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Abstract 14 

 15 
The SCR of NOx with NH3 has been studied by using different Cu zeolite 16 

catalysts, prepared both with ZSM5 and BETA zeolite supports by ionic exchange or by 17 
impregnation. The catalysts were characterized by ICP-AES, N2 adsorption at -196 ºC, 18 
XRD, TEM, XPS and H2-TPR. The catalysts characterization confirmed the presence of 19 
different Cu(II) species on all catalyst (CuO and Cu(II) exchanged on tetrahedral and 20 
octahedral positions of the zeolites framework). Clear evidences of Cu(I) or Cu(0) 21 
species were not obtained. CuO was more abundant in high copper-content catalysts 22 
and in ZSM5 catalysts, due to its lower ionic exchange capacity, while isolated Cu(II) 23 
ions are more abundant in low copper-content catalysts and in  BETA catalysts. It was 24 
concluded that CuO catalyzes the oxidation of NO to NO2, and this favors the reduction 25 
of NOx at lower temperature (the NH3-NO2 reaction is faster than the NH3–NO reaction 26 
because NO2 is much more oxidizing than NO), whereas isolated Cu(II) ions maintain 27 
high NOx conversion at high temperatures. 28 
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1. Introduction 41 

It is well recognized that the use of diesel and lean burn engines decreases the 42 

fuel consumption and thereby reduces the CO2 emissions. However, conventional 43 

three way catalysts (TWC) are not capable to reduce nitrogen oxides (NOx) from diesel 44 

engines due to the excess of oxygen in the exhaust. In the last decade, one of the main 45 

approaches proposed for NOx reduction in diesel exhausts has been the selective 46 

catalytic reduction (SCR). 47 

SCR was originally developed for stationary emission sources, mainly power 48 

plants [1]. However, it soon turned out to be a promising technology for the NOx 49 

removal in automobile applications as well [2]. In 2005 it was introduced for commercial 50 

heavy-duty vehicles in Europe, and more recently also for passenger cars. The NH3-51 

SCR converter needs an external source of the selective reducing agent, e.g. urea. 52 

The urea solution is injected in a controlled way into the exhaust line, where it is 53 

thermally decomposed into NH3 and CO2. The ammonia then reacts selectively with 54 

NOx under lean (oxidising) conditions, giving N2 as the final product [3]. Non-noble 55 

metals like copper, iron and cerium supported on ZSM5 and BETA zeolite are among 56 

the most active catalysts for the urea/NH3-SCR process [4-7], among others like 57 

copper/chabazite catalysts [8,9].  58 

Cu(II) ion-exchanged ZSM5 (Cu-ZSM5) zeolites were first tested, showing high 59 

NO decomposition rates and NOx SCR activities [10]. More recently, Cu(II)-exchanged 60 

BETA zeolites (Cu-BETA) have shown a good activity for the NH3-SCR of NOx, but 61 

they present better hydrothermal stability than similar ZSM5 catalysts [11]. Burch et at. 62 

[12] identified the presence of Cu(I) species under reaction conditions, and proposed 63 

that Cu(I) is the main active species for the reaction. Whatever, it is generally accepted 64 

that both copper ions (Cu(II) and/or Cu(I)), which exist in the exchange sites of ZSM5, 65 
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play an important role in the reaction of NH3-SCR. In the last decade, a lot of research 66 

has been performed to obtain information about the nature of the copper active sites for 67 

this process [13-17].  68 

Nevertheless, there is still an open discussion concerning the chemical and 69 

mechanistic aspects involved in SCR, mainly those related with the role of the different 70 

copper species exchanged or placed on the zeolite. In our previous work [18], we have 71 

analysed the NH3-SCR catalytic performance of different ZSM5 and BETA supported 72 

catalysts, varying the preparation method and copper content. We found that while 73 

ZSM5 supported catalysts achieved better NOx conversion in a low temperature range 74 

(250-350 °C), BETA supported catalysts were active at higher temperature (350-450 75 

°C). On the other hand, an increase in the copper content and the use of an 76 

impregnation preparation method (vs. the ion exchange) allows achieving higher NOx 77 

conversion at lower temperatures but it decreases at intermediate and higher 78 

temperatures. 79 

The aim of this work is to understand the role of the different copper species on 80 

the activity of Cu/zeolite catalysts in the NH3-SCR process for NOx removal in a wide 81 

temperature range (140–500 °C). For characterization of the different Cu-zeolite 82 

catalysts, which were prepared by both impregnation and ion-exchange methods, XPS, 83 

H2-TPR and TEM techniques have been used. 84 

 85 

2. Experimental 86 

2.1. Catalysts preparation. 87 

 The SCR catalysts consisted of copper-supported zeolites. Fresh zeolites were 88 

supplied by Zeolyst International, namely CP414E (BETA, Si/Al=12.5) and CBV5524G 89 

(ZSM5, Si/Al=25). The zeolites were first calcined at 550 ºC for 4 h to obtain the acid 90 
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form. The catalysts were prepared by two different conventional procedures: ion 91 

exchange (IE) and wetness impregnation (IM). Metal ion exchange was carried out by 92 

dissolving the required amount of Cu(COOCH3)2 (Panreac, 98%) in water. Then, H-93 

