

Alleviation of Zn toxicity by low water availability

Journal:	Physiologia Plantarum
Manuscript ID:	PPL-2013-00011.R2
Manuscript Type:	Regular manuscript - Ecophysiology, stress and adaptation
Date Submitted by the Author:	n/a
Complete List of Authors:	Disante, Karen; Departamento de Ecología. Universidad de Alicante, Ap 99, 03080 Alicante., ; Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef" (IMEM). Universidad de Alicante, Ap 99, 03080 Alicante., Cortina, Jordi; Departamento de Ecología. Universidad de Alicante, Ap 99, 03080 Alicante., ; Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef" (IMEM). Universidad de Alicante, Ap 99, 03080 Alicante., Vilagrosa, Alberto; Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante., Fuentes, David; Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante., Fuentes, David; Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante., Hernández, Encarni; Departamento de Ecología. Universidad de Alicante, PO Box 99, 03080 Alicante., Ljung, Karin; Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå.,
Key Words:	heavy metal, drought, Zn application, auxin, Quercus suber, multiple stresses

SCHOLARONE[™] Manuscripts

1		
2	1	Allowingtion of 7n toxicity by low water evailability
3 1	1	Aneviation of Zh toxicity by low water availability
5	2	
6	3	Karen B. Disante ^{a,b*} , Jordi Cortina ^{a,b} , Alberto Vilagrosa ^c , David Fuentes ^c , Encarni I. Hernández ^b , Karin
7	4	Liung ^c
8	5	_]6
9 10	3	
10	6	^a Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef" (IMEM). Universidad de
12	7	Alicante, PO Box 99, 03080 Alicante, Spain
13	8	^b Departamento de Ecología. Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
14	0	Departamento de Leologia. Oniversidad de Aneante, 10 Dox 77, 05000 Aneante, 5pan
15 16	9	^c Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit
17	10	University of Alicante-CEAM PO Box 99, 03080 Alicante Spain
18	10	Sinversity of Aneance Chann, 10 Box 99, 05000 Aneance, Spain.
19	11	^d Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish
20	12	University of Agricultural Sciences, SE-901.83 Umeå, Sweden
21	12	Sinversity of Agricultural Sciences, SE 901 05 Sinea, Sweden
22	13	
24	14	* Corresponding author: kb.disante@ua.es; Tel.: + 34 965909564; fax: + 34 965 909 825.
25	15	
26	16	
27	10	
28 29		
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47 48		
49		
50		
51		
52 52		
53 54		
5 4 55		
56		
57		
58		

17	Abstract
18	Heavy metal contamination and drought are expected to increase in large areas worldwide. However,
19	their combined effect on plant performance has been scantly analyzed. This study examines the effect
20	of Zn supply at different water availabilities on morpho-physiological traits of Quercus suber L in
21	order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc
22	from 3 to 150 μ M and exposed to low (LW) or high (HW) frequency of watering in hydroponic
23	culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots
24	increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue
25	concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic
26	rate and root hydraulic conductivity, and morphological traits as root length and root biomass
27	decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations,
28	suggesting the involvement of this phytohormone in the seedling response to this element. LW
29	seedlings exposed to 150 μ M Zn showed higher root length and root biomass than HW seedlings
30	exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity
31	by limiting internal accumulation. Morphological traits involved in the response to both stresses
32	probably contributed to this response.
33	
34	Key words: heavy metal, drought, Zn application, auxin, Quercus suber, multiple stresses
35	
36	Introduction
37	
38	In nature, plants are commonly exposed to a combination of stress factors. Multiple stresses may
39	affect plants in ways that are hardly predictable from studies of single stress factors, as synergistic and
40	antagonistic interactions are widespread (Nilsen and Orcutt 1996, Larcher 2003). Water is the most
41	limiting factor for plant productivity worldwide and several studies have evaluated the combined
42	effect of drought and other sources of stress such as extreme temperature and radiation (Valladares
43	and Pearcy 1997, Aranda et al. 2005, Gimeno et al. 2008). In contrast, the combined effect of drought
44	and heavy metal contamination has received less attention, despite the potential interaction between
45	both stress factors (Poschenrieder and Barceló 2004, Brady et al. 2005; Sardans and Peñuelas 2007).
46	
47	Several studies have shown that the effect of heavy metals on plant performance may be modulated by
	Several studies have shown that the effect of heavy metals on plant performance may be modulated by other sources of stress as sulphur and proton concentration in rainfall, heat and frost (Kukkola et al.
48	Several studies have shown that the effect of heavy metals on plant performance may be modulated by other sources of stress as sulphur and proton concentration in rainfall, heat and frost (Kukkola et al. 1997, Öncel et al. 2000).
48 49	Several studies have shown that the effect of heavy metals on plant performance may be modulated by other sources of stress as sulphur and proton concentration in rainfall, heat and frost (Kukkola et al. 1997, Öncel et al. 2000).

51 physiological processes (Marschner 1995, Cakmak 2000, Broadley et al. 2007). Zinc abundance is

52 increasing in natural systems as a consequence of human activities (Kabata-Pendias and Pendias 1992,

53 Fuentes et al. 2007a; Dominguez et al. 2008). When Zn concentration exceeds a critical level, it

Physiologia Plantarum

54 becomes toxic (Balsberg Påhlsson 1989, Woolhouse 1983). Symptoms of Zn toxicity include 55 alteration on biomass partitioning (Ruano et al. 1988), morphological changes in root system (Fuentes 56 et al. 2007b, Disante et al. 2010), reductions in photosynthetic rate and chlorophyll measurements (Di 57 Baccio et al. 2009, Disante et al. 2011), unbalance mineral nutrition (Kabata-Pendias and Pendias 58 1992, Monet et al. 2001) and modifications in xylem anatomy (Kasim 2007). These changes may 59 affect plant capacity to uptake and transport water to above ground parts (Barceló and Poschenrieder 60 1990, Kasim 2007). 61 62 High levels of Zn and low water availability may induce similar responses in vascular plants, 63 including stomatal closure and decreased CO₂ uptake, reduced chlorophyll fluorescence and foliar 64 area, and activation of defence mechanisms against oxidative damage (Vaillant et al. 2005, Valladares 65 et al. 2005). Conversely, plants may exhibit contrasted responses to Zn toxicity and drought. While 66 reduced root length and root biomass have been described in seedlings exposed to Zn (Wolhouse 67 1983), adaptive mechanisms in response to water limitation include deeper root systems and increased 68 proportion of biomass allocated belowground (Nicotra et al. 2002). 69 The interaction between Zn and drought may result in synergistic or antagonistic responses. Thus, small increases in Zn availability (20 mg 1^{-1} of Zn) promoted growth in water-stressed soybeans 70 71 (Gadallah 2000). Similarly, heavy metal-enriched sewage sludge induced a positive effect on morpho-72 physiological traits of seedlings subjected to drought (Pascual et al. 2004, Fuentes et al. 2007a; Santala 73 and Ryser 2009). Finally, in a previous study we observed that exposition of *Quercus suber* seedlings 74 to Zn delayed the effects of a short drought (Disante et al. 2011). High Zn concentrations could 75 hamper seedling capacity to absorb and transport water and compromise seedling ability to withstand 76 drought due to reduction of root length and biomass (Disante et al. 2010). Limited water availability 77 may also predispose leaves to cellular damage and photoinhibition, altering the carbon balance 78 (Werner et al. 2001, Vilagrosa et al. 2010). Finally, drought may impair uptake and acropetal 79 translocation of nutrients, including Zn (Hu and Schmidhalter 2005). 80 81 Despite the potential interaction between Zn and drought, studies dealing with the simultaneous effect 82 of both stress factors are scarce, and they frequently show conflictive results (Balsberg Påhlsson 83 1989). The objective of this study is to evaluate the combined effect of Zn supply and water 84 availability on plant performance, and contribute to unveil the interactions between both sources of 85 stress. The underlying hypothesis is that morpho-physiological responses to drought may mitigate the

