
processes

Article

A Geometric Observer-Assisted Approach to Tailor
State Estimation in a Bioreactor for
Ethanol Production

Silvia Lisci, Massimiliano Grosso and Stefania Tronci *

Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2,
09123 Cagliari, Italy; s.lisci@dimcm.unica.it (S.L.); massimiliano.grosso@dimcm.unica.it (M.G.)
* Correspondence: stefania.tronci@dimcm.unica.it; Tel.: +39-070-675-5050

Received: 28 February 2020; Accepted: 16 April 2020; Published: 20 April 2020
����������
�������

Abstract: In this work, a systematic approach based on the geometric observer is proposed to design
a model-based soft sensor, which allows the estimation of quality indexes in a bioreactor. The study
is focused on the structure design problem where the set of innovated states has to be chosen. On the
basis of robust exponential estimability arguments, it is found that it is possible to distinguish all the
unmeasured states if temperature and dissolved oxygen concentration measurements are combined
with substrate concentrations. The proposed estimator structure is then validated through numerical
simulation considering two different measurement processor algorithms: the geometric observer and
the extended Kalman filter.

Keywords: nonlinear state estimation; geometric observer; bioreactor; continuous system; extended
Kalman filter; model-based sensor

1. Introduction

Bioreactors are units where a wide variety of products are made in industrial plants and where a
diversity of important processes, such as fermentation, occur. Usually, the control of bioreactors is
accomplished through the regulation of variables, such as pH and temperature, for optimizing the
microbial growth [1,2]. Product quality indexes such as biomass, substrate, product or by-product,
and dissolved oxygen concentrations are not usually controlled, because they are difficult to measure
in real-time [3]. Even though many works report the availability and advantages of monitoring
techniques, industrial biotechnology processes have a scarce capacity for real-time monitoring, which
implies a limited implementation of efficient control of the process [4,5]. Because an unpredicted
perturbation may lead to significant changes in the qualitative behavior of the system [6–8], it is crucial
to accurately monitor the process.

Model-driven soft sensors can be a possible approach to estimate variables from secondary
measurements. They rely on first principles process models and on algorithms that reconcile the
available measurements with predictions carried out by the model. Several estimation techniques
have been proposed in the literature for chemical and biochemical processes. Among them, the
following have been recognized to have strong potential in the online estimation of nonlinear systems:
(i) extended Kalman filter [9], (ii) high gain observer [10], (iii) sliding mode observer [11], (iv) geometric
observer [12,13]. Many of the strategies to estimate unmeasurable states and disturbances for partially
known systems are based on the extended Kalman filter (EKF) because its design is quite simple and it
is widely accepted by relevant industries [14,15].

In this paper, the problem of estimating unmeasured states in a bioreactor is addressed. The study
is based on the detailed model proposed by [16], which is considered as the virtual plant. The main
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objective is to compare different estimation solutions depending on the available measurements and the
characteristics of the sensors. An adjustable-structure geometric estimation approach is implemented,
considering the estimator structure as a degree of freedom in the design with the aim of improving
performance versus robustness estimation behavior [13,17,18]. The used estimation algorithm is the
geometric observer (GO) with proportional innovation [19], which offers the simplicity of tuning and
implementation. In order to show that the proposed procedure for choosing the estimation structure
can be applied to other estimation techniques, the extended Kalman filter (EKF) is also used as the
measurement processor algorithm.

2. Process Model

The biochemical process considered in the present paper is a fermentation reactor for the
production of ethanol. The model was developed by [16] and, for the sake of clarity, it is hereafter
reported (Equations (1)–(6)). It is assumed there is a perfect mixing in the reactor (constant pH
and constant volume). The dynamics of biomass (CX), substrate (CS), ethanol (CP), along with the
oxygen concentration (CO2) are considered. Energy balances are also taken into account describing
the reactor temperature (Tr) and jacket temperature (Tag) dynamics. A low dilution rate has been
considered allowing a balance between the biomass exiting from the system and the biomass produced
in the reactor.
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The oxygen equilibrium concentration is affected by the inorganic salts, which are added to the
solution as source of inorganic nitrogen. The dependence is reported in Equation (7)

C∗O2
= C∗O2, 0·10−

∑
HiIi (7)

where the equilibrium concentration as a function of temperature has been calculated using the
equation proposed by [20] for distilled water

C∗O2, 0 = 14.6− 0.3943Tr + 0.007714 T2
r − 0.0000646T3

r (8)

In the present work, the distillation strength
∑

HiIi is kept constant and it has been calculated
using the equations reported in [16].

