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ABSTRACT 

 

Advanced porous materials with tailored porosity (extremely high development of 

microporosity together with a narrow micropore size distribution (MPSD)) are required in 

energy and environmental related applications. Lignocellulosic biomass derived HTC carbons 

are good precursors for the synthesis of activated carbons (ACs) via KOH chemical 

activation. However, more research is needed in order to tailor the microporosity for those 

specific applications. In the present work, the influence of the precursor and HTC temperature 

on the porous properties of the resulting ACs is analyzed, remarking that, regardless of the 

precursor, highly microporous ACs could be generated. The HTC temperature was found to 

be an extremely influential parameter affecting the porosity development and the MPSD of 

the ACs. Tuning of the MPSD of the ACs was achived by modification of the HTC 

temperature. Promising preliminary results in gas storage (i.e. CO2 capture and high pressure 

CH4 storage) were obtained with these materials, showing the effectiveness of this synthesis 

strategy in converting a low value lignocellulosic biomass into a functional carbon material 

with high performance in gas storage applications. 

 

 

1. Introduction 

 

Hydrothermal Carbonization (HTC) is now a well-established thermochemical synthesis 

alternative to produce functional carbon materials with a tunable chemical structure from pure 

carbohydrates or lignocellulosic biomass [1-3].
 
 

During HTC, biomass-derived precursors are converted into valuable carbon materials 

using water as reaction medium at mild temperatures (< 200°C) under self-generated 

pressures [4]. Even though this methodology has been known for almost 100 years [5], its full 



potential, as a synthetic route for carbon materials having important applications in several 

fields such as catalysis, energy storage, CO2 sequestration, water purification, soil 

remediation, has been revealed only recently, mainly via the work of Dr. Titirici and co-

workers [6]. 

Under hydrothermal conditions monosaccharides are dehydrated to 5-

hydroxymethylfurfural (5-HMF) via the well- known Lobry de Bruyn-Alberta van Ekstein 

rearrangement [7]. Once 5-HMF is formed, it is in situ “polymerised” yielding the HTC 

carbon product [8]. While most of the research efforts focus on the exploitation of HMF for 

the production of chemicals, bioplastics  and biofuels [9], the Titirici´s group rediscovered 

these processes for the production of green and valuable carbon and carbon-hybrid materials 

[1,4]. 

One of the main limiting factors, hindering the effective and straightforward exploitation 

of HTC carbons for several end-applications (eg. catalysis, separation science, energy 

production and storage), is their low surface area and porosity [10]. In the case of 

monosaccharide derived HTC carbons, this problem has been elegantly overcome by using 

hard\soft-templating strategies or by addition of structural directing agents [11-13]. Such 

synthetic routes are effective because of the homogeneous nature of the pre-HTC aqueous 

reaction mixture. On the other hand, in the case of cellulose and more generally of 

lignocellulosic biomass, the same synthetic approaches are not feasible because of the 

insolubility of the cellulosic substrate in water. As a consequence, in order to introduce 

porosity in the lignocellulosic biomass derived HTC carbons, post-synthesis methods are 

required. 

Physical or chemical activation processes are well-known strategies to produce highly 

porous carbons from coal-derived precursors and it has been largely described in the literature 

[14-20]. Their application to lignocellulosic biomass is widely used, but it is not as effective 

because of poor yields and low porosity development, arising from the excessive degradation 



of the organic substrate [21-23]. In this regard the HTC treated biomass is characterised by a 

more “coal-like” chemical structure, as a consequence it may represent a more suitable 

precursor for the production of highly porous activated carbons (ACs).  

Chemical activation of hydrothermal carbons has been previously investigated. Sevilla et 

al. were the first to report on the chemical activation of HTC materials as a way to generate 

highly porous materials. They applied the procedure to HTC materials derived from glucose, 

starch, furfural, cellulose and eucalyptus sawdust achieving large apparent surface areas, up to 

~ 3000 m
2
 g

-1
, and pore volumes in the 0.6-1.4 cm

3
 g

-1
 range. Those materials are further 

characterized by narrow micropore size distributions in the supermicropore range (0.7-2 nm). 

Tuning of the PSD was achieved through the modification of the activation temperature (600-

850ºC) and the amount of KOH used (KOH/HTC weight ratio = 2 or 4).  Applications of 

these microporous materials for supercapacitors [24], hydrogen storage [25] and CO2 capture 

[26] have been reported.  

Titirici and Zhao also prepared nitrogen doped activated carbon from hydrothermal 

carbons obtained from nitrogen containing precursors using the KOH procedure [27]. These 

materials were successfully used as electrodes in supercapacitors [28]. 