ZSM5 or H-BETA was added to this solution (8 g/L) and it was stirred for 24 h at 65 ºC. 94 

The ion exchanged zeolites were then filtered, washed twice with deionized water, 95 

dried overnight at 110 ºC and calcined at 550 ºC for 4 h.  96 

On the other hand, the wetness impregnation method consisted of adding 97 

slowly the required amount of the copper precursor dissolved in water (1.5 wt.%) at 40 98 

ºC and 3 mm Hg to 6 grams of H-BETA or H-ZSM5, under continuous rotation until the 99 

solvent was evaporated. The samples were dried overnight at 110 ºC and calcined at 100 

550 oC for 4 h. 101 

All the catalysts were then pelletized, crushed and sieved to 0.3-0.5 mm. 102 

Previous experiments carried out with different particle size catalysts revealed that 103 

mass transfer limitations were not controlling the reaction kinetics for a particle size of 104 

0.3-0.5 mm.  105 

The most relevant details of the preparation procedure of copper-zeolite 106 

catalysts, as well as the nomenclature used are summarized in Table 1. For each 107 

support, BETA or ZSM5, four catalysts were prepared, three by ion exchange and one 108 

by wetness impregnation. With regards to the ion exchange catalysts, increasing 109 

copper concentration solutions (160, 320, 640 and 2000 ppm) were used in order to 110 

obtain different copper loading on the zeolitic support. 111 

TABLE 1 112 

 113 

  114 
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2.2. Characterization techniques. 115 

ICP-AES. The actual amount of copper in the prepared catalysts was 116 

determined by ICP-AES, after metal extraction from the solid samples with 1:2 117 

HNO3:HF mixture at 90 ºC, which assures complete samples dissolving. 118 

N2 adsorption. The BET surface area of the zeolite samples were determined by 119 

N2 adsorption at −196 °C using a Micromeritics ASAP 2020 equipment.  120 

XR Diffraction (XRD). The crystalline structure of the copper modified zeolite 121 

samples were analyzed by XRD (Philips PW1710 diffractometer). The samples were 122 

finely ground and X-Ray diffractograms were recorded with copper Kα radiation in 123 

continuous scan mode from 5 to 80° of 2θ with 0.02° per second sampling interval. 124 

PANalytical X’pert HighScore specific software was used for data treatment. JCPDS 125 

database was used to interpret the diffractograms. 126 

X Ray Photoelectronic Spectroscopy (XPS). XPS characterization was carried 127 

out in a VG-Microtech Multilab electron spectromenter using Mg-Kα (1254.6 eV) 128 

radiation source. To obtain the XPS spectra, the pressure of the analysis chamber was 129 

maintained at 5 · 10-10 mbar. The binding energy (BE) scale was adjusted by setting 130 

the carbon 1s transition at 284.6 eV. The XPS measurements were performed in the 131 

electron binding energy ranges corresponding to copper 2p, oxygen 1s, silicon 2p, 132 

aluminum 2p and carbon 1s core excitations [19, 20]. 133 

Transmission Electron Microscopy (TEM). A JOEL (JEM-2010) microscope was 134 

used to obtain TEM images of the catalysts. Few droplets of an ultrasonically dispersed 135 

suspension of each sample in ethanol were placed on a copper grid with lacey carbon 136 

film and dried at ambient conditions for TEM characterizations. In order to obtain 137 

particle size distribution of copper, around 200 copper particles were identified and 138 

measured. 139 
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Hydrogen Temperature Programmed Reduction (H2-TPR). Reducibility of 140 

copper catalysts was investigated by TPR using H2. The samples were pretreated in 30 141 

ml/min of 10% O2/He mixture gas flow at 550 ºC for 45 min and then cooled down to 30 142 

ºC and flushed out with helium for 60 min. Then the samples were heated from room 143 

temperature to 600 ºC with 10 °C/min ramp in a 60 ml/min of 5% H2/Ar mixture gas 144 

flow. The water formed during reduction with H2 was trapped using a cold trap and the 145 

hydrogen consumption was continuously monitored with a TCD detector. 146 

 147 

2.3. SCR experiments. 148 

The SCR experiments were performed in a down flow stainless steel reactor. 149 

The reactor tube, with 1 g of 0.3-0.5 mm pelletized Cu-zeolite SCR catalyst inside, was 150 

located into a 3-zone tube furnace. The temperature was measured by a thermocouple 151 

at the top of the catalyst bed. The reaction temperature was varied from 100 to 500 ºC 152 

in steps of 40 ºC. The composition of the feed gas mixture was 750 ppm NO, 750 ppm 153 