86 effects of high Zn availability. For this study we used cork oak (Quercus suber L.) seedlings, a

87 drought-resistant tree widely distributed in the western Mediterranean basin. Cork oak woodlands

88 produce valuable goods and services, including cork, and they are protected by the European Union

89 (Habitat directive 92/43/EEC; (Pausas et al. 2009)). In addition, we performed this experiment with

90 young seedlings because this stage is one of the most sensitive for plant capacity to resist stress

91 conditions (Vallejo et al. 2000, Vilagrosa et al. 2003a). To account for this objective, we analyzed
92 plant physiological status, root capacity to supply water to leaves, and phytohormonal response in
93 several Zn supply rates under two levels of water availability.

96 Materials and methods

98 Plant material and growing conditions

We cultivated O. suber seedlings from acorns. Seeds from local origin were supplied by the Forest Service Seed Bank (Banco de Semillas El Serranillo, Ministerio de Medio Ambiente y Medio Rural y Marino). *Quercus suber* acorns were sown in silica sand and kept at $24 \pm 2^{\circ}$ C. Two weeks after germination, when the radicle was approximately 2 cm long, acorns were transplanted into 5 cm diameter and 30 cm length tubes filled with fine, medium and coarse silica sand (the size of sand ranged from 0.5 to 2.2 mm) in a proportion corresponding to 1:2:3 by volume, respectively. The substrate was tested in the lab before the onset of the experiment to ensure proper drainage. The bottom of the tubes was closed with a 1 x 1 mm mesh, which prevented substrate loss. Tubes were placed in a growth chamber under controlled conditions of temperature $(22\pm1^{\circ}C/18\pm1^{\circ}C, dav/night)$, 12 h photoperiod (600 μ mol m⁻² s⁻¹ of photosynthetic photon flux density during the day) and 50% relative humidity. During this period, seedlings were irrigated with a nutrient solution containing 500 μM KCl, 435 μM NaNO₃, 300 μM MgSO₄·7H₂O, 45 μM NaH₂PO₄, 300 μM CaCl₂, 0.37 μM FeSO₄·7H₂O, 0.012 µM CuSO₄·5H₂O, 1.6 µM H₃BO₃, 0.006 µM KI, 0.6 µM MnSO₄·7H₂O and 0.0004 μ M (NH₄)₆Mo₇O₂₄. This solution was a modification of the one used by Arduini et al. (1994) to simulate forest soil conditions.

116 Experimental design

Eight weeks after germination, we added ZnSO₄ to the nutrient solution to achieve a Zn concentration of 3 (Control), 10, 50 and 150 µM, corresponding to those commonly found in uncontaminated and contaminated soils (Knight et al. 1997, Kabata-Pendias and Pendias 1992, González et al. 2011). We applied two irrigation regimes using this solution: high watering (HW) and low watering (LW). HW seedlings were irrigated three times a week (Monday, Wednesday and Friday), whereas LW seedlings were irrigated every 5 days. During the experiment, seedlings were irrigated with 60 ml of nutrient solution. Substrate moisture content (SMC) was estimated by measurements of water content by gravimetric method. SMC for HW and LW treatments ranged from $2.0 \pm 0.1\%$ to $7.4 \pm 0.1\%$ and from $0.3 \pm 0.1\%$ to $6.40 \pm 0.2\%$ respectively. The moisture content (SMC) for the substrate during 18 consecutive days is shown in Fig. 1 as example of SMC dynamics.

Physiologia Plantarum

Each Zn level (hereafter treatments) was replicated 10 times, i.e., 10 seedlings per Zn treatments and irrigation level. Ion speciation calculations for solutions containing different amounts of Zn were conducted using MINTEQA2 software (Allison Geoscience Consultants, Inc. Flowery Branch, Georgia, USA and HydroGeoLogic, Inc. Herndon, Virginia, USA). The concentration in mol/L of all anions and cations present in the nutrient solution (described above) were entered in MINTEQA2 software to estimate the equilibrium composition of the experimental solution, pH was fixed at 5.5 (the pH of the nutrient solution was adjusted to this value) and quartz was added as the mineral present in the equilibrium. Calculations showed that 98% of Fe was present as Fe (II) and 81% of Zn was present as free ion and 18% as ZnNO³⁺. Both elements were highly available for plants, as only small precipitations of PO_4^{-3} (0.2%) and Mn⁺² (16.2%) were found by chemical equilibrium estimations using MINTEO2A (see Appendix S1 in Supporting information). Leachates obtained immediately after watering showed that Zn concentration in the solution was always close to the intended concentration, independently of water availability and plant uptake. For 3 (Control), 10, 50 and 150 μ M Zn were: 4.2 ± 0.4 , 10.3 ± 3.7 , 47.6 ± 8.7 ; $150.2 \pm 12.9 \ \mu\text{M}$ Zn and 2.8 ± 0.4 , 7.8 ± 1.3 , 46.8 ± 6.8 , $162.9 \pm 16.3 \ \mu\text{M}$ Zn for HW and LW seedlings, respectively. Twelve weeks after the onset of the treatments, when seedlings were 5-months-old, we assessed their physiological status, and measured hydraulic conductivity and IAA concentration. Finally, we quantified their morphological traits. Gas exchange and chlorophyll fluorescence

Physiological status was assessed 5 months after the onset of the experiment on 5 seedlings per treatment level (i.e. 40 seedlings in total). Gas exchange was analysed with a Li-Cor 6400 portable infrared gas analyser system (Li-Cor Inc. Lincoln, Nebraska, USA). We determined photosynthetic rate (A), stomatal conductance (g_s) and transpiration rate (E) in one fully expanded leaf per seedling. From these data, we calculated the instantaneous water use efficiency (IWUE). We maintained gas flow rate at 350 mL min⁻¹. CO₂ concentration at 400 ppm and a photon flux density of 600 µmol m⁻² s⁻¹ ¹ during the course of the measurements. Previous determinations of light response curves showed that a value of 600 μ mol m⁻² s⁻¹ was sufficient to saturate the PSII photosystem in seedlings of this species. Measurements were conducted early in the morning (09:00–11:00 h solar time).