Zhang et al prepared activated carbon-based carbon/carbonaceous composites with 

different surface functional groups by a hydrothermal carbonization-deposition method in 

which commercial activated carbon was exposed to a gaseous mixture of furfural/water or 

furfural/acrylic acid/water at 180°C to form the carbon/carbonaceous composites. Different 

functional groups can be anchored onto the composite, and composites with surface hydroxyl 

or carboxylic or amine groups were prepared [29]. 

Carbonaceous monoliths rich in surface sulfonic acid groups were synthesized by one-pot 

hydrothermal carbonization of the mixture of p-toluene sulfonic acid/glucose/resorcinol at 

180°C and further carbonized and activated to form monolithic carbons with high surface area 

and large pore volume. The surface area and pore volume per mass increased with prolonging 



the activation time (0-6 h) and the best results on 6 h activated samples were 2337 m
2
 g

-1
 and 

2.12 cm
3
 g

-1
[30]. 

Roman et al have recently investigated the hydrothermal carbonization of various 

lignocellulosic biomass (walnut shell, sunflower stem and olive stone) as a more energy-

efficient approach as compared with the traditional pyrolysis. The authors discovered that the 

final yield is higher and the initial hydrothermal treatment allows a better control over the 

resulting porosity [31]. 

However, none of these previous works investigated in detail the effect and influence of 

the precursor and hydrothermal carbonization temperature on the porous properties of the 

resulting ACs. Tuning the microporosity of the ACs is important for some energy and 

environmental related applications (e.g. natural gas and hydrogen storage, supercapacitors, 

Volatil Organic Compunds (VOC) removal), where advanced porous materials with tailored 

porosity (extremely high development of microporosity together with a narrow micropore size 

distribution (MPSD)) are required. Thus, more research is needed in HTC in order to tailor the 

microporosity for those specific applications. 

In this manuscript, the KOH activation of HTC carbons obtained from a pure 

monosaccharide (i.e. glucose), its polymer (i.e. cellulose) and a real lignocellulosic biomass 

(i.e. rye straw) using different HTC temperatures is investigated as a function of their 

chemical structure. A thorough characterization of the developed porosity of these materials 

using both N2 (-196 ºC) and CO2 (0ºC) adsorption was carried out. The HTC temperature was 

found to be an extremely influential parameter affecting the porosity development and the 

MPSD of the ACs. Tuning of the MPSD of the ACs was achived by modification of the HTC 

temperature. Promising preliminary results in relation to the use of the chemically activated 

HTC carbons in gas storage (i.e. CO2 capture and high pressure CH4 storage) are also 

presented, showing the effectiveness of this synthesis strategy in converting a low value 



lignocellulosic biomass (rye straw) into a functional carbon material with high performance in 

gas storage applications. 

 

2. Experimental 

2.1. Synthesis of the HTC carbons 

10 wt% biomass (i.e. D-glucose, cellulose, rye straw) in water solutions (20 ml) were 

prepared and stirred overnight. The raw rye straw was grinded to a maximum particle size of 

0.8 mm prior being mixed. The prepared solutions were then poured into quartz vials, 

subsequently placed into 50ml Teflon lined stainless steel autoclaves. The autoclaves were 

then heated into a programmable oven, which had been pre-heated at the desired reaction 

temperature. The autoclaves were cooled down in a water bath to room temperature. The HTC 

carbon was recovered by filtration, repeatedly washed with distilled water until the attainment 

of a colourless aqueous phase and finally dried at 80 ºC under vacuum overnight. 

 

 

2.2. Synthesis of ACs 

Chemical activation with KOH of the hydrochars were carried out using the following 

procedure: Physical mixtures of around 2 g of sample with corresponding amounts of KOH 

pellets were prepared using a hydroxide/precursor ratio of 3/1 (weight terms). The mixture 

was heated up to 750ºC during 2 hour under nitrogen atmosphere (500 ml min
-1

 N2 flow rate). 

After such heat treatment activation, the samples were washed sequentially with HCl 5 M and 

distilled water and finally dried at 110ºC overnight. 

 

2.3. Characterization 



Elemental chemical analysis was performed on a (C, N, O, S, H) Vario Elmer-Perkin 

elemental analyzer. SEM was performed using a Gemini Leo-1550 instrument. Before 

imaging, material was loaded onto carbon tapes and sputtered with Au. 

