from the equivalent cir-

cuit model, were used for creating the four static dipoles to estimate the electric fields. 

 

Figure 5.17: Comparison of the vertical component of the electric field from CONCEPT-II and calcula-
tion based on the static dipole model, where the field observation points face the middle of the cable, 
and 1 m distance to the cable, and at different heights above the ideal ground. 

Figure 5.17 illustrates the absolute deviation of the vertical component of electric 

fields (𝐸𝑧) in dB between the static dipole model and CONCEPT-II. The field observation 

points were set at the rod antenna location (1 m from the cable center) and different 

heights above the ideal ground. The results at 150 kHz, 1 MHz, 10 MHz, 20 MHz, and 

30 MHz are shown. The figure shows that the observed deviations are less than 2 dB 

when the heights of observation points are less than 0.3 m. For the observation point 

at the height of 0.1 m, almost no deviation is observed for most represented frequencies. 

Even for the frequency at 30 MHz, the deviation is less than 1 dB. 

Figure 5.18 shows the deviations when the field observation points are set to be 

above the ideal ground of 0.1 m and at different distances from the cable center. The 
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arrow marks the field at a distance of 1 m and shows the maximum deviation is less 

than 1 dB for all the observed frequencies. However, the deviations increase with ca-

ble’s decreasing distances. When the observation points are close to the structure, the 

length of the cable segments 𝑑𝑙(= 0.375 m) are too long compared to the distance 𝑅 

from the observation point to the static dipole source, for example, at 0.2 m. Therefore, 

they cannot be considered as the cable segments having constant voltage potentials. 

As a result, the four static dipoles are not sufficient for modeling. Here, for CISPR 25 

setups, the distance is fixed at 1 m. Hence, the static dipole model still works with an 

acceptable deviation for the low frequency range. 

 

Figure 5.18: Comparison of the vertical component of the electric field from CONCEPT-II and calcula-
tion based on the static dipole model, where the field observation points facing the middle of the cable 
structure, at 10 cm above the ideal ground, and different distances to the cable center. 

5.4 Huygens Principle-Based Method 

In chapter 1, the Huygens principle was described as a method for near- and far-

field calculation. The idea is to use only some local near-field measurements and to 

construct the field points on a Huygens’ surface. In chapter 3, the derivation of the prin-

ciple was detailed described. It pointed out that applying the Huygens principle to elec-

tric field calculation, both electric and magnetic current sources 𝐽 eq and 𝑀⃗⃗ eq over the 

Huygens’ surface should be known. When the field region outside of the Huygens’ sur-

face is needed, the inner region of the Huygens’ surface can be assumed to be null 

field. Furthermore, if an infinite planar Huygens’ surface (closed in the infinite) and is 

filled with PEC/PMC, only 𝑀⃗⃗ eq/𝐽 eq distribution is required. 

Usually, a closed surface should be defined, e.g., described in [13]. However, 

closed Huygens’ surfaces are often not preferred for practical applications due to the 

requirement of a complex field scan system. In this work, an open Huygens’ surface (a 

truncated Huygens’ surface instead of a closed Huygens’ box, already described in 

[89],[90],[91]) is proposed to reduce the measurement efforts. To reduce the measure-

ment effort further, a planar Huygens’ surface, assumed to be filled with PEC, can be 

applied (described in chapter 3 section 3.2). Then, only E-field measurements on the 

The position of the 

rod antenna 
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surface are required. According to the Huygens principle, determination of 𝑀⃗⃗ eq requires 

E-field distribution (𝐸⃗ S) over the Huygens’ surface (see equation (3.8)). By applying PEC 

and the image theory to the Huygens principle (surface equivalence theorem), 2𝑀⃗⃗ eq as 

the equivalent current source is required for field calculation8 at any arbitrary observa-

tion point. There is no need to apply 𝐽 eq and therefore no need to measure the H-fields. 

The simplification method will be applied in this section for electric fields prediction. 

Furthermore, it will be shown that both electric and magnetic fields can be calculated 

with only the equivalent magnetic current densities 𝑀⃗⃗ eq on the Huygens’ surface. 

It will be shown that only the field distribution in selected discrete locations is 

needed for calculating the electric fields. The CISPR 25 setup is placed on the metallic 

table. The main field source is the cable bundle, and only the electric fields in the front 

of the setup are of interest. Hence, a closed Huygens’ surface is in actual not necessary. 

Furthermore, the proposed method only needs near-field measurements at several lo-

cations along the cable above the metallic table, and only one component of the electric 

fields is required for obtaining the 𝑀⃗⃗ eq distribution on the Huygens’ surface. The reduc-

tion of the measured near-field data can cause some inaccuracy in the estimated elec-

tric fields, which will be discussed in section 5.4.2. 

 

As mentioned above, an infinite planar surface is introduced as the Huygens’ sur-

face. By applying the Huygens principle in combination with the image theory and intro-

ducing a PEC, 2𝑀⃗⃗ eq as the equivalent source on the surface can represent the original 

sources and gives the correct field result at any arbitrary observation point in front of 

the surface. However, for real applications, an infinite planar surface is not applicable. 

In this work, a truncated plane as an open Huygens’ surface is introduced, instead of 

an infinite planar surface. An assumption is that the equivalent sources on the truncated 

area mainly contribute to the fields. The other area of the infinite surface contributes 

minimal to the fields and therefore can be neglected. By truncating the surface, a small 

error in the predicted fields should be expected. 

The open Huygens’ surface has already been introduced in Figure 1.4 (c). The sur-

face is in the front of the cable bundle. Red arrows indicate the locations, where the 

near-field measurements can easily be performed. To obtain the equivalent current 

sources over the Huygens’ surface, the measured data has to be interpolated to obtain 

fields at points between the measurement locations (represented by green arrows). 

Next, an extrapolation has to be performed to obtain the fields at the other locations on 

                                            

8 In this case 𝐽 eq has to be assumed to be zero. 
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the Huygens’ surface (represented by blue arrows). With this information, the electric 

field at the rod antenna location can be estimated. 

Figure 5.19 shows a simplified setup used to investigate the accuracy of the open 

Huygens’ surface. The model was created and simulated using MoM. To save simula-

tion time and to reduce model complexity, an infinite PEC ground plane replaces the 

metallic table. A single-wire cable represents the attached cable structure. 

As shown in Figure 5.19 (a), the reduced Huygens’ surface (dashed red outline) 

has the following dimensions: 3 m long, 1 m high, and the bottom of the surface touches 

the infinite PEC-ground. The cable is 1.5 m long, and both ends of the cable have the 

same distance to the edge of the Huygens’ surface. The field reference point is located 

at a distance of 1 m from the center of the cable. A source 𝑉𝑆 with an impedance of 𝑍𝑆 

= 50 Ω is used. 𝑍𝐿 varied. 10 Ω, 50 Ω, 330 Ω, and 10 kΩ were chosen to investigate the 

effect of different terminations. The Huygens’ surface is located 5 cm in front of the 

simplified measurement setup (see Figure 5.19 (b)). 

 

Figure 5.19: Simplified measurement setup. (a) A single-wire cable over the infinite PEC-ground, 
driven by an ideal voltage source 𝑉𝑆, with source impedance 𝑍𝑆 and load impedance 𝑍𝐿, also the loca-
tion of the defined Huygens’ surface is shown; (b) Side view, which shows the relative position of cable 
and the Huygens’ surface. 

Figure 5.20 shows the simulated vertical polarized electric fields at an observation 

point (1 m distance to the cable structure and 5 cm above the infinite PEC ground). For 

all simulated termination impedances, dashed lines show Huygens principle-based pre-

dicted fields using the defined surface. It should be noted that here both 𝑀⃗⃗ eq and 𝐽 eq 
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are used for the electric field calculation. The purpose is to show that when both 𝑀⃗⃗ eq 

and 𝐽 eq are applied on a truncated planar surface (not an infinite planar surface), the 

Huygens principle works with an acceptable error.  The fields were calculated by using 

the methods described in chapter 3 section 3.5. The algorithm was implemented in 

MATLAB (see Appendix F).  

In the figures, MoM-calculated (CONCEPT-II) results are considered as reference 

fields. The solid lines show the full-wave simulation results from MoM. Both results 

match with less than 0.5 dB deviation, indicating the correct implementation of the Huy-

gens principle and supporting the simplification of only using a truncated plane. So, one 

main research question (introduced in chapter 2) can be answered. The Huygens prin-

ciple can be applied at low frequencies with only a single truncated surface. 

 

Figure 5.20: E-field calculated using the truncated open Huygens’ surface with both 𝑀⃗⃗ eq and 𝐽 eq. The 

cable was terminated with different load impedances. Deviation results from the truncated surface. 

The configuration of the 50 Ω load impedance case in Figure 5.20 is used to further 

investigate the case where only E-fields are applied on the Huygens’ surface (2𝑀⃗⃗ eq and 

𝐽 eq = 0). The field observation point, the Huygens’ surface size, and the location are the 

same as used for calculating the result shown in Figure 5.20. 

Figure 5.21 shows all E-field components (subfigure (a)) and all H-fields (subfigure 

(b)) at the observation point. For both subfigures, the solid lines give the CONCEPT-II 

simulation result, representing the reference. The dashed lines with markers give the 

results where only 2𝑀⃗⃗ eq is applied on the Huygens’ surface. It can be seen that all im-

portant E-field components match well with the reference. The 𝑧- and 𝑦-component of 

the H-field are in line with the reference too. It can be observed that the 𝐻𝑥 does not 

yield the correct result. This deviation can be caused by the truncated surface and the 

Solid lines: MoM 

Dashed line: Using Huygens principle 
10 kΩ 

330 Ω 

50 Ω 

10 Ω 
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discretization9. As H-field is not required in this work, this deviation was not investigated 

further. 

 

Figure 5.21: Comparison of E-fields and H-field when using only 2𝑀⃗⃗ eq (introduced PEC on Huygens’ 

surface) on the truncated open Huygens’ surface for 50 Ω load impedance. 

 

                                            

9 To calculate 𝐻⃗⃗ , the equation 𝐻⃗⃗ = 𝐻⃗⃗ A + 𝐻⃗⃗ F =
1

𝜇
𝛻 × A⃗⃗ − 𝑗𝜔F⃗ −

𝑗

𝜔𝜇𝜀
∇(∇ ⋅ F⃗ ) is applied (see appendix A, 

equation (9.33)). As only 2𝑀⃗⃗ eq is used, the first term 
1

𝜇
𝛻 × A⃗⃗ = 0, and the second term −𝑗𝜔F⃗  and the 

third term −
𝑗

𝜔𝜇𝜀
∇(∇ ⋅ F⃗ ) are relevant (see equation (3.13)(3.8)). At low frequencies, especially 

1

𝜔
 in the 

third term becomes very high. Therefore, as a compensation, ∇(∇ ⋅ F⃗ ) needs to be very accurate. The 

accuracy depends on the discretization and size of the surface. 

(a) 

(b) 



5.4 Huygens Principle-Based Method 

86 

 

It proved above that by applying the truncated single surface, an acceptable error 

of the calculated electric fields can be seen. However, it is not so easy to scan all the 

field components over the defined Huygens’ surface with few costs but time-effective. 

Therefore, the dominant field sources must be investigated, which is done in this section.  

It is proven by Figure 5.20 that the assumption adds less than 0.5 dB deviation to 

the calculated electric fields. Furthermore, to reduce near-field scan time, one can fill 

the closed surface e.g., with PEC. In this case, only the 𝑀⃗⃗ eq is relevant, which means 

only the E-field distribution is required. In this section, the field contribution of each field 

component over the Huygens’ surface will be investigated. 