The model is here used to simulate a real process and to develop the model-based soft sensor
(estimator). Because the aim of the work is to mimic a real situation, the simulation using the model
parameters reported in [16] is considered as the real plant (hereafter referred to as the virtual plant).
On the other hand, some of the parameters used for the model in the estimator algorithm have been
modified. The aim was to insert modeling errors to simulate what usually happens in a real situation
where parameter uncertainty is present. This is often the case when dealing with complex systems such
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as biological reactors [21]. A Monte Carlo method has been used to produce empirical error estimates
on the model parameters, using a uniform noise distribution with a maximum deviation equal to
±8%. Table 1 summarizes the parameters of the model used in the estimator algorithm obtained by
performing 100 simulations and leading to the maximum error calculated on the trajectories of the six
states. The other parameters of the model are the same as reported in [16]. The nominal conditions of
the virtual plant are reported in Table 2.

Table 1. Parameters for the virtual plant and for the estimator.

Virtual Plant Estimator

µp 1.790 1.7465

Ks 1.030 1.0248

Kp 0.139 0.1281

Ks1 1.680 1.8090

Kp1 0.070 0.0692

Rsx 0.607 0.6274

Rsp 0.435 0.4549

Table 2. Nominal operating conditions of the process.

CO2 = 2.5 mg/L pH = 6

CP = 13 g/L Tag = 29 ◦C

CS = 27 g/L Tin = 25 ◦C

CS,in = 60 g/L Tin,ag = 15 ◦C

CX = 1 g/L Tr = 26 ◦C

Fag = 18 L/h V = 1000 L

Fi = Fe = 51 L/h -

The model simulations have also been made more realistic by adding noise to the available
measurements, and the precision of the sensors is reported in Table 3.

Table 3. Noise for the different measuring sensors.

CX CS CO2 Tr Tag

±2.5% ±2.5% ±2.5% ±0.1 ◦C ±0.1 ◦C

It is important to specify that all tests performed in the following have been carried out by
imposing step changes to three inputs of the system (CS,in, Tin,ag, Tin). The description of input
variations is reported in Table 4.

Table 4. Step changes of input variables.

Input t = 0 h t = 100 h t = 200 h

T1 CS,in (g/L) 60 45 75

T2 Tin,ag (◦C) 15 10 20

T3 Tin (◦C) 25 20 30
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3. Estimation Problem

The current real-time monitoring methods used in ethanol production consist of secondary
measurements such as pH, turbidity, gas composition and temperature [4]. Even if such variables
provide important information about the process, they do not directly relate to the state of the
system, making it difficult to apply advanced control strategies. Furthermore, even the best process
measurements are corrupted by some amount of signal noise and their true values are somewhat
uncertain. State estimation techniques can be used to improve the output signal of measured process
states in the presence of uncertainty and when it is not possible to directly measure all the variables
of interest.

The estimation problem consists of jointly designing the estimation structure (i.e., estimator model,
sensors, innovated states and data assimilation mechanisms), and the estimation algorithm (i.e., the
dynamic data processor), to infer some or all the states of the bioreactor on the basis of the available
model in conjunction with available measurements, according to a specific estimation objective. In the
present fermentation reactor estimation study, the emphasis has been placed on: (i) the detection of the
more adequate measured outputs leading to the best performance, (ii) the selection of the innovated
states, meaning the states which are updated by using the available measurement.