Porous texture characterization of the KOH-activated materials was performed by physical 

adsorption of N2 at -196 ºC and CO2 at 0ºC, using an automatic adsorption system (Autosorb-

6, Quantachrome). Prior to measurements samples were degassed at 250
o
C for 6 h. The 

relative pressure range, employed for BET surface area estimation, was chosen according to 

the conditions explained in the literature [32], which have been shown to yield reliable results 

also for highly microporous materials. The total micropore volume (VN2-DR) has been 

determined by application of de Dubinin-Radushkevich (DR) equation to the N2 adsorption 

isotherm at -196 ºC (VN2-DR). VN2-EX (calculated from the experimental isotherm at a relative 

pressure of 0.975) is the total pore volume accessible to N2 at the measured conditions. To 

characterize the volume of narrow micropores (size smaller than 0.7 nm), CO2 adsorption at 

0ºC should be used, because as explained elsewhere [33-35],
 
when nitrogen adsorption at -196 

ºC is used for the characterization of microporous solids, diffusional problems of the 

molecules inside the narrow porosity can occur. Thus, the volume of narrow micropores (size 

<0.7 nm) (VCO2-DR) has been calculated by application of de DR equation to the CO2 

adsorption isotherm at 0ºC [33-35]. 

Density of the powder activated hydrochars was determined in two different ways [36]:
 
(i) 

filling a container with the activated carbon and vibrating (tap density); (ii) pressing a given 

amount of activated carbon in a mould at a pressure of 550 kg cm
-2

 (packing density). The 

amount of sample used for both type of measurements was 0.5 g approximately. 

 

2.4. High Pressure CO2 and CH4 Storage Measurements 

The storage of two different gases (i.e. methane and carbon dioxide) was carried out at 25 

ºC using the fully automated volumetric Quantachrome device iSorbHP1 up to a pressure of 



40 and 30 bar for methane and carbon dioxide, respectively. In the particular case of CO2, also 

adsorption studies at 0ºC were performed for comparison purposes using the same device. In 

all the cases, about 300 mg of sample were placed in the analysis cell and degassed “in situ” 

at 150 ºC under vacuum for 4h. The device tests regularly for leaks. The void volume of the 

sample cell is determined with helium gas before each measurement. The manifold 

temperature was maintained at 40 ºC, while the sample volume temperature was controlled by 

a thermostat with cooling liquid at the analysis temperature within accuracy of ±0.02 ºC. 

 

3. Results and Discussion 

3.1. KOH chemical activation of HTC carbons.  

In this section the relationship between the chemical structure of HTC carbons and their 

KOH chemical activation is investigated. For the purpose of this investigation, HTC carbons 

derived from glucose, cellulose and rye straw were synthesised at different HTC temperatures 

(sample names x-y, x is the initial of the carbon precursor and y the HTC temperature) and 

then activated at the same processing conditions (see experimental section). The complete 

porosity analysis is presented for all the materiales after the KOH activation.  

 

3.1.1. Elemental analysis and scanning electron microscopy of ACs 

The elemental composition of the HTC carbons derived ACs is characterised by very similar 

values regardless of the different precursors or HTC synthesis conditions (Table 1). 

 

 

Table 1: EA of HTC carbon derived ACs and pyrolysed HTC carbon 

 

 Elemental Composition (wt%) 

Sample C% H% O% N% 

HTC carbon derived ACs
(a) 85.0-88.0 1.5-2.1 10.1-12.8 0.1-0.4 

HTC-750
(b) 94.0 1.7 4.2 0.1 

(a) 
The  EA of each AC can be found in the supporting information (Table S1) 

(b)
 HTC carbon pyrolysed at 750 ºC 

 



On the other hand, compared to HTC carbons pyrolysed at comparable temperatures 

(HTC-750), their oxygen content is higher. This difference can be attributed to the higher 

degree of surface oxidation, which is typically observed after KOH chemical activation. 

Several oxygen-containing functional groups (eg. lactone, phenol, quinone) are known to be 

present on the surface of ACs [37]. 

SEM was used to investigate the morphology of ACs derived from glucose, cellulose and 

rye straw HTC carbons (Fig.1b, Fig. 1d and Fig.1f). It is evident that for all three precursors 

the KOH chemical activation leads to a complete morphological change. The spherical 

micrometer-sized particles, characterizing both glucose and cellulose derived HTC carbons 

(Fig. 1a and Fig. 1c) or the rye straw fibres-like structures (Fig. 1e), which are still present 

after HTC treatment, are not observed anymore. The ACs materials are now composed of 

macrometer-sized monolithic fragments with sharp edges. 



 

 

 

 

Figure 1: SEM micrographs of the hydrothermal carbon before chemical activation: (a) HTC 

from glucose at 240°C; (b) HTC from cellulose at 240°C; (c) HTC from rye straw at 240°C. 

And after chemical activation: b) glucose (G–240ºC), d) cellulose (C–240ºC) and f) rye straw 

(RS–240ºC).  

