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ABSTRACT 

 

Non-alcoholic fatty liver disease (NAFLD) prevalence is growing dramatically with 

epidemic of obesity. A subset of patients with NAFLD is lean, but the 

pathophysiology of this sub-group is still not well known. This project aims to 

investigate the roles of metabolic health and metabolic adaptation in the pathogenesis 

of lean NAFLD, using well-characterised Caucasian subjects with lean and non-lean 

NAFLD, and comparing them with the lean and non-lean healthy controls, and murine 

models.  We investigated in detail their demographics, genetic background, bile acid 

profile, gut microbiota and their bile acid regulatory activity to further understand the 

underlying pathophysiology governing the development and progression of lean 

NAFLD. We then compared our findings in humans with that of mice models of lean 

and non-lean NAFLD. Finally, we performed an untargeted metabolomics analysis on 

lean and non-lean NAFLD patients to determine other metabolic pathways and 

biomarkers, which may be relevant to lean NAFLD.  
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1 INTRODUCTION 

1.1  BURDEN OF LIVER DISEASE 

Chronic liver disease affects a major proportion of the global population and accounts 

for about 2 million deaths worldwide, which is roughly 3.5% of all deaths, an increase 

in rate from the previous reported rate of 3% in the year 2000 (Asrani et al. 2019). At 

least half of the mortalities caused by chronic liver disease is contributed by liver 

cirrhosis, where it ranks within the top 20 causes of deaths globally (Asrani et al. 2019). 

The aetiology and distribution of chronic liver disease varies geographically, where 

non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease account for the 

majority of causes of cirrhosis in Western countries and viral hepatitis still remains the 

predominant cause of cirrhosis in Asian countries (Lozano et al. 2012). In addition, 

NAFLD represents a significant economic burden to society that reduces quality of life 

including through increased symptoms of fatigue and decreased mental well-being. This 

affects how well a person is able to function in their daily activities (Sayiner et al. 

2016). In the United States alone, patients with NAFLD are reported to have higher 

annual health care expenditure ($19,390 versus $5,567) with higher rates of 

unemployment (55% versus 30%) and disability related unemployment (30.5% versus 

6.6%) compared to those without chronic liver disease. In Europe, NAFLD is estimated 

to have an annual cost of about €35billion (from €354 to €1,163 per patient; highest in 

patients aged 45-65) (Stepanova et al. 2017; Z. M. Younossi et al. 2016b). 
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1.2  EPIDEMIOLOGY AND DEFINITION OF NAFLD 

 

Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause for 

liver disorder in Western industrialized nations, with a prevalence ranging between 6 – 

35% (median 20%) worldwide (Bellentani 2017). NAFLD can be defined as the 

presence of more than 5% hepatic steatosis without evidence of hepatocellular injury in 

the form of hepatocyte ballooning, in the absence of other causes for secondary hepatic 

fat accumulation such as excessive alcohol consumption or use of steatogenic 

medications (Chalasani et al. 2012; Le et al. 2017).  The majority of NAFLD cases are 

associated with presence of metabolic risk factors such as obesity, diabetes, 

hypertension and dysipidaemia (Le et al. 2017). This is reflected with the parallel 

increase of metabolic syndrome (the Adult Treatment Panel III diagnosis of metabolic 

syndrome requires the presence of at least three of: waist circumference >102cm in men 

and >88cm in women, triglyceride level of 150 mg/dL (or 1.7 mmol/L) or greater, high 

density lipoprotein (HDL) level of less than 40 mg/dL (or 1.0 mmol/L) in men and less 

than 50 mg/dL (or 1.3 mmol/L) in women or use of lipid medications, systolic blood 

pressure greater than 130mmHg or diastolic blood pressure greater than 85mmHg or use 

of anti-hypertensive medications, and fasting plasma glucose level of 110 mg/dL (or 5.6 

mmol/L) or greater or use of diabetic medications (Chalasani et al. 2012)) with NAFLD 

in Western countries (Le et al. 2017).  

 

Although the majority of NAFLD is associated with obesity, a small but significant 

proportion of patients with NAFLD do not have obesity. This sub-group, also known as 

“lean NAFLD” has been understudied in the literature and will be the focus of this 

thesis. 
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1.3  FACTORS AFFECTING NAFLD DEVELOPMENT 

 

1.3.1 Modifiable risk factors 

 

Lifestyle factors 

 

Studies have shown that lifestyle habits may partially explain the heterogeneity of 

metabolic health and non-alcoholic fatty liver disease. Even overweight and obese 

individuals may have the same overall mortality risk as normal weight people. 

Population cross-sectional studies have shown that metabolically healthy obesity is 

more prevalent in younger and female adults, and that these individuals are more likely 

to exercise and less likely to smoke or drink heavily (Goday et al. 2016; Matheson et al. 

2012). A recent study estimated the prevalence of insufficient physical activity at 

around 23.3% in 2010 (Hallal et al. 2012). Alarmingly, a more recent report on 

worldwide trends in physical inactivity between 2001-2016 suggested that the 

prevalence of physical inactivity has not altered since 2001, with the rate being twice as 

high in high income countries, and rising over time (Guthold et al. 2018). 

 

The possible underlying mechanism governing this may lie in how individuals modulate 

whole body energy metabolism, as evidenced by the fact that concurrent physical 

activity increases fatty acid oxidation during high calorie intake period (S. R. Smith et 

al. 2000). In addition, lower fasting respiratory quotient has been shown to be positively 

associated with the ability to extract energy from fat (Pujia et al. 2016). Other lifestyle 

factors which have been shown to contribute to cardiometabolic health risk include 

sleep duration and sleep quality factors (Koren and Taveras 2018). A study in China has 
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found that patients with NAFLD have shorter duration of sleep compared to healthy 

controls (C. Li et al. 2019). The most commonly used definition of healthy lifestyle 

include the adaptation of four healthy habits which include moderate alcohol intake, not 

smoking, 30 minutes of exercise daily and eating five or more servings of vegetables 

and fruits daily (Matheson et al. 2012). 

 

Role of diet and microbiome 

 

About 10-100 trillion micro-organisms composed of bacteria, fungi, archae, and viruses 

live inside or on the human body. The majority of these microbial symbionts 

(collectively known as the microbiota) reside within the digestive tract (Turnbaugh et al. 

2007). Four main phyla of bacteria make up the human microbiome: Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria. The gut microbiome plays a role in 

the bile acid pathway in the conversion of primary to secondary bile acids (bile acids 

will be discussed in more detail in later section). The conversion of primary bile acids to 

secondary bile acids require the initial deconjugation by Bile Salt Hydrolase (BSH) 

before downstream modifications by 7-alpha dehydroxylase to produce deoxycholic 

acid (DCA) and lithocholic acid (LCA) or by 7-alpha hydroxysteroid dehydrogenase to 

produce ursodeoxycholic acid (UDCA) (Jiao et al. 2017; Ridlon et al. 2006). BSH 

activity is present in all major gut bacterial species, however the conversion of primary 

to secondary bile acid by 7-dehydroxylation are carried out only by bacteria with bile 

acid inducible genes. These include those belonging to the genera Clostridium (clusters 

XIVa and XI), Eubacterium, Blautia, Ruminococcaceae and Lachnospiraceae, all of 

which belong to the Firmicutes phylum (Wahlstrom et al. 2016a; Yokota et al. 2012).  
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Given the anatomical link between the intestine and the liver, the microbiota has been 

proposed to play a role in the pathogenesis of various hepatic pathologies. A number of 

studies have demonstrated the role of intestinal dysbiosis in a variety of human diseases, 

including NAFLD (Wieland et al. 2015). These studies have been performed using both 

murine models as well as in humans. Unfortunately, due to the large variation in the 

study design, population, sample sizes, and clinical endpoints, the results remain 

controversial and difficult to interpret. Common to all published studies in the literature 

on the role of microbiome in NAFLD, however, is that these studies have demonstrated 

a measurable difference in the microbiome between different stages of NAFLD and 

NASH, compared to their healthy controls. However, causality has not been proven and 

further studies are required to delineate mechanistic links. 

 

Multiple factors influence microbiome composition. These include age, BMI, genetics 

and diet (Wu et al. 2011). Diet has been shown to exert predominant effect on 

microbiome composition, irrespective of the host’s genotypes (Carmody 2015). Studies 

have shown that long-term dietary habits are strongly associated with specific 

enterotype clustering of microbiota, where Bacteroides enterotype was associated with 

subjects who have diet rich in animal fat and protein and the Prevotella enterotype with 

individuals with carbohydrate rich diet (De Filippo et al. 2010; Wu et al. 2011). Of 

interest, it has been suggested that cholesterol intake is higher in lean compared to obese 

NAFLD (Enjoji et al. 2012; Musso et al. 2003; Yasutake et al. 2009b). Furthermore, 

although alterations in diet have been shown to change the microbiota composition 

within 24 hours, an individual’s enterotype identity is only affected by their long-term 

dietary habit (Wu et al. 2011). Few studies on the microbiota profile of patients in lean 

and non-lean NAFLD have demonstrated evidence of microbial dysbiosis in lean 
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NAFLD compared with non-lean NAFLD and healthy controls, but the specific 

changes, as well as the role of these changes in the pathophysiology of lean NAFLD 

remain controversial (B. Wang et al. 2016; Wieland et al. 2015). 

 

Role of bile acids and its regulators 

 

The pathogenesis of NAFLD and the progression of NAFLD from simple steatosis have 

not been fully understood. It has been thought that certain factors such as genetic 

predisposition, insulin resistance, inflammatory events involving mediators such as 

endotoxins, adiponectin, oxidative stress as well as hepatotoxic bile acid played a role in 

the disease progression (Arab et al. 2017; Perez and Briz 2009). Bile acids are steroid 

molecules synthesized in the liver from cholesterol. The primary bile acids 

chenodeoxycholate (CDCA) and cholate (CA) are synthesized from the cholesterol in 

the liver, conjugated into their taurine or glycine conjugates and excreted into the bile, 

where they assist in fat emulsification and absorption. Primary bile acids also undergo 

conversion into the secondary bile acids deoxycholate (DCA), lithocolic acid (LCA) 

and ursodeoxycholic acid (UDCA) by the intestinal bacteria and mostly reabsorbed in 

the distal ileum via the enterohepatic circulation (Arab et al. 2017; Khalid et al. 2015). 

Besides their role in the digestion and absorption of fat and fat soluble vitamins, bile 

acids have also been recognised as signalling molecules involved in the regulation of 

lipid and glucose metabolism, as well as inflammatory modulators in the liver and 

several other tissues (Arab et al. 2017; Chavez-Talavera et al. 2017; Khalid et al. 2015). 

This is mediated through their actions on specific bile acid receptors, including 

members of the farsenoid X receptor (FXR), pregnane X receptor (PXR), Vitamin D 

receptor and Takeda G protein coupled receptor 5 (TGR5) (Arab et al. 2017). The 
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binding of bile acids to the FXR in the ileocytes trigger the transcription and production 

of Fibroblast Growth Factor 19 (FGF-19), which is then transported to the liver where it 

binds to the tyrosine kinase FGF receptor 4 (FGF4R4) (Khalid et al. 2015). This then 

activates the c-Jun N terminal-kinases 1/2 signalling pathways which subsequently 

down regulates the CYP7A1, a key cytochrome P450 enzyme in the bile acid synthesis 

pathway (Khalid et al. 2015). FXR can be stimulated by most bile acids, although at 

varying potency, with CDCA displaying the highest potency, followed by LCA and 

DCA then CA (Khalid et al. 2015). In addition to regulating bile acid synthesis, the 

FGF-19 have also been shown to play a significant role in the glucose and cholesterol 

homeostasis, by promoting hepatic glycogen storage, fatty acid beta oxidation and 

decreasing hepatic lipogenesis (Arab et al. 2017; Khalid et al. 2015). The enzymes 

involved in bile acid synthesis are controlled tightly in response to the changing 

metabolic conditions, and dysregulation of bile acid synthesis and metabolism is often 

an indication of liver dysfunction. Bile acid levels, therefore, have been recognized as 

sensitive indicators of hepatobiliary diseases and have been implicated to play a role in 

several diseases including alcoholic and non-alcoholic fatty liver diseases (Xie et al. 

2015).  

 

Given the limited resources in the drug treatment of NAFLD other than promotion of 

lifestyle changes in diet and exercise habits as well as control of comorbidities (type 2 

diabetes, hypertension and dyslipidaemia), bile acid (BA) derivatives and compounds 

that influence BA-related signalling pathways are emerging as potentially useful 

therapeutic agents for NAFLD and NASH.  
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For metabolic homeostasis, in addition to the neuroendocrine axis, caloric intake and 

physical activity, the enterohepatic circulation, including bile acids (BA) and their 

metabolites, and gut microbiota are intimately involved. Bile acids are the principal 

route for cholesterol catabolism, and recent evidence demonstrates that a high intake of 

dietary cholesterol (Ioannou et al. 2009), elevated levels of hepatic cholesterol (Min et 

al. 2012; Puri et al. 2007; Simonen et al. 2013; Van Rooyen et al. 2011) and disrupted 

hepatic cholesterol homeostasis are pivotal drivers of the pathogenesis of NAFLD (Arab 

et al. 2017; Puri et al. 2007; Simonen et al. 2013). Despite the increasing number of 

studies, our knowledge into the role of bile acids in NAFLD pathogenesis and 

progression is still incomplete. A number of studies looking at the metabolomics profile 

of patients with NAFLD/NASH have shown that the progression from NAFLD to 

NASH is characterised by increase in total serum bile acid concentration as well as 

variations in the level of primary and secondary bile acid compositions (Ferslew et al. 

2015; Jiao et al. 2017; Kalhan et al. 2011; Puri et al. 2017). Interestingly, total bile acid 

concentration was also found to be higher in patients who have achieved weight loss 

through previous gastric bypass as compared to those without previous gastric bypass 

with similar preoperative or current BMI, possibly through improved insulin sensitivity 

(Dutia et al. 2015; Kohli et al. 2013; Legry et al. 2017; Patti et al. 2009; Sachdev et al. 

2016; Werling et al. 2013). There is strong evidence that activation of bile acid 

signalling induces improvements in metabolic (glucose and lipid) phenotype in 

murine models (Pierre et al. 2016). Furthermore, in human and murine models, 

elevated bile acids play a role in the metabolic improvements after bariatric surgery, 

including in type 2 diabetes, dyslipidaemia and NASH resolution, even before 

significant weight loss (A. P. Chambers et al. 2011; Kohli et al. 2015; Patti et al. 

2009; Pournaras et al. 2012). The role and regulation of bile acid, through its specific 
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nuclear receptors such as the Farsenoid X receptor (FXR), in the pathogenesis and 

treatment of NAFLD has been described in multiple studies (Khalid et al. 2015; 

Mudaliar et al. 2013; Puri et al. 2017). Activation of FXR receptors by binding of bile 

acids or with FXR agonists has been shown to result in improvement of lipid and 

glucose metabolism through the release of Fibroblast Growth Factor 19 (FGF-19), 

which not only results in down regulation of CYP7A1, the rate-limiting enzyme in bile 

acid synthesis but also in promotion of fatty acid beta oxidation and inhibition of 

glycogen synthesis (Arab et al. 2017; Khalid et al. 2015).  Activation of FXR activity on 

the hepatic stellate cells has also been shown to provide protection against liver fibrosis 

in murine models (Schumacher et al. 2020).A number of drugs targeting the bile acid 

pathways such as the FXR agonists Obeticholic acid and FGF-19 analogue NGM282, 

are currently in phase 3 and 2 clinical trials respectively for the treatment of NAFLD, 

and have been shown to improve liver histology in patients with NAFLD (Harrison et 

al. 2018; Mudaliar et al. 2013; Neuschwander-Tetri et al. 2015).  