Using the coordinate system defined in Figure 5.19 (a), the tangential field com-

ponents on the Huygens’ surface are 𝐸𝑧 and 𝐻𝑧 , 𝐸𝑥 and 𝐻𝑥. In order to determine which 

tangential field component has the most significant contribution to the field at the rod 

antenna location, the simplified setup shown in Figure 5.19 was used and a load im-

pedance (𝑍𝐿 = 50 Ω) was chosen. Other impedances (10 Ω, 330 Ω, 10 kΩ) were also 

simulated and have shown similar results with respect to the dominating contribution. 

Figure 5.22 shows Evertical at the rod antenna location contributed from different field 

components over the Huygens’ surface (𝑍𝐿 = 50 Ω); the 𝐸𝑧 field component dominates. 

When only using 𝐸𝑧, the observed error is about 5 dB relative to a full-wave simulation. 

The contribution from 𝐸𝑥 is weak, thus, it is neglected and not shown in the figure. The 

observed magnetic field components (𝐻𝑥 and 𝐻𝑧) have smaller contributions than 𝐸𝑧 

component. Thus, the method simplifies further by using only the 𝐸𝑧 fields. 

 

Figure 5.22: Contribution from different field components on the Huygens’ surface. 

Till now it has been figured out that 𝐸𝑧 is the dominant field component. One must 

consider that measuring magnetic field over a plane should be much easier than meas-

uring electric field. However, one must measure two magnetic field components, as 
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both 𝐻𝑥 and 𝐻𝑧 are dominant. One the other side, if an infinite PEC-Huygens plane is 

assumed, only 𝐸𝑧 is necessary. 

To save near- field scan time, a field extrapolation method will be introduced in the 

coming section for estimating the 𝐸𝑧 distribution. Introducing such simplifications and 

inter-/extrapolation can result in slight deviations compared to an ideal solution with a 

large number of measurement points. But the error can be acceptable in EMC meas-

urements. 

 

To reduce the measurement time only the amplitude of the dominant 𝐸𝑧-field should 

be measured at several locations above the metallic table. Figure 1.4 (c) shows the 

measured and interpolated locations). A spline function [92] is introduced for field inter-

polation. This interpolation is required to obtain sufficient near-field data [93]. Second, 

to extrapolate 𝐸𝑧 for the remainder of the points over the defined Huygens’ surface, a 

quasi-static approximation was used, as described in [94] and [95]. A side view of a 

single-wire cable is illustrated in Figure 5.23. The cable was placed at a height ℎ above 

the ground plane, parallel to the x-axis in a Cartesian coordinate system. The cable has 

a radius of 𝑎, is infinitely long, and carries a charge density 𝜌l. The field approximation 

can only be suitable for a cable of infinite length; it assumes a quasi-static field. Thus, 

the observation point must be very close to the cable regarding the wavelength of the 

frequency of interest. The electric fields from the cable at observation point 𝑃(𝑦𝑃, 𝑧𝑃) 

can be taken as a sum of the electric field from the cable above ground and the electric 

field from the image of the cable, which are given by 

𝐸𝑧 =
𝜌l
2𝜋𝜀0

[
𝑧𝑃 − ℎ

(𝑧𝑃 − ℎ)2 + 𝑦𝑃
2 −

𝑧𝑃 + ℎ

(𝑧𝑃 + ℎ)2 + 𝑦𝑃
2], (5.4) 

𝐸𝑦 =
𝜌l
2𝜋𝜀0

[
−𝑦𝑃

(𝑧𝑃 − ℎ)2 + 𝑦𝑃
2 +

𝑦𝑃
(𝑧𝑃 + ℎ)2 + 𝑦𝑃

2]. (5.5) 

The comparison between fields approximated using MoM and (5.4) are shown in 

Figure 5.24 at position x = 0.25 m for frequencies 150 kHz (top figure) and 30 MHz 

(bottom figure), respectively. The parameter settings are the same as those used in 

Figure 5.19. The field extrapolation delivers the missing field values along the Huygens’ 

surface. Star markers within the figure indicate points at which the fields are compared. 

Only 𝐸𝑧 magnitude distributions are shown. 

Phase information is not captured, the phases of the measured 𝐸𝑧 and the interpo-

lated 𝐸𝑧 are assumed  0o. This assumption can be made because the E-field is insen-



5.4 Huygens Principle-Based Method 

88 

sitive to phase distribution at low frequencies. However, for observation points at differ-

ent heights along the Huygens’ surface, a phase shift of 180o occurs due to the cable 

structure itself, which can be obtained from the equation (5.4) for the extrapolated fields. 

 

Figure 5.23: The side view of the cable, which is parallel to the x-axis, having the charge density 𝜌𝑙 
and is above the ground plane. The image represents the ground effects. 

Using the electrostatic approximation is acceptable in the frequency range of inter-

est. Thus, the functional behavior expressed in (5.4) (see Figure 5.24, red curve) can 

be used for the approximation of the field distributions along the Huygens’ surface. By 

applying only the magnitude of the measured 𝐸𝑧 and the interpolated 𝐸𝑧 as the start 

values for the curves, the electric field at the rod antenna location can be predicted. 

Since the field observation point is required to be very close to the cable, (5.4) can 

also be used to indirectly calculate the charge distribution on the cable, which can be 

achieved by firstly placing an electric field probe close to the cable to measure 𝐸𝑧, then 

resolving the charge density through (5.4). 

 

Figure 5.24: Comparison of 𝐸𝑧 along the height of Huygens’ surface between field extrapolation and 
MoM result for at 150 kHz and 30 MHz. 

With the measured, interpolated and extrapolated 𝐸𝑧-distribution over the defined 

surface, the equivalent current sources can be calculated using (3.8). The workflow for 

the Huygens principle-based method is shown in Figure 5.25. 
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Figure 5.25: Workflow of using the Huygens principle-based method. 
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6 Measurement of Local E-Field Distribution 

It was shown before that the current based field estimation methods must fail at low 

frequencies due to the high sensitivity against wrong input data unavoidable measure-

ment errors. More promising are E-field based methods like the Huygens principle-

based method or the static dipole-based method. Both methods require local E-field 

measurements. In this chapter, the used measurement approach is described. 

6.1 Electric Field Probe 

Probes for measuring RF electric and magnetic fields were intensively investigated, 

for example in [96]. Some probes can be used well for near-field scans. Often small 

dipole/monopole structures are used to measure the electric fields. In this work, a mon-

opole probe was applied that is known to provide very robust results. The characteristics 

of the probe can be analyzed using the theory described in chapter 4. 

 

Figure 6.1: Electric field probe, (a) sketch, (b) photo. 

The used probe is illustrated in Figure 6.1. A special antenna amplifier with very 

high input impedance (R&S EZ-12 [97]) provides a high impedance as the load for the 

monopole/short wire. The amplifier provides a 50 Ω output impedance for direct con-

nection to 50 Ω measurement equipment.  

Before conducting near-field measurements, the field probe (see Figure 6.1) needs 

to be calibrated. Small electric-field probes can be calibrated using a TEM cell [98] or 

based on a calibration structure [99]. In this work, the size of the antenna amplifier sig-

nificantly disrupts the E-field distribution inside the TEM cell. Therefore, a small calibra-

tion structure is used to calibrate the field probe, shown in Figure 6.2. In contrast to a 

TEM cell, it is not possible to calculate the field analytically for this structure. For that 

reason, a numerical solution from CONCEPT-II is used to determine the field at the 

probe’s location. The probe factor (𝑃f) can be simply defined by, e.g., in [99]: 

𝑃f =
𝐸simu
𝑉Ant

. (6.1) 

(a) (b) 

Amplif. 
EZ-12 

Monopole/wire 
Cable/out 
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where 𝑉Ant is the output voltage of the antenna amplifier when the field probe is placed 

in the calibration structure. 𝐸simu is the field at the observation point obtained from the 

simulated calibration structure. 

In Figure 6.2 subfigure (a) shows a sketch of the calibration structure. It consists of 

an unshielded cable of 15 cm length placed 1 cm above the ideal PEC ground. The 

radius of the cable is 1.5 mm. Both source impedance 𝑍𝑆 and load impedance 𝑍𝐿 are 

150 Ω. The field observation point is at [7.5, -5.0, 0.0] cm, which has 5 cm distance to 

the cable, and directly over the PEC ground. Only 𝐸𝑧 (= 𝐸simu) is considered for cali-

bration. Meanwhile, the field probe is placed 5 cm away from the cable in the calibration 

structure (see subfigure (b)), and then, the 𝑉Ant can be obtained. Applying the formula 

(6.1) the probe factor can be determined. 

 

Figure 6.2: Field probe calibration, (a) A sketch of the calibration model, (b) Probe in calibration (picture). 

6.2 Accuracy of Field Measurements in a CISPR 25 Setup 

Near-field measurements in CISPR 25 setup were conducted with the E-field probe, 

as shown in Figure 6.3. A single-wire cable with a length of 1.5 m was positioned 5 cm 

above the ground and terminated at one end with 50 Ω. The other end was fed by the 

tracking generator mode of a test receiver (R&S ESPI 3 [100]). The electric field probe 

was moved along with the cable, and the antenna voltage was measured with the test 

receiver input.  

Using the probe factor 𝑃f obtained from the calibration, the measured electric fields 

can be determined. As an example, the electric fields (vertical field component, 𝐸𝑧) at 

150 kHz, 1 MHz, 10 MHz, and 30 MHz are represented in Figure 6.4. The red curves 
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were obtained by CONCEPT-II and can be considered as reference fields. The point 

markers on the curves specify the measurement positions of the field probe along the 

cable length. The data indicates a 3 dB higher measurement value for 150 kHz and 

1 MHz. For 10 MHz and 30 MHz, the measured results are in line with the simulated 

data having a deviation of only 1 dB. The 3 dB deviation at low frequencies might be 

caused by the different field shapes in calibration and measurement since the electric 

field used for calibration is different compared with the electric field in the CISPR 25 

measurement setup. 

 

Figure 6.3: Setup of near-field measurements, (a) sketch, (b) photo. 

 

Figure 6.4: Comparison of the measured and simulated electric fields. 
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7 Validation and Discussion 

It has been shown that the current measurement-based field prediction methods 

must fail at low frequencies due to unavoidable measurement errors. Now only the E-

field measurement-based methods are considered as promising candidates for a prac-

tical application. This chapter shows the validation of the Huygens principle-based 

method and the static dipole-based method. It is discussed how accurate the antenna 

fields in a standard CISPR 25 setup can be predicted.  

7.1 Validation of the Methods 

 

 Validation Setup 

Before introducing the near-field measurements for a CISPR 25 measurement 

setup in a laboratory environment, a single-wire cable structure inside the chamber was 

involved in validating the proposed estimation methods (described in chapter 5, section 

5.3 and 5.4). The structure was introduced, as shown in Figure 6.3 (b). 

 Near-Field Measurement Results 

The near-field measurements were done, as described in chapter 6,  and the meas-

ured near-field data (see Figure 6.4) were used for post-processing. 

 Comparison of Estimated Electric Fields  

Totally eleven points were measured to prove the accuracy of the near-field meas-

urements, and these near fields are used for estimating the electric fields at a field ob-

servation point. Here, the field observation point is set facing the cable center at 1 m 

distance and 10 cm above the ground. 