 

3.1.2. Porosity analysis of ACs produced from glucose derived HTC carbon 

In order to fully characterise the porosity of microporous materials, it is recommendable to 

employ both CO2 and N2 gas adsorption and to validate the obtained results by analysing them 



with different theories. For this reason, an analysis based on the combination of the BET, DR 

and DFT models applied to N2 and CO2 isotherms is developed in this section. 

All the N2 isotherms of the ACs, produced from glucose derived HTC carbons, are 

characterised by a Type I profile (Fig. 2a). A more attentive analysis reveals that G-240
o
C has 

the largest N2 uptake, arising from a higher porosity development than in the cases of G-

180
o
C and G-280

o
C (see apparent BET surface area and pore volumes obtained from N2 

adsorption data for these samples in Table 2). Furthermore, interestingly G-280
o
C N2 isotherm 

shows a much sharper knee at low relative pressure than G-180
o
C and G-240

o
C. This finding 

suggests that the pore size distribution (PSD) of this former sample is much narrower than for 

the two latter ones. Therefore, it can be deduced that G-180
o
C and G-240

o
C have a higher 

tendency to develop larger pores during chemical activation than G-280
o
C. This conclusion is 

in good agreement with the QSDFT-PSD (Fig. 2b), where it is clearly seen that the sample 

with the narrowest PSD is G-280
o
C, while samples G-180

o
C and G-240

o
C present larger 

contribution of wider pores.  

Figure 2: a) N2 adsorption isotherms, b)  N2 adsorption QSDFT PSD of ACs (G-180
o
C, G-

240
o
C, G-280

o
C) 

 

In order to assess the pore volume and the PSD of the narrow microporosity region 

characterising G-180
o
C,G-240

o
C and G-280

o
C, CO2 adsorption was used, since N2 sorption is 
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not as effective in probing this pore range. Figure 3a presents the CO2 adsorption isotherms 

(0ºC) at subatmospheric pressure and Table 2 contains also the narrow micropore volume 

calculated from CO2 isotherms by applying the DR equation (VCO2-DR). It is seen that sample 

G-280
o
C has the largest volume of narrow microporosity, followed by G-240

o
C and then G-

180
o
C. This trend differs from the one observed in N2 adsorption. 

 

 

Figure 3: a) CO2 (0ºC) isotherms and b) NLDFT PSD of ACs (G-180
o
C, G-240

o
C, G-280

o
C) 

 

Table 2: Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for G-180
o
C, G-240

o
C, G-280

o
C 

(a) Calculated from the experimental isotherm 

 

Table 2 includes the differences between the micropore volume calculated from N2 and 

CO2 data, showing that in the case of the sample G-280
o
C the difference is very low, while for 

the sample G-180
o
C and specially for G-240

o
C the differences are higher. These results 

indicate that sample G-280
o
C presents a very narrow micropore size distribution (MPSD), as 

it has been also seen from the sharp knee of its N2 adsorption isotherms. In other words, this 

sample generates prevalently micropores (majorly narrow micropores). On the other hand, G-

Sample SN2-BET (m
2/g) VN2-Ex(cm3/g)

(a) 
VN2-DR(cm3/g) VCO2-DR(cm3/g) (VN2-DR - VCO2-DR)(cm3/g) 

G-180ºC 1766 0.94 0.79 0.50 0.29 

G-240ºC 2210 1.21 0.90 0.54 0.36 

G-280ºC 1379 0.73 0.66 0.60 0.06 
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180
o
C and especially G-240

o
C have the tendency to generate ACs with a broader PSD. The 

same conclusion is obtained by the NLDFT PSDs, derived from the CO2 isotherms (Fig. 3b). 

Even in the lower micropore range (pore width < 1.0 nm), the PSD of G-280
o
C is shifted 

towards smaller pore widths than in the case of G-180
o
C and G-240

o
C. 

As a summary, G-240
o
C is the sample characterised by the highest porosity development, 

since it shows the largest total pore volume and surface area (Table 2). At the same time, it 

has the widest PSD, as indicated by the large difference between its total micropore volume 

(i.e. VN2-DR) and narrow micropore volume (i.e VCO2-DR) values. The PSD of G-180
o
C follows 

very similar trends to the one of G-240
o
C. However the extent of porosity development for 

the former sample is smaller, as indicated by its lower total pore volume and surface area. G-

280
o
C is the case when KOH chemical activation is the least effective. This sample shows the 

lowest pore volume and surface area. Furthermore, its PSD is much narrower than in the other 

two samples. 

 

3.1.3. Porosity analysis of ACs produced from cellulose and rye straw derived HTC 

carbon 

Using the same analysis framework than that used for glucose derived HTC carbon, the 

effects of KOH chemical activation on cellulose and rye straw derived HTC carbons can be 

effectively analysed and compared to the glucose case (Table 3 and Fig. 4 and 5).  