158 A portable fluorometer (pulse-amplitude modulated photosynthesis yield analyzer, PAM-2010 Walz, 159 Effeltrich, Germany) was used to measure chlorophyll fluorescence from intact leaves. In dark adapted 160 leaves, we measured the minimum fluorescence yield (F_0) under weak red light and the maximum 161 fluorescence (F_m) after a saturating pulse of white light. Maximal PSII photochemical efficiency 162 ($F_v:F_m$) was calculated as $F_v:F_m = (F_m - F_0)/F_m$ according to Genty et al. (1989)

Four to five seedlings per Zn dose and irrigation regime were used to measure water transport capacity of complete and intact root systems by means of a High Pressure Flowmeter (HPFM, Dynamax Inc., Houston, USA). Measures were carried out at the same time that gas exchange variables were measured. The night before the measurements, seedlings were watered to pot capacity, which is the amount of water remaining in a pot after irrigation and visible drainage had ceased. Root hydraulic conductance (K_R) measurements were carried out early in the morning. Root systems were kept in their substrate and perfused with distilled and de-gassed ultra-pure water filtered through a 0.2 µm water filtration membrane using the high pressure flow meter method (HPFM, Dynamax, USA) connected to the stump. K_R was measured in a transient way within a range of 0-0.5 MPa pressure at a constant increment rate of 3-5 kPa s⁻¹ and the flow rate (F) was recorded every 3 s as described in Tyree et al. (1995). K_R (Kg m s⁻¹ MPa⁻¹) was calculated as the slope of ΔF (Kg s⁻¹) versus ΔP (MPa) as $K_R = dF/dP$. Kr was corrected for variations in water temperature. Morphological variables were used to normalize root hydraulic conductance (K_R) on root surface area basis (K_{R-RA} ; Kg m⁻² s⁻¹ MPa⁻¹).

180 <u>Seedling morphology</u>

Five months after the onset of the experiment, seedlings were harvested, stems cut above the root collar and the rooting system carefully washed. Roots and leaves were digitized by scanning on an A3 flatbed scanner (Epson Expression 1680 Pro, Long Beach, California, USA) fitted with a transparency adaptor at 300 dpi, using an 8-bit greyscale. Images were analyzed with specific software (WinRhizo, Regent Instruments, Québec, Canada) to evaluate projected leaf area, total root length and total root surface area. All biomass fractions were dried at 65°C for 48 h, and then weighed. Specific root length (SRL) was calculated as the ratio between total root length and root biomass.

190 Zn concentration in plant tissues

Dry roots and leaves were digested in a heating block at 250°C with a mixture of sulphuric acid and hydrogen peroxide (Jones and Case 1990). Digests were analyzed for Zn by ICP-OES (Perkin Elmer Optima 4300 Inductively Coupled Plasma Optical Emission Spectrometry). *Olea europaea* L. leaf standard reference material (BCR: CRM 062, Commission of the European Communities Bureau of Reference, Brussels) was digested and analysed for quality control.

198 Quantification of indole-3-acetic-acid (IAA)

200 Frozen leaves (10 mg) were homogenised in 0.5 ml of 0.05 M sodium phosphate buffer (pH 7.0)

201 containing 0.02% diethyldithiocarbamic acid as an antioxidant and 500 $pg^{13}C_6$ -IAA as an internal

2	202	standard using the Retsch vibration mill (Retsch MM 200 mixer mill Retsch GmbH Haan Germany)
4	203	and a 3-mm tungstencarbide bead at a frequency of 30 Hz for 3 min The pH was adjusted to 2.7 with 1
5 6	204	M HCl and the samples were purified by solid phase extraction (SPE) and derivatized as described
7	205	Andersen et al. (2008) Finally samples were dissolved in 30 ul heptane and analyzed by GC-SRM-
8 9	205	MS (gas chromatography - selected reaction monitoring - mass spectrometry) as described in Edlund
10	200	et al. 1005
11	207	cl al. 1993.
12	208	
14 15	209	Data analysis
15 16	210	
17	211	Treatment effects on physiological and morphological variables were evaluated using two-way
18 19	212	ANOVA. When the interaction term was significant, one-way ANOVA and Student-t were used to
20	213	evaluate the effect of Zn at each watering level, and the effect of increased water availability at each
21 22	214	Zn level, respectively. Root biomass and instantaneous water use efficiency were raised to a power of
23	215	0.5 and root Zn concentration was transformed using natural logarithm prior to analysis, to
24 25	216	homogenize the variance. Factor levels were compared pairwise (Tukey's HSD test) when ANOVA
26	217	showed a significant treatment effect.
27	218	We used regression analysis to evaluate the significance of the relationship between K_R and A and g_s .
28 29	219	All analyses were performed using the SPSS v.15.0 statistical package (SPSS Inc., Chicago, Illinois,
30	220	USA).
31 32	221	
33	222	Results
34 35	223	
36	224	Zn bioaccumulation
37 38	225	
39	226	Foliar Zn concentration increased in HW and I W seedlings with increasing Zn concentration in the
40 41	220	growing medium (Fig. 2A). The magnitude of the increase was dependent on water availability (Table
42	227	1. Table 2) Thus, at the highest Zn dess, its concentration was two fold higher in leaves of UW
43 44	220	1, Table 2). Thus, at the highest 2h dose, its concentration was two-fold higher in leaves of H w
45	229	seedings than in leaves of L w seedings. The Zn bloaccumulation in foots was affected by the
46	230	increase in Zn load and by the interaction between both factors (Fig 2B, Table 1).
47 48	231	
49	232	Morphological response
50 51	233	
52	234	Foliar biomass was not affected by Zn application, water availability or the interaction between both
53 54	235	(Table 1 and 3). On the contrary, root biomass showed a significant effect of the increase in Zn load,
55	236	and the interaction between Zn application and water availability. While root biomass in HW
56 57	237	seedlings decreased with increasing Zn dose, LW seedlings showed the opposite trend (Table 2). At
58 59	238	the highest Zn dose, root biomass accumulation was 33% lower in HW seedlings than in LW

LW seedlings with

3	239	seedlings. This response was similar for root length, but changes in root length in LW seedlings with
4 5	240	increasing Zn concentration were not statistically significant (Table 2). We found a marginally
6	241	significant trend towards lower specific root length as Zn dose increased at any watering level (Table
7 8	242	1and 3).
9	243	
10 11	244	Physiological response
12	245	
13 14	246	Maximum PSII photochemical efficiency ($F_v:F_m$) ranged between 0.65 and 0.72. $F_v:F_m$ was
15	247	significantly decreased by Zn but not by water availability (Table 1). The interaction between Zn and
16 17	248	watering regime was marginally significant as the effect of drought on this variable decreased as Zn
18	249	dose increased above 3 µM Zn (Table 1, Appendix S2 in Supporting Information). In HW seedlings,
19 20	250	F_{v} : F_{m} decreased with the increase of Zn while F_{o} showed the opposite trend (Table 2). We found no
21	251	significant effect of Zn application in $F_{\rm v}$: $F_{\rm m}$ and F_o in LW seedlings.
22 23	252	
24	253	Zinc application, water availability and their interaction significantly affected gas exchange (Table 1,
25 26	254	Fig. 3A and 3B). HW seedlings receiving 3µM Zn, had 2.8 and 3.9 times higher net photosynthetic
27	255	rate (A) and stomatal conductance (g_s) than LW seedlings, respectively. Stomatal conductance and A
28 29	256	decreased with increasing Zn dose in HW (Table 2). In contrast, A in LW seedlings was weakly
30	257	affected by Zn application, and g_s showed a unimodal response to increase in Zn load (Table 2).
31 32	258	Instantaneous water-use-efficiency (IWUE) increased as Zn dose increased and, in contrast to other
33	259	variables, this effect was independent of the irrigation regime (see Appendix S3 in Supporting
34 35	260	Information).
36 27	261	
37 38	262	Hydraulic conductance
39 40	263	
40 41	264	Root hydraulic conductance in a root area basis (K_{R-RA}) was sensitive to Zn doses, watering regime
42 43	265	and their interaction (Fig. 4, Table 1). K _{R-RA} gradually decreased as Zn availability increased in HW
44	266	seedlings, whereas K _{R-RA} was not affected by Zn doses in LW seedlings (Fig. 4, Table 2). K _{R-RA} was
45 46	267	significantly higher in HW seedlings than in LW seedlings at low Zn availability, but this difference
47	268	disappeared at Zn concentrations of 50 μ M and higher (Appendix S4 in Supporting Information). Root
48 49	269	hydraulic conductance per unit of leaf area and root hydraulic conductance per unit of root length
50	270	showed similar trends (data not shown).
51 52	271	
53	272	IAA concentration
54 55	273	
56	274	Foliar IAA concentration was significantly affected by the increase in Zn load, and marginally
57 58	275	affected by the interaction between Zn application and water availability (Fig. 5, Table 1). This was
59		
60		8