Figure 7.1 shows the predicted results. MoM solution (CONCEPT-II) serves as a 

reference. The black curve gives the ALSE rod antenna measurement result, which was 

obtained by adding the captured antenna voltage with the antenna factor. As it has 

already described in chapter 1, the calculated antenna field is an approximated value. 

Here, a deviation of about 5 dB can be observed between the black curve and the MoM 

result, excepting the resonance at around 18 MHz. The resonance is known, as it de-

scribed in 4 section 4.5.2. 

The magenta curve shows estimated fields from the Huygens principle-based 

method, which is about 4 dB smaller than the result from MoM. The deviation is reason-

able because it is a result of using only the 𝐸𝑧 distribution for creating the Huygens’ 
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equivalent current sources. The reason is that from the theoretical analysis it is known 

that the calculated electric fields should be about 5 dB smaller than MoM results, when 

only 𝐸𝑧 distributions are utilized (as demonstrated in Figure 5.22) (see chapter 5, sec-

tion 5.4.2). Therefore, a deviation of about 4 dB is acceptable. If applying PEC to the 

closed Huygens’ surface and supposing that the plane surface is closed in infinite, the 

𝑀⃗⃗ 𝑆 should be doubled. As a result, the calculated value should be additional added with 

6 dB. With the additional 6 dB, the Huygens principle-based method will give a deviation 

of about 2 dB to the MoM result. The deviation comes mainly due to the inaccuracy 

from the near-field measurements. 

The blue curve shows the result of the static dipole-based method. This method 

placed uniform charges along each subdivided segment of the cable (see Figure 5.16). 

By inserting the measured electric fields into (5.4), the charge densities were resolved. 

The data indicates that the estimated field is about 3 dB bigger than the result of MoM. 

The deviation is caused by errors in the conversion of the measured probe voltage to 

electric fields (the measured fields are about 3 dB stronger than the simulated values 

as given in Figure 6.4). 

 

Figure 7.1: Estimated fields based on near-field measurements. 

Figure 7.1 illustrates the results only for the case of having a 50 Ω termination; Fig-

ure 7.2 shows the results for some other load impedances conditions. The results are 

represented as the deviation in dB between the estimated electric fields and the MoM 

results. The cross markers illustrate the load impedances used for this investigation. 

The figure shows results at 1 MHz since at low frequencies and for most load imped-

ances, the electric field maintains a constant value, which is a consequence of having 

a nearly constant voltage on the cable. The data shows that the static dipole-based 

method caused a deviation within 3 dB compared with the MoM results. In contrast, the 

Huygens principle-based method gives a deviation of about 5 dB, due to that the mag-

netic field distribution over the Huygens’ surface is not involved. Here, it should be men-

tioned again, if PEC is applied, the Huygens principle-based method provided result 

should be added with 6 dB, which gives a result of around 1-2 dB deviation. 
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Figure 7.2: Deviation of estimated Evertical for different resistive loads at 1 MHz. 

 

 Validation Setup 

To validate the proposed methods for electric field estimation, a more complex 

CISPR 25 measurement setup was used, as shown in Figure 7.3. A simple floating PCB 

represents the EUT, and a 1.5 m long twisted wire pair (TWP) cable connects two ANs 

in one enclosure, according to CISPR 25. 

 

Figure 7.3: Measurement setup, (a) schematic of the setup, (b) photo of the setup inside the shielded 
chamber, (c) drawing of PCB, top view, (d) drawing of PCB, side view. 

Figure 7.3 (a) shows the schematic of the setup, and (b) shows a photo of the 

measurement setup. Figure 7.3 (c) shows the dimensions of the PCB. On the top 15 cm, 

copper traces are placed at a distance of 2 cm and are terminated with 50 Ω. The bot-

tom layer is a solid copper plane. The PCB is placed on a styrofoam block 5 cm above 

the metallic table. A side view is shown in Figure 7.3 (d). The setup was fed by the 

𝑑𝐵(𝐸static dipole) − 𝑑𝐵(𝐸MoM) 

𝑑𝐵(𝐸Huygens′) − 𝑑𝐵(𝐸MoM) 
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measurement port of the ANs using the tracking generator of the measurement receiver. 

This setup was used to analyze the different methods.  

 Near-Field Measurement Results 

The measured electric fields along the cable of the setup in Figure 7.3 are shown 

for different frequencies in Figure 7.4.  

 

Figure 7.4: Near-field measurement results inside and outside a chamber. 

The measurements were done inside and outside of a semi-anechoic chamber. 

Figure 7.4 (a) gives the measurement path. The cable starts at 0 m (AN-side) and ends 

at 1.5 m (PCB-side). An EMI measurement receiver [100] with an output power of 

0 dBm was used as the source for exciting the measurement setup. The electric field 

probe, described in Figure 6.2, was placed at a distance of 5 cm in front of the cable. 

Figure 7.4 (b) shows the measured electric fields at 150 kHz, 1 MHz, 10 MHz, and 

30 MHz. The star markers show the positions where fields were measured. The fields 

measured inside and outside of the chamber are nearly the same, which means there 

is no need to use the chamber. Only in a very noisy environment which may disturb the 

measurement, a small chamber might be needed. In this configuration, the dominating 
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field contribution comes from the TWP-cable. The field intensity declines quickly when 

the probe moves far away from the cable. Only 20 cm distance causes a 20 dB de-

crease. 

 Comparison of Estimated Electric Fields 

Figure 7.5 shows the estimated electric fields from different estimation methods. 

The red curve represents the standard field measurement result from a CISPR 25 rod 

antenna. The measurement was performed inside the ALSE. The antenna factor pro-

vided by the manufacturer was applied to calculate the electric field from the measured 

antenna voltage. At 150 kHz, a significant deviation can be seen, which is caused by 

the used test receiver that is specified only for frequencies above 300 kHz. It does not 

mean that measurements are impossible below 300 kHz, but sensitivity can be low. 

The black curve shows the Huygens principle-based field prediction result. The 

measured near-field data shown in Figure 7.4 was used to calculate the equivalent cur-

rent sources on the Huygens’ surface. The Huygens’ surface has a length of 1.5 m and 

a height of 1 m and is perpendicular to the metallic table and located in the front of the 

TWP-cable, 5 cm away from the metallic table’s edge. The length of the Huygens’ sur-

face (from 𝑥 = 0 cm to 𝑥 = 1.5 m) is the same as the path where the near-field meas-

urements were performed. This length is equal to the length of the TWP-cable, which 

produces fields. Based on the measured near-field points at 𝑥 = 0.25 m, 0.75 m, and 

1.25 m, the field data at other locations of the Huygens’ surface could be found by field 

interpolation and approximation. The method was explained in section 5.4.3. 

The cyan curve shows the predicted result using the static dipole-based method, 

where three segments were applied to create the static model. The measured near 

fields at 𝑥 = 0.25 m, 0.75 m, and 1.25 m were used to calculate the charge density dis-

tribution over the TWP-cable. 

Figure 7.5 shows that both the Huygens principle-based method and the static di-

pole-based method match well with the referenced standard field measurement result. 

The deviations between the field prediction methods and the standard field measure-

ment result are within 3 dB. 

Theoretically, a deviation of up to 5 dB can be expected when only 𝐸𝑍  distribution 

is used (the case used in the curve, no PEC is applied to the principle). The reason is 

that the rod antenna gives an antenna voltage, and the electric field is obtained by mul-

tiplication of the voltage with the antenna factor. It is known that the antenna voltage is 

the result of the integrated field along the rod antenna. Nevertheless, the Huygens prin-

ciple-based method gives a field in only one field point. As it was shown before (chapter 
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4, section 4.3), the field at rod antenna location varies by 5 dB. Therefore, such a devi-

ation should be expected. Another reason can be the electric field measurements with 

short probes (see Figure 6.4). A deviation of up to 3 dB could be found.  

The static dipole-based method gives a result of about 3-5 dB more than the stand-

ard field, which is due to that each segment is assumed to have a uniform charge dis-

tribution and an infinite length to obtain the charge density from the measured electric 

field. Another source of errors is introduced by the measured field, which cannot be 

measured with very high accuracy. 

Anyway, both proposed methods show a good match to the CISPR 25 standard 

measurement result and can be very helpful for pre-compliance analysis. 

 

Figure 7.5: Estimated electric fields. 

7.2 Discussion of the Presented Methods 

The methods mentioned above are now shortly summarized and discussed: 

1. MDM Method 

This method has been proved to work well at higher frequencies. But at low fre-

quencies it fails. The reasons for low frequency problems are summarized now and are 

described more in detail in chapter 5 section 5.1: 

 From a theoretical point of view, the MDM method can be considered as a 

numerical summation of a set of piecewise constant current basis functions. 

Compared with triangular basis functions, which provide a continuous cur-

rent distribution at cable connection especially for cables have a perpendic-

ular connection (related to horizontal and vertical currents in this work), the 
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piecewise constant current distribution limits the accuracy since the piece-

wise constant basis function shows a bad convergence. The work could 

show that the usage of a large number of segments at the vertical cable parts 

can reach a better field calculation result. However, the improvement only 

relates to very accurate current data from the simulation. 

 The current measurement accuracy is limited. Furthermore, it is very difficult 

to obtain the vertical currents. The measurement of a high-resolution current 

distribution is impossible. Especially at lower frequencies, the measurement 

will not be able to resolve small phase changes along a cable. Data will be 

noisy. At low frequencies, this noise will be strongly amplified by the MDM 

data processing, as shown in chapter 5, section 5.1. Further deviations may 

be introduced by the insertion impedance of the current probe and position 

errors. 

2. Huygens Principle-Based Method 

The method described here uses a highly simplified application of the Huygens 

principle. Instead of capturing all four tangential field components with phase and mag-

nitude on a surface that separates the measurement setup and the field location of 

interest, only the magnitude of the 𝐸𝑧-field is captured at a few locations along the har-

ness. A good agreement to standard field measurements for the low frequency range 

can be seen. The reason for small deviations is that only the 𝐸𝑧 field distribution from 

some measurement points is used, and the field extrapolation process is based on 

some assumptions not given fully. Furthermore, the E-field data can be inaccurate. 

One can introduce, for example, an infinite large planar Huygens’ surface filled with 

PEC, as shown in Figure 3.4. Under this condition, only the electric field distribution 

over the defined Huygens’ surface is required. The equivalent magnetic current sources 

(calculated with electric field distribution over the surface) should be doubled, which 

results in the calculated final electric field must be added with 6 dB mathematically. As 

in this work, a truncated Huygens’ surface is used, which produces theoretically 5 dB 

difference of field to the reference value (using only 𝐸𝑧, since contribution from 𝐸𝑥 is 

negligible, see Figure 5.22). 1 dB deviation introduced by the truncated surface (by as-

suming the field distribution in the area outside of the truncated range is zero) must be 

considered. To observe the contribution from H-field distribution, this work also tried to 

add magnetic field measurement to compensate contribution from magnetic field distri-

bution. Figure 7.6 shows the magnetic probe output power in dBm for the measurement 

setup in Figure 7.3. It can be seen that for this configuration at low frequencies, the 

magnetic field signal is very weak. Another reason would be the chosen magnetic field 

probe doesn’t have enough sensitivity at low frequencies. 
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Figure 7.6: The influence of magnetic field distribution. 

3. Static Dipole-Based Method 

The basic idea of the method is that the charge on the cable with its image forms a 

set of static dipoles. The cable can be subdivided into segments, and the number of 

segments can equal the number of static dipoles. To obtain the charge over each seg-

ment, measured E-field data can be used. The measured data can be used to estimate 

the charges on the cable, and then, using electrostatic methods, the field at the point of 

interest can be calculated. 