 

Table 3: Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for C-200ºC, C-240ºC, C-280ºC, RS-240ºC and RS 280ºC 

(a)
Calculated from the experimental isotherm 

 

Sample SN2-BET (m
2/g) VN2-Ex(cm3/g)

(a)
 VN2-DR(cm3/g) VCO2-DR(cm3/g) (VN2-DR - VCO2-DR)(cm3/g)  

C-200ºC 1642 0.95 0.78 0.52 0.26  

C-240ºC 2250 1.26 0.90 0.56 0.34  

C-280ºC 891 0.50 0.45 0.40 0.05  

RS-240ºC 2200 1.11 0.92 0.65 0.27  

RS-280ºC 1708 0.95 0.82 0.62 0.20  



The porosity analysis for the chemical activation of cellulose derived HTC carbons (C-

200ºC, C240ºC and C-280ºC) show very similar trends to the ones observed for glucose. The 

highest porosity development is observed for the sample synthesised at 240
º
C (C-240

º
C), as 

indicated by its highest surface area and total pore volume values (Table 3). C-200
º
C and C-

240
º
C show very similar PSDs, as deduced from the high differences between the micropore 

volume calculated from N2 and CO2 data, and also as shown in the PSDs (Fig. 4).On the other 

hand, the sample synthesised at 280
º
C (C-280ºC) shows the lowest surface area and total pore 

volume, indicating a lower extent of activation. Furthermore, as it was also observed for G-

280ºC, its PSD is mostly characterised by narrow micropores (see the very low difference 

between the micropore volume calculated from N2 and CO2 data). 

 

 

 

Figure 4: a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of C-200
o
C, C-240

o
C and C-280

o
C ACs. 

 

In the case of rye straw derived HTC carbons (RS-240ºC, RS-280ºC), KOH chemical 

activation also generates high surface area and total pore volume ACs (Table 3). The sample 

synthesised at 240
o
C has higher porosity development than that prepared at 280 ºC. 

Furthermore, as indicated by its relatively high surface area and total pore volume, the sample 

synthesised at 280
o
C does not exhibit such a reduced extent of activation as for the other two 

carbon precursors. These dissimilarities can be explained by taking into account the more 
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heterogeneous composition and structure of rye straw (i.e. lignin presence and fibrous 

structure), which may still mildly affect the activation process, regardless of the HTC pre-

treatment. 

 

 

 

 

 

 

 

Figure 5: a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of RS-240
o
C and RS–280

o
C ACs. 

 

Overall, this analysis highlights that the HTC temperature extensively affects the porosity of 

the derived ACs. HTC carbons, synthesised at higher temperatures (e.g. 280
o
C), generate ACs 

with a lower porosity development and narrower PSDs, whilst the ones, produced at 180-

240
o
C, upon KOH activation, develop a greater porosity characterized by a wider PSD. These 

trends can be explained by taking into account the dependence of the chemical structure of 

HTC carbons upon the synthesis temperature [38]. Based on a 13C-Solid state NMR study, 

we have recently described the differences in the chemical structure of HTC carbons 

depending on the precursor (glucose vs. cellulose vs. lignocellulosic biomass rye straw) as 

well as depending on the HTC temperature [38].
 
Glucose can form HTC at 180°C via a 

polyfuranic intermediate structure. Further increase in the HTC temperature leads to 

aromatization and reduction in the aliphatic, functional and furanic groups. Cellulose and rye 

straw on the other hand, form HTC only above 200°C directly with a more aromatic structure, 

without going through the polyfuranic structure. All these structural differences in HTC 
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materials depending on the hydrothermal carbonization temperature and the type of precursors 

can be correlated with the different pore characteristics resulting upon chemical activation 

into hydrothermal carbons. More severe HTC processing conditions (i.e. higher temperatures) 

generate HTC carbons with a higher degree of aromatisation, resulting into enhanced 

chemical stability and structural order. As observed for the hydroxide activation of several 

coals, both features are detrimental to the reactivity of the carbon substrate, leading to a 

reduced porosity development [39]. These aspects were also observed in our previous work 

[23],
 
where it was compared the KOH activation of anthracite with the KOH activation of the 

pyrolysed anthracite (at 1000 ºC). It was observed that pyrolysis prior to activation decreased 

the porosity development.  Moreover, when the anthracite was pyrolyzed up to 1800 ºC prior 

to activation, no porosity development by chemical activation was possible for KOH. 