 

Interestingly, insulin resistance improved only with FGF-19 analogue treatment, but not 

with FXR agonist treatment (Harrison et al. 2018; Neuschwander-Tetri et al. 2015). 

This suggests that there may be another receptor which, together with the FXR 

receptors, play a role in regulating metabolic pathways involved in mediating glucose 

homeostasis and insulin resistance. Indeed, recent studies looking at the role of bile acid 

in murine models undergoing bile acid diversion surgery to mimic Roux-en-Y gastric 

bypass described the importance of FXR receptors and Takeda G-protein coupled 

receptors 5 (TGR 5) in metabolic improvements post bariatric surgery, through the 

down-stream production of Glucagon-like-peptide 1 (GLP-1) (Albaugh et al. 2019; 

Pierre et al. 2019).  Studies regarding the effect of weight loss after bariatric surgery on 
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the intestinal FXR and TGR5 activities have been controversial. Some mice studies 

have shown that intestinal FXR and TGR5 are inversely related, however studies on the 

effect of intestinal FXR agonist Fexaramine have shown increased GLP-1 secretion and 

improved glucose tolerance in mice (Browning et al. 2019; Pathak et al. 2018; Trabelsi 

et al. 2015). Due to inter-species differences in BA physiology, these findings have not 

been directly extended into human studies, and findings regarding BA physiology 

changes post bariatric surgery in humans also remain conflicting. Previous studies have 

shown that the gene expression of the major BA target, the FXR, is increased in the 

liver but decreased in the small intestine, whereas the intestinal TGR5 receptor is 

increased after Roux-en-Y gastric bypass in obese patients (Browning et al. 2019). 

However, along with the increased BA levels, both FGF-19 and GLP-1 levels have also 

been shown to increase post bariatric surgery, which are presumed to support the 

metabolic benefits post bariatric surgery (Browning et al. 2019; Cole et al. 2015).  

 

FXR and TGR5 receptors are also differentially expressed in adipocytes, FXR in white, 

and TGR5 in brown adipocytes, respectively, as well as in certain immune-

inflammatory cells in adipocytes (E. P. Broeders 2015). In adipocytes, FXR regulates 

the differentiation and functions of adipocytes and promotes peroxisome proliferator-

activated receptor-γ (PPARγ) activity which interferes with the Wnt/β-catenin pathway, 

while TGR5 activates the thyroid hormone receptor to uncouple mitochondrial function 

and increase thermogenesis in brown adipose tissue, which further contributes to their 

anti-inflammatory and insulin-sensitizing effects (Abdelkarim et al. 2010; Watanabe et 

al. 2006). The enzymes involved in bile acid synthesis are controlled tightly in response 

to changing metabolic conditions and metabolic alterations, along with chronic low-
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grade inflammation, which are characteristics of meta-inflammatory disorders such as 

obesity, type 2 diabetes and NAFLD (Chavez-Talavera et al. 2017; Xie et al. 2015).  

 

Therefore, the interplay between an individual’s lifestyle factors, combined with their 

microbiota and bile acid profile, shaped in part by their dietary composition and genetic 

as well as epigenetic backgrounds, has a significant impact on an individual’s overall 

metabolic health. This in turn governs the risk for metabolic disorders, including 

NAFLD. 

 

1.3.2 Non-modifiable risk factors 

 

Genetic factors 

 

Genetic factors in NAFLD 

 

NAFLD is a complex disease phenotype. Multiple twins and familial studies have 

shown that first degree relatives of NAFLD patients are at increased risk of the disease 

than the general population and that about 50% of hepatic fat are inherited. The hepatic 

fat content subsequently affects the risk of metabolic disease and liver fibrosis (Eslam et 

al. 2018a; Schwimmer et al. 2009).   

 

In addition, NAFLD also demonstrates interethnic variability as shown in multiple 

epidemiological studies. Individuals from South America, Asia, Hispanic descents in 

the United States are at increased risk of NAFLD, whereas those of European and 
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African descent showed lower NAFLD prevalence, irrespective of the socioeconomic 

status, insulin resistance and adiposity (Guerrero et al. 2009; Z. M. Younossi et al. 

2016a).  

 

Various genome-wide association studies (GWAS) in the last decade have been the 

focus of extensive research to elucidate the role of genetic influence in many disease 

processes, including NAFLD. The discovery of the single nucleotide polymorphism 

(SNP) rs738409 C/G variant in PNPLA3 (patatin-like phospholipase domain containing 

3, also known as adiponutrin or calcium-independent phospholipase A2-epsilon), which 

is now regarded as a major genetic component of NAFLD/NASH in the first GWAS of 

NAFLD has significantly contributed to our understanding of the genetic component of 

the disease. This SNP encodes for the amino acid substitution I148M and is 

significantly associated with the accumulation of fat in the liver as well as histological 

severity and progression of NAFLD (Romeo et al. 2008; Sookoian and Pirola 2011). 

This substitution induces loss of function of the enzymatic hydrolase activity, resulting 

in entrapment of triglycerides and retinyl esters in lipid droplets of hepatocytes and 

hepatic stellate cells, and subsequently leading to liver damage and accumulation of 

extracellular protein, with the end result being liver fibrosis development (Eslam et al. 

2018a). The expression of rs738409 C>G in PNPLA3 allele was found to be higher in 

Asian lean NAFLD compared to obese NAFLD, although in another study involving 

Western lean NAFLD, there was no significant difference found in the frequency of the 

allele expression between lean and non-lean group(Fracanzani et al. 2017; Wei et al. 

2015). Nevertheless, studies have demonstrated independent association of this allele 

with NASH development and higher degree of fibrosis (grade 2 or more) in lean 

NAFLD (Fracanzani et al. 2017; Wei et al. 2015). In addition, the rs738409 variant also 
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explains some sexual dysmorphism in NAFLD, with higher effect seen in women 

compared with men (Sookoian and Pirola 2011).   

 

Aside from the discovery of highly replicated variant such as rs738409, other variants in 

multiple loci with diverse functions in NAFLD have also been uncovered through 

GWAS.  These include variants in multi-gene locus called 

NCAN/TM6SF2/CILP2/PBX4 located in the TM6SF2 (transmembrane 6 superfamily 

member 2) gene, which is non-synonymous for the rs58542926 variant, which encodes 

the amino acid substitution p.Glu167Lys (E167K) involved in the enrichment of 

triglycerides to apolipoprotein B100 in the pathway of very low density lipoprotein 

secretion from hepatocytes (Eslam et al. 2016b). Carriers of this mutation has been 

shown to have higher liver triglyceride content and lower circulating lipoproteins, 

resulting in greater risk of NAFLD progression but interestingly lower risk of 

cardiovascular diseases (Eslam et al. 2018a). Additionally, in a recent study, carriers of 

this variant were significantly associated with increased endotoxemia and elevated 

alanine transaminase level as well as increased hepatic triglyceride content independent 

of obesity, insulin resistance and alcohol intake (Kozlitina et al. 2014; Pang et al. 2017). 

Compared to obese NAFLD, lean NAFLD has been shown to carry higher prevalence 

of rs58542926 C>T in TM6SF2 allele (Fracanzani et al. 2017). 

 

Another variant discovered through NAFLD-GWAS was the variant rs780094 in the 

GCKR (glucokinase regulatory gene), whose missense is associated with a modest risk 

of having a fatty liver, with pooled odds ratio of 1.25 (Speliotes et al. 2011; Zain et al. 

2015). A number of other variants have been found to be associated with NAFLD 
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disease severity and progression, but all these variants have quite a diverse effect on 

NAFLD susceptibility, conferring only a small to moderate increment in risk, and 

explaining only a minor proportion of familial clustering (Manolio et al. 2009).  

 

Recently, the membrane bound O-acyltransferase domain-containing 7 (MBOAT7) 

rs641738 C>T variant was found to be associated with the risk of NAFLD, 

inflammation and fibrosis, as well as risk of NAFLD progression to hepatocellular 

carcinoma (HCC). This protein is involved in the remodelling of phosphatidylinositol 

with arachidonic acid as part of the Land’s cycle. The rs641738 C>T variant results in 

downregulation of MBOAT7 at an mRNA and protein level, which subsequently 

reduces the level of phosphatidyl-inositol containing arachidonic acid in hepatocytes 

and in the circulation (Mancina et al. 2016).  

 

While gene polymorphisms undoubtedly play a role in development of liver fibrosis in 

NAFLD, it does not fully explain the inter-individual variability in the rate of fibrosis 

development (Zeybel et al. 2015). In the recent study looking into the role of genetic 

polymorphism on the pathogenesis of NAFLD in non-obese patients, for example, no 

significant association has been found between the presence of the alleles PNPLA3 and 

TM6SF2 with histological severity (J. C. Leung et al. 2017a). Furthermore, there is 

increasing understanding that in most complex disease and phenotype, the predictive 

value of these genetic variants towards clinical practice outcome is only limited (Hardy 

and Mann 2016). It has become more apparent that studies looking at the gene-gene or 

gene-environment factors may improve our understanding of the inter-patient variability 

on the disease progression (Eslam and George 2016; Hardy et al. 2016).   
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Genetic contribution of obesity and fat distribution 

 

Considerable inter-individual variation exists with regards to metabolic risk for a given 

BMI. The evidence for the role of genetics in determining how an individual respond to 

excess energy dates back to more than 25 years ago where a study involving 12 pairs of 

identical twins showed variations in weight gain and fat distribution among the pairs in 

response to overfeeding(Bouchard et al. 1990). The waist hip ratio, which has been used 

as surrogate measure of regional fat distribution is estimated to be heritable in up to 

60%, independent of the risk for overall obesity (Schleinitz et al. 2014). With the era of 

genome wide association studies (GWAS), several genetic loci have been identified to 

be involved in regulating obesity and controlling body extra fat distribution as well as 

the metabolic profile of excess adiposity (i.e. metabolically healthy obesity vs 

metabolically unhealthy obesity)(Iacobini et al. 2019). The single nucleotide 

polymorphism (SNP) near MC4R gene has been involved in obesity and remained one 

of the major loci associated with waist circumference (J. C. Chambers et al. 2008).  A 

meta-analysis of GWAS in 2010 have uncovered 13 loci associated with WHR adjusted 

for BMI (RSPO3, VEGFA, NISCH-STAB1, TBX15-WARS2, NFE2L3, GRB14-COBLL1, 

DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, CPEB4) 

and the known association signal  at LYPLAL1 involved in lipase activity was also 

confirmed, with effect sizes reaching 0.059 per risk allele in women (Heid et al. 2010). 

Many of these loci have also been showed to be associated with metabolic traits such as 

fasting glucose, insulin, adiponectin levels and BMI, as well as with metabolic 

conditions such as type 2 diabetes, hypertension and coronary artery disease 

(Kilpelainen et al. 2011; Schleinitz et al. 2014). Several genetic variants have also been 

associated with lower risk of metabolic abnormalities despite BMI in the obese range 

(Yaghootkar et al. 2016). Interestingly, the same genetic variants have also been shown 
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to share similar pattern of metabolic trait association with the monogenic lipodystrophy 

phenotype, including lower BMI, higher VAT to SAT ratio, impaired insulin sensitivity 

and increased risk of type 2 diabetes (Iacobini et al. 2019; Yaghootkar et al. 2014). This 

suggests that unlike in specific altered fat distribution condition like lipodystrophy 

where there is a clear genetic mutation involved, there seems to be a polygenic nature 

influencing fat distribution (visceral vs subcutaneous) and metabolic trait, with further 

influence from other factors such as epigenetic, environmental and biologic factors 

(Schleinitz et al. 2014). 

 

Epigenetic factors 

 

Despite the advances of genetic analyses to identify polymorphisms associated with 

WHR and fat distribution, these can only explain a small proportion of phenotypic 

variance and genetic heritability. Therefore, other factors linking genetic to 

environmental factors such as epigenetics need to be considered. The study of 

epigenetics encompasses the study of how non-genetic factors act on the gene and affect 

its expression and phenotype (Hardy and Mann 2016). The epigenetic mechanisms act 

as interphase between an individual’s genetic background and his environmental cues 

and are dynamically regulated throughout the individual’s lifetime (Hardy and Mann 

2016). These mechanisms comprise of DNA methylation, histone modifications and 

chromatin remodeling, and non-coding RNAs (Hardy and Mann 2016).  

 

DNA methylation refers to the addition of a methyl group to the fifth carbon position on 

the cytosine base in the cytosine-phosphoguanine (CpG) dinucleotide region to form 5-
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methylcytosine. This process occurs throughout the genome, but when it occurs in the 

gene promoter region, in the region rich in CpG dinucleotides (CpG islands), this then 

causes gene repression by affecting its ability to affect transcription factor binding and 

chromatin structure (Bergman and Cedar 2013; Bian et al. 2013). DNA methylation 

profile is not inherited from the gametes, but rather re-established at the time of 

implantation at the very early embryo stage. This profile is then maintained through 

every cell division and plays an important role in various important processes including 

genomic imprinting, embryonic development, cellular differentiation and chromosomal 

stability (Bergman and Cedar 2013; Zeybel et al. 2015).   

 

Two distinct classes of enzymes, namely the DNA methyltransferase (DNMT1, 

DNMT3a and DNMT 3b) and the Ten-Eleven Translocation (TET1-3) enzymes, 

regulate the process of DNA methylation (Hardy and Mann 2016). DNA 

methyltransferase 1 (DNMT1) is responsible for maintaining DNA methylation profile 

in daughter cells during mitosis, whereas DNMT3a and DNMT3b are responsible for 

regulating de novo DNA methylation in the absence of cell division. TET enzymes, on 

the other hand, are responsible for restoring unmodified cytosine residue by catalysing 

oxidation of methyl groups on DNA (Hardy and Mann 2016; Mann 2014).   

 

Histone modifications include methylation (mono-, di- or tri-), acetylation and 

citrullination of one or more amino acids in the N-terminal tails of core histones. Non-

coding RNAs (ncRNA), including short micro RNA (miRNA), Piwi-interacting RNA 

(piRNA) and large intervening non-coding RNA (lincRNA), can self-propagate and 
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transmit regulatory information independent of the underlying DNA (Bernstein et al. 

2007; Zaratiegui et al. 2007). 

 

DNA methylation is the most common and best-studied epigenetic mark. One of the 

earliest study of the role of DNA methylation in human disease involved the work by 

Feinberg et al in 1983 where they discovered global methylation changes of DNA in 

human tumours (Feinberg and Vogelstein 1983).  Subsequently, a number of studies 

have followed demonstrating the roles of DNA methylation in tumorigenesis, such as 

hypermethylation of tumour-suppressor genes as well as the role of DNA methylation in 

the inactivation of microRNA (miRNA) (Esteller 2008).  Studies into the roles of DNA 

methylation in many other non-malignant human diseases have also emerged over the 

next decade, including the role of DNA methylation in aging process, as well as in a 

number of complex diseases such as Type 1 Diabetes, liver fibrosis, many autoimmune 

conditions.      

 

The role of DNA methylation in NAFLD patients has also been the focus of a number 

of studies in the past decade. Methylation in the promoter region of anti-fibrogenic gene 

such as peroxisome proliferator-activated receptor α (PPARα) has been correlated with 

peripheral insulin resistance, fasting insulin level and homeostasis model assessment of 

insulin resistance (HOMA-IR) in patients with NAFLD (Sookoian et al. 2010; Zeybel et 

al. 2015). In a study comparing DNA methylation level within several fibrosis related 

genes, Zeybel et al has shown that DNA methylation level at specific CpGs within 

genes known to affect fibrosis differ between patients with mild versus severe NAFLD. 