The results show a deviation in the range of 3 dB compared with the CISPR 25 

standard field measurements. However, the accuracy highly depends on the charge 

estimation. The accuracy of the field probe is a limiting factor. Furthermore, as the 

method is only based on a static field approximation, it fails at higher frequencies.  

 

 

Signal drown into noise 
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8 Conclusion and Outlook 

In automotive component emissions measurements, the ALSE method, as speci-

fied in CISPR 25 shows the best correlation to the emission behaviors of in-vehicle au-

tomotive components and is therefore commonly used. However, this measurement 

method requires a large and expensive chamber. Alternative methods were proposed 

from several scientific groups to avoid the need for a large chamber. These methods 

should predict the fields of a chamber measurement and can be used at least for pre-

compliance measurements. Several approaches were developed in the past. The most 

promising ones are based on common-mode current measurements for emission 

source characterization. The underlying assumption is that the common-mode currents 

along the cable bundle of equipment under test dominate the emission. This method 

uses a multi-dipole model (also called MDM in this dissertation) to estimate the electric 

fields at the rod antenna location. While the common-mode current based methods 

work well for high frequencies, they fail for frequencies below 30 MHz. This thesis fo-

cuses on the analysis of the root cause for the failures at low frequencies and on finding 

a better alternative method to predict the CISPR 25 ALSE method results for the low 

frequency range. The main contributions can be subdivided into three parts.  

First, the standard CISPR 25 measurement setups were analyzed. It is discussed 

that at lower frequencies, the capacitive coupling is the dominant coupling mechanism 

in comparison to the magnetic coupling. Feedback effects of the rod antenna can be 

neglected. Threshold values in the CISPR 25 standard are given as electric field 

strength values. As the rod antenna is in the near-field region, where the electric field is 

inhomogeneous, the single field value assumption for the rod antenna is incorrect. How-

ever, in practical engineering work, a simple measurement specification, which is in line 

with other specifications, can be more useful than an exact but difficult to handle method. 

Thus, the reduced accuracy is accepted. It is assumed that the antenna field can be 

found by multiplying the antenna voltage with an antenna factor, retrieved in a calibra-

tion procedure. The accuracy of this assumption is discussed. It could be found that the 

electric field varies at the rod antenna location up to 5 dB. Due to this reason, it is difficult 

to define a dedicated point at the rod antenna location where the electric field should 

be predicted. 

Second, the limitations of the MDM at low frequencies were studied using theoret-

ical analysis and measurements. An MDM configuration was investigated. The MDM 

requires current measurements as input data. It could be shown that accurate phase 

information is essential for a current based field prediction at low frequencies. Some 

parts of a current carrying structure have to be subdivided into a large number of di-

poles to obtain acceptable results parameterized with highly accurate currents. As the 

phase measurements cannot provide the required accuracy, the MDM must fail at low 

frequencies. 
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Third, two new prediction methods were introduced, analyzed, and validated. The 

first approach uses measured electric fields along the cable bundle combined with the 

Huygens principle for antenna field prediction. This method is well known from high 

frequency applications, but is not limited to low frequencies and can be attractive to 

cover a wide frequency range with a single alternative method. In this method, in a first 

step, the vertical electric field is measured at a small number of locations close to the 

cable bundle on the ground plane. Next, additional data points are created using inter-

polation. In the next step, an analytical solution of the fields close to a charged line is 

used to obtain the field distribution by extrapolation above the ground plane. This way, 

the Huygens’ surface adjacent to the emitting structure can be parameterized. It could 

be found that a closed Huygens box is not required. Finally, the Huygens principle is 

applied to obtain the field at the antenna location based on the field points on the Huy-

gens’ surface. The second approach uses the measured near-field data to create a set 

of static dipoles. The summation of the contribution of each dipole can also be used to 

predict the field at the antenna location. 

There are three major scientific findings in this work. First, this dissertation ana-

lyzes the standard CISPR 25 setups in detail. For example, the work analyzes and 

discusses the coupling mechanisms and the feedback effects in the measurement set-

ups. This has not been done in detail before. The antenna factor, which is typically 

used for the calculation of a field from an antenna voltage, is analyzed. Secondly, the 

limitations of the MDM model are analyzed in detail. It could be shown that a very fine 

discretization of a radiating structure can be necessary, and the current measurements 

have to be extremely accurate. The needed accuracy cannot be achieved with typical 

equipment today. Thirdly, the applicability of the Huygens principle to low frequency 

field estimations was investigated. It could be shown the first time that the Huygens 

principle cannot only be used at high frequencies for CISPR 25 pre-compliance anal-

ysis but also for low frequencies. A single method could cover the whole frequency 

range of CISPR 25 field measurements. A further alternative method, but accurate only 

at very low frequencies, could be found by using static dipoles. All findings are sup-

ported by simulation and measurement results. 

An outlook of the work is to extend the founded method to higher frequencies 

using automation and data fusion. For automatization purposes, a measurement setup 

table could include a scanner that moves an electric field probe along the cable har-

ness to capture the electric field. Particularly at the termination devices where the field 

is inhomogeneous or at high frequencies, automated capturing of many points can be 

advantageous. Data fusion can be applied if multiple sensors capture partially redun-

dant data with the known weaknesses of each sensor path. In the data fusion process, 

the advantages of each sensor data could be used to create a weighted average over 

all sensor information. An example of such an approach may be the combination of an 

electric field sensor and a magnetic field sensor. Data fusion could reduce uncertainty 
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and can be used to check plausibility mutually. For example, this could detect damage 

in one of the sensor paths. 

Taking the idea of data fusion one step further, one may consider cancellation of 

ambient signals as part of the data fusion. Here, methods such as a direct cancellation 

from a reference antenna may be considered in case of a highly noisy unshielded la-

boratory environment. 
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9 Appendix 

A. Derivation of the Vector Potentials 𝐀⃗⃗  and 𝐅  and the Field Equa-

tions 

The following derivation is taken from [13]. 

In a source-free region, the magnetic flux density 𝐵⃗  is always solenoidal, that is, 

𝛻𝐵⃗  =  0. Therefore, it can be represented as the curl of another vector because it obeys 

the vector identity 

∇ ⋅ (∇ × A⃗⃗ ) = 0. (9.1) 

where A⃗⃗  is an arbitrary vector. Thus, we define 

𝐵⃗ A = 𝜇𝐻⃗⃗ 𝐴 = ∇ × A⃗⃗ , (9.2) 

or 

𝐻⃗⃗ A =
1

𝜇
𝛻 × A⃗⃗ , (9.3) 

where subscript A indicates the fields due to the A⃗⃗  potential. Substituting (9.3) into 

Maxwell’s curl equation 

∇ × 𝐸⃗ A = −𝑗𝜔𝜇𝐻⃗⃗ A (9.4) 

reduces it to 

∇ × 𝐸⃗ A = −𝑗𝜔𝜇𝐻⃗⃗ A = −𝑗𝜔∇ × A⃗⃗ , (9.5) 

which can also be written as 

∇ × [𝐸⃗ A + 𝑗𝜔A⃗⃗ ] = 0. (9.6) 

From the vector identity 

∇ × (−∇𝜙e) = 0, (9.7) 

and (9.6), it follows that  

𝐸⃗ A + 𝑗𝜔A⃗⃗ = −∇𝜙e, (9.8) 

or 

𝐸⃗ A = −∇𝜙e − 𝑗𝜔A⃗⃗ . (9.9) 
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𝜙𝑒 represents an arbitrary electric scalar potential that is a function of position. 

Taking the curl of both sides of (9.2) and using the vector identity 

∇ × ∇ × 𝐴 = ∇(∇ ⋅ 𝐴 ) − ∇2𝐴  (9.10) 

leads to 

∇ × (𝜇𝐻⃗⃗ A) = ∇(∇ ⋅ A⃗⃗ ) − ∇
2A⃗⃗ . (9.11) 

For a homogeneous medium, (9.11) reduces to 

𝜇∇ × 𝐻⃗⃗ A = ∇(∇ ⋅ A⃗⃗ ) − ∇
2A⃗⃗ . (9.12) 

Equating Maxwell’s equation 

∇ × 𝐻⃗⃗ A = 𝐽 + 𝑗𝜔𝜀𝐸⃗ A (9.13) 

to (9.12) leads to  

𝜇𝐽 + 𝑗𝜔𝜇𝜀𝐸⃗ A = ∇(∇ ⋅ A⃗⃗ ) − ∇
2A⃗⃗ . (9.14) 

Substituting (9.9) into (9.14) reduces it to 

∇2A⃗⃗ + 𝛽A⃗⃗ = 𝜇𝐽 + ∇(∇ ⋅ A⃗⃗ ) + ∇(𝑗𝜔𝜇𝜀𝜙e) = −𝜇𝐽 + ∇(∇ ⋅ A⃗⃗ + 𝜔𝜇𝜀𝜙e), (9.15) 

where 𝛽2 = 𝜔2𝜇𝜀. 

In (9.2) the curl of A⃗⃗  was defined. Now we are free to define the divergence of A⃗⃗ , 

which is independent of its curl. Both are required to uniquely define A⃗⃗ . In order to sim-

plify (9.15), let 

∇ ⋅ A⃗⃗ = −𝑗𝜔𝜇𝜀𝜙e ⇒ 𝜙e = −
1

𝑗𝜔𝜇𝜀
∇ ⋅ A⃗⃗ , (9.16) 

which is known as the Lorenz condition (or gauge). Other gauges may be defined. 

Substituting (9.16) into (9.15) leads to 

∇2A⃗⃗ + 𝛽2A⃗⃗ = −𝜇𝐽 . (9.17) 

In addition, (9.9) reduces to 

𝐸⃗ A = −∇𝜙e − 𝑗𝜔A⃗⃗ = −𝑗𝜔A⃗⃗ − 𝑗
1

𝜔𝜇𝜀
∇(∇ ⋅ A⃗⃗ ). (9.18) 

Once A⃗⃗  is known, 𝐻⃗⃗ A can be found from (9.3) and 𝐸⃗ A from (9.18). 𝐸⃗ A can just as easily 

be found from Maxwell’s equation (9.13) by setting 𝐽 = 0. 
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In a source-free region, the electric flux density 𝐷⃗⃗  is always solenoidal, that is, ∇𝐷⃗⃗ =

0. Therefore, it can be represented as the curl of another vector because it obeys the 

vector identity 

∇ ⋅ (−∇ × F⃗ ) = 0, (9.19) 

where F⃗  is an arbitrary vector. Thus we can define 𝐷⃗⃗ F by 

𝐷⃗⃗ F = −∇ × F⃗ , (9.20) 

or 

𝐸⃗ F = −
1

𝜀
∇ × F⃗ , (9.21) 

where the subscript 𝐹 indicates the fields due to the F⃗  potential. Substituting (9.21) into 

Maxwell’s curl equation 

∇ × 𝐻⃗⃗ F = 𝑗𝜔𝜀𝐸⃗ F (9.22) 

reduces it to 

∇ × (𝐻⃗⃗ F + 𝑗𝜔F⃗ ) = 0. (9.23) 

From the vector identity (9.7), it follows that 

𝐻⃗⃗ F = −∇𝜙m − 𝑗𝜔F⃗ , (9.24) 

where 𝜙m represents an arbitraty magnetic scalar potential that is a function of posi-

tion. Taking the curl of (9.21) 

∇ × 𝐸⃗ F = −
1

𝜀
∇ × ∇ × F⃗ = −

1

ε
[∇(∇ ⋅ F⃗ ) − ∇2F⃗ ] (9.25) 

and equating it to Maxwell’s equation 

∇ × 𝐸⃗ F = −𝑀⃗⃗ − 𝑗𝜔𝜇𝐻⃗⃗ F (9.26) 

lead to  

∇2F⃗ + 𝑗𝜔𝜇𝜀𝐻⃗⃗ F = ∇(∇F⃗ ) − 𝜀𝑀⃗⃗ . (9.27) 

Substituting (9.24) into (9.27) reduces it to  

∇2F⃗ + 𝛽2F⃗ = −𝜀𝑀⃗⃗ + ∇(∇ ⋅ F⃗ + 𝑗𝜔𝜇𝜀𝜙m). (9.28) 

Letting 

∇ ⋅ F⃗ = −𝑗𝜔𝜇𝜀𝜙m ⇒ 𝜙m = −
1

𝑗𝜔𝜇𝜀
∇ ⋅ F⃗  (9.29) 
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reduces (9.28) to  

∇2F⃗ + 𝛽2F⃗ = −𝜀𝑀⃗⃗  (9.30) 

and (9.24) to 

𝐻⃗⃗ F = −𝑗𝜔F⃗ −
𝑗

𝜔𝜇𝜀
∇(∇ ⋅ F⃗ ). (9.31) 

Once F⃗  is known, 𝐸⃗ F can be found from (9.21) and 𝐻⃗⃗ F from (9.31) or (9.26) by setting 

𝑀⃗⃗ = 0. 