NH3 and 9.5% O2 using Ar as the balance gas. Gases were fed via mass flow 154 

controllers and the total flow rate was set at 3000 ml·min-1, which corresponded to a 155 

space velocity (GHSV) of 90,000 h-1. The experimental set-up was designed to 156 

minimize the gas phase oxidation of NO to NO2, and therefore, the NO2 concentration 157 

in the gas fed is almost null. The NO, NO2 NH3 and N2O concentrations at the reactor 158 

exit were monitored every 40 ºC, once the analysis has been stabilized for at least 10 159 

min, by an online FTIR multigas analyzer (MKS 2030).  160 

 The NO (XNO) and NH3 (XNH3) conversions were calculated as 161 

     
   
       

   

   
       (1) 162 

      
    
       

   

    
       (2) 163 
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and the N2 (SN2), NO2 (SNO2) and N2O (SN2O) selectivities were calculated as 164 

     
    

   

    
          

     
     (3) 165 

      
    
   

    
          

     
     (4) 166 

      
     

   

    
          

     
     (5) 167 

where Fi represents the concentration of the “i” specie and the superscripts “in” and 168 

“out” indicate that the gas concentration was measured at the inlet and the exit of the 169 

reactor, respectively. 170 

 171 

3. Results and Discussion. 172 

3.1 Analysis of the copper content and surface area of the catalysts. 173 

Figure 1 shows the copper loading of the different catalysts prepared by ionic 174 

exchange with regard to the initial copper concentration on the water solutions used for 175 

the exchange process. An auxiliary continuous line has been included which 176 

represents the maximum copper loading that would be achieved if all copper available 177 

in the water solutions were incorporated into the zeolites. Furthermore, two auxiliary 178 

dot lines represent the maximum amount of copper that can be exchanged on each 179 

zeolite. The Si/Al ratios and the corresponding molecular composition of the ZSM5 and 180 

BETA zeolites (Table 1) predict these maxima amounts of copper are 2 and 5.6 wt. %, 181 

respectively, considering that one Cu(II) cation needs two ionic exchange sites. 182 

FIGURE 1 183 

All data on Figure 1 lie below the concentration predicted by the auxiliary 184 

continuous line corresponding to maximum copper loading, evidencing that there is 185 
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copper left in the water solutions after the exchange processes. The amount of copper 186 

loaded on both zeolites increases with copper concentration in the water solution, and 187 

as a general trend, the amount of copper loaded on the ZSM5 zeolite is lower to that 188 

loaded on BETA zeolite (for similar exchange conditions). This is in agreement with the 189 

Si/Al ratios and with the exchange capacity of each zeolite. The copper loading on the 190 

BETA zeolite catalysts increases with the copper concentration on the water solution 191 

until total consumption of the exchange sites on the B-IE-5.8 catalyst. On the contrary, 192 

some Cu-ZSM5 catalysts exceed the 100 % exchange level, and this can be due either 193 

to the formation of copper dimers in solution (Cu2+OH-)2, which would result in the 194 

anchoring of two Cu(II) ions per exchangeable site [21], and/or to the formation of 195 

extraframework copper species. During the ion exchange, local changes in pH could 196 

promote copper hydroxide precipitation [22]. 197 

In spite of this observation, the X ray diffractograms of the copper-exchanged 198 

zeolites, which are not shown for the sake of brevity, did not present neither peaks 199 

corresponding to metallic copper (Cu0) nor to copper oxide (CuO), evidencing high 200 

copper dispersion in all cases. Besides, the diffractograms of the acid and copper 201 

exchanged zeolites are quite similar, which means that the crystalline structure of the 202 

zeolites was not apparently modified after the copper incorporation. 203 

Figure 2 shows the BET surface area of the catalysts as a function of the 204 

copper loading. Fresh BETA and ZSM5 zeolites presented BET surface areas of 532 205 

and 474 m2·g-1, respectively. These areas decrease linearly, with almost the same 206 

slope, with the copper content. This decrease of BET surface area can be attributed to 207 

the partial pores blockage by copper species and/or to the destruction of micropores 208 

during copper loading due to aluminum leaching by acid attack [23]. The surface area 209 

decrease observed for the impregnated catalysts (B-IM-1.3 and Z-IM-1.2) are not in 210 

line with their counterparts prepared by ion-exchange, and impregnated catalysts show 211 
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a much higher decrease in the BET surface area. This suggests that pore blockage by 212 

copper species is the main reason of the BET surface area decrease.  213 

FIGURE 2 214 

 215 

3.2 Analysis of the copper particle size by TEM. 216 

The copper particle size distributions on the different catalysts have been 217 

determined by TEM. As an example, Figures 3a and 3b show TEM images of the 218 

lowest and highest copper content ZSM5 catalysts, whereas Figures 3c and 3d show 219 

the counterpart BETA catalysts, all of them prepared by ionic exchange. 220 

FIGURE 3 221 

As expected, the amount and size of the dark spots, mainly attributed to CuO as 222 

it will be demonstrated afterwards, depends both on the nature of the zeolite and on the 223 

copper loading. A major number of dark spots are observed for high-copper content 224 

catalysts (Z-IE-4.9 and B-IE-5.8, Figures 3b and 3d) than for the counterpart low-225 

copper content catalysts, and BETA catalysts only shows small particles (diameter < 226 