In this study, there was more methylation seen in anti-fibrogenic genes such as PPARα 
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and PPARδ, and less methylation in profibrogenic genes such as transforming growth 

factor β1 (TGFβ1), Collagen 1A1 and platelet derived growth factor α (PDGFα) in 

patients with severe NAFLD compared to those with mild NAFLD (Zeybel et al. 2015). 

 

The strong adipose tissue-specific expression patterns of genes playing important role in 

early development have been found to be preserved from one pre-adipocyte to the next 

over several generations, suggesting the existence of yet unknown mechanism to 

maintain expression profiles over time (Schleinitz et al. 2014). Genome-wide 

methylation analysis using methylated DNA immunoprecipitation sequencing of eight 

different adipose depots in three pig breeds displaying different fat levels despite living 

in comparable environments demonstrated functionally relevant methylation differences 

between different adipose depots. These differences were reflected in the visceral 

adipose tissue, which carries the metabolic risk factors associated with impaired 

inflammatory and immune responses (M. Li et al. 2012). 

 

Several human studies have also supported the role of epigenetics in the regulation of 

fat distribution. DNA methylation levels at the LEP promoter encoding for the protein 

leptin, which is the main player in regulation of energy homeostasis, were shown to be 

related to its tissue distribution. Furthermore, dynamic changes in adipose tissue leptin 

expression as a result of weight loss are not associated with alterations in leptin 

promoter methylation patterns (Marchi et al. 2011). In addition, in another recent study, 

altered DNA methylation at the IGF2/H19 locus as a result of adverse in-utero 

environments have been associated with changes in subcutaneous fat measures, but not 

visceral or central adiposity (Huang et al. 2012). 



 

 21 

It has been widely shown in multiple studies involving several species that oscillations 

of intrauterine and early postnatal nutritional, metabolic and hormonal environments 

may increase susceptibilities to the development of metabolic disorders and diseases in 

later life (Plagemann 2004). Furthermore, maternal nutrition during pregnancy 

contributes to the perinatal programming of the genome which has influence on fetal 

body composition and adverse fat distribution, and ultimately risk of obesity and 

metabolic diseases later in life (Blumfield et al. 2012). These ‘embryonic or fetal 

programming’ suggests that metabolic health and adiposopathy is a transgenerational 

disease (H. Bays and Scinta 2015). 

 

1.4  FACTORS AFFECTING NAFLD PROGRESSION 

 

NAFLD covers a spectrum of liver condition ranging from simple steatosis (non-

alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH) involving hepatocyte 

injury and inflammation with or without fibrosis (Bedossa 2016).  The histologic 

diagnosis of NASH requires the presence of more than 5% hepatic steatosis and 

inflammation with hepatocyte injury (eg ballooning), with or without any fibrosis 

(Kleiner et al. 2005a).  Although steatosis is the hallmark of NAFLD, it can be absent in 

some cases, including advanced stages of the disease (van der Poorten et al. 2013). This 

phenomenon of “burnt out” NASH was thought to be due to increased adiponectin 

levels in individuals with advanced NASH fibrosis. Adiponectin is the most abundant 

human adipocytokine, which acts directly on hepatocytes to upregulate fatty acid 

oxidation, inhibit fatty acid synthesis and improve insulin sensitivity, and hence plays a 

key role in hepatic steatosis (van der Poorten et al. 2013; Xu et al. 2003).  
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In multiple previous studies including a study by Angulo et al, it was demonstrated that 

presence and degree of fibrosis independently predict the overall and liver-related 

mortality/ liver transplantation or liver-related events, regardless of the presence of 

other histologic features (Angulo et al. 2015). Several studies have shown that 

compared with non-lean NAFLD, patients with lean NAFLD tend to show less severe 

histological features (Sookoian and Pirola 2018). However, despite the more favourable 

histological features at baseline, several long-term studies on lean NAFLD patients have 

demonstrated worse prognosis with respect to development of severe liver disease, 

independent of other confounders (A. C. e. a. Dela Cruz 2014; Hagstrom et al. 2018). 

 

1.5  METABOLIC HEALTH 

 

1.5.1 Definition 

 

Although there has been no universally accepted definition of metabolic health in the 

literature, the most widely accepted and perhaps one of the first definition of metabolic 

health is the absence of insulin resistance, no evidence of subclinical inflammation as 

determined by high sensitivity C-reactive protein (CRP), together with only one 

component of the metabolic syndrome according to the Adult Treatment Panel III 

criteria (Table 1) (Lorenzo et al. 2007; Wildman et al. 2008).  
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Table 1. Clinical parameters used for the diagnosis of metabolic 

health 

Systemic inflammation hs-CRP level < 0.1mg/L 

Insulin resistance HOMA-IR < 5.13 

Plus only one (or none) of the following components: 

Clinical parameter Criteria for metabolic abnormality 

Blood pressure Systolic/diastolic blood pressure ≥ 130/85 mmHg or anti-

hypertensive drug use 

Triglyceride level Fasting triglyceride level ≥ 150mg/dL (or ≥ 1.7 mmol/L) 

HDL-C level HDL-C level < 40mg/dL (or < 1.0 mmol/L) in men or < 

50mg/dL (or < 1.3 mmol/L) in women or use of lipid 

lowering medication 

Glucose level Fasting glucose level ≥ 100mg/dL (or ≥ 5.6 mmol/L) or use 

of anti-diabetic medication 

Metabolic health is defined as absence of systemic inflammation with only one (or 
none) other component of metabolic syndrome. Abbreviations: hs-CRP, high sensitivity 
C-reactive protein; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, 
homeostatic model of insulin resistance. 

 

More recently, a more rigorous definition for metabolic health, especially metabolically 

healthy obesity, was suggested so as to determine the true prevalence and outcome of 

this group of people. This new definition is based on the absence of cardiometabolic 

diseases, a healthy cardiometabolic blood profile, normal blood pressure and 

intrahepatic triglyceride content and normal insulin sensitivity (G. I. Smith et al. 2019). 
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1.5.2 Adiposopathy 

 

While it is not entirely clear as to the underlying mechanisms explaining individual 

variation in metabolic health, the term “adiposopathy” or defective/sick adipose tissue 

has been introduced. Adiposopathy governs an individual’s cardiometabolic risk, above 

and beyond BMI alone (H. E. Bays 2011) and refers to the pathogenic enlargement of 

fat cells and fat tissue, resulting in anatomic and functional disturbances leading to 

altered lipid metabolism, adipose inflammation and adverse clinical outcomes (H. E. 

Bays et al. 2008).  

However, given that adipose tissue is not a single, functionally uniform organ, it is not 

only how fat is stored (adipocyte proliferation versus adipocyte hypertrophy) that 

matters, but where the fat is stored (visceral versus subcutaneous, upper body versus 

lower body) and the type of fat (brown versus white). The ‘where’ and ‘type’ of 

adiposity has a greater impact on an individual’s metabolic health than total fat mass 

(Iacobini et al. 2019). Thus, visceral and subcutaneous adipose tissues differ with 

regards to their contribution for metabolic risk. Visceral adipose tissue (VAT) as well as 

ectopic fat in or around the liver, heart and skeletal muscle lipid content 

(intramyocellular) have been linked to impaired glucose homeostasis, insulin resistance 

and cardiovascular disease (Lim and Meigs 2013). On the other hand, subcutaneous 

adipose tissue (SAT), especially lower body SAT (gluteofemoral body fat) which is a 

characteristic of metabolically healthy individuals is associated with lower risk for 

metabolic diseases (Goodpaster et al. 2005; Manolopoulos et al. 2010). The only 

exception is upper body subcutaneous fat which has been shown to be the primary 

source of circulating free fatty acids and hence plays an important role in determining 

insulin resistance and metabolic impairment. This has been demonstrated in several 
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disease states associated with accumulation of upper body fat, including Cushing’s 

syndrome, lipodystrophy and human immunodeficiency virus associated lipodystrophy 

(Ebbert and Jensen 2013; J. J. Lee et al. 2017).  

 

The adipocyte responds to positive energy balance through adipocyte hypertrophy as 

well as adipocyte hyperplasia (i.e. recruitment and proliferation of adipocyte 

precursors). Adipose tissue expandability and the increase in fat mass, especially SAT 

expansion, has been linked in previous studies to metabolic improvement and protection 

from type 2 diabetes (J. Y. Kim et al. 2007; McLaughlin et al. 2011). Whereas SAT 

expansion protects from metabolic risk, expansion of VAT or limited expansion of SAT 

is strongly associated with insulin resistance due to its hyperlipolytic state that is 

resistant to the anabolic actions of insulin, thereby producing larger amounts of 

circulating free fatty acids (Despres and Lemieux 2006; O'Connell et al. 2010). 

Although both SAT and VAT sizes correlate with the degree of fatty liver, only VAT 

size is related to metabolic health and progression from hepatic steatosis to fibrosis 

(O'Connell et al. 2010). Previous studies have shown that surgical removal of 

abdominal SAT through liposuction does not improve insulin resistance in obese 

individuals, whereas transplantation of SAT into the abdominal cavity results in 

improved insulin sensitivity and glucose metabolism. This supports the notion that 

differences in metabolic health appear to be reflected by the “fitness” of SAT, while 

dysfunctional SAT (adiposopathy) is characteristic of the metabolically unhealthy state 

(Iacobini et al. 2019; Klein et al. 2004; Tran et al. 2008). Figure 1 shows a schematic 

representation of the different adiposity phenotype based on metabolic health status and 

body weight. 
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Figure 1. Adiposity phenotype based on metabolic health status 

and body weight 

The difference in fat depots, insulin sensitivity, inflammatory marker and hepatic fat 

content in individuals with metabolically healthy lean, metabolically unhealthy lean 

(lean NAFLD), metabolically healthy obese and metabolically unhealthy obese 

phenotypes. Abbreviations: SAT – Subcutaneous adipose tissue; VAT – Visceral adipose 

tissue; NAFLD – Non-alcoholic fatty liver disease. 
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1.5.3 Effect of metabolic health on NAFLD 

 

Given that metabolic health status (defined as per Table 1) is an integral aspect of 

NAFLD pathophysiology, several studies have investigated the relationship between 

metabolic health and NAFLD. In these, the risk of developing steatohepatitis and 

significant fibrosis increases progressively as the number of metabolic risk factors 

increases (Ampuero et al. 2018). Consistently, a cross-sectional study of more than 

1,000 patients with biopsy proven NAFLD demonstrated that metabolic health has a 

greater impact on the risk of NASH development, significant fibrosis, atherogenic 

dyslipidaemia and kidney dysfunction than obesity or BMI alone(Ampuero et al. 2018). 

That study also found a similar risk for steatohepatitis and fibrosis in a metabolically 

unhealthy group, regardless of their body weight, suggesting that metabolic health has a 

greater impact on the severity of liver disease than BMI, possibly through unfavourable 

body fat distribution (and/or as yet unknown factors) with a long but important period 

of subclinical systemic inflammation (Ampuero et al. 2018). Similar findings have been 

demonstrated in Asian and Mexican populations (Gutierrez-Grobe et al. 2017; M. K. 

Lee et al. 2015; Sung et al. 2014).  

 

Despite this data, metabolically healthy obesity cannot be considered entirely benign as 

it carries almost double the risk of steatohepatitis compared to individuals who are 

metabolically healthy and normal weight(Sung et al. 2014). This implies that healthy 

obesity (acting through subclinical or as yet be discovered impacts on metabolic health) 

perhaps represents a “honeymoon phase” that in some individuals eventually progresses 

to a metabolically unhealthy obese state (Kramer et al. 2013). A decline in insulin 

sensitivity and increased fasting blood glucose levels, especially in those with higher 
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BMI, older age, presence of more severe metabolic dysfunction and poor lifestyle index, 

have been identified to be major factors associated with the conversion from 

metabolically healthy obesity to metabolically unhealthy obesity (G. I. Smith et al. 

2019). In addition, the presence of NAFLD can promote (or at least be associated with) 

the conversion of an individual’s metabolic health from metabolically healthy to 

metabolically unhealthy, independent of age, sex, BMI, lifestyle factors, individual 

components of metabolic syndrome and insulin resistance. The effect is greater in those 

with a lower BMI and body fat mass compared to those with high BMI and body fat 

mass (Hwang et al. 2019). 

 

 

1.6  METABOLIC ADAPTATION 

 

The human body has great capacity to maintain body weight homeostasis through 

effects on food intake and energy expenditure. The ability of the body to increase or 

decrease energy expenditure beyond the obligatory energy costs of depositing and 

maintaining new tissues, digesting food, moving and maintaining body mass, without 

any change in body mass is defined as metabolic adaptation (Johannsen et al. 2019). 

Adaptation is achieved through a fine balance of regulatory systems through the 

interaction of hormones, chemokine signals and the neuroendocrine axis (Johannsen et 

al. 2019). In response to certain nutrition and/or physical activity conditions, several 

cytokines or peptides secreted from muscles (myokines), adipose tissue (adipokines) 

and liver (hepatokines) engage in cross-talk to maintain energy homeostasis by 

governing lipid and glucose metabolism as well as mediating local and systemic 

inflammation. Any perturbations in the systems involved results in loss of metabolic 
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adaptation, resulting in abnormal expansion of adipose tissue and obesity, hepatic fat 

accumulation, and insulin resistance (Oh et al. 2016).  

In addition, the enterohepatic circulation including bile acids (BA) and their 

metabolites, as well as gut microbiota play important roles in metabolic 

adaptation which occurs in part due to genetic and developmental influences 

(Wahlstrom et al. 2016a). A number of early experiments involving protein 

overfeeding have shown large variations in weight gain among nonrelated subjects 

but high correlation within twin pairs (Bouchard et al. 1990). Further, studies have 

shown that the change in energy expenditure was due to a change in non-exercise 

activity thermogenesis (Diaz et al. 1992; Leibel et al. 1995). This concept of 

metabolic adaptation may explain why some individuals appear to be obesity 

resistant while others gain weight easily when challenged with caloric abundance.  

Given the complex and multifactorial pathogenesis of NAFLD (Buzzetti et al. 2016) 

and knowing that not all obese people have NAFLD and not all NAFLD patients 

are obese(Younes and Bugianesi 2019), how an individual adapts to an unfavorable 

set of metabolic circumstances will govern when he/she will manifest fatty liver 

disease. This adaptive ability is the capability of the body to increase or decrease 

energy expenditure beyond obligatory energy requirements without any change in body 

mass.  
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1.7  LEAN NAFLD 

 

1.7.1 Definition and epidemiology 

 

NAFLD classically presents in close association with metabolic syndrome or one of its 

components, including obesity, hypertension, type 2 diabetes mellitus and 

dyslipidaemia (Chalasani et al. 2012; Z. M. Younossi et al. 2016a). The prevalence of 

NAFLD has risen in parallel with obesity recently, with nearly a third of adults in the 

USA having BMI more than 30kg/m2 (Ng et al. 2014). A meta-analysis of 21 cohort 

studies in 2016 found obesity to be a 3.5-fold increased risk of developing NAFLD, 

with a dose-dependent relationship between BMI and NAFLD risk (L. Li et al. 2016). 