1 2

2	276	the result of a substantial increase in IAA in HW seedlings receiving 150 µM of Zn compared to HW
4	277	seedlings receiving lower Zn doses and LW seedlings receiving any Zn dose (Table 2)
5	278	
7	270	Discussion
8	280	
10	280	In Mediterranean type ecosystems, water stress is the main constraint to plant performance (Di Castri
11 12	201	1073 Phizopoulou and Mitrakos 1000). In these areas, prolonged summer drought, low water storage
13	202	approximate and with a summer temperatures could emplify the effects of other sources of
14 15	203	strass such as heavy metals, high temperatures or high rediction levels. In addition, the delaterious
16	204	stress such as heavy metals, high temperatures of high fadiation levels. In addition, the deletenous
17 19	285	impact of both sources of stress may be enlarged in the future as a consequence of climate change and $\frac{1}{2}$
19	286	increased inputs of heavy metals (Sardans and Penuelas 2007, Mico et al. 2006, IPCC 2001). Results
20	287	of the present study show that water availability and heavy metal contamination may indeed interact in
22	288	complex ways, and they suggest that the combined effects of both sources of stress may not be
23	289	additive simply.
24 25	290	
26	291	Zn effects on seedling performance
27 28	292	
29	293	Zinc concentration in leaves of seedlings exposed to 3 µM Zn was similar to concentrations found in
30 31	294	1-year-old <i>Q. suber</i> (Robert et al., 1996). Foliar Zn concentration reached critical levels (e.g., 200 μg
32	295	g^{-1} d.w.; Balsberg Pahlsson, 1989) only after exposition to 150 μ M Zn. Maximum Zn concentration
33 34	296	belowground in HW seedlings was 1.7 higher than in LW seedlings. Similar values of Zn
35	297	bioaccumulation have been found in other woody species grown in hydroponic culture (e.g., 3444 µg
36 37	298	g^{-1} to 5700 µg g^{-1} ; Reichman et al., 2001; Fuentes et al., 2007b).
38	299	
39 40	300	Aboveground biomass accumulation showed no evidence of Zn toxicity. Similar response had been
41	301	observed previously (Disante et al. 2011). This could be a consequence of the time span of the
42 43	302	experiment and low Zn concentration in shoots, as belowground biomass accumulation and
44	303	ecophysiological status (as leaf photosynthetic rate) were affected by Zn application. In addition, stem
45 46	304	elongation in oaks follows successive flushes (Johnson et al. 2001). Thus, we might observe changes
47	305	in shoot biomass in response to the increase in Zn load after a new flush of growth. Reductions in
48 49	306	aboveground biomass accumulation and chlorosis in seedlings exposed to high levels of Zn have been
50	307	reported in other woody species in experiments of different time span (Reichman et al. 2001, Fuentes
51 52	308	et al. 2007b, Disante et al. 2010).
53	309	On the contrary, belowground parts were more sensitive to increase in Zn load than aboveground parts
54 55	310	as reflected by the reduction in root biomass and the marginally significant decrease in root length of
56	311	well watered seedlings receiving increasing doses of heavy metal. The reduction in root biomass
57 58	312	accumulation is a common and quick response to high Zn availability (Ruano et al. 1988). Indeed Zn
59		
60		9

concentration in roots was up to ten times higher than in shoots. This may be a result of the strong control of Zn translocation of Q. suber, possibly excluder species (Disante et al. 2010).

Functionality of *O. suber* leaves was negatively affected by the increase in Zn load. Previous studies suggested that Zn increases plant sensitivity to photoinhibition (Joshi and Mohanty 2004, Mateos-Naranjo et al. 2008). The decline observed in $F_{\rm v}$: $F_{\rm m}$ may be due to damage in the reaction centre and down-regulation processes (Osmond et al. 1999). In our experiment, this reduction was caused by a weak increase in F_0 that can be induced by damages to the PSII reaction centre (Moustakas et al. 1997), including reductions in the energy transfer from the antennae to the reaction centre associated with chronic photoinhibition (Ralph and Burchett 1998, Popovic et al. 2003). Similarly, we observed a reduction in A and g_s in seedlings exposed to Zn application, as described in previous works (Myśliwa-Kurdziel et al. 2004, Disante et al. 2011). Impaired carbon fixation may partly reflect photoinhibition and photon damage, but also the reduction in g_{s} .

Another direct effect over g_s may be associated with the decrease in water transport capacity in roots affected by increment of this heavy metal. Supporting this hypothesis, we found a reduction in hydraulic conductance of roots and a positive relationship between K_R and gas exchange rates (R^2 = 0.64, F= 10.66, P= 0.0171, and R²= 0.73, F= 15.99, P= 0.0071 for A and g_s respectively). These results are in agreement with observations on stomata sensitivity to decreasing K_{R} , and the prevention of xylem cavitation (Brodribb and Holbrook 2003, Vilagrosa et al. 2003b, Otieno et al. 2007). The negative effect of the increase in Zn load altering root morphology supports our observations in root functionality (i.e. decreases of K_{R}). Heavy metals may modify root hydraulic conductance by different mechanisms, but studies on this topic are relatively scarce (Poschenrieder and Barceló 2004). Thus, previous studies found that Hg can block aquaporins in cell membranes (Lee et al. 2005), and Zn and Cd may foster the deposition of phenolic compounds and the reduction in vessel size (Fuhrer 1982, Poschenrieder et al. 1989). Independently of the mechanisms involved, the reduction of K_R and the concomitant decrease in A and g_s, together with changes in root biomass accumulation and root morphology, suggest that Zn may hamper the ability of Q. suber seedlings to access and transport soil resources to aboveground parts. The development of extended rooting system is important to ensure plant survival and early growth in Mediterranean conditions, and especially for seedling establishment in areas subjected to intense droughts (Padilla and Pugnaire, 2007, León et al. 2011).

Hormonal response to heavy metals is another response poorly studied, especially in woody species. We found a substantial increase in IAA in leaves of well watered seedlings as Zn concentration increased. Auxins are mainly synthesized in shoots, and then translocated and accumulated in roots (Marschner 1995, Ljung et al. 2005) This hormone is involved in several process related to the

Page 11 of 31

1

Physiologia Plantarum

2	
3	
4	
5	
6	
U 7	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
40 17	
41	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
50	
50	
59	

60

350 coordination of root and shoot growth and development, participating in processes as cell elongation, 351 formation and differentiation of vascular tissue, and in the shaping of root architecture (Mattsson et al. 352 2003; Aloni et al. 2006, Robert and Friml 2009). Our results show that the increase in Zn load may 353 elicit alterations in endogenous auxin levels and suggest that this could promote the observed 354 alterations in root morphology and functionality. Indeed, other studies have found changes in auxin 355 accumulation after Cu exposition, which was related to morphological changes as the formation of 356 lateral roots (Lequeux et al. 2010, Pető el at. 2011).