1.5 nm) while ZSM5 presents both small and large particles. 227 

Figure 4 shows the copper particle size distribution for all catalysts. No relevant 228 

differences were detected in the copper size distribution among catalysts prepared by 229 

impregnation and ionic exchange. 230 

FIGURE 4 231 

As a general trend, BETA catalysts present narrower particle size distribution 232 

than ZSM5 catalysts, with particle sizes centered on 1 nm and most particles being 233 

smaller than 4 nm. Only the highest-copper content BETA catalyst (B-IE-5.8) shows 234 

few copper particles larger than 10 nm. ZSM5 catalysts exhibit wider particle size 235 
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distributions than BETA catalysts, and a considerable amount of large particles, 236 

especially for high copper loading catalyst, were identified. Few of these particles 237 

achieved sizes even higher than 300 nm. 238 

These observations are in good agreement with the conclusions of the previous 239 

section, where it was observed that copper is mainly exchanged on zeolite sites of the 240 

BETA support while an important fraction of the metal loaded on ZSM5 is impregnated 241 

rather than exchanged (see Figure 1 and previous section). These differences are 242 

consistent with the Si/Al ratio and ionic exchange capacity of both zeolites. However, it 243 

is important to pay especial attention to the Z-IE-1.4 sample, since large CuO particles 244 

are observed in the TEM images but the total ionic exchange capacity has not been 245 

achieved (see Table 1). This suggests that not only the ionic exchange capacity (or the 246 

Si/Al ratio) of the zeolites plays a role on the nature of the copper species formed, but 247 

also the zeolite structure seems to be involved. The framework types of the BETA and 248 

ZSM5 zeolites are BEA and MFI, respectively, and the accessible volumes of these 249 

structures are 23 and 10 % respectively [24]. Also, the maximum diameter of a sphere 250 

that can enter into these structures is 6.68 Å for BEA and 6.36 Å for MFI. According to 251 

this, the copper solution used for the ionic exchange is expected to enter more easily 252 

into the BETA zeolite porosity than on the ZSM5 porosity, and therefore, a smaller 253 

particle size distribution of the CuO particles is obtained in the BETA zeolite catalysts. 254 

 255 

3.3 Analysis of the copper species nature by XPS and H2-TPR. 256 

In order to study the surface composition of the catalysts and the nature of the 257 

surface copper species, XPS characterization was carried out. A certain amount of 258 

carbon was detected by XPS on the surface of all catalysts, close to 10% in some 259 

cases, and for this reason a direct analysis of the quantitative results of the surface 260 
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composition is complex and comparison of elements ratio is more meaningful. In Table 261 

2, the Si/Al surface ratios are compiled together with the ratio between surface copper 262 

(determined by XPS) and total copper (determined by ICP) contents. 263 

TABLE 2 264 

The Si/Al surface ratio decreases by increasing the copper loading both for 265 

BETA and ZSM5 catalysts. This can be attributed to the decrease of the solutions pH 266 

by increasing the Cu(II) precursor concentration, which favors the zeolites 267 

dealumination [23]. This aluminum leaching would result in a certain accumulation of 268 

aluminum species on the crystals surface. 269 

The ratio between surface and total copper contents (Cusurface/Cutotal) provides 270 

information about the metal loading process. Constant ratios (0.42) were obtained for 271 

BETA zeolite catalysts prepared by ionic exchange and a quite similar value was 272 

obtained by impregnation of this support (0.37 for B-IM-1.3). These values below 1 273 

indicate that copper is mainly accumulated into the zeolite porosity, and support that 274 

copper cations are actually exchanged on the zeolite sites [25]. The similar values 275 

obtained by the impregnation and ionic exchange loading methods suggest that copper 276 

could be exchanged even in the impregnated BETA catalyst. For ZSM5 catalysts 277 

prepared by ionic exchange, the Cusurface/Cutotal ratio increases with the copper loading 278 

and most values are higher than those obtained with the counterpart BETA zeolite 279 

catalysts. This is in line with the worst copper dispersion obtained on the ZSM5 zeolite 280 

support. Note that higher particles were observed by TEM on ZSM5 zeolite catalysts 281 

(see Figures 3 and 4). This worst dispersion of copper can be attributed to the higher 282 

Si/Al ratio, and therefore lower cation exchange capacity, of the ZSM5 zeolite with 283 

regard to that of the BETA zeolite and to the more accessible porosity of the BETA 284 

zeolite. The Cusurface/Cutotal ratio obtained with the ZSM5 zeolite impregnated with 285 
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copper (Z-IM-1.2 catalyst) is higher than values obtained by ionic exchange of this 286 

zeolite, which is an evidence of worst dispersion in this case. 287 

Figures 5a and 5b show the X ray photoelectronic spectra corresponding to the 288 

copper 2p transition for Cu-ZSM5 and Cu-BETA catalysts, respectively. It is usually 289 

reported that Cu(2p3/2) transition appears at energy values lower than 933 eV  for 290 

metallic copper (Cu0) and Cu2O (Cu(I)), while it shifts to values higher than 933 eV for 291 