For simplifying the formulation of the problem, the model in Equations (1)–(6) is written in
compact form as reported in Equation (9)

.
x = f(x, u), x(t0) = x0 (9a)

y = h(x) (9b)

where x is the n-dimensional state vector, equal to x0 at the initial time t0, u is the p-dimensional input
vector, f is the n-dimensional vector fields, y is the m–dimensional vector of the measured outputs and
h is the map relating states and measurements. The dimension of the measured outputs is less than
the number of states, that is m < n. Using the geometric approach [19,22], it is possible to define the
nonlinear estimation map φ as Equation (10)

φ(x, u) = [φ1, . . . ,φi, . . . , φm]T (10a)

φi =
(
hi, L f hi, . . . , Lκi−1

f hi

)
(10b)

where the L j
f hi is the jth Lie derivative of the time-varying scalar field hi along the vector f, κi is the

observability index of the ith output and κ is the estimator order defined in Equation (11)

κ1 + κ2 + . . .+ κm = κ = n (11)

If the map φ(x, u) is invertible with respect to x (Equation (12)), the system is observable, and the
states can be reconstructed using the available model (Equations (1)–(6)) and a proper measurement
processor algorithm [14].

rank(∂xφ(x, u)) = n (12)

If the Jacobian matrix ∂xφ(x, u) is rank deficient, there are unobservable states. In this case, the
system is detectable only if all the unobservable modes have negative real parts [19].

3.1. Robust Estimability and Robust Detectability

If all states can be fully observable, the observability matrix should be full-rank, but practical
observability can be assessed if the condition number of the observability matrix (Σ) is small [23].
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Furthermore, a small singular value of the observability matrix implies the worst estimate of the
states [24]

rank(Υ) = n,Υ = ∂xφ(x, u) (13a)

σ(Υ)

σ(Υ)
= Σ < Ξ, (13b)

avg
t
σ(Υ) ≥ ε0 (13c)

where Ξ and ε0 are, respectively, the selected thresholds.
On the other hand, if matrix Υ is rank deficient and the unobservable states are stable, it is

necessary to distinguish between states that can be innovated (distinguishable states) and states that
cannot (undistinguishable states). In this case, the dimension of the map in Equation (10) is equal to
the dimension of the distinguishable states, and robust detectability can be assessed if the following
conditions are satisfied (Equation (14))

σ
(
Υp

)
σ
(
Υp

) = Σi < Ξp (14a)

avg
t
σ
(
Υp

)
≥ εp0 (14b)

Υp = ∂xφp(x, u) (14c)

φp =
(
h1, . . . , Lκ1−1

f h1, . . . , hm, . . . , Lκm−1
f hm

)
(14d)

κ1 + κ2 + . . .+ κm = κ = p (14e)

The constants Ξp and εp0 are, again, the selected thresholds.

3.2. Selection of the Estimator Structure

The performance of an estimator is obviously strongly affected by the model of the process and the
quality of the available measurements. Biological processes are complex systems, therefore the presence
of model uncertainty in terms of parameters and neglected dynamics is, in general, to be expected [21].
This means that the complete reconstruction of the states requires, in general, a combination of different
measurements [4]. Within this framework, it is important to underline that there is still a gap between
the sensors for laboratory use and large scale monitoring in real-time [4]. The selection of the estimator
structure is therefore focused on the choice of the best monitoring strategies, by considering which are
the most representative measured outputs and the presence of parameter errors in the model used
in the estimator. It is considered that system monitoring can be expensive, in terms of both fixed
and operation costs, therefore it could be useful to optimize performance with the least number of
sensors. This analysis has been carried out comparing condition number and minimum singular
values of the matrix Υ or Υp (Equations (13) and (14)). The performances have also been evaluated by
simulating different trajectories, from which the convergence rate, presence of off-set and signal noise
have been evaluated.