357

359

358 Combined effects of Zn and water availability

360 We found no significant effect of the increase in Zn load on aboveground biomass accumulation in 361 HW seedlings, whereas aboveground biomass showed a marginally significant increase with Zn 362 application in LW seedlings. Several studies have found increases in plant growth in response to small 363 amounts of available Zn (Gadallah 2000, Fuentes et al. 2007b). In contrast, belowground biomass 364 increased and decreased in LW and HW seedlings, respectively, as Zn availability increased. The 365 marginal increase in root biomass in LW seedlings was probably due to the combination of small 366 changes in root diameter (data not shown) and root length (Table 3): 5% and 12% increase, 367 respectively, in seedlings exposed to 150 μ M Zn compared to seedlings exposed to 3 μ M Zn. We may 368 note that root biomass and root length were 1.5 times higher in LW seedlings than in HW seedlings 369 when both sets received 150 µM Zn. A study combining Zn and salinity found similar results, as Zn 370 application reduced root length and root biomass accumulation in unstressed seedlings, but it increased 371 root growth in seedlings subjected to saline stress (Gadallah and Ramadan 1997). 372 *Ouercus suber* displays intermediate tolerance to drought (Ramírez-Valiente et al. 2009). In our 373 experiment, we did not test intense and extended drought that could probably affect root anatomy. Our 374 objective was to study how the reduction in the frequency of irrigation influences seedling response to 375 different Zn doses. This may explain why contrasted watering frequency did not induce changes in 376 root length or root biomass in seedlings receiving 3 µM Zn. Data on Table 1 show that the effects of 377 Zn and watering frequency on several seedling traits depend on the levels of the other factors. The 378 interaction between drought and Zn points out at a synergistic or antagonistic effect of the two factors. 379 Table 2 and Table 3 show that Zn had opposite effects on seedlings depending on the watering level. 380 Despite that the effect of Zn on root architecture, (i.e., root biomass) was marginally significant in LW 381 seedlings (P=0.052), we consider this effect to be important and worth discussing. Besides, low 382 watering induced a marginal decrease in root average diameter compared to HW (Appendix S5 in 383 Supporting information). Results of a two-way ANOVA showed the lack of a significant interaction 384 between Zn and drought, and indicate that roots of seedlings receiving low irrigation were thinner than 385 HW seedlings. In other words, LW induced changes in root morphology. 386

Physiological response to increasing Zn availability also differed in LW and HW seedlings. Low irrigation frequency decreased gas exchange rates, and probably limited Zn uptake and accumulation. This may explain the lower foliar and root Zn concentrations found in LW seedlings compared with HW seedlings, and may be partially responsible for the smaller effect of Zn doses observed in the former seedlings. Zinc is incorporated by specific transporters (Lasat et al. 2000, Takahashi et al. 2012) and to our knowledge there is no report about the effect of water availability on these transporters. But drought generally reduces nutrient transport because it impairs transpiratory flow and active transport (Hu and Schmidhalter 2005). All physiological traits measured in *O. suber* decreased as Zn concentration increased in HW seedlings, whereas most traits showed a unimodal response, albeit not statistically significant, to increasing Zn in LW seedlings. Stomatal conductance and carbon assimilation rates of LW seedlings receiving the lowest Zn corresponded to a values obtained in *O. suber* seedling exposed to mild drought (Disante et al. 2011), but they were not further reduced by the increase in Zn load. As a consequence, physiological status of LW and HW seedlings strongly differed in seedlings receiving the lowest doses of Zn, but differences gradually disappeared as Zn availability increased, or Zn concentration in roots increased above ca. 1000 μ g g⁻¹ (Appendix S2). When water was limiting, the addition of 50 μ M Zn increased A and g_s in a 67% and 73% as compared with 3 μ M Zn, respectively. Moreover, in the last case this increment was significant. These results are in agreement with observed trends in morphological variables.

407
408 In the same way, K_{R-RA} showed a similar behaviour as gas exchange rates. K_{R-RA} decreased with
409 increasing Zn concentration in LW seedlings and increases a 30% after 50 μM Zn. This may be a
410 consequence of the morphological changes occurring in LW plants subjected to increased Zn
411 availability. As a result, K_{R-RA} values converged in HW and LW seedlings at root Zn concentration

412 above ca. $1000 \ \mu g^{-1}$ (see Appendix S4 in Supporting Information). Similar results were observed when 413 we analysed K_R on a leaf area and a root length basis. Limitations to water flow through xylem vessels 414 can increase the risk of cavitation by increasing water tension from roots to leaves (Sperry et al. 2002). 415 However, some limitation to water flow may increase IWUE of plants by regulating water losses. This 416 response would be beneficial to maintain a positive water balance, especially for plants living in water 417 limited ecosystems (Vilagrosa et al. 2003a, Hernández et al. 2010).

418 The effect of heavy metals on IWUE has been scarcely studied, but an increase in IWUE can alleviate

419 the effects of drought. We found that the increase in Zn load enhanced carbon assimilation per unit of

420 water loss independently of the irrigation regime. This is remarkable, as A and g_s behaved in quite

421 different ways in both groups of seedlings.

422 To what extent was the differential morpho-physiological response of LW seedlings to Zn a simple

423 consequence of reduced Zn uptake? The relationships between root Zn concentration, on the one hand,

2	121	and α and K_{-} on the other did not overlap in LW and HW seedlings (see Appendix S4 in Supporting
3 4	425	g_s and R_R , on the other, and not overlap in E_w and H_w securings (see Appendix 54 in Supporting
5	425	the response of Q, subsy acadilines to Zn application
6 7	420	the response of Q. suber seedings to Zh application.
8	427	
9 10	428	
11		
12 13		
14		
15 16		
17		
18 10		
20		
21		
22 23		
24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
ეკ 54		
55		
56 57		
58		
59 60		13
		10

1	
2	
3	
4	
5	
6	
7	
8	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31 20	
30 20	
39	
4U	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Conclusion

430	
431	Our results demonstrate that the combination of the increase in Zn load and moderate water stress did
432	not induce a synergistic response in Q. suber seedlings, supporting our initial hypothesis. The
433	combination of both stress factors, may contribute to alleviate their negative impact. On the one hand,
434	low water availability prevented Zn accumulation, and probably buffered its negative effects. On the
435	other hand, when water was limiting, intermediate Zn concentrations may have contributed to the
436	improvement of traits as water use efficiency and root growth, buffering the effects of water
437	limitation. Low water availability expanded the range of Zn concentrations where this heavy metal
438	may have a positive effect on plant performance, shifting the toxicity level up. Our results suggest that
439	legal and practical regulations of Zn levels should take into account the water regime of each zone.
440	
441	Acknowledgements
442	
443	We thank Jose Huesca for their assistance in the lab, Banco de Semillas El Serranillo for the seeds
444	used in this experiment and the University of Alicante for an FPU (Formacion del Profesorado
445	Universitario) grant awarded to K. Disante. This research was funded by the Spanish Ministry of
446	Science and Innovation (Project GRACCIE, Programa Consolider-Ingenio 2010 (CSD 2007-00067)
447	and SURVIVE (CGL-2011-30531-CO2-02)) and Generalitat Valenciana (FEEDBACKS-
448	PROMETEO/2009/006). E.I. Hernández thanks the University of Alicante for her FPU research
449	fellowship. CEAM is supported by Generalitat Valenciana.
450	
451	References
452	
453	Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root
454	architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root
455	gravitropism. Ann Bot 97: 883–893
456	
457	Andersen SU, Buechel S, Zhao Z, Ljung K, Novák O, Busch W, Schuster C , Lohmann JU (2008)
458	Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana.
459	Plant Cell 20: 88 – 100
460	
461	Aranda I, Castro L, Alia R, Pardos JA, Gil L (2005) Low temperature during winter elicits differential
462	responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiol
463	25: 1085 - 1090
464	