Cu(II) species [26]. According to this assignation, all profiles included on Figure 5 are 292 

consistent with the presence of different Cu(II) species. The presence of the shake-up 293 

satellite (not shown in Figure 5) appearing in all catalysts with energies 10 eV higher 294 

than the Cu(2p3/2) transition also gives evidences of the presence of Cu(II). However, 295 

the energy of the Cu(2p3/2) transition does not allow unequivocally identify the oxidation 296 

states of copper [23], and for the proper identification of the oxidation state of the 297 

copper species the Auger peak must be taken into account. The Auger parameter (α), 298 

which is calculated as the sum of copper 2p binding energy and Auger peak kinetic 299 

energy, has been included in Table 3. The values of the Auger parameter of most 300 

catalysts are well above 1850 eV, and these values confirm the presence of Cu(II) 301 

cations. Only the Z-IE-4.9 catalyst presents Auger values below 1850 eV, and this 302 

could be due to the formation of bulk CuO instead of Cu(II) cations exchanged on the 303 

zeolite framework and/or to the presence of Cu(I) cations, but the formation of CuO 304 

seems to be more reasonable [27]. 305 

TABLE 3 306 

FIGURE 5 307 

The Cu(2p3/2) transition included on Figure 5 can be deconvoluted in three main 308 

contributions located around 933.2 eV, 934.0 eV and 936.0 eV. As discussed, all these 309 

contributions can be most likely be attributed to different Cu(II) species [19]. The band 310 
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located at ca. 933.2 eV is tentatively assigned to agglomerated CuO particles present 311 

on the surface [28], while second and third peaks located at ca. 934.0 and 936.0 eV 312 

are thought to correspond to isolated Cu(II) species with different coordination, as was 313 

evidenced by Hajjar et al. [29] by FTIR and MQMAS NMR. The peak at 934.0 eV 314 

corresponds to isolated Cu(II) in tetrahedral coordination, while the peak appearing at 315 

936.0 correspond to isolated Cu(II) in octahedrical coordination [28], which is related to 316 

the presence of two kinds of exchange sites in the zeolites framework. As isolated 317 

Cu(II) in octahedrical coordination are more strongly attached to the zeolite framework, 318 

the corresponding contribution appears at the highest binding energy followed by 319 

isolated Cu(II) in tetrahedral coordination and finally agglomerated Cu(II) species which 320 

appear at the lowest binding energy. 321 

The contribution of each individual transition to the total intensity of the Cu(2p3/2) 322 

band depends both on the zeolite type and on the copper content. As a general trend, 323 

increasing copper content leads to an increase in the contribution located at lowest 324 

binding energy, i.e. 933.2 eV (dashed red line) to the detriment of that located at 934.0 325 

eV (dashed green line), while the third one located at 936.0 eV (dashed blue line) 326 

remains constant for Cu-ZSM5 and increases for Cu-BETA. The areas of these 327 

contributions were calculated and expressed as a percentage of the total Cu(2p3/2) 328 

transition in Table 3.  329 

Note that the increasing contribution of the peak located at 933.2 eV, indicating 330 

the presence of agglomerated CuO particles, increases with the copper loading: 13% 331 

of the total Cu(2p3/2) transition for Z-IE-1.4, 31 % for Z-IE-2.6 and 53 % for Z-IE-4.9. 332 

Meanwhile, the contribution of isolated Cu(II) in tetrahedral coordination shows a 333 

reverse relationship respect to the amount of agglomerated particles, decreasing with 334 

increasing the copper content, i.e. 78 % for Z-IE-1.4, 59 % for Z-IE-2.6 and 38 % for Z-335 

IE-4.9. The contribution of isolated Cu(II) in octahedrical coordination is almost 336 
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constant, around 9 %, regardless the copper loading. Thus, it can be suggested that 337 

copper first preferentially occupies the ion exchange sites and, once those are 338 

saturated, CuO is accumulated on the zeolite surface. Agglomerated CuO particles are 339 

more abundant in ZSM5 zeolite than on BETA zeolite if catalysts with similar copper 340 

loading are compared. For instance, the signal attributed to CuO particles represents 341 

53 % in Z-IE-4.9 catalysts while it results in just 34 % for B-IE-5.8, although the copper 342 

loading is even higher for the latter. This fact could be related to the higher Si/Al ratio, 343 

and therefore lower cation exchange capacity, of the ZSM5 zeolite with regard to that 344 

of the BETA zeolite and to the more accessible porosity of the BETA zeolite, which 345 

promotes the formation of CuO aggregates for high copper loadings. Finally, XPS does 346 

not show significant differences between ion exchanged and impregnated samples, 347 

which reveals that the proportion of each copper species on the surface is only 348 

influenced by the copper amount and the zeolite type.  349 

Additional information about the nature of the different copper species in the 350 

catalysts was obtained by Temperature Programmed Reduction experiments (H2-TPR), 351 

and Figure 6 shows the H2 consumption profiles. The copper-free H-zeolites did not 352 

contain reducible ions and no H2 consumption was noticed; therefore, all H2 consumed 353 

by the catalysts can be attributed to the reduction of copper cations. It is important to 354 

mention that the H2-TPR profiles obtained with fresh catalysts (Figure 6) and after the 355 