The total 𝐸⃗  and 𝐻⃗⃗  fields are obtained by the superposition of the individual fields 

due to A⃗⃗  and F⃗ . Superposition of (9.18) and (9.21) leads to the total electric field 

𝐸⃗ = 𝐸⃗ A + 𝐸⃗ F = −𝑗𝜔A⃗⃗ − 𝑗
1

𝜔𝜇𝜀
∇(∇ ⋅ A⃗⃗ ) −

1

𝜀
∇ × F⃗ , (9.32) 

and superposition of (9.3) and (9.31) leads to the total magnetic field 

𝐻⃗⃗ = 𝐻⃗⃗ A + 𝐻⃗⃗ F =
1

𝜇
𝛻 × A⃗⃗ − 𝑗𝜔F⃗ −

𝑗

𝜔𝜇𝜀
∇(∇ ⋅ F⃗ ). (9.33) 
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B. Determining the Current Direction over a Surface Patch 

The rectangular patches used in the dissertation are the discrete patches over the 

Huygens’ surface. Here, the direction the currents flow inside/outside of a patch is also 

determined with the help of the Huygens’ surfaces. Following derivation is coming from 

[61]. 

Figure 3.7 is used for explanation. To determine the direction of the currents over 

the surface patch, several steps should be performed. The first step is to determine the 

vector 𝑏⃗ . This vector gives the direction from the centroid 𝑆  to the edge center (see sub-

figure (a)). The second step is to determine the normal vector 𝑛⃗  of the patch using the 

vector 𝑏⃗  and the edge vector 𝑣 . It can be calculated by: 

𝑛⃗ = ± 
𝑣  × 𝑏⃗ 

 𝑣  × 𝑏⃗  
. (9.34) 

The sign of 𝑛⃗  can be ascertained with the inner product of 𝑛⃗ ∙ (𝑆 − 𝐴 ), where 𝑆  is the 

aforementioned centroid of the patch. The point 𝑄⃗  is any inner point inside the Huy-

gens’ box (see Figure 3.5). If the inner product satisfies: 

𝑛⃗ ∙ (𝑆 − 𝑄⃗ ) > 0, (9.35) 

where the sign doesn’t need to be changed. Otherwise, the 𝑛⃗  should be converted to 

−𝑛⃗ . Once the vector 𝑛⃗  is determined, the edge vector 𝑣  can be obtained according to 

the right-hand rule. The third step is to determine a vector 𝑐 , which is given by: 

𝑐 =  ± 𝑣  × 𝑛⃗ . (9.36) 

The sign of 𝑐  can be decided through the inner product of 𝑐 ∙ 𝑏⃗ . If the inner product: 𝑐 ∙

𝑏⃗ < 0,  𝑐  should have the opposite sign (−𝑐 ). Finally, using the determined vector 𝑐 , 

the direction of surface electric current 𝐼𝐽 passing the edge of the patch, for example, 

can be acquired using: 

𝑐 ∙ (𝑛⃗  × 𝐻⃗⃗ ) > 0   =>    𝐼𝐽 = + 𝑣 ∙ 𝐻⃗⃗  , (9.37) 

𝑐 ∙ (𝑛⃗  × 𝐻⃗⃗ ) < 0   =>    𝐼𝐽 = − 𝑣 ∙ 𝐻⃗⃗  , (9.38) 

𝑐 ∙ (𝑛⃗  × 𝐻⃗⃗ ) = 0   =>    𝐼𝐽 = 0. (9.39) 

Similarly, the direction of magnetic current 𝐼𝑀 can be also determined with 𝑐 ∙ (𝐸⃗ × 𝑛⃗ ).  
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C. Gaussian Integration 

Chapter 3, section 3.5.1 introduced how to calculate the surface electric current 

density 𝐽 sn(𝑟 ′) and surface magnetic current density 𝑀⃗⃗ sn(𝑟 ′) for 𝑛𝑡ℎ patch. When for all 

patches over the defined Huygens’ surface, the surface electric and magnetic current 

densities are known, the electric fields can be calculated with equation (3.24). However, 

equation (3.24) contains a surface integral. To accomplish the integration, usually nu-

merically approximate integrals, such as Newton-Cotes Quadrature formulas, Open 

Newton-Cotes, Composite Simpson’s rule, Legendre-Gauss quadrature, etc. can be 

applied. In this work, Gaussian Quadrature integrals (which is described in detail in 

[101]) are applied. 

The general 1D Gaussian quadrature formula (e.g., described in [57] (p. 259)) in 

one dimension is conventionally defined for the standard interval [-1, 1] as 

∫ 𝑓(𝜉)𝑑𝜉
1

−1

≈∑𝑤𝑖

𝑁

𝑖=1

𝑓(𝜉𝑖), (9.40) 

where 𝜉𝑖 and 𝑤𝑖 are Gaussian quadrature points and weights. Weights 𝑤𝑖 and 𝜉𝑖 are 

tabulated for some lower order (up to 𝑁 = 3), as shown in the Table 2. 

TABLE 2: WEIGHTS AND GAUSSIAN QUADRATURE POINTS FOR INTEGRATION 

Number of points, 𝑁 𝑤𝑖 𝜉𝑖 

1 2 0 

2 1 ±√1/3 

3 
8/9 0 

5/9 ±√3/5 

When the numerical calculation applied to quadrilateral elements for a 2D integra-

tion, the standard quadrilateral element is often used, as illustrated in Figure 9.1. The 

domain of integration is [-1, 1] for both direction  𝜉1 and 𝜉2, and the integral can be nu-

merically calculated by 

∫ ∫ 𝑓(𝜉1, 𝜉2)𝑑𝜉1𝑑𝜉2

1

−1

1

−1

≈∑∑𝑤𝑖𝑤𝑗𝑓(𝜉1𝑖, 𝜉2𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

, (9.41) 

in which 𝜉1𝑖 and 𝑤𝑖 are Gaussian quadrature points and weights of order 𝑀 in the 𝜉1 

direction; 𝜉2𝑗  and 𝑤𝑗  are Gaussian quadrature points of order 𝑁  in the 𝜉2  direction. 

When 𝑀 = 𝑁, we call it as Gaussian quadrature of order 𝑁. 
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Figure 9.1: The standard quadrilateral element. 

However, the integration of surface is usually in a global coordinate system. An 

example is given in Figure 9.2 (a), where the surface patch is in the interval [𝑥1, 𝑥2] and 

[𝑦1, 𝑦2]. To solve the integration, a linear mapping is required to transform the patch 

from the global coordinate system to the local coordinate system. The local coordinate 

is illustrated in Figure 9.2 (b). Assuming the Gaussian quadrature is of order 𝑁 = 3, 

Hence, there are nine total Gaussian points (black cross points) represented in the 

standard quadrilateral element. The mapping can be expressed by: 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑦2

𝑦1

𝑥2

𝑥1

≈
𝑥2 − 𝑥1
2

∙
𝑦2 − 𝑦1
2

∙∑∑𝜔𝑖𝜔𝑗𝑓(𝑢𝑖, 𝑣𝑗)

𝑁

𝑗=1

,

𝑀

𝑖=1

 (9.42) 

in which 𝑢𝑖 =
𝑥2+𝑥1

2
+
𝑥2−𝑥1

2
𝜉1𝑖 ; 𝑣𝑗 =

𝑦2+𝑦1

2
+
𝑦2−𝑦1

2
𝜉2𝑗 . 

 

Figure 9.2: Linear mapping. (a) a patch in the global coordinate system, (b) the local system, where 
the Gaussian quadrature points (𝑁 = 3) in the standard quadrilateral element. 
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D. Calculation of Mutual Inductance with FastHenry2 

For the computation of the mutual inductance between the cable structure and the 

rod antenna the software FastHenry2 was applied. This software is capable to calculate 

the frequency-dependent self and mutual inductances of 3D conductive structures with 

a magnetoquasistatic approximation [68]. 

The setup in Figure 4.2 was applied. The 1.5 m cable is shorted to the ground plane 

at one end to form a loop. A 1 m rod is placed in 1 m distance to the loop. For detailed 

model information the FastHenry2 model code is shown below. As the antenna rod is 

perpendicular to the loop, it can be expected that the mutual inductance is zero, due to 

perfect symmetry in the simulation environment. To provide a more realistic setup a tilt 

angle of the antenna rod was introduced (rotation in parallel to 𝑥𝑧-plane). The calcula-

tion was performed with a tilt angle between 0° and 10°, which seems to be a realistic 

range in a real setup. 

 

Figure 9.3: Setup for calculation of the mutual inductance. 

To verify the simulation results, the loop inductance of the cable structure and the 

partial inductance of the rod can be compared first with analytical results. Table 3 shows 

the results. It is shown that the simulated results agree to some extent with the analytical 

results. 

TABLE 3: COMPARISON OF LOOP INDUCTANCE AND ROD PARTIAL INDUCTANCE BASED ON FAS-

THENRY 2 AND ANALYTICAL CALCULATIONS  

 Loop inductance Rod partial inductance 

FastHenry2 1.61 µH 1.01 µH 

Analytical 1.59 µH (equation (4.2)) 0.98 µH (equation (9.49)) 

 

𝑥 

𝑧 

𝑦 

Tilt angle 

1 m rod 

1.5 m wire  

Input Port 

Short to ground  

Ground plane 
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The mutual inductance dependence of the tilt angle is shown in Figure 9.4. For the 

analysis of coupling mechanisms, the maximum mutual inductance of 0.3 nH at 10° tilt 

angle was used in the simple equivalent circuit model. 

 

Figure 9.4: Mutual inductance depending on rod antenna tilt angle. 