3.3. Algorithms for the Estimation Problem

In this study, two different algorithms have been selected and compared. The first one is the
geometric observer [19], which is formally connected with the observability properties reported in the
previous section. The geometric observer (GO) can be applied also to detectable systems [13], and it
demonstrated to be simple to implement and tune [18,22]. The geometric approach is also used to
select the estimator structure, in terms of the selection of measurements and states to be innovated.
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The geometric observer algorithm is reported in Equation (15), where it is assumed that some
states are not innovated. This choice may depend on the rank deficiency of the observability matrix or
a design choice intended to improve the robustness and efficiency of the estimator.

.
x̂i = f̂i(x̂, u) + (∂xiφ(x̂, u))−1K(y− h(x̂)), xi0 = xi(t0) (15a)

.
x̂u = f̂u(x̂, u), xu0 = xu(t0) (15b)

The inverse of the observability matrix ∂xiφ(x, u) in Equation (15a) is calculated at each time step
and K is a block diagonal matrix (Equation (16)), whose coefficients are constant tuning parameters.
The estimated states x̂ in Equation (15) are the innovated states (x̂i), where the dynamics predicted by
the model are adjusted by means of the available measurements y, and the not innovated states (x̂u),
which are only predicted by the model (referred to in the following as open-loop states).

K =


B1 0
0 B2

. . . 0

. . . 0
...

...
0 0

. . .
...

. . . Bm

, B1 =


k11

...
k1ν1

, B2 =


k21

...
k2ν2

, Bm =


km1

...
kmνm


νi = κi−1

(16)

Tuning guidelines are provided by [17], proving that a set of tuning parameters ki j is required for
every measurement. For observability indexes equal to 1 or 2 (κi = 1, 2), the proportional gains can be
obtained by considering Equation (17).

ki1 = 2ζω0, ki2 = ω0
2 (17a)

ω0 ∈ [10ωc, 30ωc], ζ = [1, 3] (17b)

The GO has then been compared with the extended Kalman filter (EKF), which is the most used
estimator algorithm in the industry because of its straightforward construction [17]. Even if the EKF is
usually applied to complete observability systems, in this investigation it has been used also when the
choice of measurements leads to a rank deficient observability matrix. The EKF algorithm has been
applied in the continuous form, reported in the following Equation (18).

.
x̂i = f̂i(x̂, u) + KEKF(y− h(x̂)), xi0 = xi(t0) (18a)

.
x̂u = f̂u(x̂, u), xu0 = xu(t0) (18b)

KEKF = P(t)HTR−1 (18c)
.
P(t) = P(t)F(t) + FT(t)P(t) + Q(t) −KEKFHP, P(t0) = P0 (18d)

F(t) is the Jacobian of the vector field f̂i, calculated with respect to the innovated states, P is the
error covariance matrix of the innovated states, H is the matrix of the derivative of the map h with
respect to the states, Q and R are, respectively, the covariance matrix of the model and measurements
errors [9]. The constant matrix Q, R, and P0 are tuning parameters of the estimation model and they
have been calculated minimizing the error between the states calculated with the simulated plant and
the estimator along a reference trajectory.

4. Results

4.1. Estimation Structure

The choice of the estimation structure has been carried out considering: (i) condition number and
the minimum singular value of the Jacobian matrix Υ (or Υp) for a different choice of measurements
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and innovated states and (ii) evaluating the responses of the reconstructed states for a given trajectory.
Temperature and dissolved oxygen measurements have always been considered available, according
to the laboratory and industrial practice. On the other hand, sensors suited for ethanol measurements
as well as substrate and biomass are not always available for large scale real-time applications [4].
According to the analysis reported in [3], two possible scenarios have been considered: (i) biomass
concentration in the reactor is measured online or (ii) substrate concentration in the reactor is measured
online. Using the representation in (9), the considered cases are reported in Equation (19):

y =
(
Cx, CO2 , Tr, Tag

)
(19a)

y =
(
Cs, CO2 , Tr, Tag

)
(19b)

where y represents the measured output vector.
According to Equation (13), it is easy to demonstrate that no combination of indexes κi satisfies

the observability property for the output vector in Equation (19a). This implies that a full order
observer is possible if the substrate concentration is measured online and therefore when using the
output configuration reported in Equation (19b). In this case, the nonlinear estimation maps satisfying
Equation (13a) are reported in Equation (20)