SCR experiments (not shown) did not show significant changes, confirming that copper 356 

remains mainly oxidized even after the SCR experiments. This is not surprising taking 357 

into account the highly oxidizing nature of the simulated diesel exhaust gas stream. 358 

FIGURE 6 359 

All the catalysts consumed H2 due to the reduction of Cu(II), and the higher the 360 

copper content of the catalysts, the higher the H2 consumption [30]. Considering the 361 
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ICP-AES copper content, the amount of catalyst used in the H2-TPR experiments and 362 

the stoichiometry of the following reactions: 363 

CuO + H2  Cu + H2O (for bulk CuO particles) (6) 364 

Cu(II)-zeolite + H2  Cu + (2H+)-zeolite (for Cu(II) cations exhanged on the zeolites)(7) 365 

a H2/Cu=1 ratio should be obtained if all copper were Cu(II) and if all Cu(II) species 366 

were completely reduced to metal copper. According to the H2/Cu ratios obtained 367 

experimentally (0.9-1.0 in all cases), all the catalysts accomplish these hypotheses. 368 

This confirms that only Cu(II) species exist on the catalysts, which is consistent with the 369 

XPS results.  370 

All the profiles included in Figure 6 are composed by several maxima and 371 

shoulders indicating, in line with the XSP results, the presence of copper species with 372 

different reducibility. The maximum that appears around 250 °C for most of the 373 

catalysts corresponds to the reduction of bulk CuO species, which are more easily 374 

reduced than exchanged Cu(II) ions [31]. A shoulder at lower temperatures, which is 375 

related with the reduction of the CuO particles surface, is observed in some profiles, 376 

and its contribution increases with the total copper content. The CuO reduction 377 

maximum/shoulder observed in the H2-TPR profiles would be associated to the copper 378 

2p XPS contribution at 933.2 eV (see Figure 5 and Table 3).  379 

The H2-consumption peaks appearing at higher temperatures can be assigned 380 

to Cu(II) cations exchanged on the zeolite, which need more temperature to be 381 

reduced than CuO. The presence of different exchanged Cu(II) cations is consequence 382 

of the existence of different kinds of framework sites in ZSM5 and BETA zeolites [29]. 383 

The peaks with a maximum at temperatures around 350 °C for ZSM5 catalysts and 384 

around 450 °C for BETA catalyst, corresponds to the most easily reduced exchanged 385 

Cu (II) species [31]. According to the XPS results, this peak could be related with the 386 
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reduction of tetracoordinated Cu(II) species. Finally, the peaks with a maximum at 387 

temperatures around 480 °C for ZSM5 catalysts and around 600 °C for BETA catalysts 388 

correspond, in line with XPS results, to the reduction of Cu(II) cations in octahedral 389 

coordination, which are strongly attached to the zeolite.  390 

As it has been previously reported [30], there is a significant effect of copper 391 

loading on the reducibility of the different copper species. From our data it can be 392 

confirmed that an increase of the copper loading shifts the reduction peaks to lower 393 

temperature. This is consistent with the formation of larger amounts of dimeric copper-394 

species as the copper loading increases [32]. These dimeric copper species contain 395 

bridging oxygen atoms that can react with H2 at comparably lower temperatures than 396 

isolated copper-sites. Thus, as expected, the copper dispersion decreases for high 397 

copper loading. 398 

In addition to the qualitative assignation of the H2-reduction peaks to the 399 

different copper species in the catalyst, a semi-quantitative analysis of the H2-400 

consumption profiles can be done. The highest temperature peaks (assigned to Cu(II) 401 

cations exchanged on octahedral sites) are the most intense peaks for the low copper 402 

content catalysts. This indicates that the octahedral sites are first exchanged. The 403 

intensity of the peaks assigned to Cu(II) cations exchanged on tetrahedral sites grows 404 

appreciably with the copper content, becoming more intense than the third contribution 405 

(the one assigned to Cu(II) cations exchanged on octahedral sites). This confirms that 406 

the tetra-coordinated sites are occupied by Cu(II) cations after the octahedral sites, and 407 

that the amount of tetrahedral sites available on the zeolites is higher to that of 408 

octahedral sites. Finally, the most intense H2-reduction peak of the ZSM5 catalyst with 409 

highest copper content (Z-IE-4.9) is assigned to CuO reduction, confirming that bulk 410 

copper oxide formation is favored once the exchange sites have been occupied. On the 411 

contrary, the position and intensity of the H2-reduction peaks of B-IE-5.8 suggest that 412 
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Cu(II) exchanged on tetrahedral positions is the most abundant copper species on the 413 

highest copper content BETA catalyst. This is consistent with the lower Si/Al ratio, and 414 

therefore higher ionic exchange capacity, of the BETA zeolite with regard to that of the 415 