2 3	465	Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of
4	466	<i>Pinus pinea</i> and <i>Pinus pinaster</i> seedlings. Physiol Plant 92: 675 – 680
5 6	467	
7	468	Balsberg Påhlsson AM (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. A
8 9	469	literature review. Water Air Soil Poll 47: 287 – 319
10	470	
12	471	Barceló J, Poschenrieder Ch (1990) Plant water relations as affected by heavy metal stress: a review. J
13 14	472	Plant Nutr 13: 1 – 37
15	473	
16 17	474	Brady KU, Kruckeberg AR, Bradshaw Jr HD (2005) Evolutionary ecology of plant adaptation to
18	475	serpentine soils. Ann Rev Ecol Evol S 36: 243 – 66
19 20	476	
21	477	Broadley MR, White PJ, Hammond JP, Zelko I, Lux, A (2007) Zinc in plants. New Phytol 173: 677 –
22 23	478	702
24	479	
25 26	480	Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other
27 28	481	leaf physiological traits. Plant Physiol 132: 2166 – 2173
29	482	
30 31	483	Cakmak I (2000) Possible roles of Zinc in protecting plant cells from damage by reactive oxygen
32	484	species. New Phytol 146: 185 – 205
33 34	485	
35	486	Di Baccio D, Tognetti R, Minnocci A, Sebastiani L (2009) Responses of the Populus × euramericana
36 37	487	clone I-214 to excess zinc: Carbon assimilation, structural modifications, metal distribution and
38	488	cellular localization. Environ Exp Bot 67: 153 – 163
39 40	489	
41 42	490	Di Castri F (1973) Climatographical comparisons between Chile and the western coast of North
42 43	491	America. In: Castri F, Mooney HA (eds) Mediterranean type-ecosystems, Springer-Verlag, Berlin,
44 45	492	Germany, pp 21 – 36
46	493	
47 48	494	Disante KB, Fuentes D, Cortina J (2010) Sensitivity to zinc of Mediterranean woody species important
49	495	for restoration. Sci Tot Environ 408: 2216 – 2225
50 51	496	
52	497	Disante KB, Fuentes D, Cortina J (2011) Response to drought of Zn-stressed Quercus suber L.
53 54	498	seedlings. Environ Exp Bot 70: 96 – 103
55	499	
56 57		
58		

500	Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element
501	accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement
502	case study. Environ Pollut 152: 50 – 59
503	
504	Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas
505	chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in
506	plant tissues. Plant Physiol 108: 1043 – 1047
507	
508	Fuhrer J (1982) Early effects of excess cadmium uptake in <i>Phaseolus vulgaris</i> . Plant Cell Environ 5:
509	263 – 270
510	
511	Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007a) Response of Pinus halepensis
512	Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environ
513	Pollut 145: 316 – 323
514	
515	Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007b) Sensitivity of Mediterranean
516	woody seedlings to copper, nickel and zinc. Chemosphere 66: $412 - 420$
517	
518	Gadallah MAA (2000) Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and
519	soluble carbon and nitrogen components of soybean plants growing under water deficit. J Arid
520	Environ 44: 451 – 467
521	Cadellah MAA, Damadan T (1997) Effects of zine and calinity on growth and enotomical structure of
521	Carthamua tinotonius L. Diol Diontonum 20: 411 – 418
522	Carthamus linctorius L. Bioi Plantai uni 39. 411 – 418
523	
524	Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of
525	photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta
526	990: 87 – 92
527	
528	Gimeno TE, Pas B, Lemos-Filho JP, Valladares F (2008) Plasticity and stress tolerance override local
529	adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:
530	87 - 98
531	
532	Hernandez EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in
533	seedlings of Mediterranean coexisting species. Plant Ecol 207: 233 – 244
534	

3	535	Hu Y, Schmidhalter U (2005) Drought and salinity: A comparison of their effects on mineral nutrition
4 5	536	of plants. J Plant Nutr Soil Sc 168: 541 – 549
6	537	
7 8	538	IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the Third
9	539	Assessment Report of the Intergovernmental Panel on Climate Change. In: Hougton JT, Dung Y
10 11	540	Griggs DJ, Noguer M, Van der Linden PJ, Dui X, Maskell K, Johson CA (eds.) Third Assessment
12	541	Report of Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
13 14	542	
15	543	Jones Jr JB, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman
16 17	544	RL (ed) Soil Testing and Plant Analysis, SSSA Book Series 3, Madison, Wisconsin, pp 389-427
18	545	
19 20	546	Johnson PS, Shifley SR, Rogers R (2001) The ecology and silviculture of oaks. CABI Publishing.
21	547	Oxon, UK
22 23	548	
24	549	Joshi MK, Mohanty P (2004) Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in
25 26	550	plants. In: Papageorgiou GC, Govindjee (eds) Chlorophylla fluorescence. A signature of
27	551	photosynthesis, Springer Netherlands, pp 637 – 661
28 29	552	
30 21	553	Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton, FL
32	554	
33 34	555	Kasim WA (2007) Physiological consequences of structural and ultra-structural changes induced by
35	556	Zn stress in <i>Phaseolus vulgaris</i> . I. Growth and photosynthetic apparatus. Int J Bot 3: 15 – 22
36 37	557	
38	558	Kukkola E, Huttunen S, Bäck J, Rautio P (1997) Scots pine needle injuries at subarctic industrial sites.
39 40	559	Trees 11: 378 – 387
41	560	
42 43	561	Larcher W (2003) Physiological plant ecology: Ecophysiology and stress physiology of functional
44	562	groups. 4 th edition, Springer, Berlin, pp 513
45 46	563	
47	564	Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc
48 49	565	transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51: 71 – 79
50	566	
51 52	567	Lee SH, Chung GC, Steudle E (2005) Low temperature and mechanical stresses differently gate
53	568	aquaporins of root cortical cells of chilling-sensitive cucumber and resistant figleaf gourd. Plant Cell
54 55	569	Environ 28: 1191 – 1202
56	570	
57 58		
59		