 

3.2. CO2 and CH4 storage using the HTC-derived ACs 

 

To evaluate the effectiveness of the HTC derived ACs as CO2 adsorbents, CO2 adsorption 

isotherms at 0ºC and 25 ºC were carried out up to 30 bar and 40 bar, respectively, for three 

activated HTC carbons prepared from the three different precursors at the same carbonization 

temperature (240 ºC) (see Fig. 6 and Fig.7). As it was described in our previous study [40],
 

the shape of these isotherms provides information about the porosity of the samples.  

All CO2 adsorption isotherms are of type I, characteristic of microporous materials. The 

activated carbon prepared from Rye Straw presents a sharper knee than those prepared from 

Glucose and Cellulose, suggesting that the former presents a narrower micropore size 

distribution than the glucose and cellulose derived activated carbons. The CO2 uptakes 

(around 25 mmol g
-1

) at 30 bar and 0ºC for HTC derived ACs are comparable to those 

obtained with superactivated carbons prepared by KOH activation of anthracites with similar 

micropore volume [40]. In the case of adsorption at room temperature (25ºC; Fig. 7), these 

materials adsorb up to 2.80 mmol g
-1

 CO2 at 1 bar, and almost 20 mmol g
-1

 at 40 bar. The 



measured CO2 uptake at 25 ºC and 30 bar for the three HTC derived ACs are plotted versus 

the micropore volume in Figure 8, together with the values corresponding to activated carbons 

prepared in our laboratory by chemical activation with hydroxides of coals of different rank. 

The performance of the HTC derived ACs are similar to ACs with similar development of 

porosity, and also is comparable with related porous solids found in the literature [41]
 
and 

with other type of porous materials, such as microporous organic polymers [42]. 

 

 

Figure 6. CO2 adsorption isotherms at 0ºC and up to 30 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 
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Figure 7. CO2 adsorption isotherms at 25 ºC and up to 40 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 

 

 

 

 

Figure 8. CO2 uptake (at 25 ºC and 30 bar) versus the total micropore volume corresponding 

to: the three HTC derived ACs obtained in the present study (empty symbols) and activated 

carbons prepared in our laboratory by KOH activation of other precursors (filled symbols). 
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gravimetric basis for these samples, which have very similar methane adsorption capacities, 

since, as just shown, the porosity development for all of them is quite similar. It is well 

established that CH4 adsorption on porous materials at these conditions (room temperature 

and high pressures) takes place in micropores [43-45]. In this sense, the results obtained in a 

previous study with activated carbon fibres and powder activated carbons, covering a wide 

range of micropore volume (up to 1.5 cm
3
 g

-1
) [44], pointed out that a general trend exists for 

this type of materials: the higher the micropore volume, the higher the methane adsorption 

capacity. It was concluded that, for samples with relatively narrow micropore size 

distribution, the total micropore volume -VDR(N2)- obtained from DR equation could be a 

good indicator of the methane capacity. The preliminary study carried out with HTC derived 

ACs, has given CH4 uptakes as high as 9 mmol CH4/gsample  at 40 bar , being values 

comparable with activated carbons with similar VDR(N2) obtained from other precursors [44],
 

as shown in Figure 10.  

 

Figure 9. CH4 adsorption isotherms at 25 ºC and up to 40 bar for three activated hydrochars 

prepared from Cellulose, Glucose and Rye Straw on gravimetric basis. 
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Figure 10. Methane adsorption capacity (at 25 ºC and 40 bar) versus the micropore volume 

corresponding to KOH anthracite derived ACs (coal ACs) (from [43]), activated carbon fibres 

(ACFs) (from [44]), and the three HTC derived ACs obtained in the present study. 

 

In addition to micropore volume and micropore size distribution, methane storage in 

volumetric basis, also depends on another important parameter, i.e. the density of the material. 

Table 4 contains the values corresponding to the “tap density” and the “packing density” 

obtained as explained in Experimental Section for the three activated hydrochars. In our 

previous work carried out with activated carbons (obtained by KOH activation of an 

anthracite), it was clearly shown that, for both type of densities (tap and packing), a general 

trend was observed: the higher the porosity development of the materials, the lower the 

density, following a linear trend [36]. Comparing with those results, it can be said that the 

densities of the HTC carbons prepared in the present study are lower than activated carbons 

from anthracite with similar micropore volume (e.g packing density of an anthracite based 

activated carbon with a VDR(N2) of 0.92 cm
3
/g

 
is 0.62 g/cm

3 
[36]). Table 4 also contains the 

volumetric methane uptake calculated from the methane isotherms and using the packing 

densities.  
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Table 4. Tap and Packing Densities of Three Activated Samples. Calculated methane 

uptake (volume of methane adsorbed per volume of sample: V/V) 

Sample Tap density 

(g/cm
3
) 

Packing 

density (g/cm
3
) 

CH4 uptake 

(V/V) 

RS-240 ºC 0.13 0.43 105 

C-240 ºC 0.12 0.39 86 

G-240 ºC 0.11 0.38 86 

 

These excellent preliminary results could be further improved by tailoring the PSD of the 

ACs to the optimum pore width value for methane adsorption (ca. 0.8-1.1 nm) [43-45]. Such 

specific material pore size features could be achieved by tuning the KOH activation process 

parameters and the chemical structure of the parent HTC carbon. 