However, not all obese patients suffer from the metabolic disturbances related to 

obesity, including NAFLD. This concept of “metabolically healthy obesity”, present in 

up to 30% of all obese individuals, refers to obese individuals with no evidence of 

metabolic or cardiovascular complications (Wildman et al. 2008). Similarly, a fair 

proportion of patients (10-30%) develop NAFLD despite having normal body mass 

index (BMI < 25 kg/m2) (Das and Chowdhury 2013; Z. M. Younossi et al. 2012). This 

subset of individuals is known as lean NAFLD, which is most commonly defined as 

NAFLD in the population with BMI less than 25 kg/m2 in Western studies and less than 

23 kg/m2 in Eastern studies (D. Kim and Kim 2017). Lean NAFLD was first reported in 

Asian countries and may represent the other end of the spectrum known as the 

“metabolically unhealthy normal weight” NAFLD (D. Kim and Kim 2017; J. C. Leung 

et al. 2017a; Sookoian and Pirola 2017; Stefan et al. 2017). 
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The first population study describing lean NAFLD was conducted in Korea in 2004, 

where lean NAFLD was present in 23.4% of the non-obese population with associated 

metabolic disorders (H. J. Kim et al. 2004). Since then, lean NAFLD has been described 

in several Asian and Caucasian reports. Figure 2 shows geographical data on available 

lean NAFLD prevalence worldwide. These data indicate that there are patients with 

fatty liver who are lean by BMI criteria and secondly that disease prevalence is between 

5 - 26% in Asian and 7 - 20% in Western populations (Younes and Bugianesi 2019). In 

one study, up to 75% of patients with NAFLD and significant liver disease prevalence 

was shown to have normal BMI in a non-obese Asian population (Das et al. 2010). 

However, owing to the lack of a widely accepted definition of “lean” across studies, as 

well as the heterogeneity in NAFLD diagnostic criteria, the current data suffers from 

many limitations.  
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Figure 2. Worldwide prevalence of NAFLD and of lean NAFLD as a 

proportion of total NAFLD 

Worldwide distribution of NAFLD with data on the prevalence of lean NAFLD (light 

blue; where available). Abbreviation: NAFLD – Non-alcoholic fatty liver disease 

1.7.2 Histological characteristics 

The histological characteristics of NAFLD vary between ethnic groups including for the 

subgroup with lean disease.  A recent systematic review from cross sectional studies 

shows that liver fibrosis stage is significantly lower in lean compared to 

overweight/obese NAFLD (Sookoian and Pirola 2018). Similarly, the NAFLD activity 

scores and presence of steatohepatitis are lower compared to overweight/obese patients, 

although there was substantial heterogeneity in the results (Sookoian and Pirola 2018). 

Some studies however have reported a more severe histological picture in lean patients 

with higher rates of advanced fibrosis, ballooning and lobular inflammation, as well as 
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greater steatohepatitis compared to their non-lean counterparts (Denkmayr et al. 2018; 

Q. Wang et al. 2019).  

 

1.7.3 Pathogenesis 

 

Over the past decade, there has been a surge in the number of studies describing lean 

NAFLD and its characteristics. However, studies looking into the pathogenesis of lean 

NAFLD are lacking. Table 2 lists selected published studies on lean NAFLD, including 

the number of patients included, definition of lean NAFLD and main findings. Although 

lean NAFLD has been shown to share metabolic features and hepatic pathology as the 

classical obese NAFLD, patients with lean NAFLD lack any linear association with 

adiposity. This suggests that the distribution of adipose tissue in the body has more 

relevance in the pathogenesis of lean NAFLD (Das and Chowdhury 2013). In a recent 

cross-sectional study of lean and overweight individuals with and without NAFLD, 

insulin resistance was positively and significantly associated with hepatic triglyceride 

content, which has been shown to be closely associated with NAFLD, above and 

beyond their BMI and waist circumference measurements (Gonzalez-Cantero et al. 

2018). These findings indicate that it is likely that factors other than adiposity may 

come into play in the pathogenesis of NAFLD (F. Chen et al. 2019). 

 

1.7.4 Prognosis 

 

In contrast to studies that examine the prevalence and presentation of lean NAFLD, data 

on its long-term prognosis have been scarce and conflicting. Some reports suggest that 
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clinical events and prognosis are worse in the obese compared to the lean NAFLD 

population, with higher cardiovascular events and death (Fracanzani et al. 2011; J. C. 

Leung et al. 2017a). One recent study with a median follow up of 49 months reported a 

clinical event rate of 11.9% in obese compared to 8.3% in the lean NAFLD population 

(J. C. Leung et al. 2017a).  However a study in 2014 by Delacruz et al. looking at the 

long-term prognosis of lean patients with NAFLD and a median follow up of 11 years 

has challenged this finding (A. C. e. a. Dela Cruz 2014). This international cohort study 

included 483 patients with biopsy-proven disease and suggested that the median 

survival free of liver transplantation was in fact lower in those who were lean compared 

to obese. This occurred despite having a better metabolic profile and less advanced liver 

fibrosis (A. C. e. a. Dela Cruz 2014). This result was supported by another report of 646 

patients with biopsy proven NAFLD and a median of 19.9 years follow up. The study 

showed that although patients with lean disease did not have increased mortality, they 

had an increased risk for the development and progression to severe liver disease 

compared to obese patients (hazard ratio 2.69, p = 0.007) (Hagstrom et al. 2018). 

 

While lean NAFLD reflects the hepatic manifestation of a metabolically unhealthy 

normal weight, studies involving other organ systems also indicate that individuals with 

a metabolically unhealthy phenotype may suffer a worse prognosis despite a normal 

BMI. Studies of diabetes mellitus in underweight or normal weight people suggest a 

distinct, albeit less characterized pathophysiology to disease in the overweight/obese 

population, with higher mortality rates(George et al. 2015). Similarly, metabolic health 

(as measured by the number of components of metabolic syndrome) has been shown to 

be a stronger predictor for myocardial dysfunction than simply BMI or fat mass alone 

(Dobson et al. 2016). 
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Table 2. Summary of a selection of published studies on lean NAFLD 

Author, year, country Definition of lean NAFLD Sample size Main findings 
Kim, HJ, 2004, Korea (H. J. 
Kim et al. 2004) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound  

74 lean and 106 non-lean NAFLD; 
386 lean healthy and 202 non-lean 
healthy controls 

Metabolic disorders are present in NAFLD 
subjects with normal weight 

Chen, CH, 2006, Taiwan (C. 
H. Chen et al. 2006) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

61 lean and 291 non-lean NAFLD; 
1383 lean healthy and 654 non-lean 
healthy controls 

Hypertriglyceridaemia was related to 
NAFLD in non-obese subjects  

Das, K, 2010, India (Das et 
al. 2010) 

Lean BMI  < 25 kg/m2, hepatic 
steatosis on liver ultrasound, 
confirmed on CT 

123 lean and 41 non-lean NAFLD; 
1660 lean healthy and 87 non-lean 
healthy controls 

Lean NAFLD is present in 75% of this 
predominantly non-obese population, with 
potentially significant liver disease 

Younossi, 2012, USA (Z. M. 
Younossi et al. 2012) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

431 lean and 2061 non-lean 
NAFLD; 
4026 lean healthy and 5095 non-
lean healthy controls 

Lean NAFLD patients (20.9%) are younger, 
have lower metabolic syndrome and is more 
common in females 

Margariti, 2012, Greece 
(Margariti et al. 2012) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

19 lean and 143 non-lean NAFLD Lean NAFLD patients (12%) have lower 
metabolic syndrome and higher ALT/AST 
than non-lean NAFLD 

Bhat, 2013, India (Bhat et al. 
2013) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

30 lean and 120 non-lean NAFLD Lean NAFLD present in 20% of patients. 
Insulin resistance is common amongst 
patients with NAFLD, including lean 
NAFLD (80%) 

Kumar, 2013, India (Kumar 
et al. 2013) 

Lean BMI < 23 kg/m2, biopsy 
proven NAFLD 

27 lean and 141 non-lean NAFLD Lean NAFLD patients (13.2%) have less 
severe histology and lower insulin resistance 
than non-lean NAFLD 

Delacruz, 2014, Australia 
(A. C. e. a. Dela Cruz 2014) 

Lean BMI < 25 kg/m2, biopsy 
proven NAFLD 

125 lean and 965 non-lean NAFLD Lean NAFLD patients (11.5%) have higher 
mortality than patients with non-lean 
NAFLD despite presenting with healthier 
metabolic profile 

Alam, 2014, India (Alam et 
al. 2014) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound, 
biopsy in some (220/465) 

119 lean and 346 non-lean NAFLD Lean NAFLD patients (25.6%) were 
metabolically and histologically similar to 
non-lean NAFLD patients, with similar rates 
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of NASH and fibrosis 

Feng, 2014, China (Feng et 
al. 2014) 

Lean BMI < 24 kg/m2, hepatic 
steatosis on liver ultrasound 

134 lean and 764 non-lean NAFLD; 
597 lean healthy and 284 non-lean 
healthy controls 

Lean NAFLD patients (14.9%) had higher 
visceral adiposity index and comparable 
metabolic risk profile to non-lean NAFLD  

Vendhan, 2014, India 
(Vendhan et al. 2014) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

48 lean and 125 non-lean NAFLD Lean NAFLD patients (27.7%) had better 
metabolic profile but similar association to 
coronary artery disease as non-lean NAFLD  

Wei, 2015, Hong Kong (Wei 
et al. 2015) 

Lean BMI < 25 kg/m2, liver fat 
assessed by proton-magnetic 
resonance spectroscopy 

135 lean and 127 non-lean NAFLD Lean NAFLD patients (19.3%) had similar 
intrahepatic triglyceride content, but lower 
cytokeratin-18 fragments and liver fibrosis. 
PNPLA3 G allele was more common in lean 
NAFLD. 

Nishioji, 2015, Japan 
(Nishioji et al. 2015) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

411 lean and 394 non-lean NAFLD; 
2285 lean healthy and 181 non-lean 
healthy controls 

Lifestyle and metabolic factors (higher 
triglycerides and waist circumference) 
increases the risk of NAFLD, even in lean 
patients (15.2%) 

Cho, 2016, Korea (Cho 
2016) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

213 lean and 347 non-lean NAFLD; 
1498 lean healthy controls 

Lean NAFLD patients (12.4%) had higher 
proportion of females, lower insulin 
resistance and fewer metabolic risk factors 
than non-lean NAFLD 

Feldman, 2017, Austria 
(Feldman et al. 2017b) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

55 lean and 61 non-lean NAFLD;  
71 lean healthy controls 

Lean NAFLD patients (29.4%) had impaired 
glucose tolerance, low adiponectin 
concentrations and a distinct metabolic 
profile with increased PNPLA3 risk allele 
carriage 

Leung, 2017, Hong Kong (J. 
C. Leung et al. 2017a) 

Lean BMI < 25 kg/m2, biopsy-
proven NAFLD 

72 lean and 235 non-lean NAFLD Lean NAFLD patients (23.5%) had less 
severe disease and better prognosis than 
non-lean NAFLD. Hypertriglyceridaemia 
and high creatinine were associated with 
advanced liver disease in lean NAFLD 

Fracanzani, 2017, Italy 
(Fracanzani et al. 2017) 

Lean BMI < 25 kg/m2, biopsy-
proven NAFLD 

143 lean and 526 non-lean NAFLD Lean NAFLD patients (21.4%) had higher 
TM6SF2 risk allele carriage and lower 
metabolic syndrome, less NASH and lower 
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fibrosis but thinner carotid intima compared 
to non-lean NAFLD 

Sookoian, 2017, Argentina 
(Sookoian and Pirola 2018) 

Systematic review, lean BMI ≤ 
25 kg/m2 

493 lean and 2209 non-lean 
NAFLD 

Lean patients tended to have milder 
histological features compared to non-lean 
NAFLD 

Sookoian, 2017, Argentina 
(Sookoian and Pirola 2017) 

Systematic review with meta-
analysis, lean BMI ≤ 25 kg/m2, 
hepatic steatosis on liver 
ultrasound 

1966 lean and 5938 non-lean 
NAFLD; 9946 lean healthy and 
6027 obese healthy controls 

Lean NAFLD shared common altered 
metabolic and cardiovascular profile 
compared to non-lean NAFLD, although the 
effect is less severe in lean NAFLD 

Hagstorm, 2017, Sweden 
(Hagstrom et al. 2018) 

Lean BMI < 25 kg/m2, biopsy 
proven NAFLD 

123 lean, 335 overweight and 188 
obese NAFLD  

Lean NAFLD patients (19%) had lower 
fibrosis at better metabolic profile at 
baseline but increased risk of development 
of severe liver disease 

Denkmayr, 2018, Austria 
(Denkmayr et al. 2018) 

Lean BMI ≤ 25 kg/m2, biopsy 
proven NAFLD 

72 lean, 242 overweight and 150 
obese NAFLD 

Lean NAFLD patients (15.9%) had severe 
histological features similar to obese but 
more progressed than overweight NAFLD 

Tobari, 2018, Japan (Tobari 
et al. 2018) 

Lean BMI < 25 kg/m2, biopsy 
proven NAFLD 

116 lean, 173 overweight and 115 
obese NAFLD 

Advanced fibrosis was not associated with 
BMI but histological steatosis was more 
common in lean NAFLD 

Li, 2019, China (C. Li et al. 
2019) 

Lean BMI < 24 kg/m2, hepatic 
steatosis on liver ultrasound 

84 lean and 85 non-lean NAFLD;  
90 lean healthy and 92 non-lean 
healthy controls 

Lean NAFLD patients had comparable total 
caloric, calorigenic nutrition, iron, sleep 
duration and overtime work as obese 
NAFLD 

Niriella, 2019, Srilanka 
(Niriella et al. 2019) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

120 lean and 816 non-lean NAFLD; 
1206 healthy controls 

Lean NAFLD patients (4%) had similar risk 
of developing metabolic comorbidities 
compared to non-lean NAFLD, with higher 
NAFLD associated with PNPLA3 incidence 

Yilmaz, 2019, Turkey 
(Yilmaz et al. 2019) 

Lean BMI < 25 kg/m2, biopsy 
proven NAFLD 

30 lean and 428 non-lean NAFLD Lean NAFLD was present in 6.4% of the 
study sample, with metabolic syndrome 
present in 63% of the sample population 

Wang, 2019, China (Q. 
Wang et al. 2019) 

Lean BMI < 25 kg/m2, biopsy 
confirmed NAFLD 

36 lean and 48 non-lean NAFLD Lean NAFLD patients (42.9%) have a 
female predominance and more advanced 
fibrosis compared to non-lean NAFLD 
patients 
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1.8  HYPOTHESIS AND AIMS 

We hypothesize that there is a distinct underlying metabolic adaptation governing the 

pathophysiology of lean NAFLD, which may explain its unique baseline 

characteristics and long-term prognosis. 

The aims of this project are to: 

1. Compare the characteristics of lean NAFLD patients to lean and non-lean 

healthy controls 

2. Compare the characteristics of lean NAFLD compared to non-lean NAFLD 

patients in terms of their bile acid profile and regulation, gut microbiota profile 

and metabolic adaptation capacity 

3. Explore murine models of lean and non-lean NAFLD to investigate the 

replicability of our hypothesis from the human results 

4. Explore the metabolomic characterisation of patients with lean NAFLD 

compared to patients with non-lean NAFLD to investigate if there are other 

metabolic pathways other than that of bile acid pathways which are 

significantly different 
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2 MATERIALS AND METHODS 

 

2.1  MATERIALS 

2.1.1 Polymerase chain reaction (PCR) primers 

 

The real-time polymerase chain reaction (PCR) primers were ordered from 

GeneWorks. The primers were designed using the Primer-BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast) and reaction conditions were 

optimised for a standard curve of pooled cDNA. Table 3 shows the sequence of 

primers used for qPCR in this thesis. 