571	León MF, Squeo FA, Gutiérrez JR, Holmgren M (2011) Rapid root extension during water pulses
572	enhances establishment of shrub seedlings in the Atacama Desert. J Veg Sci 22: 120 – 129
573	
574	Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis
575	thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and
576	mineral profile. Plant Physiol Biochem 48: 673 – 682
577	
578	Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg, G (2005) Sites and
579	regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17: 1090 - 1104
580	
581	Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press Inc, London
582	
502	
583	Mateos-Naranjo E, Redondo-Gomez S, Cambrolle J, Luque I, Figueroa ME (2008) Growth and
584	photosynthetic responses to zinc stress of an invasive cordgrass, <i>Spartina aensijiora</i> . Plant Biol 10:
282	/54 - /62
586	Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular
587	development. Plant Physiol 131: 1327 – 1339
588	
589	Micó C, Recatala L, Peris M, Sánchez J (2006) Assessing heavy metal sources in agricultural soils of
590	an European Mediterranean area by multivariate analysis. Chemosphere 65: 863 – 872
591	
592	Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII
593	activity, CO ₂ fixation, and Zn, Mn and Mg contents of <i>Lolium perenne</i> under zinc stress. J Plant
594	Physiol 158: 1137 – 1144
595	
596	Moustakas M, Eleftheriou EP, Ouzounidou G (1997) Short-term effects of aluminium at alkaline pH
597	on the structure and function of the photosynthetic apparatus. Photosynthetica 34: 169 – 177
598	
599	Myśliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants.
600	In: Prasad MNV (ed) Heavy Metal Stress in Plants. From Molecule to Ecosystems, Springer, Berlin,
601	pp 146 – 181
602	
603	Nicotra AB, Babicka N, Westoby M (2002) Seedling root anatomy and morphology: an examination
604	of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia
605	130: 136 – 145

Physiologia Plantarum

2 3	606	
4	607	Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: abiotic factors. John Wiley and
5 6	608	Sons, New York
7	609	
8 9	610	Öncel I, Keles Y, Üstün AS (2000) Interactive effects of temperature and heavy metal stress on the
10 11	611	growth and some biochemical compounds in wheat seedlings. Environ Pollut 107: 315 - 320
12	612	
13 14	613	Osmond B, Schwartz O, Gunning B (1999) Photoinhibitory printing on leaves, visualised by
15	614	chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from
16 17	615	grana. Aust J Plant Physiol 26: 717 – 724
18	616	
19 20	617	Otieno DO, Schmidt MWT, Kurz-Besson C, Vale RLD, Pereira JS, Tenhunen JD (2007) Regulation
21	618	of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Tree Physiol
22	619	27: 1179 – 1187
24	620	
25 26	621	Pascual I, Antolín MC, García C, Polo A, Sánchez-Díaz M (2004) Plant availability of heavy metals in
27	622	a soil amended with a high dose of sewage sludge under drought conditions. Biol Fert Soils 40: 291 –
20 29	623	299
30 31	624	
32	625	Pausas J, Pereira J, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork Oak
33 34	626	Woodlands on the Edge. Ecology, Adaptive Management and Restoration, Island Press, Washington
35	627	DC, pp 11 – 25
36 37		
38	628	Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody
39 40	629	seedling survival during drought. Funct Ecol 21: 489 – 495
41	630	Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric
43	631	oxide and auxin in signal transduction of copper-induced morphological responses in <i>Arabidopsis</i>
44 45	632	seedlings. Ann Bot 108: 449 – 457
46		
47 48	633	Poschenrieder C, Gunse B, Barceló J (1989) Influence of cadmium on water relations, stomatal
49	634	resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90: 1365 - 1371
50 51	< 2 -	
52	635	Poschenrieder C, Barceló J (2004) Water relations in heavy metal stressed plants. In: Prasad MNV
53 54	636	(ed) Heavy Metal Stress in Plants. From Molecule to Ecosystems, Springer, Berlin, pp 249 – 271
55 56	637	
оо 57		
58		

638	Popovic R, Dewez D, Juneau P (2003) Application of chlorophyll fluorescence in ecotoxicology:
639	heavy metals, herbicides, and air pollutants. In: Dell JR, Toivinen PMA (eds) Practical applications of
640	chlorophyll fluorescence in plant biology, Kluwer Academic Publishers, Boston, pp 151 – 184
641	
642	Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress.
643	Environ Pollut 103: 91 – 101
644	
645	Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile survival
646	under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology
647	and Management 257: 1676 – 1683.
648	
649	Reichman SM, Asher CJ, Mulligan DR, Menzies NW (2001) Seedling responses of three Australian
650	tree species to toxic concentrations of zinc in solution culture. Plant Soil 235: 151 – 158
651	
652	Rhizopoulou S, Mitrakos K (1990) Water relations of evergreen sclerophylls. I. Seasonal changes in
653	the water relations of eleven species from the same environment. Ann Bot 65: 171 – 178
654	
655	Robert B, Berton G, Sayag D, Masson P (1996) Assessment of mineral nutrition of cork oak through
656	foliar analysis. Commun. Soil Sci Plant Anal. 27 (9–10): 2091–2109.
657	Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5: 325 – 332
658	
659	Ruano A, Poschenrieder Ch, Barceló J (1988) Growth and biomass partitioning in zinc-toxic bush
660	beans. J Plant Nutr 11: 577 – 588
661	
662	Santala KR, Ryser P (2009) Influence of heavy-metal contamination on plant response to water
663	availability in white birch, Betula papyrifera. Environ Exp Bot 66: 334 – 340
664	
665	Sardans J, Peñuelas J (2007) Drought changes the dynamics of trace element accumulation in a
666	Mediterranean Quercus ilex forest. Environ Pollut 147: 567 – 583
667	
668	Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water
669	supply. Plant Cell Environ 25: 251 – 263
670	
671	Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The
672	OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell
673	Environ 35: 1948 – 1957

1		
2 3	674	
4 5	675	Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of roots hydraulic
6	676	conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46: 83 – 94
7 8	677	
9	678	Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four
10 11	679	Datura species to a zinc stress. Chemosphere 59: 1005 - 1013
12	680	
13 14	681	Valladares F, Dobarro I, Sánchez-Gómez D, Pearcy RW (2005) Photoinhibition and drought in
15	682	Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. J Exp
16 17	683	Bot 56: 483 – 494
18	684	
19 20	685	Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat
21	686	tolerance, and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ 20: 25 –
22 23	687	36
24	688	
25 26	689	Vallejo VR, Bautista S, Cortina J (2000) Restoration for soil protection after disturbances. In: Trabaud
27	690	L (ed) Life and Environment in the Mediterranean, WIT Press, Southampton, pp 199 – 208
28 29	691	
30	692	Vilagrosa A, Cortina J, Gil-Pelegrin E, Bellot J (2003a) Suitability of drought preconditioning
31 32	693	techniques in Mediterranean climate. Restor Ecol 11: 208 – 216
33	694	
34 35	695	Vilagrosa A, Vallejo VR, Bellot J, Gil-Pelegrín E (2003b) Cavitation, stomatal conductance, and leaf
36 27	696	dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot
37 38	697	54: 2015 – 2024
39 40	698	
40 41	699	Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010) Are symplast tolerance
42 43	700	to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated
44	701	analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant
45 46	702	species. Environ Exp Bot 69: 233 – 242
47	703	
48 49	704	Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effects of photoinhibitionon whole-plant carbon
50	705	gain assessed with a photosynthesis model. Plant Cell Environ 24: 27 – 40
51 52	706	
53	707	Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL (ed)
54 55	708	Encyclopedia of plant physiology, Springer-Verlag, Berlin, pp 245 – 300
56 57	709	
ว <i>า</i> 58		
59 60		21
00		21

Table 1. Results of two-way ANOVA to evaluate the effects of Zn and water availability (w) on morpho-physiological traits of Quercus suber seedlings. Foliar Zn: foliar Zn concentration, Root Zn: root Zn concentration, SRL: specific root length, $F_v:F_m$: predawn maximum photochemical efficiency, F_o : minimum fluorescence, A: photosynthesis; g_s : stomatal conductance, IWUE: instantaneous water use efficiency, K_{R-RA}: root hydraulic conductance per root area, IAA: auxin concentration in leaves.