 

The synthesis strategy presented in this work (HTC followed by KOH activation) allowed 

converting a low value lignocellulosic biomass into a functional carbon material with high 

performance in gas storage applications. In the literature, the use of other porous materials, 

such us metal–organic frameworks (MOFs) [46], organic polymer networks [47] and 

templated nanocarbons [48], for energy related applications have been studied. A common 

property of those materials is the high production cost and poor mass-production. Moreover, 

in the case of MOF and nanoporous organic polymer networks, they present low chemical and 

structural stabilities, as it has been demonstrated for MOFs elsewhere [49]. 

 

 

 

4. Conclusions 

The present work highlights that HTC carbons are excellent precursors for the synthesis of 

ACs via KOH chemical activation. Regardless of the parent biomass (i.e. glucose, cellulose or 

rye straw), highly microporous ACs could be generated. The HTC temperature was found to 

be an extremely influential parameter affecting the porosity development and PSDs of the 

ACs. Tuning of the MPSD of the ACs was achived by modification of the HTC temperature. 



The use of higher HTC temperatures (i.e. 280
o
C) led to lower porosity development, but to a 

narrower PSD mostly composed of micropores. On the other hand, KOH chemical activation 

of HTC carbons, synthesised at lower temperatures (i.e. 180 - 240
o
C), produced ACs with 

higher total pore volume and broader PSDs. 

Preliminary testing of the synthesised ACs as adsorbents for either CO2 capture (0º 

C and 25 ºC) or high pressure CH4 storage, yielded very promising results. The measured 

uptakes of both adsorbates were comparable to top-performing and commercially available 

adsorbents usually employed for these end-applications. Further improvements of the 

synthesised ACs performance could certainly be achieved by optimising the activation and 

HTC synthesis parameters, in such a way as to tailor their PSDs to the adsorbate. 

Overall, the present work shows the effectiveness of this synthesis strategy in tuning the 

PSD of ACs and converting a low value lignocellulosic biomass into a functional carbon 

material with high performance in gas storage applications. 
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Figure captions 

Figure 1. SEM micrographs of the hydrothermal carbon before chemical activation: (a) HTC 

from glucose at 240°C; (b) HTC from cellulose at 240°C; (c) HTC from rye straw at 240°C. 

And after chemical activation: b) glucose (G–240ºC), d) cellulose (C–240ºC) and f) rye straw 

(RS–240ºC).  

 

 

Figure 2. a) N2 adsorption isotherms, b)  N2 adsorption QSDFT PSD of ACs (G-180
o
C, G-

240
o
C, G-280

o
C) 

 

Figure 3. a) CO2 (0 ºC) isotherms and b) NLDFT PSD of ACs (G-180
o
C, G-240

o
C, G-280

o
C) 

 

Figure 4. a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of C-200
o
C, C-240

o
C and C-280

o
C ACs. 

 

Figure 5. a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of RS - 240
o
C and RS – 280

o
C ACs. 

 

Figure 6. CO2 adsorption isotherms at 0ºC and up to 30 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 

 

Figure 7. CO2 adsorption isotherms at 25 ºC and up to 40 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 

 

Figure 8. CO2 uptake (at 25 ºC and 30 bar) versus micropore volume corresponding to: the 

three HTC derived ACs obtained in the present study (empty symbols)and activated carbons 

prepared in our laboratory by KOH activation of other precursors (filled symbols). 



 

Figure 9. CH4 adsorption isotherms at 25 ºC and up to 40 bar for three activated hydrochars 

prepared from Cellulose, Glucose and Rye Straw on gravimetric basis. 