 

Table 3 List of mouse primers used for qPCR analysis 

Gene Primer sequence 

GAPDH GAAGGTGAAGGTCGGAGTC (forward) 

GAAGATGGTGATGGGATTTC (reverse) 

ASBT TGGGTTTCTTCCTGGCTAGACT (forward) 

TGTTCTGCATTCCAGTTTCCAA (reverse) 

BSEP CAGACACCATGTCTGACTCAGTGA (forward) 

GGCCACACTCAGACCTATGACGGC (reverse) 

CYP7A1 AGCAACTAAACAACCTGCCAGTACTA (forward) 

GTCCGGATATTCAAGGATGCA (reverse) 

CYP8B1 TGAATTCTTGAAGGGGATGC (forward)  

CCTTGCTCCCTCAGAAACTG (reverse) 

CYP27A1 TTCTCAGACACGATCTATGGCTGT (forward) 

 CTACTGTCTCTGCAGAAAGCGTA (reverse)  

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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FGF-15 ACGGGCTGATTCGCTACTC (forward) 

TGTAGCCTAAACAGTCCATTTCCT (reverse) 

FGFR4 CGAGGCATGCAGTATCTGG (forward) 

CAAAGTCAGCGATCTTCATCACA (reverse) 

FXR CGGAACAGAAACCTTGTTTCG (forward) 

TTGCCACATAAATATTCATTGAGATT (reverse) 

HNF4A CCAAGAGGTCCATGGTGTTTAAG (forward) 

GTGCCGAGGGACGATGTAGT (reverse) 

Mrp2 TCCAGGACCAAGAGATTTGC (forward) 

TCTGTGAGTGCAAGAGACAGGT (reverse) 

NTCP GGGTCGGAGGATGGAGGCGCACAA (forward) 

GGACGTTTTGGAATCCTGTTTCCA (reverse) 

OST beta GTATTTTCGTGCAGAAGATGCG (forward) 

TTTCTGTTTGCCAGGATGCTC (reverse) 

SHP CAGCGCTGCCTGGAGTCT (forward) 

AGGATCGTGCCCTTCAGGTA (reverse) 

 

 

2.1.2 Sources of Clinical Information and Human Biological 

Tissue 

 

2.1.2.1 Clinical and laboratory assessments 

 

Physical examination was performed on all patients on the day of the liver biopsy 

including measurement of body mass index. Weight (in kilograms) and height (in 

centimetres) were measured by staff at the time of biopsy and used to calculate BMI, 

expressed as kg/m2. Following WHO criteria for Western populations, patients with 

BMI of less than 25kg/m2 were defined as lean, and ≥25 kg/m2 as non-lean (Z. M. 
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Younossi et al. 2012). Hypertension was defined as a registered diagnosis in patient 

medical records, a resting blood pressure of ≥140/90 mm Hg, or having any 

antihypertensive medication prescribed. Type 2 diabetes mellitus (T2DM) was defined 

as a registered diagnosis in patient medical records, a fasting plasma glucose value ≥ 7 

mmol/L (or 126 mg/dL) or having any antidiabetic medication prescribed. 

 

Venous bloods were collected on the morning of liver biopsy after an overnight 12-

hour fast for serum transaminases, bilirubin, albumin, lipid profile, glucose and 

insulin. Serum insulin was determined by a radioimmunoassay technique (Phadaseph 

Insulin RIA; Pharmacia and Upjohn Diagnostics, Uppsala, Sweden). All other 

biochemical tests were performed using conventional automated analyzers within each 

local department. Insulin resistance was calculated using the homeostasis model 

(HOMA-IR) using the formula: HOMA-IR = fasting insulin (mU/L) x plasma glucose 

(mmol/L)/22.5 (Eslam et al. 2011; Matthews et al. 1985).  

 

2.1.2.2 NAFLD cohort 

 

Patients were recruited from hepatology clinics at four centres: Australia (Storr Liver 

Centre, Westmead Hospital, Sydney and Sir Charles Gairdner Hospital Unit, 

University of Western Australia) and Italy (Unit of Metabolic Diseases and Clinical 

Dietetics, University of Bologna; Gastroenterology unit, University of Palermo, and 

Division of Gastroenterology and Hepatology, University of Turin).  
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Inclusion criteria were patients who had liver biopsy for suspected NAFLD with 

available serum samples and clinical data. Individuals with alternative diagnoses were 

excluded including excess alcohol intake (>20 g per day for women; and >30 g per day 

for men), chronic viral hepatitis (hepatitis B and hepatitis C), autoimmune liver 

diseases, hereditary hemochromatosis, α1-antitrypsin deficiency, Wilson’s disease and 

drug-induced liver injury. In addition, a phosphatidylethanol assay was performed in 

all NAFLD patients to avoid misclassification of alcoholic liver disease in this 

population. Patients with any secondary cause of steatohepatitis including previous 

gastrointestinal surgery or ingestion of medications known to impact hepatic steatosis 

or bile acid metabolism or with decompensated liver disease were excluded as 

previously described in another study (van der Poorten et al. 2013). 

 

2.1.2.3 Healthy controls 

 

Healthy Caucasians controls were recruited from volunteers if the following applied: 

age between 40-65 years, BMI < 25 kg/m2 for lean healthy controls or BMI > 25 

kg/m2 for non-lean healthy controls, alcohol intake ≤ 20g per day for women and ≤ 

30g per day for men, metabolically healthy (defined as absence or having only one 

component of the metabolic syndrome according to the Adult Treatment Panel III 

criteria, including triglyceride level of 150 mg/dL (1.7 mmol/L) or greater, high 

density lipoprotein (HDL) level of less than 40 mg/dL (1.0 mmol/L) in men and less 

than 50mg/dL (1.3 mmol/L) in women, systolic blood pressure greater than 130 

mmHg or diastolic blood pressure greater than 85mmHg and fasting plasma glucose 

level of 100 mg/dL (5.6 mmol/L) or greater (Lorenzo et al. 2007; Wildman et al. 

2008)). In addition, they also needed to have normal liver tests (normal transaminases 



 

 44 

(less than 30 U/L for ALT and less than 35 U/L for AST), with normal levels of serum 

bilirubin (less than 15 umol/L) and albumin (38-50 g/L) and metabolic parameters 

(fasting blood glucose and blood cholesterol levels), as well as absence of liver 

steatosis on ultrasonography. Written informed consent was obtained from all 

participants. 

 

2.1.3 Sources of mice tissue 

 

Male C57BL/6 mice obtained from Animal Resources Centre (Perth, Australia) were 

used for diet studies commencing at week 8 and were exposed to a 12-hr light/dark 

cycle with free access to food and water. Mice were fed either a 33% sucrose diet 

(SF09-079, Specialty Feed Service, Glen Forest, Australia, see Table 4A) or a diet 

containing 33% Sucrose, 2% cholesterol and 0.5% cholate (SF09-080, Specialty Feed 

Service, Glen Forest, Australia, see Table 4B) starting at 8 weeks of age for 16 weeks. 

 

In addition, a separate group of mice were fed the cholesterol rich diet containing 33% 

sucrose, 2% cholesterol and 0.5% cholate, along with a sodium dependant bile acid 

transporter (ASBT) inhibitor (ASBTi, SC-435, Lumena/Shire Pharmaceuticals) for 8 

weeks. At the time of harvest, mice were anesthetized with i.p. ketamine (100 

mg/kg)/xylazine (10 mg/kg) injection after a 4-hr fasting period. Blood was collected 

by cardiac puncture. Liver and ileum samples were harvested, rapidly snap frozen in 

liquid nitrogen and stored at -80 ºC. A thin slice of liver tissue was formalin fixed for 

histology. All procedures were approved by the Western Sydney Local Health District 

Animal Ethics Committee and conducted in accordance with Animal Experimentation 
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guidelines of the National Health and Medical Research Council (NHMRC) of 

Australia. Mice tissues were obtained through collaboration with Dr Saeed Esmaili, 

Storr Liver Centre and University of Sydney. 

Table 4. A) Diet composition and nutritional parameters for mice 

fed the high sucrose diet. B) Diet composition and nutritional 

parameters for mice fed an atherogenic diet 
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2.2  METHODS 

 

2.2.1 Histopathology 

 

A single expert liver pathologist at each centre who was blinded to patient clinical 

characteristics and serum measurements interpreted the liver biopsies. All biopsies had 

a minimum of 11 portal tracts, and inadequate biopsies were excluded. Disease 

activity was assessed according to the NAFLD Activity Score; fibrosis was staged 

according to the NAFLD clinical research network (CRN) (Kleiner et al. 2005b). 

Some of these patients have been the subjects of previous publications (Eslam et al. 

2015a; Eslam et al. 2016a; Eslam et al. 2016c). The concordance between pathologists 

within this cohort was very good for steatosis and fibrosis, with coefficients for inter-

observer agreement for fibrosis stage and steatosis grade of 0.78 and 0.85, respectively 

(Kazankov et al. 2016).  

 

2.2.2 Phosphatidylethanol measurement 

 

The serum phosphatidylethanol level was measure using the Human Peth 

(phosphatidylethanol) ELISA kit (Elabscience) on all lean NAFLD subjects according 

to the manufacturer’s instructions. Briefly, a standard working solution stock is 

prepared and 100uL is added to each well in the first two columns, followed by 100uL 

of serum samples. The plate is covered and incubated for 90 minutes at 370C. After 

this, the liquid is removed from the wells and 100uL of biotinylated detection antibody 

working solution is added to each well, followed by a 1-hour incubation period at 

37oC after gentle mixing. The solution is then discarded and the wells are washed 
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three times with the wash solution and patted dry. Following this, 100uL of HRP 

conjugated working solution is added to each well and the plate is covered and 

incubated at 37oC for 30 minutes. This is followed by another wash done five times as 

per previously. Next, 90uL of substrate reagent is added to each well and the plate is 

covered and incubated for 15 minutes at 37oC, protected from the light.  50uL stop 

solution is then added to each well and the optical density is determined with a micro-

plate reader at 450nm. Values above 253 ng/mL are regarded as significant alcohol 

consumption in the past few weeks (Kechagias et al. 2015). 

 

2.2.3 Methods for bile acid quantification 

 

2.2.3.1 Bile acid extraction 

 

Bile acids were extracted from serum samples as previously described (van der 

Poorten et al. 2013; Xie et al. 2015). Briefly, 80µL of acetonitrile containing internal 

standard (cholic2,2,4,4-d4acid, Quebec, Canada) was added to 20µL of the serum 

sample. After centrifugation, the supernatant was evaporated to dryness and stored at -

200 C until time of analysis. 

 

2.2.3.2 Bile acid measurement 

 

The dried bile acid residue was reconstituted in mobile phase containing 50:50 water 

and acetonitrile and analysed on a Ultra Performance Liquid Chromatography (UPLC, 

Shimadzu, Kyoto, Japan) system using an ACQUITY (WATERS, Milford, MA) 

column in combination with a Q-TRAP 5500 Mass Spectrometer (AB SCIEX, 
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Toronto, Canada) to quantify concentrations of 19 bile acids. The mass spectrometer 

was operated in negative ion mode. The calibration solution containing all 19 analytes 

was prepared at a series of concentrations in pooled naïve plasma depleted of bile 

acids using activated charcoal to generate the calibration curve. The detection limit for 

individual bile acids was 0.01 – 0.05 umol/L. 

 

2.2.4 Method of FGF-19 measurement 

 

FGF19 level was measured using the Human FGF19 Elisa kit (EHFGF19, Thermo 

Scientific) on the serum of subjects according to the manufacturer’s instructions. 

Briefly, a series of concentrations of standard solution is prepared. 100uL of standard 

or diluted serum samples (1 in 2 using assay diluent C) or blank is added to each well, 

and the plate is covered and incubated for 2.5 hours at room temperature after gentle 

shaking. After this, the plate is washed 4-5 times with the wash buffer and patted dry 

using an absorbent towel. To each well, 100uL of diluted biotinylated antibody 

solution (1 in 80 dilution) is added and the plate covered and incubated at room 

temperature for 1 hour. The plate is then washed 3-4 times again with the wash buffer. 

After this, 20uL of diluted streptavidin solution (1 in 500 dilution) is added to each 

well and the plate is covered and incubated for 45 minutes at room temperature. This 

is followed by another 3-4 washes with the wash buffer. Next, 100uL of TMB 

substrate solution is added to each well and the plate incubated at room temperature 

for 30 minutes away from the light. After this, 50uL stop solution is added to each 

well and the plate is read within 30 minutes using a micro-plate reader at 450nm.  
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2.2.5 Method of C4 measurement 

 

7-alpha-hydroxy-4-cholesten-3-one (C4) was purchased from Toronto Research 

Chemicals (Toronto, Canada). Cortisol-1,2-d2 was purchased from CDN isotopes 

(Hornsby, NSW, Australia) and charcoal stripped serum (CSS) was purchased from 

Sigma–Aldrich (Castle Hill, NSW, Australia). Additional reagents and solvents were 

of HPLC grade. To 50µL of serum, 200µL of ice-cold acetonitrile containing 2% 

formic acid and 16 ηg of the assay internal standard, cortisol-1,2-d2 was added. The 

mixture was vortexed for 1 minute and centrifuged at 10,000 rpm for 10 minutes. 

The supernatant was collected and evaporated under vacuum at room temperature. 

The samples were then reconstituted in the assay mobile phase and transferred to a 

96 well plate for analysis. Stock solution of C4 (1µM) was prepared in CSS and 

diluted to give final concentrations of 0.01-1µM. The standards were treated in the 

same way as the samples. A Nextera UPLC (SHIMADZU, Kyoto, Japan) system 

was used in combination with a Q-TRAP 5500 Mass Spectrometer (AB SCIEX, 

Toronto, Canada) with Analyst software 1.6.2. Chromatographic separations were 

performed with an ACQUITY (WATERS, Milford, MA, USA) UPLC BEH C18 

column (1.7microns 2.1x100mm). The temperature of the column and auto sampler 

was 65oC and 12oC, respectively. Sample injection was 1µL. The mobile phase 

consisted of 10% acetonitrile and 10% methanol in water containing 0.1% formic 

acid (mobile phase A) and 10% methanol in acetonitrile 0.1% formic acid (mobile 

phase B) delivered as a gradient: 0-3-min mobile phase B 20%; 3-3.5-min mobile 

phase B 80%, 7-9min mobile phase B with a constant 80% flow rate of 0.5ml/min. 

The mass spectrometer was operated in positive electro-spray mode working in the 

multiple reaction mode (MRM). Transition MRMs for C4 and the internal standard 
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cortisol-1,2-d2 were 401.2→177.2 and 365.2→122.2 respectively. Operating 

parameters were: curtain gas 30psi; ion spray voltage 4500 V; temperature 55oC; ion 

source gas 1 60psi; ion source gas 2 65psi. Declustering potential, entrance potentials 

and collision cell exit potentials were optimised using the Analyst software. 

 

2.2.6 Genotyping 

 

Genotyping for TM6SF2 rs58542926 and PNPLA3 rs738409 was performed on all 

available DNA samples (n = 471 (88%) using the TaqMan SNP genotyping allelic 

discrimination method (Applied Biosystems, Foster City, CA).  All genotyping was 

blinded to clinical variables and some was extracted from previous reports (Eslam et 

al. 2016a). 