ZSM5 zeolite, and to the more accessible porosity of the BETA zeolite. 416 

 As a summary, the XPS and H2-TPR characterization confirm the presence of 417 

different Cu(II) species on the catalyst, namely, CuO and Cu(II) exchanged on 418 

tetrahedral and octahedral positions of the zeolite framework. Clear evidences of Cu(I) 419 

or Cu(0) species were not obtained in any case. As a general trend, Cu(II) exchanged 420 

on octahedral positions prevails for catalysts with low copper content, and the 421 

exchange of Cu(II) on tetrahedral positions and the formation of CuO is progressively 422 

favored by increasing the copper content. The formation of CuO is more important on 423 

the ZSM5 zeolite than on BETA due to the higher Si/Al ratio, and therefore lower ionic 424 

exchange capacity, of the former, and to the more accessible porosity of the BETA 425 

zeolite. 426 

 427 

3.4. SCR experiments. 428 

Figures 7a and 7b show the NOx and NH3 conversions and Figures 7c, 7d and 429 

7e show the selectivity towards N2, NO2 and N2O, respectively, as a function of the 430 

reaction temperature in SCR experiments. 431 

FIGURE 7 432 

The behavior of any catalyst is qualitatively similar, and the obtained catalytic 433 

results are typical of NOx SCR reactions in all cases. NO conversions increased with 434 

temperature because the NH3-NOx reactions are promoted, reaching a maximum 435 

conversion for an intermediate temperature and decreasing afterwards as the oxidation 436 

of ammonia with O2 is favored at high temperature [33, 34]. The NH3 conversions also 437 
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increased with temperature, but 100% conversion was maintained above a certain 438 

temperature because the NH3-O2 reaction prevails. The minimum temperature for 439 

100% ammonia conversion is the same at which the maximum NO conversion is 440 

achieved. Regardless the catalyst, N2 is the main nitrogen-reaction product (above 441 

80% selectivity in the whole range of temperatures studied for all catalyst) and few N2O 442 

and/or NO2 are only detected. 443 

The particular behavior of the catalysts depends on the zeolite nature, on the 444 

copper content and on the copper loading procedure. The lowest NOx conversions 445 

were obtained with the impregnated catalysts, and this could be a consequence of the 446 

partial blockage of the zeolite network by copper species, as deduced from the BET 447 

values (see Figure 2). The partial blockage of the zeolite pores is expected to force the 448 

reactions to preferentially occur on the external surface of the crystals, hindering the 449 

access of gases to the internal copper sites. 450 

For catalysts prepared with the same zeolite, the NO and NH3 conversion 451 

curves are shifted to lower temperatures as the copper content increases, while the 452 

N2O and NO2 selectivities slightly increase. As discussed in the previous 453 

characterization sections, the presence of CuO is favored for high copper contents, and 454 

this would explain these catalytic trends. A tentative explanation is that CuO catalyzes 455 

the oxidation of NO to NO2, and this favors the reduction of NOx at lower temperature 456 

since the NH3-NO2 reaction is faster than the NH3–NO reaction (NO2 is much more 457 

oxidizing than NO). The formation of NO2 is only evident at high temperature, once the 458 

selectivity of the NH3-NOx reactions decrease, because in the range of temperatures of 459 

high NO reduction selectivity the NO2 potentially formed is expected to react with NH3, 460 

and consequently, is not detected. 461 
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The low-copper content catalysts, and mainly those prepared by ionic exchange 462 

and with BETA zeolite, have a better catalytic behavior at high temperature than the 463 

high-copper content counterparts. For instance, at 425 ºC, the catalyst B-IE-2.1 464 

reached the highest NO conversion among all catalysts, keeping low NO2 and N2O 465 

production. This catalyst has a high proportion of exchanged Cu(II) species (mainly 466 

Cu(II) exchanged on octahedral sites), and this type of copper cations seems to be 467 

responsible of the activity at high temperature. It can be concluded that CuO clusters, 468 

which are more abundant in high copper-content catalysts, promote NO reduction at 469 

low temperature whereas isolated Cu(II) ions, which are more abundant in low copper-470 

content  catalysts, maintained high NOx conversion even at high temperatures. In 471 

addition, catalysts with low CuO content exhibit higher N2 selectivity, which was 472 

progressively reduced by increasing the copper loading. In those cases, the selectivity 473 

of the reaction moved towards N2O and NO2. 474 

Comparing the supports, it can be observed that Cu-ZSM5 catalysts are more 475 

active at low temperature whereas Cu-BETA catalysts maintain higher activity at high 476 

temperature. This behavior can also be related to the nature of the copper species 477 

present in each catalyst. As a general trend, there are higher amounts of CuO on 478 