Variables	F_{Zn}	P_{Zn}	F_w	$P_{ m w}$	F_{Znxw}	$P_{\rm Znxw}$	
Foliar Zn	$F_{3,26} = 105.34$	< 0.001	F _{1,26} =12.78	0.001	$F_{3,26} = 3.34$	0.034	
Root Zn	$F_{3,26} = 46.67$	< 0.001	$F_{1,26} = 0.01$	0.920	$F_{3,26} = 2.86$	0.056	
Foliar	$F_{3,48} = 1.95$	0.135	$F_{1,48} = 0.01$	0.905	$F_{1,48} = 2.00$	0.127	
biomass							
Root	$F_{3,50} = 2.95$	0.041	$F_{1,50} = 0.94$	0.337	$F_{3,50} = 5.11$	0.004	
biomass							
Root length	$F_{3,48} = 0.25$	0.858	$F_{1,48} = 0.02$	0.870	$F_{3,48} = 3.29$	0.028	
SRL	$F_{3,45} = 2.44$	0.076	$F_{1,45} = 0.93$	0.339	$F_{3,45} = 0.13$	0.943	
$F_{\rm v}$: $F_{\rm m}$	$F_{3,30} = 5.09$	0.006	$F_{1,30} = 2.14$	0.154	$F_{3,30} = 2.36$	0.091	
F_{o}	$F_{3,30} = 2.66$	0.066	$F_{1,30} = 1.18$	0.287	$F_{3,30} = 2.85$	0.054	
A	$F_{3,30} = 3.74$	0.021	$F_{1,30} = 32.52$	< 0.001	$F_{3,30} = 3.97$	0.017	
$g_{ m s}$	$F_{3,30} = 4.04$	0.016	$F_{1,30} = 31.35$	< 0.001	F _{3,30} =4.00	0.017	
IWUE	F _{3,30} =2.86	0.054	F _{1,30} =2.71	0.111	F _{3,30} =0.40	0.756	
K _{R-RA}	$F_{3,32} = 2.96$	0.047	$F_{1,32} = 22.76$	<0.001	F _{3,32} =6.96	0.001	
IAA	$F_{3,23} = 3.58$	0.029	$F_{1,23} = 0.08$	0.773	$F_{3,23} = 2.84$	0.060	

Physiologia Plantarum

Table 2. Results of one-way ANOVA to evaluate the effects of Zn on morpho-physiological traits of *Quercus suber* seedlings subjected to high and low watering frequency (HW and LW, respectively). Foliar Zn: foliar Zn concentration, Root Zn: root Zn concentration, $F_v:F_m$: predawn maximum photochemical efficiency, F_o : minimum fluorescence; A: photosynthesis; g_s : stomatal conductance, K_{R-RA} : root hydraulic conductance per root area, IAA: auxin concentration in leaves.

Variables	F_{HW}	$P_{ m HW}$	F_{LW}	$P_{\rm LW}$				
Foliar Zn	$F_{3,13} = 92.33$	< 0.001	$F_{3,13} = 31.51$	< 0.001				
Root Zn	$F_{3,14} = 99.27$	< 0.001	$F_{3,14} = 35.55$	< 0.001				
Root biomass	$F_{3,23} = 4.23$	0.016	$F_{3,27} = 2.93$	0.052				
Root length	$F_{3,22} = 2.57$	0.080	$F_{3,26} = 1.35$	0.281				
$F_{\rm v}:F_{\rm m}$	$F_{3,15} = 6.66$	0.004	$F_{3,15} = 0.86$	0.485				
Fo	$F_{3,15} = 4.88$	0.015	$F_{3,15} = 0.31$	0.819				
A	$F_{3,16} = 5.02$	0.012	$F_{3,15} = 2.46$	0.106				
$g_{ m s}$	$F_{3,16} = 4.61$	0.017	$F_{3,15} = 3.34$	0.050				
K _{R-RA}	$F_{3,15} = 7.30$	0.003	$F_{3,18} = 0.63$	0.602				
IAA	$F_{3,11} = 4.39$	0.029	$F_{3,12} = 0.90$	0.468				

Table 3. Morphological attributes of 5-months-old *Quercus suber* seedlings grown under a range of Zn supply rates and contrasted irrigation regimes. HW and LW correspond to high and low watering frequency, respectively. Means and standard errors of N= 6-7 seedlings are showed.

Different capital letters and lowercase letters indicate significant differences at P < 0.05 for HW seedlings and LW seedling respectively (Tukey's HSD test). Asterisks indicate significant differences at P < 0.05 between seedlings HW and LW exposed to the same Zn dose (t-Student).

	Zn application rate (µM)								
	3		1	10		50		150	
	HW	LW	HW	LW	HW	LW	HW	LW	
Foliar biomass (g)	0.47±0.10	0.45±0.05	0.50±0.05	0.56±0.05	0.71±0.09	0.54±0.03	0.48±0.08	0.64±0.01	
Root biomass (g)	2.43±0.33 ^{AB}	2.02±0.15	2.93±0.33 ^B	2.43±0.15	2.86±0.28 ^B	2.35±0.16	1.75±0.18 ^A	2.59±0.13*	
Root length (cm)	1479±119	1306±123	1283±180	1199±105	1398±217	1193±94	976±105	1482±132*	
Specific root length (cm g ⁻¹)	593±72	660±42	481±70	493±41	494±42	549±76	560±42	578±48	

Figure 1. Changes in substrate moisture content (SMC) for HW and LW seedlings during 18 consecutive days. HW and LW correspond to high and low watering frequency, respectively. Means and standard errors of N= 6-7 tubes per treatment are shown.

Figure 2. Foliar (A) and root (B) Zn concentration of *Quercus suber* seedlings growing at four Zn doses and two contrasting water availability levels (HW and LW for high and low watering frequency, respectively). Bars are means and standard errors of N=5 seedlings. Note the different scale used for leaves and roots. Note that data distribution along the X-axis is not proportional.

Different capital letters and lowercase letters indicate significant differences at P < 0.05 for HW seedlings and LW seedling respectively (Tukey's HSD test). Asterisks indicate significant differences at P < 0.05 between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 3. Photosynthesis (A) and stomatal conductance (B) of *Quercus suber* seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are means and standard errors of N=5 seedlings. Note that data distribution along the X-axis is not proportional.

Different capital letters and lowercase letters indicate significant differences at P < 0.05 for HW seedlings and LW seedling respectively (Tukey's HSD test). Asterisks indicate significant differences at P < 0.05 between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 4. Specific hydraulic conductance per root surface area in *Quercus suber* seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are means and standard errors of N=4-5 seedlings. Note that data distribution along the X-axis is not proportional.

Different capital letters and lowercase letters indicate significant differences at P < 0.05 for HW seedlings and LW seedling respectively (Tukey's HSD test). Asterisks indicate significant differences at P < 0.05 between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 5. Indole-3-acetic acid (IAA) concentration in leaves of *Quercus suber* seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are

means and standard errors of N=3-4 seedlings. Note that data distribution along the X-axis is not proportional.

Different capital letters and lowercase letters indicate significant differences at P < 0.05 for HW seedlings and LW seedling respectively (Tukey's HSD test). Asterisks indicate significant differences at P < 0.05 between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 2.

Figure 3