 

2.2.7 Method of RNA extraction from animal tissues 

 

RNA was extracted from animal tissues as per protocol. Briefly, a piece of animal 

tissue (about 30mg each) is cut, and 350uL FARB buffer and 3.5uL β-mercaptoethanol 

are added to the tissue, along with 1 microbead (Qiagen). The mixture is then spun 

using the rotor-stator tissue homogenizer at 3000rpm for 3 minutes and incubated for 5 

minutes at room temperature. The mixture is then passed through a filter column to a 

collection tube and centrifuged for 2 minutes at 18,000rpm. After this, the supernatant 

is collected in a new microcentrifuge tube and an equal volume of 70% RNA-ase free 

ethanol solution is added. Next, the mixture is vortexed and passed through a FARB 

mini column to a collection tube and centrifuged for 1 minute at 18,000rpm. The flow 
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through is discarded and the FARB mini column is returned to the collection tube. 

500uL of wash buffer 1 is then added to the FARB column and centrifuged for 1 

minute at 18,000rpm. Then, 750uL of wash buffer 2 is added to the FARB column 

after discarding the flow through and the mixture is centrifuged for 1 minute at 18,000 

rpm. This step is repeated again once after which the FARB mini column is 

centrifuged for an additional 3 minutes at 18,000rpm to dry the column. The FARB 

mini column is then placed to an elution tube and 45uL RNA-ase free water is added 

to the membrane centre of the FARB mini column and left for one minute before 

centrifuging at 18,000rpm for 1 minute to elute the RNA. The RNA concentration is 

then measured using Nano-drop and stored at -80oC.  

 

2.2.8 Method of cDNA synthesis 

 

cDNA was reverse transcribed from total RNA using qScript® cDNA SuperMix cat# 

95048 (Quanta Biosciences, Gaithersburg, MD, USA) according to the manufacturer‘s 

instructions. In brief, 1-10 μg RNA and 4μl qScript cDNA SuperMix were added to a 

sterile RNase-free microcentrifuge tube and the volume was completed to 20 μl by 

RNase/DNase-free water. The mixture was incubated for 5 minutes at 25°C, then 30 

minutes at 42°C, 5 minutes at 85°C and finally held at 4°C using Mastercycler 

gradient 5331 (Eppendorf AG, Hamburg, Germany). The synthesized cDNA was 

stored at -20 °C for further experiments. 

 

 



 

 52 

2.2.9 Method of qPCR 

 

Real-time PCR was performed in duplicate on Applied Biosystems, Foster City, CA, 

USA. Using TaqMan™ Fast Advanced Master Mix Catalog number:  4444556.  In 

each PCR tube, 10 μl of Master Mix was added to 1 μl of the probe, 6 μl of 

DNAse/RNAse free water and 3 μl of the diluted cDNA template (dilution of cDNA 

was 1:50 of dH2O). The mRNA levels of the murine liver tissue were normalised to 

the expression of housekeeping gene 36B4, using TaqMan Fam labelled gene 

expression 36B4 probe (Mm99999915_g1), catalogue number: 4331182. Expression 

was measured using CT values, normalized to that of 36B4 (ΔCT = CT (36B4) - CT 

(target) and then expressed as 2-ΔCT.  

 

 

2.2.10 Method of mice ileal fgf-15 measurement 

 

Mice ileal fgf15 was assessed using the Mouse Fgf15 ELISA kit (Competitive EIA, 

LifeSpan BioSciences, Inc.) as per the manufacturer’s protocol. Briefly, a series of 

concentrations of standard solution is prepared with sample diluent solution. To each 

well, 50uL of working standard solution, sample or blank is added, followed by 50uL 

of detection reagent A working solution. The plate is then covered and incubated at 

37oC for 1 hour. The solution is aspirated and washed with the wash buffer 3 times 

before drying by gently tapping against clean absorbent paper. Then, 100uL detection 

reagent B working solution is added to each well and the plate is covered, mixed and 

incubated for 30 minutes at 37oC. The liquid is then aspirated and washed 5 times. 

After this, 90uL of TMB substrate solution is added to each well and the plate is 
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covered and incubated for 10-20 minutes at 37oC, protected from light. This is 

periodically monitored until optimal colour development has been achieved, after 

which 50uL stop solution is added to each well and the optical density value for each 

well is immediately determined using a microplate reader set to 450nm. 

 

2.2.11 Microbiota analysis 

 

A single stool sample was collected from patients with biopsy-proven lean and non-

lean NAFLD, as well as lean healthy controls. Genomic DNA isolation from these 

materials were performed using the QIAGEN DNeasy Powerlyzer Powersoil kit 

(QIAGEN, Germany) according to the manufacturer’s instructions. The DNA extracts 

were used for sequencing of the V4 hypervariable region of the 16S ribosomal RNA 

(rRNA) gene as previously described(Choo et al. 2015). Briefly, amplicons were 

generated and indexed using the Illumina Miseq 16S Metagenomic Sequencing 

Library Preparation protocol 

(http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_prepar

ation.html) with modifications. PCR amplification was performed using the following 

program: 95°C for 3 min, followed by 25 cycles of 95°C for 30s, 50°C for 30s and 

72°C for 30s, and a final extension step of 72°C for 30s. Dual-indexing of the 

amplicons was performed using 8 cycles of the same program. 

 

Paired-end 16S rRNA sequencing (2 x 300 bp sequence reads) was performed on an 

Illumina Miseq platform at the David R Gunn Genomics Facility (South Australian 

Health and Medical Research Institute). Bioinformatics processing of the 16S rRNA 

http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
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sequence reads were performed using the Quantitative Insights into Microbial Ecology 

(QIIME) software (version 2-2018.2). Denoising was performed using the DADA2 

pipeline, and chimera filtering and operational taxonomic unit (OTU) assignment was 

performed against the SILVA 16S rRNA reference database (release v132) clustered 

at 97% similarity. A minimum subsampling depth of 8,335 reads and 10,698 reads was 

selected for microbiota composition analysis of the human stool and mice caecum 

samples, respectively. Taxa present in ≥3 samples and in > 5 sequence reads were used 

to analyse genera that are differentially abundant between groups. The Benjamini-

Hochberg method was used to control the false discovery rate for multiple testing 

correction. Stool processing and sequencing were performed at the South Australian 

Healthy and Medical Research Institute, Australia, in collaboration with Dr Geraint 

Rogers and Dr Jocelyn Choo.  

 

2.2.12 Inflammatory cytokines measurement 

 

Inflammatory cytokines were measured on human serum samples using a human 

routine 16-plex cytokine panel kit, performed by Crux Biolab, Victoria, Australia. 

 

2.2.13 Statistical analysis 

 

Data was analysed using SPSS version 24.0 (IBM, Armonk, NY). Values are 

expressed as mean ± standard deviation, median and interquartile range or frequency 

(percentage) as appropriate. P-values for comparisons of distributions between groups 

were assessed using Fisher’s exact test. The Mann-Whitney non-parametric test was 
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used to obtain significance between two means of continuous variables. The strength 

of associations between continuous variables was reported using Spearman’s rank 

correlations. Univariable analysis of variance (ANOVA) was used to examine factors 

associated with increasing total secondary bile acid levels as continuous variables. 

Multiple regression analysis was then undertaken to determine which factors 

significant on ANOVA remained independent predictors for total secondary bile acid 

levels when adjusted for other clinically relevant variables including age, gender, 

BMI, hypertension, diabetes, dyslipidaemia, total cholesterol, HOMA and histological 

profile (fibrosis, steatosis, ballooning, portal inflammation, lobular inflammation and 

NAS).  

 

Hepatic steatosis was graded from 0 to 3 and was dichotomized into mild steatosis 

(NASH CRN grades 0-2) and more severe steatosis (grade 3) for the purposes of 

statistical analysis. Hepatocyte ballooning was dichotomized into no ballooning and 

any ballooning for analysis purposes. Lobular and portal inflammation was 

dichotomized to mild (grade 0-1) and severe (grade 2 or more) (Brunt et al. 2011). 

Fibrosis stage was dichotomized to mild fibrosis (F0-1) and significant fibrosis (F2-4). 

This was based on a recent systematic review, which showed that the risk of liver-

related mortality increases exponentially from stage 2 fibrosis onwards (Eslam et al. 

2016c). Statistical significance was considered as p<0.05 throughout.  
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3 COMPARISON OF LEAN NAFLD WITH LEAN AND NON-LEAN 

HEALTHY CONTROLS 

 

3.1  INTRODUCTION 

 

The diagnosis of NAFLD and its sequelae NASH require the presence of hepatic 

steatosis as well as hepatocyte damage evidenced by inflammation and/or fibrosis. 

Excess cholesterol intake seen in some patients with NAFLD results in free cholesterol 

accumulation in the hepatocyte mitochondrial membrane, which leads to increased 

susceptibility to hepatocyte death in response to other noxious stimuli by promoting 

glutathione loss from mitochondrial and making the hepatocytes sensitive to TNF-

induced cytotoxicity (Duwaerts and Maher 2014). In addition, factors such as the 

genetics and the gut microbiota add to the complexity of NAFLD and NASH 

pathogenesis. Changes in gut microbiota profile in response to high energy feeding has 

been linked to enhanced endotoxin absorption from the gut, or “metabolic 

endotoxemia”, as well as promoting the production of pro-inflammatory cytokines and 

ethanol which eventually leads to hepatotoxicity (Cani et al. 2008; Duwaerts and 

Maher 2014). 

 

While many studies have shown that increasing body weight is associated with 

increased mortality, recent evidence has suggested that not all obese or overweight 

people carry the same metabolic risk and mortality (Kramer et al. 2013; Stefan et al. 

2017). Studies in the literature have started to delineate between obese people who are 

at risk of cardio-metabolic disease (or the “metabolically unhealthy obesity”) and 

obese people who are healthy, the so-called “metabolically healthy obesity”. Similarly, 
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metabolically unhealthy normal weight individuals carry risk for cardiovascular events 

and/or increased mortality (Eckel et al. 2015; Stefan et al. 2017). A large meta-

analysis recently showed that the risk for cardiovascular events and/or all-cause 

mortality was higher among metabolically unhealthy normal weight individuals 

compared to the metabolically healthy normal weight people (RR 3.14, 95% CI 2.36 – 

3.93) (Kramer et al. 2013).  

 

A recent large study involving 981 subjects with BMI in the normal range, overweight 

and obese, classified as metabolically healthy or unhealthy (metabolic health defined 

as having less than 2 parameters of metabolic syndrome) showed that within normal 

weight individuals, metabolically unhealthy individuals had significantly higher liver 

fat content and prevalence of NAFLD, significantly higher visceral fat mass and 

carotid-intima media thickness and a significantly lower percentage of subcutaneous 

leg fat mass and lower insulin sensitivity and secretion (Stefan et al. 2017). Factors 

that have been correlated with a metabolically unhealthy phenotype in normal weight 

individuals include older age and lower physical activity, after adjusting for male sex 

and waist circumference in a large population study (Wildman et al. 2008). 

 

Therefore, we aimed to test this finding in our cohort of patients using a cohort of 

patients with lean NAFLD (n=99) and comparing them to lean healthy controls (n=30) 

as well as non-lean healthy controls (n=46).  
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3.2  METHODS 

 

We compared a cohort of lean healthy controls (n=30) and non-lean healthy controls 

(n=46) with biopsy-proven lean NAFLD (n=99). Inclusion and exclusion criteria for 

these patients were outlined in section 2.1.2.2 and 2.1.2.3. Clinical and laboratory 

assessments of the participants were described in section 2.1.2.1. All lean NAFLD 

patients had a liver biopsy performed and histopathology was assessed as per section 

2.2.1. 

Methods of bile acid extraction and quantification, as well as serum FGF-19 and C4 

measurements were also described in the methods sections 2.2.3 to 2.2.5. Stools of a 

subset of patients were sent for microbiota analysis at the South Australian Health and 

Medical Research Institute (SAHMRI) as per section 2.2.11. In addition, serum 

inflammatory cytokine levels were measured at the Crux Biolab, Victoria as per 

section 2.2.12. 

 

Data was analysed using SPSS version 24.0 (IBM, Armonk, NY). Further details of 

statistical analysis were provided in section 2.2.13. 

 

3.3 RESULTS 

 

3.3.1 Patient characteristics 

 

The baseline characteristics of lean and non-lean healthy controls as well as lean 

NAFLD patients are outlined in Table 5. All the patients in the lean and non-lean 
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healthy controls as well as lean NAFLD groups were matched by age and gender. 

There was no significant difference in the levels of serum fasting blood sugar level, 

total cholesterol, HDL cholesterol, LDL cholesterol and triglycerides between the 

three groups.  

Metabolic health was defined as the absence of insulin resistance with no evidence of 

subclinical inflammation as determined by high sensitivity C-reactive protein (CRP), 

together with none or only one component of the metabolic syndrome according to the 

Adult Treatment Panel III criteria (hypertension, elevated fasting BSL, dyslipidaemia, 

elevated plasma triglyceridaemia or low plasma HDL cholesterol) (Lorenzo et al. 

2007; Wildman et al. 2008). With this definition, metabolically healthy patients had a 

significantly lower prevalence of hypertension compared to metabolically unhealthy 

normal weight patient, regardless of their BMI. 

 

 

 

 

 

 

 

 

 



 

 61 

Table 5. Characteristics of lean and non-lean healthy controls 

and lean NAFLD patients 

#p-value was calculated using one-way Anova test. Abbreviations: MHNW: Metabolically 
healthy normal weight; MHO: Metabolically healthy obese; MUNW: Metabolically unhealthy 
normal weight. Metabolic health was defined as the absence of insulin resistance/diabetes with 
none or only one of the metabolic syndrome components. 

 

 

3.3.2 Metabolic health status has more impact on bile acid levels 

than BMI alone 

 
To investigate the effect of metabolic health on bile acid metabolism, we first 

compared the total bile acid levels between lean and non-lean healthy controls as well 

as lean NAFLD patients. Interestingly, total bile acid level was not significantly 

different between the lean and non-lean healthy controls, however, the total bile acid 

level was significantly higher in patients with lean NAFLD suggesting the greater 

impact of metabolic health status on the bile acid level, beyond their BMI alone 

(Figure 3).  

  
Lean control 

(MHNW)    
(n = 30) 

Non-lean 
control (MHO)    

(n=46) 

Lean NAFLD 
(MUNW)      
(n = 99) 

p-value# 

Age (years) 46.7 ± 12 48.6 ± 11.2 46 ± 11.7 0.530 
Male (%) 22 (73.3) 35 (76.1) 69 (69.7) 0.502 
BMI (kg/m2) 22.8 ± 1.9 28.5 ± 3.2 23.2 ± 1.5 <0.001 
ALT (IU/ml) 27.1 ± 10.3 26.3 ± 8.7 57.9 ± 35.6 <0.001 
Fasting BSL (mmol/L) 4.9 ± 0.5 5.1 ± 0.3 5.3 ± 1.8 0.244 
Total Cholesterol (mmol/L) 5.0 ± 1.1 5.3 ± 1.1 5.1 ± 1.2 0.375 
HDL Cholesterol (mmol/L) 1.4 ± 0.4 1.5 ± 0.4 1.5 ± 0.6 0.943 
LDL Cholesterol (mmol/L) 3.0 ± 0.8 3.2 ± 0.9 3.6 ± 1.6 0.084 
Triglycerides (mmol/L) 1.3 ± 1.0 1.5 ± 0.8 1.6 ± 1.4 0.353 
Diabetes (%) 0 0 11 (11.1)  
Hypertension (%) 1 (3.3) 7 (15.2) 25 (25.3)  
Dyslipidaemia (%) 9 (30.0) 25 (54.3) 43 (43.4)  
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Figure 3. Total bile acids, total primary bile acids and total 

secondary bile acid levels between lean and non-lean healthy 

controls as well as lean NAFLD patients.      