 

FastHenry2 model code 

**** CISPR 25 mutual inductance between cable and rod antenna**** 

 

* All length in meter 

.Units M 

 

* Copper is default conductivity in 1/(m*Ohms) 

.Default sigma=58.0e6 

 

**** Ground plane **** 

g1 x1 = -0.8 y1 = -0.25 z1 = 0 

+ x2 = 0.8 y2 = -0.25 z2 = 0 

+ x3 = 0.8 y3 = 1.25 z3 = 0 

* thickness: 

+ thick = 0.001 

* discretization: 

+ seg1 = 64 seg2 = 12 

* define nodes for connecting cable to ground plane 

+ nin (-0.75,0.0,0.0) 

+ nout (0.75,0.0,0.0) 

 

**** Single-wire cable over ground **** 

N1 x=-0.75 y=0.0 z=0.05 

N2 x=0.75 y=0.0 z=0.05 

E1 N1 N2 w=0.001 h=0.001 

 

* connect one end of cable to ground 

.equiv N2 nout 
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* compute loop inductance of the cable over ground 

.external nin N1 

 

**** Rod antenna **** 

N12 x=0.0 y=1.0 z=0.01 

* here 10° tilt as example, see N22 coordinates 

N22 x=0.1736 y=1.0 z=0.9848  

E2 N12 N22 w=0.01 h=0.01 

 

* compute partial inductance of rod antenna  

.external N12 N22 

 

* Compute impedance matrix at frequency 

.freq fmin=9e3 fmax=9e3 

.end 
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E. Equivalent Circuit Model-Based Analysis of Coupling Mecha-

nisms and Feedback Effects of CISPR 25 Measurement Setups 

How inductive and capacitive coupling are originated, can be initially explained for 

the CISPR 25 measurement setups as follows: supposing current on the cable structure 

creates a time-varying magnetic flux density, which passes through rod antenna. Ac-

cording to Faraday’s law, a resulting voltage is induced in the antenna (by simplifying 

and imaging the antenna as a closed current loop, which is formed by the antenna self-

capacitance and the antenna load). This mechanism is known as inductive coupling. At 

the same time, assuming that the voltage on the cable structure (from the charge dis-

tribution along the cable) generates a time-varying electric field. A portion of the field 

terminates on the charges which are induced in the antenna. The resulting time-varying 

charges create a current flow in the antenna. This mechanism is known as capacitive 

coupling. 

Furthermore, since the electric and magnetic fields generated from cable structure 

induce current and voltage in the antenna, these induced sources on the other side 

create electric and magnetic fields, which may be coupled back to the cable structure. 

This “coupled back” influence is the influence from the antenna to the cable structure, 

which is referred to as feedback effect in the work. It will be analyzed if the feedback 

effect on the cable is significant. This is important because the field prediction methods 

applied in this work should predict the electric field at the antenna position without the 

antenna. 

It is well known that in the near-field region the electric and magnetic fields can be 

regarded as independent. With this assumption, the inductive and capacitive coupling 

of adjacent structures can also be described independently. 

Both the cable structure and the antenna have self-inductance, respectively, as 

both can carry current. For the definition of the self-inductance of a current loop, a total 

magnetic flux 𝜓1 though the loop surface 𝑆1 is required and can be expressed as an 

integral of magnetic flux density 𝐵⃗  over 𝑆1: 

𝜓1 = ∫ 𝐵⃗ 𝑑𝑠 

𝑆1

. (9.43) 

Then, the self-inductance can be defined as the ratio of the total magnetic flux 𝜓1 and 

the current 𝐼1 in the loop: 
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𝐿 =
𝜓1
𝐼1
. (9.44) 

The induced voltage 𝑉1 across the self-inductance in case of harmonic magnetic flux 

density and current can be expressed by 

𝑉 = 𝑗𝜔𝜓1 = 𝑗𝜔𝐿𝐼1. (9.45) 

As the antenna and cable are adjacent, both are linked by mutual inductance. The 

mutual inductance between two loops, one of which carries a current 𝐼1 is defined as 

𝑀12 =
𝜓2
𝐼1
, (9.46) 

where 𝜓2 is the magnetic flux penetrating the surface of the second loop 𝑆2 that is 

caused by the current 𝐼1 of the first loop. 𝜓2 can be written as 

𝜓2 = ∫ 𝐵⃗ 12𝑑𝑠 

𝑆2

. (9.47) 

Where 𝐵⃗ 12 is the magnetic flux density caused by the first loop and penetrating the 

surface of the second loop. The induced voltage 𝑉2 in the second loop is then: 

𝑉2 = 𝑗𝜔𝜓2 = 𝑗𝜔𝑀12𝐼1. (9.48) 

The self- and mutual inductance depend on the geometry and surrounding material 

and can be found by measurements or computational models. In the case of simple 

geometries (e.g., two parallel circular loops), there are analytical solutions. The calcu-

lation of the per-unit self-inductance of a cable over the ground was already given in 

section 4.2.2 equation (4.2). Here the inductance 𝐿𝐴 of the rod antenna can be esti-

mated by the method of calculating the self-partial-inductance a wire, which is given in 

[69], as 

𝐿𝐴 ≅ 2 ⋅ 10
−7ℎ𝐴 (ln (

2ℎ𝐴
𝑟𝐴
) − 1)   𝑟𝐴 ≪ ℎ𝐴, (9.49) 

in which 𝑟𝐴 is the rod antenna radius, and ℎ𝐴 is the antenna height. It is noted that the 

antenna is above ground, which means the height ℎ𝐴 should be doubled when using 

(9.49) (according to the image theory). 

This work introduced the quasi-static numerical solver FastHenry2 [68] and ob-

tained 0.3 nH for the present CISPR 25 geometry. The FastHenry2 solver program is 

described in Appendix D. 



 

119 

a) Equivalent Circuit Model for Inductive Coupling 

Based on the simplified structure in Figure 4.2, the applied model for inductive cou-

pling is shown in Figure 9.5. The cable equivalent circuit consists of a lumped self-

inductance 𝐿𝑇𝐿 and capacitance 𝐶𝑇𝐿, which can be calculated using transmission line 

theory described in section 4.2.2. A feeding voltage source 𝑉𝑆 with a source impedance 

𝑍𝑆 is attached on the left side and provides a current 𝐼𝑆. The circuit is terminated with a 

load impedance 𝑍𝐿. The rod antenna equivalent circuit consists of the lumped self-ca-

pacitance 𝐶𝐴 and self-inductance 𝐿𝐴. A load 𝑍𝑀 is attached. The inductive coupling be-

tween cable equivalent circuit and rod antenna equivalent circuit is illustrated by a mu-

tual inductance 𝑀. 

 

Figure 9.5: Equivalent circuit model for inductive coupling between cable structure and antenna. 

Since there is no active source in the antenna circuit, the voltage 𝑉𝐿𝐴 across the 

antenna self-inductance 𝐿𝐴 is caused by the current in the cable circuit 𝐼𝑆 and the mu-

tual inductance 𝑀, which can be expressed as 

𝑉𝐿𝐴 = −𝑗𝜔𝑀𝐼𝑆. (9.50) 

The voltage across the cable self-inductance is a contribution of the source current 𝐼𝑆 

through the self-inductance 𝐿𝑇𝐿 and the antenna current 𝐼𝑀 coupled by the mutual in-

ductance 𝑀, which can be expressed as 

𝑉𝐿𝑇𝐿 = 𝑗𝜔𝐿𝑇𝐿𝐼𝑆 − 𝑗𝜔𝑀𝐼𝑀. (9.51) 

The second term of (9.51) can be represented as an additional voltage source in the 

cable equivalent circuit due to the current in the antenna (feedback) and written as 

𝑉𝐹𝐵 = −𝑗𝜔𝑀𝐼𝑀. (9.52) 

This voltage 𝑉𝐹𝐵 is called here feedback voltage. Now the equivalent circuit model in 

Figure 9.5 can be remodeled with the help of the identified voltage sources in (9.50) 

and (9.52), as shown in Figure 9.6.  

 

𝑀 

  

Rod antenna equivalent circuit Cable equivalent circuit 

𝑉𝑆 

𝑍𝑆 

𝑍𝐿 

𝐼𝑠 𝐿𝑇𝐿 

𝐶𝑇𝐿 + 

𝑉𝐿𝑇𝐿 

𝑍𝑀 𝐶𝐴 

𝐿𝐴 

𝑉𝐿𝐴 

𝐼𝑀 
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Figure 9.6: Representation of induced voltages due to inductive coupling. 

b) Feedback Effect due to Inductive Coupling 

Figure 9.6 is used to estimate the feedback effect of the rod antenna due to induc-

tive coupling. The relation between the antenna current 𝐼𝑀 and the induced voltage 𝑉𝐿𝐴 

can be written as: 

𝑉𝐿𝐴 = (
1

𝑗𝜔𝐶𝐴
+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀) 𝐼𝑀. (9.53) 

 By replacing 𝑉𝐿𝐴 using (9.50), (9.53) can be expressed as: 

−𝑗𝜔𝑀𝐼𝑆 = (
1

𝑗𝜔𝐶𝐴
+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀) 𝐼𝑀. (9.54) 

By rearranging (9.54), 𝐼𝑀 can be expressed as 

𝐼𝑀 =
−𝑗𝜔𝑀𝐼𝑆

1
𝑗𝜔𝐶𝐴

+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀

. 
(9.55) 

Inserting (9.55) to (9.52), the feedback voltage 𝑉𝐹𝐵 can be expressed as: 

𝑉𝐹𝐵 = −
𝜔2𝑀2

(
1

𝑗𝜔𝐶𝐴
+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀)⏟              
𝑍𝐹𝐵𝑀

𝐼𝑆. 
(9.56) 

𝑍𝐹𝐵𝑀 is defined as impedance between the feedback voltage 𝑉𝐹𝐵 and the current in 

the cable 𝐼𝑆. The input impedance of the cable at the source 𝑍𝑖𝑛 can be expressed as 

𝑍𝑖𝑛 = 𝑗𝜔𝐿𝑇𝐿 + 𝑍𝐹𝐵𝑀 + 
𝑍𝐿 ⋅

1
𝑗𝜔𝐶𝑇𝐿

𝑍𝐿 +
1

𝑗𝜔𝐶𝑇𝐿

. (9.57) 

When the load impedance satisfies 𝑍𝐿 ≪
1

𝑗𝜔𝐶𝑇𝐿
, the cable capacitance can be ne-

glected, and (9.57) can be simplified as  

𝑉𝑆 

𝑍𝑆 

𝑍𝐿 

𝐼𝑆 𝐿𝑇𝐿 

𝑉𝐹𝐵 

+ 

+ 

Antenna equivalent circuit Cable equivalent circuit 

𝑍𝑀 𝐶𝐴 

𝐿𝐴 + 

𝑉𝐿𝐴 

𝐼𝑀 

𝑉𝑀 𝐶𝑇𝐿 𝑍𝑖𝑛 
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𝑍𝑖𝑛 = 𝑗𝜔𝐿𝑇𝐿 + 𝑍𝐹𝐵𝑀 + 𝑍𝐿 . (9.58) 

Typical rod antenna parameters 𝐶𝐴 = 10 pF, 𝐿𝐴 = 1 µH, 𝑍𝑀 ≥ 100 kΩ  are used, 

which are introduced in chapter 4, section 4.4.1. Here, 𝑍𝑀 = 1 MΩ is used as an exam-

ple. and mutual inductance of 𝑀 = 1 nH / 𝑀 = 0.1 nH (typically in vehicle [15]) and 

0.3 nH (numerically determined from FastHenry2) are applied here to evaluate 𝑍𝐹𝐵𝑀. 