 

Figure 10. Methane adsorption capacity (at 25 ºC and 40 bar) versus the micropore volume 

corresponding to KOH anthracite derived ACs (coal ACs) (from [43]), activated carbon fibres 

(ACFs) (from [44]), and the three HTC derived ACs obtained in the present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table captions 

Table 1. EA of HTC carbon derived ACs and pyrolysed HTC carbon 

 

Table 2. Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for G-180
o
C, G-240

o
C, G-280

o
C 

 

Table 3. Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for C-200ºC, C-240ºC, C-280ºC, RS-240ºC and RS 280ºC 

 

Table 4. Tap and Packing Densities of Three Activated Samples. Calculated methane uptake 

(volume of methane adsorbed per volume of sample: V/V) 

 

 

 

 



 

 

Table 1: EA of HTC carbon derived ACs and pyrolysed HTC carbon 

 

 Elemental Composition (wt%) 

Sample C% H% O% N% 

HTC carbon derived ACs
(a)

 85.0-88.0 1.5-2.1 10.1-12.8 0.1-0.4 

HTC-750
(b) 94.0 1.7 4.2 0.1 

(a) 
The  EA of each AC can be found in the supporting information (Table S1) 

(b)
 HTC carbon pyrolysed at 750 ºC 

 

Table 1



 

 

 

 

Table 2. Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for G-180
o
C, G-240

o
C, G-280

o
C 

 

 

(a) Calculated from the experimental isotherm 

 

 

Sample SN2-BET 

(m2/g) 
VN2-Ex(cm3/g)

(a) 
VN2-DR(cm3/g) VCO2-DR(cm3/g) (VN2-DR - VCO2-DR)(cm3/g) 

G-180ºC 1766 0.94 0.79 0.50 0.29 

G-240ºC 2210 1.21 0.90 0.54 0.36 

G-280ºC 1379 0.73 0.66 0.60 0.06 

Table 2



 

Table 3. Calculated surface area (S) and pore volume (V) using different theories (subscript) 

on either N2 or CO2 isotherms for C-200ºC, C-240ºC, C-280ºC, RS-240ºC and RS 280ºC 

 

 

(a)
Calculated from the experimental isotherm 

 

 

 

 

 

Sample SN2-BET (m
2/g) VN2-Ex(cm3/g)

(a)
 VN2-DR(cm3/g) VCO2-DR(cm3/g) (VN2-DR - VCO2-DR)(cm3/g)  

C-200ºC 1642 0.95 0.78 0.52 0.26  

C-240ºC 2250 1.26 0.90 0.56 0.34  

C-280ºC 891 0.50 0.45 0.40 0.05  

RS-240ºC 2200 1.11 0.92 0.65 0.27  

RS-280ºC 1708 0.95 0.82 0.62 0.20  

Table 3



 

 

Table 4. Tap and Packing Densities of Three Activated Samples. Calculated methane 

uptake (volume of methane adsorbed per volume of sample: V/V) 

Sample Tap density 

(g/cm
3
) 

Packing 

density (g/cm
3
) 

CH4 uptake 

(V/V) 

RS-240 ºC 0.13 0.43 105 

C-240 ºC 0.12 0.39 86 

G-240 ºC 0.11 0.38 86 

 

Table 4



 

 

 

 

 
 

 

Figure 1: SEM micrographs of the hydrothermal carbon before chemical activation: (a) HTC 

from glucose at 240°C; (b) HTC from cellulose at 240°C; (c) HTC from rye straw at 240°C. 

And after chemical activation: b) glucose (G–240ºC), d) cellulose (C–240ºC) and f) rye straw 

(RS–240ºC).  
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Figure 2. a) N2 adsorption isotherms, b)  N2 adsorption QSDFT PSD of ACs (G-180
o
C, G-

240
o
C, G-280

o
C) 
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Figure 3. a) CO2 (273 K) isotherms and b) NLDFT PSD of ACs (G-180
o
C, G-240

o
C, G-

280
o
C) 
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Figure 4. a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of C-200
o
C, C-240

o
C and C-280

o
C ACs. 
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Figure 5. a) N2 adsorption QSDFT pore size distribution and b) CO2 NLDFT pore size 

distribution of RS - 240
o
C and RS – 280

o
C ACs. 
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Figure 6. CO2 adsorption isotherms at 273 K and up to 30 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 
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Figure 7. CO2 adsorption isotherms at 298 K and up to 40 bar for three activated hydrochars 

prepared from Glucose, Cellulose and Rye Straw on gravimetric basis. 
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Figure 8. CO2 uptake (at 298 K and 30 bar) versus the total micropore volume  corresponding 

to: the three HTC derived ACs obtained in the present study (empty symbols) and activated 

carbons prepared in our laboratory by KOH activation of other precursors (filled symbols). 
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Figure 9. CH4 adsorption isotherms at 298 K and up to 40 bar for three activated hydrochars 

prepared from Cellulose, Glucose and Rye Straw on gravimetric basis. 
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Figure 10. Methane adsorption capacity (at 298 K and 40 bar) versus the micropore volume 

corresponding to KOH anthracite derived ACs (coal ACs) (from [39]), activated carbon fibres 

(ACFs) (from [40]), and the three HTC derived ACs obtained in the present study. 
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