The x-axis showed lean healthy controls (n=30), non-lean healthy controls (n=46), and 

lean NAFLD (n=99) patients and the y-axis showed mean concentration of bile acid 

levels in µmol/L. Results are expressed as mean ± SEM and P value was calculated 

using the Mann-Whitney non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 

 

 

3.3.3 Lean NAFLD patients had distinct bile acid profile  

 

The composition of the BA pool also differed between the groups. Lithocolic acid 

(LC) is abundant in the lean control group but not in the non-lean control and lean 

NAFLD groups (Figure 4). In addition, the proportion of conjugated primary bile 

acids, for example, glycocholic acid (GCA) (1.2275 ± 3.53182 umol/L in lean NAFLD 

vs 0.3403 ± 0.47052 umol/L in lean healthy controls and 0.2627 ± 0.28027 umol/L in 

non-lean healthy controls, p = 0.092), taurochenodeoxycholic acid (TCDCA) (0.2538 
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± 0.70753 umol/L vs 0.0746 ± 0.09019 umol/L and 0.0625 ± 0.06001 umol/L, p = 

0.004) and taurocholic acid (TCA) (0.2919 ± 1.04185 umol/L vs 0.0533 ± 0.8936 

umol/L and 0.0327 ± 0.03954 umol/L, p = 0.069) were higher in the lean NAFLD 

group compared to the two healthy control groups.  

 

Figure 4. Bile acid distribution in lean healthy controls and lean 

NAFLD patients.  

Bile acid composition as a percentage according to hepatic fibrosis. The x-axis shows 

lean healthy controls (n = 30) and lean NAFLD patients (n = 99), and the y-axis shows 

the percentage composition of each individual bile acid in %. 
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3.3.4 Lean NAFLD patients had elevated individual serum bile 

acid levels  
 

Having demonstrated the importance of metabolic health on bile acid levels above and 

beyond the BMI, we next compared the bile acid profile and their regulation between 

lean NAFLD and lean healthy controls. The levels of total bile acids (5.56 ± 7.47 uM 

vs 2.50 ± 2.11 uM, p=0.002) as well as total primary BA (3.79 ± 6.42 uM vs 1.58 ± 

1.49 uM, p=0.018) and total secondary BA (1.73 ± 1.76 uM vs 0.91 ± 0.76 uM, 

p=0.003) were significantly higher in lean NAFLD patients compared to lean healthy 

controls (Figure 5A).   

 

In terms of primary bile acids, the concentration of both the cholic acid (CA) and 

chenodeoxycholic acid (CDCA) were higher in lean NAFLD compared to lean healthy 

controls although it was only significant for CDCA levels (0.47 ± 0.63 uM vs 0.21 ± 

0.27 uM, p=0.003, Figure 5B-C). 

 

 

 

 



 

 65 

 

 

Figure 5. A) Bile acid levels in lean healthy controls and lean 

NAFLD B) Cholic acid (CA) and C) Chenodeoxycholic acid (CDCA) 

levels between lean healthy controls and lean NAFLD patients.  

The x axis shows lean healthy controls (n = 30, blue bar) and lean NAFLD patients (n = 

99, red bar) and the y axis shows the mean concentration of bile acid levels in 

µmol/L. Results are expressed as mean ± SEM and P value was calculated using the 

Mann-Whitney non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 

A. 

B. 

C. 
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Similarly, the secondary bile acid deoxycholic acid was significantly higher in lean 

NAFLD patients compared to lean healthy controls (0.60 ± 0.57 uM vs 0.38 ± 0.39 

uM, p=0.019, Figure 6A) with higher secondary to primary bile acid ratio in the lean 

healthy controls (Figure 6B). 

 

Figure 6. A) Deoxycholic acid (DCA) levels and B) 

secondary/primary bile acid ratio between lean healthy controls 

and lean NAFLD patients.  

The x axis shows lean healthy controls (n = 30, blue bar) and lean NAFLD patients (n = 

99, red bar) and the y axis shows the mean concentration of bile acid levels in µmol/L 

in A, and secondary to primary bile acid ratio in B. Results are expressed as mean ± 

SEM and P value was calculated using the Mann-Whitney non-parametric t-test. 

P < 0.05, ** P<0.01, *** P<0.001. 

B. 

A. 



 

 67 

3.3.5 Lean NAFLD patients had comparable FGF-19 levels to lean 

healthy controls in the early, but not in later stages of the 

disease 
 

There was no significant difference in levels of FGF-19 between lean healthy controls 

and lean NAFLD patients with none/mild fibrosis (F0-1). However, in lean NAFLD 

patients with moderate/severe fibrosis (F2-4), the level of FGF-19 was significantly 

lower compared to that in lean healthy controls (Figure 7). 

 

Figure 7. FGF-19 levels in lean healthy controls and lean NAFLD 

patients stratified by fibrosis stage.  

Mean concentration of FGF19 levels according to BMI and hepatic fibrosis. The x axis 

shows lean healthy controls (n = 30, green bar) and lean NAFLD patients with 

absent/mild (F0–F1, blue bar, n = 75) and moderate/severe (F2-4, red bar, n = 24) 

hepatic fibrosis; the y axis shows the mean concentration of FGF19 in pg/mL. Results 

are expressed as mean ± SEM and P value was calculated using the Mann-Whitney 

non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 
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3.3.6 C4 levels in lean NAFLD compared to lean healthy controls 

 

When C4 level (a serum marker for BA synthesis) was measured, lean NAFLD 

patients had significantly higher levels of C4 compared to lean healthy controls. This 

was more so for lean NAFLD patients with more advanced fibrosis compared to early 

fibrosis (Figure 8). 

 

 

 

Figure 8. C4 levels between lean healthy controls and lean 

NAFLD patients 

Mean concentration of C4 levels according to BMI and hepatic fibrosis. The x axis 

shows lean healthy controls (n = 30, green bar) and lean NAFLD patients with 

absent/mild (F0–F1, blue bar, n = 75) and moderate/severe (F2-4, red bar, n = 24) 

hepatic fibrosis; the y axis shows the mean concentration of C4 in µmol/L. Results are 

expressed as mean ± SEM and P value was calculated using the Mann-Whitney non-

parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 
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3.3.7 Microbiota profile in lean NAFLD patient is distinct from 

lean healthy controls 

 

A selection of patients from the lean healthy controls and lean NAFLD groups were 

used for the comparison of their microbiota profile. The patient characteristics are 

shown Table 6. Analysis of microbiota demonstrated a distinct separation in profiles 

between lean healthy controls and lean NAFLD (PERMANOVA P = 0.069, Pseudo-F 

= 2.019) (Figures 9A-C). More specifically, in the lean NAFLD group there was an 

increased abundance of the species Dorea and a reduction in the relative abundance of 

a number species, including Marvinbryantia and the Christensellenaceae R7 group. 

 

Table 6. Characteristics of lean healthy controls and lean NAFLD 

patients used in microbiota analysis 

  Lean control (n = 9) Lean NAFLD (n = 5) p-value 
Age (years) 56.1 ± 8.5 49 ± 8.5 0.259 
Male (%) 3 (33.3) 2 (40) 1.0 
BMI (kg/m2) 22.7 ± 1.9 24.0 ± 1.5 0.274 
ALT (IU/ml) 25.3 ± 9.6 97.5 ± 64.1 0.0051 
Total Cholesterol (mmol/L) 4.9 ± 1.3 5.2 ± 0.6 0.218 
Fasting BSL (mmol/L) 4.7 ± 0.3 7.1 ± 4.8 0.645 
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Figure 9. Microbiota profile of lean healthy controls and lean 

NAFLD patients.  

A) Non-metric Multi-dimensional scaling (NMDS) plot of distribution of gut microbiota in lean 

healthy controls (n = 9) and lean NAFLD patients (n = 5) showing distinct separation between 

the two groups. Circles represent 95% confidence limit of the standard error of samples in 

each group. B) Operational taxonomic unit (OUT) table between lean healthy controls (n = 9) 

and lean NAFLD patients (n = 5). C) Taxa differences between lean healthy controls (n = 9) 

and lean NAFLD patients (n = 5). 

B. 

A. 

C. 
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3.3.8 Lean NAFLD patients had higher inflammatory cytokine 

profile 

 

We next compared the inflammatory cytokine profiles from serum of lean healthy 

controls and lean NAFLD patients. Interestingly, patients with lean NAFLD had 

higher levels, although insignificant, of several inflammatory cytokines, including IL-

1 beta (p = 0.6905), IL-4 (p = 0.1646) and TNF-alpha (p = 0.1096) (Figures 10A-C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 72 

 

 

 
 

Figure 10. Inflammatory cytokines level between lean healthy 

control and lean NAFLD 

The x axis shows lean healthy controls (n = 30) and lean NAFLD (n = 99); the y axis 

shows the mean concentration of inflammatory cytokines in pg/mL. Results are 

expressed as mean ± SEM and P value was calculated using the Mann-Whitney non-

parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 

B. 

A. 

C. 
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3.4 DISCUSSION 

 

In this chapter, we first compared the characteristics of patients with lean NAFLD 

with groups of lean healthy controls as well as non-lean healthy controls. We were 

first interested to see the effect of metabolic health on the baseline metabolic profile of 

patients as well as on the bile acid profile. Lean NAFLD patients and metabolically 

unhealthy patients had a higher prevalence of hypertension compared to metabolically 

healthy patients regardless of their BMI. When we compared their bile acid profiles 

(including comparing it to the non-lean NAFLD patients), we found that patients who 

were metabolically unhealthy had significantly higher levels of bile acid levels 

compared to metabolically healthy patients, regardless of their BMI. 

 

We then focused on the comparison of lean healthy controls (to represent 

metabolically healthy patients) with lean NAFLD (to represent metabolically 

unhealthy patients). Here we found that patients with lean NAFLD had significantly 

higher total BA, total primary BA and total secondary BA compared to lean healthy 

controls with levels higher for certain individual BA like chenodeoxycholic acid 

(CDCA) and deoxycholic acid (DCA), both of which are potent FXR agonists.  

 

Next we compared the metabolic adaptation capacity between the two groups by 

measuring FGF-19 levels in the serum as markers of FXR activity. Although overall 

there was no significant difference in FGF-19 levels between lean healthy and lean 

NAFLD patients, when we stratified the lean NAFLD patients according to their 

fibrosis severity we found a striking difference in metabolic adaptation. Patients with 
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early stages of lean NAFLD (F0-F1) had similar levels of FGF-19 compared to lean 

healthy controls but this level significantly dropped in the later stages of the disease 

(F2-F4) suggesting a loss of metabolic adaptation as the disease progresses in the lean 

NAFLD patients. Exactly what triggers the switch or loss of metabolic adaptation is 

not clear and is beyond the scope of our study. It would be interesting for future 

studies to explore this further through longitudinal follow up of patients.  

 

The serum C4 level, which is a marker for bile acid synthesis (Arab et al. 2017) also 

reflected the FGF-19 levels with the level being lowest in the lean healthy controls, 

and highest in lean NAFLD with advanced fibrosis. Interestingly, however, unlike the 

FGF-19 levels, which were not significantly different between the lean healthy 

controls and lean NAFLD with early fibrosis, we saw significantly higher C4 levels in 

lean NAFLD with early fibrosis compared to lean healthy controls. This may reflect 

the metabolic adaptation that lean NAFLD possesses early on in the disease course, 

where the increased dietary intake of cholesterol is compensated by increased bile acid 

production to maintain serum cholesterol level and body weight. This may also 

explain the lower secondary to primary bile acid ratios seen in lean NAFLD patients 

compared to lean healthy controls. 

 

Lean NAFLD had a distinct separation in microbiota profile compared to the 

healthy controls with an increased abundance of Dorea that has been implicated in 

the pathogenesis and progression of NASH (Del Chierico et al. 2017b; Del Chierico 

et al. 2017a), and a decrease in several species protective for NAFLD such as 

Marvinbryantia and Christensellenaceae R7 group. Both are known to play a role in 
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the modulation and production of beneficial short chain fatty acids and in providing a 

desirable intestinal environment for the growth of probiotic bacteria (Ma et al. 2017; 

Zhou et al. 2017).  

 

Certain gut microbiota, especially those belonging to the Firmicutes phyla such as the 

Ruminococcus, Marvinbryantia and Christensellenaceae are known butyrate 

producers. Butyrate is a beneficial short chain fatty acids (SCFA) and are products of 

dietary fibre fermentation in the gut (Zhou and Fan 2019). Apart from providing 

energy for the intestinal epithelium, SCFAs also play significant roles in regulation of 

immunity, lipid and glucose metabolism as well as maintenance of gut microbiota 

homeostasis (Z. H. Zhao et al. 2019). Studies have shown that supplementation with 

butyrate-producing probiotics corrected high fat diet (HFD) induced steatohepatitis in 

mice through the production of butyrate, as well as improving the gastrointestinal 

barrier, thereby inhibiting the delivery of gut derived endotoxin to the liver (Zhou et 

al. 2017). The trend towards higher inflammatory cytokines seen in lean NAFLD 

compared to lean healthy controls further supports a gut-derived pathogenesis of lean 

NAFLD.  

 

3.5 CONCLUSION 

 

In this chapter we have demonstrated the importance of metabolic health on baseline 

metabolic risk profiles as well as bile acid levels. In addition, we have shown that lean 

NAFLD patients had altered gut microbiota, which increases their risk for NAFLD 

development and progression, as well as increases in their pro-inflammatory milieu 
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compared to lean healthy controls. Lean NAFLD however, demonstrated good 

metabolic adaptation, especially early in the disease process, with FGF19 levels 

comparable to those seen in the lean healthy controls.  
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4 COMPARISON OF METABOLIC ADAPTATION IN LEAN NAFLD 

WITH NON-LEAN NAFLD PATIENTS 

 

4.1 INTRODUCTION 

 

Non-alcoholic fatty liver disease (NAFLD) affects about 20-30% of the world’s 

population and is a leading cause for end-stage liver disease, cancer and 

transplantation (Z. Younossi et al. 2018a). Despite this, the existence and clinical 

course of the entity known as “lean NAFLD” or “NAFLD in lean patients” has been 

the subject of intense debate and controversy. To many, lean NAFLD refers to 

individuals manifesting the disease in the context of a normal body mass index (BMI), 

but having excess visceral adiposity and insulin resistance, as well as metabolic 

dysfunction that is typically observed in people with obesity (Ruderman et al. 1998), 

the so called metabolically obese normal-weight (MONW) individual. The prevalence 

of lean NAFLD varies widely according to the criteria used for its definition but 

ranges from 5 to 45% (Ding et al. 2016). By this interpretation, lean NAFLD is similar 

if not identical to NAFLD associated with overweight and obesity, with insulin 

resistance at its core.  

 

Accumulating evidence however suggests that lean NAFLD might be a distinct patho-

physiological entity with about half (47-65%) having NASH (Z. M. Younossi et al. 

2016a). While “lean NAFLD” was first described in Asia, it has since been recognised 

globally (Z. Younossi et al. 2018a). Most aspects of lean NAFLD including its 

operational classification have not been systematically characterised. The most 

frequently used definition is that of hepatic steatosis with a BMI < 25 kg/m2 (or less 
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than 23 kg/m2 in Asians) in the absence of significant alcohol intake (Das and 

Chowdhury 2013). The natural history of lean NAFLD is even less well characterised; 

some data suggests that they have worse mortality and accelerated disease progression, 

despite a more favourable metabolic risk profile (A. C. Dela Cruz et al. 2014; 

Hagstrom et al. 2018). Lastly, the pathogenesis and mechanisms for their favourable 

metabolic profile compared to obese NAFLD is puzzling and poorly understood, while 

therapeutic options for lean NAFLD remain undefined. 