ZSM5 catalysts than on BETA catalysts due to the higher Si/Al ratio, and therefore 479 

lower ionic exchange capacity, of the ZSM5 zeolite, and to the more accessible 480 

porosity of the BETA zeolite, which favors the formation of exchanged Cu(II) species 481 

with regard to bulk CuO particles. 482 

4. Conclusions. 483 

In this study, the SCR of NOx with NH3 has been studied with different copper 484 

zeolite catalysts and the following conclusions have been achieved: 485 
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The catalysts characterization confirmed the presence of different Cu(II) species 486 

in all catalyst, namely, CuO and Cu(II) exchanged on tetrahedral and octahedral 487 

positions of the zeolite framework. Clear evidences of Cu(I) or Cu(0) species were not 488 

obtained in any case. As a general trend, Cu(II) exchanged on octahedral positions 489 

prevails for catalysts with low copper content, and the exchange of Cu(II) on tetrahedral 490 

positions and the formation of CuO is progressively favored by increasing the copper 491 

content.  492 

CuO is more abundant in high copper-content catalysts and in ZSM5 catalysts, 493 

while isolated Cu(II) ions are more abundant in low copper-content catalysts and in 494 

BETA catalysts. There are higher amounts of CuO on ZSM5 catalysts than on BETA 495 

catalysts due to the lower ionic exchange capacity of the ZSM5 zeolite. 496 

The nature of the copper species affects the SCR behavior of the studied 497 

catalysts. CuO clusters promote NO reduction at low temperature whereas isolated 498 

Cu(II) ions maintain high NOx conversion at high temperatures. In addition, catalysts 499 

with low CuO content exhibit higher N2 selectivity, since CuO promotes the formation of 500 

N2O and NO2. 501 

It is suggested that CuO catalyzes the oxidation of NO to NO2, and this favors 502 

the reduction of NOx at lower temperature since the NH3-NO2 reaction is faster than the 503 

NH3–NO reaction (NO2 is much more oxidizing than NO). 504 

 505 

  506 
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Figure Captions. 618 

 619 

 620 

Figure 1.  Relation between the initial copper concentration and the actual copper 621 
content (%) in zeolite. 622 

 623 
Figure 2.  Relation between the actual copper content and BET surface area. 624 
 625 
Figure 3.  TEM images of (a) Z-IE-1.4, (b) Z-IE-4.9, (c) B-IE-2.1 and (d) B-IE-5.8. 626 
 627 
Figure 4.  Particle size distribution of catalysts determined from TEM images. 628 
 629 
Figure 5.  X ray Photoelectric Spectra (copper 2p3/2 transition) for (a) Cu-ZSM5 630 

catalysts and (b) Cu-BETA catalysts. 631 
 632 
Figure 6.  H2-TPR profiles of fresh: a) Cu-BETA catalysts and (b) Cu-ZSM-5 catalysts. 633 
 634 
Figure 7.  Conversion of NOx, NH3 and N2, N2O and NO2 selectivity during SCR 635 

reaction for (a) BETA and (b) ZSM5 catalysts.  636 
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 637 

 638 

Table 1. Summary of the prepared catalysts 639 

Catalyst 
nomenclature 

Support Si/Al Copper loading 
method 

Copper initial concentration in 
the impregnation solutions 

(ppm) 

Copper content 
on the catalyst 

(wt. %) 

Exchange sites 
potentially* occupied by 

Cu(II) cations (%) 

B-IM-1.3 BETA 12.5 Impregnation - 1.3 23 
B-IE-2.1 BETA 12.5 Ion exchange 320 2.1 37 
B-IE-2.9 BETA 12.5 Ion exchange 640 2.9 52 
B-IE-5.8 BETA 12.5 Ion exchange 2000 5.8 103 
Z-IM-1.2 ZSM5 25 Impregnation - 1.2 59 
Z-IE-1.4 ZSM5 25 Ion exchange 160 1.4 69 
Z-IE-2.6 ZSM5 25 Ion exchange 640 2.6 129 
Z-IE-4.9 ZSM5 25 Ion exchange 2000 4.9 243 

 640 
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 641 

Table 2. Results of the surface characterization by XPS. 642 

Catalyst Cusurface/Cutotal Si/Al 

Z-IM-1.2 0.78 14 

Z-IE-1.4 0.38 14 

Z-IE-2.6 0.58 8 

Z-IE-4.9 0.64 5 

B-IM-1.3 0.37 11 

B-IE-2.1 0.42 8 

B-IE-2.9 0.42 7 

B-IE-5.8 0.42 6 

 643 

 644 

 645 

Table 3. XPS characterization of the copper species. Percentage of the different 646 

copper species identified in the Cu2p3/2 transition and Auger energy. 647 

Catalyst 

Peak at 

933.2 eV 

(%) 

Peak at 

934.0 eV 

(%) 

Peak at 

936.0 eV 

(%) 

Auger (eV) 

Z-IM-1.2 9 83 8 1865.3 

Z-IE-1.4 13 78 8 1865.6 

Z-IE-2.6 31 59 10 1865.2 

Z-IE-4.9 53 38 9 1848.6 

B-IM-1.3 9 79 12 1865.6 

B-IE-2.1 16 74 10 1865.5 

B-IE-2.9 27 57 16 1865.9 

B-IE-5.8 34 45 21 1862.3 
Tentative assignation: 933.2 eV corresponds to CuO, 934.0 eV corresponds to isolated Cu(II) in 648 
tetrahedral coordination and 936.0 eV corresponds to isolated Cu(II) in octahedrical 649 
coordination (see main text for details). 650 
  651 
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