φ1 =
[
CS, L f CS, CO2 , L f CO2 , Tr, Tag

]
, φ2 =

[
CS, L f CS, CO2 , Tr, L f CTr , Tag

]
(20)

A first comparison of the two structures can be carried out by considering the values of condition
number and minimum singular value for the Jacobian of the maps (20), calculated by averaging
along the trajectories obtained with input step changes T1 and T2 (Table 4) and reported in Table 5.
The structure φ2 seems to be more robust (lower condition number), but it shows a lower minimum
singular value, indicating that changes in the states should affect the outputs to a lesser extent.

Table 5. Condition number and minimum singular value with four measurements.

φ1 φ2

Σ 1802.6 71.37
σ 0.086 0.03

The reconstruction capabilities of the two structures using the geometric observer are therefore
calculated, using the input variations T1 and T2, reported in Table 4. Results are shown in Figures 1–4,
only for the unmeasured variables, which are ethanol and biomass concentration. It is worth noticing
that also the state values calculated only with the model used in the estimation algorithm (open-loop
model), but without innovation are reported in order to better highlight the correction provided by the
estimation algorithm.

It is possible to observe that using the map φ1, allows a good reconstruction of the biomass
behavior (Figure 1), while there is a large mismatch between the ethanol concentration obtained with
the virtual plant and the reconstructed one (Figure 2).

When using the second configuration, results worsen, both for biomass (Figure 3) and for ethanol
(Figure 4) concentration. It is worth noticing that the state’s values estimated with map φ2 are more
corrupted by the measurement noise because in this case a greater observer gain has been used to
decrease the offset.
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The two full order structures are not able to adequately estimate the product of the reactor,
therefore a different solution is required to improve ethanol concentration. Using the same measured
outputs, it is possible to improve estimation performance by reducing the order of the observer using
only one Lie’s derivative [22]. The maps reported in Equation (21) lead to five observable states and
only one detectable.

φp3 =
[

Cs, CO2 , Tr, L f Tr, Tag
]
, φp4 =

[
Cs, L f Cs, CO2, Tr, Tag

]
(21)

The rank of the Jacobian of the maps φpi (i = 3, 4) depends on the choice of the non innovated
state (x̂u) between the two that are not measured, which are ethanol and biomass concentration. It can
be verified that the map φp3 can be inverted only if Cx is innovated and Cp is not. On the other hand,
the Jacobian of map φp4 always has a rank equal to five, regardless of the choice of the innovated
states. Recalling Equation (15), the following partitions are considered:

xi =
[
Cx, Cs, CO2 , Tr, Tag

]
, xu =

[
Cp

]
(22a)

xi =
[
Cp, Cs, CO2 , Tr, Tag

]
(22b)

The map φp3 can be used with the partition in Equation (22a), while the map φp4 can be used
with both partitions in Equation (22a,b). Therefore, two different solutions are identified: φp4,1 for
partition (22b) and φp4,2 for partition (22a). A first analysis of the possible configurations can be
obtained by considering the minimum singular value and condition number reported in Table 6.
The indexes’ values are comparable; therefore, the evaluation of the best structure has been performed
analyzing the reconstruction performance. Figures 5 and 6 represent the estimation of the unmeasured
states (ethanol and biomass concentration) for the input step change T1 and T2 described in Table 4.
The best reconstruction capabilities are shown by configuration φp3 for both the states. This result may
suggest that conditions calculated with Equation (14) are informative when the magnitude between the
different configurations is significantly different, otherwise, it is necessary to evaluate the estimation
capabilities by evaluating the estimator response for given input changes.

Table 6. Mean condition number and minimum singular value for low order structures.