The results are shown in Figure 9.7, which points out that the feedback effect from the 

antenna can be neglected, as 𝑍𝐹𝐵𝑀 ≪ 𝑗𝜔𝐿𝑇𝐿 + 𝑍𝐿 (see (9.58)) even for low 𝑍𝐿(e.g. 1 Ω). 

 

Figure 9.7: Additional impedance in the cable circuit due to the feedback effect of inductive coupling. 

c) Induced Voltage at the Antenna due to Inductive Coupling  

By neglecting the feedback effect caused by inductive coupling, the model in Figure 

9.6 can be simplified to the model in Figure 9.8. This model (see Figure 9.8) can be 

used to derive induced antenna voltage caused by inductive coupling. Based on the rod 

antenna equivalent circuit in the model, the voltage 𝑉𝑀 over load 𝑍𝑀 can be expressed 

as 

𝑉𝑀 =
𝑍𝑀

1
𝑗𝜔𝐶𝐴

+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀

𝑉𝐿𝐴 . (9.59) 

where 𝑉𝐿𝐴 is the voltage induced by the inductive coupling (see (9.50)). Replacing 𝑉𝐿𝐴 

by (9.50) to (9.59), 𝑉𝑀 can be written as 

𝑉𝑀 = −𝑗𝜔𝑀
𝑍𝑀

1
𝑗𝜔𝐶𝐴

+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀

𝐼𝑆. (9.60) 

where 𝐼𝑆 is the current in the cable, which can be obtained by 

𝐼𝑆 =
1

𝑍𝑆 + 𝑗𝜔𝐿𝑇𝐿 + 𝑍𝐿 
𝑉𝑆. (9.61) 
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Combining (9.60) and (9.61), 𝑉𝑀 can be written as 

𝑉𝑀 = −𝑗𝜔𝑀
𝑍𝑀

1
𝑗𝜔𝐶𝐴

+ 𝑗𝜔𝐿𝐴 + 𝑍𝑀

1

𝑍𝑆 + 𝑗𝜔𝐿𝑇𝐿 + 𝑍𝐿 
⏟                            

𝑇𝑀

𝑉𝑆. 
(9.62) 

𝑇𝑀 in (9.62) is defined as the transfer function between the antenna voltage 𝑉𝑀 and the 

source voltage 𝑉𝑆. 

 

Figure 9.8: Equivalent circuit model representing inductive coupling between cable and antenna by ne-
glecting feedback effect and cable self-capacitance 𝐶𝑇𝐿. 

Using typical antenna parameters described above and typical cable inductivity 

(𝐿𝑇𝐿 = 1.5 µH) and mutual inductance of 𝑀 = 0.3 nH for different loads 𝑍𝐿 (source im-

pedance 𝑍𝑆 = 0 Ω), 𝑇𝑀 can be represented in Figure 9.9. 

 

Figure 9.9: Transfer function for the induced voltage 𝑉𝑀 and voltage 𝑉𝑆 based on inductive coupling. 

The figure shows that the transfer function is dependent on the load impedance. 

One can see that 𝑇𝑀 of 5 Ω is larger by comparing the curves resulting from 50 Ω and 

500 Ω load impedances. It is reasonable, as the inductive coupling is mainly determined 

by the current over the cable, which generates a magnetic field and couples to the an-

tenna through mutual inductance 𝑀. The current through the 5 Ω load impedance is 

𝑉𝑆 

𝑍𝑆 

𝑍𝐿 

𝐼𝑆 𝐿𝑇𝐿 

+ 

Rod antenna equivalent circuit Cable equivalent circuit 

𝑍𝑀 𝐶𝐴 

𝐿𝐴 + 

𝑉𝐿𝐴 

𝐼𝑀 

𝑉𝑀 𝑍𝑖𝑛 
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higher than the current through the 500 Ω load impedance. Here, it should be noted 

that the cable capacitance is neglected based on the assumption 𝑍𝐿 ≪
1

𝑗𝜔𝐶𝑇𝐿
 (see Fig-

ure 9.8). Therefore, the simplified model in Figure 9.8 is not proper for high load imped-

ances. 

a) Equivalent Circuit Model for Capacitive Coupling 

Similar to inductive coupling, an equivalent circuit model in Figure 9.10 is used to 

illustrate capacitive coupling between the cable structure and the antenna. In the figure, 

the cable self-inductance 𝐿𝑇𝐿 is represented by two parts 𝐿𝑇𝐿1 and 𝐿𝑇𝐿2, where 𝐿𝑇𝐿1 =

𝐿𝑇𝐿2 =
𝐿𝑇𝐿

2
. This makes sense, as the capacitive coupling is mainly based on cable volt-

age. For simplification, the cable self-capacitance 𝐶𝑇𝐿 is again neglected in the model 

by assuming 𝑍𝐿 ≪
1

𝑗𝜔𝐶𝑇𝐿
. 

 

Figure 9.10: Equivalent circuit model for capacitive coupling between cable structure and antenna. 

The cable voltage in the model is represented by 𝑉𝑇𝐿. The capacitive coupling is 

illustrated by mutual capacitance 𝐶𝐶. The induced current 𝐼𝐶𝐶 can be regarded as a dis-

placement current between the cable and the rod antenna, which can be expressed as 

𝐼𝐶𝑐 = 𝑗𝜔𝐶𝐶(𝑉𝑇𝐿 − 𝑉𝐴). (9.63) 

The equation (9.63) can be decomposed into two following expressions: 

𝐼𝐴 = 𝑗𝜔𝐶𝐶𝑉𝑇𝐿 , (9.64) 

𝐼𝐹𝐵 = −𝑗𝜔𝐶𝐶𝑉𝐴. (9.65) 

The expression (9.64) and (9.65) can be regarded as current sources impressing 

𝐼𝐴 in the antenna circuit and 𝐼𝐹𝐵 in the cable circuit respectively. 𝐼𝐹𝐵 is referred to as 

Antenna equivalent circuit Cable equivalent circuit 

𝐶𝐶 

𝑉𝑆 

𝑍𝑆 

𝑍𝐿 

𝐿𝑇𝐿1 

+ 𝑉𝑇𝐿 
𝑍𝑀 𝐶𝐴 

𝐿𝐴 

𝑉𝐴 
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𝐿𝑇𝐿2 
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feedback current. The equivalent circuit can be remodeled by considering the current 

sources, as shown in Figure 9.11. 

 

Figure 9.11: Representation of induced current by the current source in the cable, and the antenna 
due to capacitive coupling caused by the voltage on the cable. 

b) Feedback Effect due to Capacitive Coupling 

The purpose of this section is to derive an expression that can be used to evaluate 

the significance of the feedback effect. Therefore, the antenna voltage 𝑉𝐴 (see Figure 

9.10) can be expressed in term of the current 𝐼𝐴, which results from the capacitive cou-

pling, as 

𝑉𝐴 =
1

𝑗𝜔𝐶𝐴 +
1

𝑗𝜔𝐿𝐴 + 𝑍𝑀

𝐼𝐴. (9.66) 

Applying 𝑉𝐴 of (9.66) to (9.65), the feedback current 𝐼𝐹𝐵 can be written as  

𝐼𝐹𝐵 = −
𝑗𝜔𝐶𝐶

𝑗𝜔𝐶𝐴 +
1

𝑗𝜔𝐿𝐴 + 𝑍𝑀

𝐼𝐴. (9.67) 

Inserting (9.64) to (9.67), 𝐼𝐹𝐵 can be expressed in term of the cable voltage 𝑉𝑇𝐿 as 

𝐼𝐹𝐵 = −
𝜔2𝐶𝐶

2

𝑗𝜔𝐶𝐴 +
1

𝑗𝜔𝐿𝐴 + 𝑍𝑀⏟            
1 𝑍𝐹𝐵𝐶𝐶
⁄

𝑉𝑇𝐿 . 
(9.68) 

Here 𝑍𝐹𝐵𝐶𝐶
 is defined as the impedance introduced by the feedback current 𝐼𝐹𝐵. Using 

the model in Figure 9.11, the input impedance at the cable source can be expressed 

by 

𝑍𝑖𝑛 = 𝑗𝜔𝐿𝑇𝐿1 +
𝑗𝜔𝐿𝑇𝐿2 + 𝑍𝐿

1 +
𝑗𝜔𝐿𝑇𝐿2 + 𝑍𝐿
𝑍𝐹𝐵𝐶𝐶

. 
(9.69) 
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To evaluate 𝑍𝐹𝐵𝐶𝐶
, typical antenna parameters and mutual capacitance of 𝐶𝐶 =

52 fF (described in chapter 4 section 4.4 ) are applied. The result is shown in Figure 

9.12. One can observe that the impedance induced by capacitive coupling is very large, 

mainly in MΩ range. For typical CISPR 25 setups, it satisfies:  𝑍𝐹𝐵𝐶𝐶
≫ 𝑗𝜔𝐿𝑇𝐿2 + 𝑍𝐿 . 

Therefore, the influence of feedback effect caused by capacitive coupling can be ne-

glected.  

 

Figure 9.12: Additional impedance in the cable circuit due to the feedback effect of capacitive cou-
pling. 

c) Induced Voltage at Antenna due to Capacitive Coupling 

By neglecting the feedback effect, the related coupling model in Figure 9.11 can be 

reduced to the model in Figure 9.13.  

 

Figure 9.13: Equivalent circuit model representing capacitive coupling between cable structure and rod 
antenna by neglecting feedback effect and cable self-capacitance 𝐶𝑇𝐿. 

The voltage 𝑉𝑀 at the rod antenna load can be obtained by 

𝑉𝑀 =
𝑍𝑀

𝑗𝜔𝐿𝐴 + 𝑍𝑀
𝑉𝐴. (9.70) 

Inserting the relation between the antenna voltage 𝑉𝐴 and the induced current from 

capacitive coupling (9.66) in (9.71) leads to the expression 

𝑉𝑆 

𝑍𝑆 

𝑍𝐿 

𝐼𝑆 𝐿𝑇𝐿1 

+ 𝑍𝑀 𝐼𝐴 𝐶𝐴 

𝐿𝐴 

𝑉𝑀 

Rod antenna equivalent circuit Cable equivalent circuit 

𝐿𝑇𝐿2 
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𝑉𝑀 =
𝑍𝑀

1 + 𝑗𝜔𝐶𝐴(𝑗𝜔𝐿𝐴 + 𝑍𝑀)
𝐼𝐴. (9.71) 

Now the 𝑉𝑀 can be expressed in term of the cable voltage 𝑉𝑇𝐿 by inserting (9.64) 

into (3.36): 

𝑉𝑀 = 𝑗𝜔𝐶𝐶
𝑍𝑀

1 + 𝑗𝜔𝐶𝐴(𝑗𝜔𝐿𝐴 + 𝑍𝑀)
𝑉𝑇𝐿 . (9.72) 

Finally, by applying the voltage divider rule in the cable equivalent circuit to calcu-

late 𝑉𝑇𝐿 in dependence of the source voltage 𝑉𝑠 and inserting into (9.72) the transfer 

function 𝑇𝐶𝐶 between 𝑉𝑀 and 𝑉𝑠 can be expressed as 

𝑉𝑀 = 𝑗𝜔𝐶𝑐
𝑍𝑀

1 + 𝑗𝜔𝐶𝐴(𝑗𝜔𝐿𝐴 + 𝑍𝑀)

𝑗𝜔𝐿𝑇𝐿2 + 𝑍𝐿

𝑍𝑆 + 𝑗𝜔(𝐿𝑇𝐿1 + 𝐿𝑇𝐿2) + 𝑍𝐿⏟                                    
𝑇𝐶𝐶

 𝑉𝑠. 
(9.73) 

𝑇𝐶𝐶 is defined as the transfer function based on capacitive coupling. In Figure 9.14, 

solid curves represent 𝑇𝐶𝐶 for different load impedances. At the time, 𝑇𝑀 for the same 

load impedances (already described in Figure 9.9 ) are again shown as dashed curves 

here for a direct comparison. It can be seen that the 𝑇𝐶𝐶 is about 20 dB bigger than 𝑇𝑀, 

which means the capacitive coupling compared with the inductive coupling is dominant. 