φp3 (CP open loop) φp4,1 (Cx open loop) φp4,2 (CP open loop)

Σ 2.15 8.75 1.53
σ
¯ 0.47 0.12 0.99
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4.2. Validation 

The analysis carried out in the previous section indicates the best estimation structure with four 
measured outputs. In order to validate the obtained results, a new test was carried out considering 
as reference trajectory the variation of the input temperature (Tin) as shown in Table 4 (Case T3). 
Figure 7 shows the dynamic behavior of biomass and product concentration and confirms that the 
proposed structure can effectively reconstruct the unmeasured states also with different process 
conditions. It is worth noticing that the ethanol concentration is not innovated, and the correction of 
the other states also has a positive impact on its estimation.  
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4.2. Validation

The analysis carried out in the previous section indicates the best estimation structure with four
measured outputs. In order to validate the obtained results, a new test was carried out considering as
reference trajectory the variation of the input temperature (Tin) as shown in Table 4 (Case T3). Figure 7
shows the dynamic behavior of biomass and product concentration and confirms that the proposed
structure can effectively reconstruct the unmeasured states also with different process conditions. It is
worth noticing that the ethanol concentration is not innovated, and the correction of the other states
also has a positive impact on its estimation.

Using the same number and choice of measured outputs Equation (19b) and partition between
innovated and not innovated states Equation (22a), the estimation task has been addressed using the
extended Kalman filter (Figure 8). The main reason for using another algorithm as a measurement
processor is to demonstrate that the estimator performance depends on the structure selection rather
than estimation algorithm. EKF has been preferred for this validation because it is usually preferred in
the industrial practice as it is easy to implement and robust if adequately calibrated [25,26].
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Figure 8. Dynamic response of biomass concentration and ethanol concentration calculated with
the virtual plant (continuous line), open-loop model (dashed line) and extended Kalman filter (EKF)
(dotted line) for structure φp3 along the trajectory T3.

Results show that EKF can effectively reconstruct the unmeasured states, revealing that estimator
structure design is the key step for a successful achievement of the estimation goals. The only difference
between the two approaches is that the biomass calculated with the geometric observer is more affected
by noise. This behavior can be explained by the presence of the Lie derivative in GO, which implies a
higher sensitivity to measurement noise with respect to the EKF.

5. Conclusions

The problem of estimating unmeasured states in a bioreactor was addressed, and it was
demonstrated that the estimation performance relies on an appropriate structure selection rather
than the chosen measurement processor algorithm. An adjustable-structure geometric estimation
approach was used, and the estimator structure constituted a design degree of freedom to improve its
performance versus robustness behavior. The estimation structure design was based on estimability
and detectability properties used together with a geometric approach. The analysis of the estimability
measures showed the ill- and well-conditioned structures (condition number of the observability
matrix), and the poorest estimation performance for the given structure (minimum singular value
of the observability matrix). From the implementation stage with simulations, it was found that the
results agreed with the ones obtained from the structural assessment when estimability measure values
calculated for the different structures were significantly different. The used estimation algorithm
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was the geometric observer with proportional innovation, which offers simplicity of tuning and
implementation. With the aim of showing that the proposed procedure for choosing the estimation
structure can be applied to other estimation techniques, the extended Kalman filter was also used
as measurement processor algorithm. The obtained results showed that the two estimators lead to
good estimation performance, with the only difference that the geometric observer estimation is more
sensitive to measurement noise, probably because of the presence of the Lie derivative in the correction
term. Summarizing, the systematic geometric approach led to the best solution for the estimation
problem, giving a structure that did not depend on the correction algorithm. The latter can be chosen
according to the wishes of the personnel of the plant or developer experience. It is worth noticing
that the systematic tuning procedure of the geometric approach was very useful for comparing the
reconstruction capabilities of the different structures. The results obtained in this paper in terms of
methodology could be applied to more complex biotechnological processes, such as the obtainment
of ethanol from cellulosic material, where the measurement devices for real-time application in the
industry are still missing. In this case, the proposed approach can be used to detect the measurements
that lead to the best reconstruction capabilities and invest in them.
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