 

Figure 9.14: Transfer function for the induced voltage 𝑉𝑀 and voltage 𝑉𝑆 based on capacitive coupling. 
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F. Implementation of Huygens Principle in MATLAB 

In this section, the kern code of the implementation of the field integral based on 

the Huygens principle are represented as two functions. The first function is to realize 

the electric field summation at an observation point P for all the electric and magnetic 

current sources over an opened plane, which is shown as follows: 

% field computation from current sources on an opened plane 

function [H_sum_xOy,E_sum_xOy,Ij,Im] = Opened_Huygens_field_XOY(freq,Bound-

ary_,E_field_s,H_field_s,Num_patches,normal_vector_n,F_Ori-

ent,Vertix_Patch_info,Vertix_info,Vertix_edge_center,P_ob) 

%% 

% find the center point of patch 

Center_patch =zeros(Num_patches,3); 

for m = 1:Num_patches 

    Center_patch(m,:) = 0.25*(Vertix_info(Vertix_Patch_info(m,1),:)+... 

                              Vertix_info(Vertix_Patch_info(m,2),:)+... 

                              Vertix_info(Vertix_Patch_info(m,3),:)+... 

                              Vertix_info(Vertix_Patch_info(m,4),:)); 

end 

 

% vector 'b': the vector from the weightpoint to the edge center 

b = zeros(Num_patches,4,3);  

for m = 1:Num_patches 

    for n=1:4 

        b(m,n,:)= squeeze(Vertix_edge_center(m,n,:)).' - Center_patch(m,:); 

    end 

end 

 

% vector 'c', reference current direction,  

% normal_vector_n = [0,0,1]; % surface normal vector 

c = zeros(Num_patches,4,3);  

face_edge_v = zeros(Num_patches,4,3); 

for m = 1:Num_patches 

    m_patch = F_Orient(4*(m-1)+1:4*m,:); % grasp current face information 

    for n=1:4 

      face_edge_v(m,n,:) = Vertix_info(m_patch(n,2),:) - 

Vertix_info(m_patch(n,1),:); 

      c_temp = cross(squeeze(face_edge_v(m,n,:)).',normal_vec-

tor_n); %c_temp = vxn 

      if(real(dot(c_temp,squeeze(b(m,n,:)).'))>0) %c.b>0 

          c(m,n,:) = c_temp; % c_reference 

      else 

          c(m,n,:) = -c_temp;  

      end 

    end 

end 

%% Obtain edge current 

 Ij = zeros(Num_patches,4); % electric current, from H_field -- |v.H| 

 Im = zeros(Num_patches,4); % magnetic current, from E_field -- |v.E| 

 

for m = 1:Num_patches 

    for n = 1:4 

        Ij_ini = dot(squeeze(face_edge_v(m,n,:)).', 

squeeze(H_field_s(m,n,:)).'); % v.H 

        if(real(Ij_ini)>0) %|v.H| 

            Ij_ini = Ij_ini; 

        else 

            Ij_ini = -Ij_ini; 
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        end 

        if( real(dot(squeeze(c(m,n,:)).', cross(normal_vec-

tor_n,squeeze(H_field_s(m,n,:)).')))>0 ) %c.(nxH)>0, current outside the 

patch 

            Ij(m,n) = Ij_ini; 

        else 

            Ij(m,n) = -Ij_ini; 

        end 

           

    end 

        

end 

 

for m = 1:Num_patches 

    for n = 1:4 

        Im_ini = dot(squeeze(face_edge_v(m,n,:)).', 

squeeze(E_field_s(m,n,:)).'); 

        if(real(Im_ini)>0)  %|v.E| 

            Im_ini = Im_ini; 

        else 

            Im_ini = -Im_ini; 

        end 

        if( real(dot(squeeze(c(m,n,:)).', 

cross(squeeze(E_field_s(m,n,:)).',normal_vector_n)))>0 ) %c.(Exn)>0, cur-

rent outside the patch 

          

            Im(m,n) = Im_ini; 

        else 

            Im(m,n) = -Im_ini; 

        end 

           

    end    

end   

 

 

% Boundary edges, no currents 

B_size = size(Boundary_); 

if (B_size(1)== 0) % no boundary edge 

    Ij = Ij; 

    Im = Im; 

else 

    for mm = 1:length(Boundary_(:,1)) 

        if (Boundary_(mm,3)== 0) % boundary edge, not connects to ground 

           Ij(Boundary_(mm,1),Boundary_(mm,2))= 0; 

           Im(Boundary_(mm,1),Boundary_(mm,2))= 0; 

        else  % boundary edge, connects to ground 

           Im(Boundary_(mm,1),Boundary_(mm,2))= 0;  

        end 

    end 

end 

 

%% parametric field integration 

% Field Calculation 

w = 2*pi*freq ; 

u0 = 4*pi*10.^(-7); 

e0 = 1/(36*pi)*10.^(-9); 

k = w*sqrt(u0*e0); 

% P = [1,1,5];%observation point 

f_E = zeros(Num_patches,3 ); 

 for m = 1: Num_patches  

     [vector_r,Js,Ms,WEI,divJs,divMs,Ngau,a_kesei,a_eta] = JsMs_computa-

tion(m,Vertix_info,Vertix_Patch_info,Im,Ij); 

     % 9 point Gaussian integration 
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     for n = 1:9 

          R = sqrt((P_ob(1)-vector_r(n,1)).^2+(P_ob(2)-vec-

tor_r(n,2)).^2+(P_ob(3)-vector_r(n,3)).^2);%Distance R between the observa-

tion point to the source current 

          G = 1./(4*pi).*exp(-1i*k*R)./R; 

          gradG = -[P_ob(1)-vector_r(n,1),P_ob(2)-vector_r(n,2),P_ob(3)-

vector_r(n,3)]./R*(1/R+1i*k)*G; 

          S(n)  = norm(cross(a_eta(n,:),a_kesei(n,:))); 

          part1_E(n,:) = -WEI(n)*1i*w*u0.*Js(n,:)*G*S(n); 

          part2_E(n,:) = WEI(n)*cross(Ms(n,:),gradG)*S(n);        

          part3_E(n,:) = WEI(n)*1./(1i*w*e0).*divJs(n)*gradG*S(n);   %from 

jwp+divJs=0 current continuity equation 

      end 

      temp_1_E =  0.5*0.5*sum(part1_E); 

      temp_2_E =  0.5*0.5*sum(part2_E); 

      temp_3_E =  0.5*0.5*sum(part3_E); 

      f_E(m,:) = temp_1_E + temp_2_E +temp_3_E ; 

  end 

  E_sum_xOy = sum(f_E); 

 

%%%%%for H-field, each patch, 9 point gaussian integral%%%%% 

f_H = zeros(Num_patches,3 ); 

 for m = 1: Num_patches  

     [vector_r,Js,Ms,WEI,divJs,divMs,Ngau,a_kesei,a_eta] = JsMs_computa-

tion(m,Vertix_info,Vertix_Patch_info,Im,Ij); 

    

     for n = 1:9 

          R = sqrt((P_ob(1)-vector_r(n,1)).^2+(P_ob(2)-vec-

tor_r(n,2)).^2+(P_ob(3)-vector_r(n,3)).^2); 

          G = 1./(4*pi).*exp(-1i*k*R)./R; 

          gradG = -[P_ob(1)-vector_r(n,1),P_ob(2)-vector_r(n,2),P_ob(3)-

vector_r(n,3)]./R*(1/R+1i*k)*G; 

          S(n) = norm(cross(a_eta(n,:),a_kesei(n,:))); 

          part1_H(n,:) = WEI(n)*1i*w*e0.*Ms(n,:)*G*S(n); 

          part2_H(n,:) = -WEI(n)*cross(Js(n,:),gradG)*S(n);         

          part3_H(n,:) = WEI(n)*1./(1i*w*u0).*divMs(n)*gradG*S(n);   %from 

jwp+divJs=0 current continuity equation 

      end 

      temp_1_H =  0.5*0.5*sum(part1_H); % sum of term 1 of all 9 points 

      temp_2_H =  0.5*0.5*sum(part2_H); % sum of term 2 of all 9 points 

      temp_3_H =  0.5*0.5*sum(part3_H); % sum of term 3 of all 9 points 

      f_H(m,:) = temp_1_H + temp_2_H +temp_3_H ;% sum of all 3 terms for 

each patch 

  

  end 

  H_sum_xOy = sum(f_H); % sum of all patches 

 

The second function is to calculate the electric and magnetic current densities over 

the patches, which is shown as following, where the parametric structure and the local 

coordinate are described in [62]. 

function [vector_r,Js,Ms,WEI,divJs,divMs,Ngau,a_kesei,a_eta] = JsMs_compu-

tation(m,Vertix_info,Vertix_Patch_info,Im,Ij)   

 

%parametic structure 

[eta,kesei,WEI,Ngau] = GAUSSpoint(0,0,1,1,3); 

for n=1:Ngau 

    V1 = Vertix_info(Vertix_Patch_info(m,1),:); 

    V2 = Vertix_info(Vertix_Patch_info(m,2),:); 
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    V3 = Vertix_info(Vertix_Patch_info(m,3),:); 

    V4 = Vertix_info(Vertix_Patch_info(m,4),:); 

    vector_r(n,:) = V1+(V2-V1)*eta(n)+(V4-V1)*kesei(n)+(V1-V2+V3-

V4)*eta(n)*kesei(n);%r'(eta,kesei) 

    a_eta(n,:) = V2-V1+(V1-V2+V3-V4)*kesei(n); 

    a_kesei(n,:) = V4-V1+(V1-V2+V3-V4)*eta(n); 

     

    % Calculating Js 

Js(n,:) = 1/norm(cross(a_eta(n,:),a_kesei(n,:)))*(  

Ij(m,1)*eta(n)*a_eta(n,:)+... 

Ij(m,2)*kesei(n)*a_kesei(n,:)+... 

Ij(m,3)*(eta(n)-1)*a_eta(n,:)+... 

    Ij(m,4)*(kesei(n)-1)*a_kesei(n,:)); 

    % Calculating Ms 

Ms(n,:) = 1/norm(cross(a_eta(n,:),a_kesei(n,:)))*( 

Im(m,1)*eta(n)*a_eta(n,:)+... 

Im(m,2)*kesei(n)*a_kesei(n,:)+... 

    Im(m,3)*(eta(n)-1)*a_eta(n,:)+... 

    Im(m,4)*(kesei(n)-1)*a_kesei(n,:));  

% Calculating the divergence of the charge density distribution 

divJs(n) = 

1/norm(cross(a_eta(n,:),a_kesei(n,:)))*(Ij(m,1)+Ij(m,2)+Ij(m,3)+Ij(m,4)); 

    divMs(n) = 

1/norm(cross(a_eta(n,:),a_kesei(n,:)))*(Im(m,1)+Im(m,2)+Im(m,3)+Im(m,4)); 

end 
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