 

We hypothesized that the pathogenesis of lean and obese NAFLD and their distinct 

metabolic and histological profiles is caused by more than just differences in body 

weight and body mass index. We considered that the clinical phenotype of lean 

NAFLD might reflect differences in the integration of signals from the diet and the 

systemic metabolic milieu, as also the enterohepatic axis comprising both bile acids 

and gut microbiota. We tested this hypothesis in a large well-phenotyped biopsy 

proven cohort of 538 Caucasian patients with NAFLD. 

 

4.2 METHODS 

 

The cohort comprised five hundred and thirty-eight consecutive Caucasian patients 

with histologically characterized NAFLD. The inclusion criteria and clinical and 

laboratory assessments and histopathology are described in detail in methods chapter. 

Ethics approval was obtained from the Human Ethics committee of the Western 

Sydney Local Health District and the University of Sydney. All other sites had ethics 

approval from their respective ethics committees. 
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Methods of genotyping, high throughput bile acid profiling, quantification of C4, 

FGF19, and microbiome analysis are provided in the methods chapter. In addition, 

serum phosphatidylethanol level was measured in all patients to rule out significant 

alcohol intake in the past few weeks prior to recruitment. Details on the method of 

serum phosphatiylethanol level measurement is also described in chapter 2, methods. 

 

Data were analysed using SPSS version 24.0 (IBM, Armonk, NY). Values are 

expressed as mean ± standard deviation, median and interquartile range or frequency 

(percentage) as appropriate. Statistical significance was considered as p<0.05 

throughout; details are provided in chapter 2, methods.  

 

4.3 RESULTS 
 

 

4.3.1 Clinical, histological and genetic characteristics of patients 

with lean NAFLD 

 

A total of 538 patients with biopsy proven NAFLD were recruited for the study. 

Ninety-nine patients (18%) were lean. The clinical and biochemical characteristics of 

lean NAFLD compared to their counterpart non-lean patients are presented in Table 7. 

Both groups had similar non-significant phosphatidylethanol level in the blood 

therefore ruling out significant alcohol intake (values above 253 ng/mL are regarded 

as significant alcohol consumption in the past weeks (Kechagias et al. 2015)). In 
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addition to lower BMI, lean patients had lower waist hip ratio (WHR) and a better 

metabolic profile, including a significantly lower frequency of diabetes, a higher 

serum HDL, and lower serum triglycerides, fasting blood glucose and HOMA-IR 

values, compared to their non-lean counterparts. Histologically, lean patients had 

higher prevalence of none or mild fibrosis and lower NAS scores (p<0.001 for both), 

as well as lower serum ALT (Figure 11). In total, lean patients have favourable 

metabolic and histological features compared to non-lean NAFLD.  

Lean NAFLD patients had a significantly higher prevalence of carriage of the TM6SF2 

rs58542926 (T) allele compared to non-lean patients, but a similar prevalence of the 

PNPLA3 GG polymorphism (Table 7). To adjust for the effect of confounding factors, 

the TM6SF2 rs58542926 (T) allele still associated with lean NAFLD in a multivariable 

model adjusting for age, gender, ALT, diabetes, total cholesterol level, fibrosis, 

steatosis and PNPLA3 genotype (OR 2.567, 95% confidence interval 1.426-4.619, p = 

0.002). 

 

Figure 11. Fibrosis grade distribution 
The distribution of fibrosis grades amongst patients with lean NAFLD (n=99) and non-

lean NAFLD (n=439) 
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Table 7. Clinical and histological characteristics of lean and non-

lean NAFLD patients 

  Lean NAFLD (n = 99) Non-lean NAFLD (n = 439) p-value 
Age (years) 46 ± 11.7 47 ± 13.0 0.445 
Male (%) 69 (69.7) 290 (64.9) 0.413 
BMI (kg/m2) 23.2 ± 1.5 30.8 ± 4.7 <0.001 
PNPLA3 I148M (no, %) 
(CC/CG/GG) 32(32.3)/39(39.4)/16(16.2)  145(32.4)/172(38.5)/67(14.9)  0.973 
TM6SF2 E167K (no, %) 
(CC/CT/TT) 59(59.6)/22(22.2)/3(3.0)  321(71.8)/50(11.8)/6(1.3)  0.005 
ALT (IU/ml) 57.9 ± 35.6 72.3 ± 46.8 <0.001 
Waist/ Hip ratio (WHR)* 
    Normal WHR  
    Elevated WHR     

0.919 ± 0.062 
25 (29.2) 
29 (29.3) 

0.971 ± 0.079 
46 (10.3) 

189 (42.3) 

<0.001 
 
 

Phosphatidylethanol level 
(ng/mL) 66.35 ± 48.59 66.45 ± 52.72 0.8829 
Diabetes (%) 11 (11.1) 128 (28.6) <0.001 
Hypertension (%) 25 (25.3) 158 (35.3) 0.060 
Dyslipidaemia (%) 43 (43.4) 242 (54.1) 0.059 
Total Cholesterol 
(mmol/L) 5.1 ± 1.2 5.2 ± 1.2 0.472 
HDL-C (mmol/L) 1.5 ± 0.6 1.2 ± 0.3 <0.001 
LDL-C (mmol/L) 3.6 ± 1.6 3.5 ± 1.6 0.667 
Triglyceride (mmol/L) 1.6 ± 1.4 1.9 ± 1.2 0.083 
Fasting BSL (mmol/L) 5.3 ± 1.8 5.9 ± 1.8 0.006 
HOMA-IR 2.8 ± 1.9 5.4 ± 5.9 <0.001 
Fibrosis (%) 
   F0-1 (%) 
   F2-4 (%) 

75 (75.8) 
24 (24.2) 

239 (54.6) 
200 (45.4) 

<0.001 
 

Ballooning (%) 
   No ballooning (%) 
   Any ballooning (%) 

37 (37.4) 
62 (62.6) 

131 (30.4) 
308 (69.6) 

0.1510 
 

Steatosis (%) 
   Grade 1-2 (%) 
   Grade 3 (%) 

85 (85.9) 
14 (14.1) 

351 (81.2) 
88 (18.8) 

0.2530 
 

Lobular inflammation  
   Grade 0-1 (%) 
   Grade 2 or more (%) 

88 (88.9) 
11 (11.1) 

352 (80.5) 
87 (19.5) 

0.0782 
 

NAS score  3 ± 2 4 ± 2 0.001 
Values are mean±SD, or number (%), p-value was calculated using Fisher’s exact test and 
student’s t-test. *WHR based on 54 lean patients and 235 non-lean patients. Normal WHR 
defined as less than 0.90 for males and less than 0.85 for females. DNA was available for 471 
patients (86%). 
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4.3.2 Serum bile acid profile is associated with NAFLD severity, 

but not steatosis 

 

Although there is increasing evidence to suggest a critical role for BAs in metabolic 

diseases including NAFLD, their correlation with disease severity is conflicting, likely 

due to the limited sample sizes and various methodologies adapted in previous studies. 

We explored the association between the BA profile and liver histology. 

 

No differences in the total BA, total primary or total secondary BA levels were noted 

between patients with mild steatosis (S1-S2) compared to those with severe steatosis 

(S3) (Figure 12). Next, the association with steatohepatitis activity including the 

severity of inflammation and hepatocyte ballooning was tested. In this analysis, 

significantly higher total BAs (p = 0.006), primary BAs (p = 0.031) and secondary 

BAs (p < 0.001) were found in patients with hepatocyte ballooning, compared to those 

without ballooning (Figure 13).  
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Figure 12. Steatosis grade and bile acid concentration 

Mean concentration of total bile acids, total primary bile acids and total secondary 

bile acids according to hepatic steatosis. The x axis shows hepatic steatosis 

dichotomized as mild (grade 1-2, n = 436) or moderate/severe (grade 3, n = 102), and 

the y axis shows the mean concentration of bile acid levels in µmol/L. Results are 

expressed as mean ± SEM and P value was calculated using the Mann-Whitney non-

parametric t-test. P < 0.05, ** P<0.01, *** P<0.001.  
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Figure 13. Ballooning grade and bile acid concentration 

Mean concentration of total bile acids, total primary bile acids and total secondary 

bile acids according to hepatocyte ballooning. The x axis shows hepatic ballooning 

dichotomized as no ballooning (n = 168) or any ballooning (n = 370), and the y axis 

shows the mean concentration of bile acid levels in µmol/L. Results are expressed as 

mean ± SEM and P value was calculated using the Mann-Whitney non-parametric t-

test. *P < 0.05, ** P<0.01, *** P<0.001.  

 

 

Next, we investigated the relationship between BA and lobular and portal 

inflammation. When comparing degrees of inflammation, higher grades of lobular 

inflammation were associated with higher total (p = 0.027) and secondary BAs 

(1.4680 ± 1.8109 vs 1.4563 ± 1.0038, p = 0.021), while there was no significant 

difference in primary BA levels (p = 0.073). Similarly, there was no significant 

difference in the total BA, primary and secondary BA levels with different grades of 

portal inflammation (Figures 14A and B). 
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Figure 14. Bile acid levels and their associations with 
inflammation.  

A. Mean serum bile acid levels in different lobular inflammation grades, dichotomized 

as lobular inflammation grade 0-1 and grade 2 or more. The x axis shows lobular 

inflammation dichotomized as absent/mild (grade 0-1, n = 440) or moderate/severe 

(grade 2 or more, n = 98), and the y axis shows the mean concentration of bile acid 

levels in µmol/L. B. Mean serum bile acid levels in different portal inflammation 

grades dichotomized as grade 0-1 and grade 2 or more. The x axis shows portal 

inflammation dichotomized as absent/mild (grade 0-1, n = 440) or moderate/severe 

(grade 2 or more, n = 98), and the y axis shows the mean concentration of bile acid 

levels in µmol/L. Results are expressed as mean ± SEM and P value was calculated 

using the Mann-Whitney non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001.  

A. 

B. 
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Higher levels of total BAs (p = 0.001), primary BAs (p = 0.001) and secondary BAs (p 

= 0.002) were seen in patients with higher NAS score, defined as > 3 compared to 

patients with lower scores (Figure 15). Similarly, patients with NASH had higher 

levels of total, primary and secondary BAs, compared to patients with steatosis, but 

only the secondary BA levels were significantly different between the two groups (p = 

0.047).  
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Figure 15. Bile acid distribution with respect to NAFLD activity 
scores (NAS). 
Mean concentration of total bile acids, total primary bile acids, and total secondary 

bile acids according to NAS. The x-axis shows NAS dichotomized as absent/mild (score 

0-3, n = 251) or moderate/severe (grade 3 or more, n = 287), and the y-axis shows the 

mean concentration of bile acid levels in µmol/L. Results are expressed as mean ± 

SEM and P value was calculated using the Mann-Whitney non-parametric t-test. 

P < 0.05, ** P<0.01, *** P<0.001.  
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Figure 16. Bile acid distribution with respect to fibrosis grade 

A) Bile acid composition as a percentage according to hepatic fibrosis. The x-axis 

shows patients with absent/mild (F0-F1, left, n = 314) and moderate/severe fibrosis 

(F2-F4, right, n = 224), and the y-axis shows the percentage composition of each 

individual bile acid in %. B) Mean concentration of total bile acids, total primary bile 

acids and total secondary bile acids according to hepatic fibrosis. The x-axis shows 

hepatic fibrosis dichotomized as absent/mild (F0–F1, n = 314) or moderate/severe 

(F2–F4, n = 224) and the y-axis shows the mean concentration of bile acid levels in 

µmol/L. Results are expressed as mean ± SEM and P value was calculated using the 

Mann-Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  

A. 

B. 
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Lastly, the association of BAs with NAFLD fibrosis stage was tested. The distribution 

of all individual BAs between patients with none/mild fibrosis and those with 

significant fibrosis is depicted in Figure 16A. Patients with significant fibrosis (≥F2) 

had higher total (p = 0.017), primary (p = 0.018) and secondary BA levels (p = 0.045) 

compared to those with none/mild fibrosis (F0-1) (Figure 16B).  This is consistent 

with previous studies (Puri et al. 2017). 

 

At the level of individual BAs, the level of cholic acid was significantly higher in 

patients with significant fibrosis compared to those with none/mild fibrosis (p = 0.026) 

(Figure 15A). Similarly, the levels of glycine and taurine conjugated BAs were 

significantly higher in patients with significant fibrosis compared to those with 

none/mild fibrosis (p = 0.002 and p < 0.001 respectively) (Figures 17B-C).  
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Figure 17. Individual bile acid between fibrosis grades 

A) Mean concentration of cholic acid (CA) according to hepatic fibrosis. The x-axis 

shows hepatic fibrosis dichotomized as absent/mild (F0–F1, n = 314) or 

moderate/severe (F2–F4, n = 224), and the y-axis shows the mean concentration of 

bile acid levels in µmol/L. B) Mean concentration of glycine conjugated bile acids 

according to hepatic fibrosis. The x-axis shows hepatic fibrosis dichotomized as 

absent/mild (F0–F1, n = 314) or moderate/severe (F2–F4, n = 224), and the y-axis 

shows the mean concentration of bile acid levels in µmol/L. C) Mean concentration of 

taurine conjugated bile acids according to hepatic fibrosis. The x-axis shows hepatic 

fibrosis dichotomized as absent/mild (F0–F1, n = 314) or moderate/severe (F2–F4, n = 

224), and the y-axis shows the mean concentration of bile acid levels in µmol/L. 

Results are expressed as mean ± SEM and P value was calculated using the Mann-

Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  

B. 

C. 

A. 
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4.3.3 Lean NAFLD patients have higher serum bile acid levels  

 

Next we explored the bile acid profile between patients with lean and non-lean 

NAFLD. Interestingly, patients with lean NAFLD had higher total, primary and 

secondary BA levels compared to those with non-lean NAFLD, though this was only 

significant for the secondary bile acids (p=0.010) (Figure 18B). The composition of 

individual BAs also differed between lean and non-lean NAFLD patients, wherein 

lean patients had lower Deoxycholic acid (DCA), Glycochenodeoxycholic acid 

(GCDCA) and chenodeoxycholic acid (CDCA), but more glycocholic acid (GCA) 

compared to the non-lean patients (Figure 18A). Lean NAFLD patients also had non-

significantly higher total conjugated and total unconjugated BAs compared to non-lean 

NAFLD patients.  
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Figure 18. Bile acid distribution in lean and non-lean NAFLD 

patients. 

A) Bile acid composition in percentage between lean and non-lean NAFLD patients. 

The x-axis shows lean (n = 99) and non-lean NAFLD patients (n = 439), and the y-axis 

shows the percentage composition of each individual bile acid in %. B) Mean 

concentration of total bile acids, total primary bile acids and total secondary bile 

acids in lean and non-lean NAFLD patients. The x-axis shows lean (n = 99) and non-

lean NAFLD patients (n = 439) and the y-axis shows the mean concentration of bile 

acid levels in µmol/L. Results are expressed as mean ± SEM and P value was 

calculated using the Mann-Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** 

P<0.001.  

 

A. 

B. 
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Given the strong correlation between BA profiles and fibrosis, we examined the 

relationship between bile acids and lean NAFLD stratified by fibrosis stage. When 

stratified in this way, in those with mild fibrosis (F0-1), higher total secondary BA 

levels were observed in lean compared to non-lean NAFLD patients (p = 0.004). No 

significant difference between lean and non-lean patients was observed in those with 

more severe fibrosis (Figures 19A and B). The predominant secondary BAs 

contributing to this difference were deoxycholate (DCA) and ursodeoxycholic acid 

(UDCA) (p<0.05 for both) (Figures 20A and B). Glycocholic acid (GCA) was also 

higher in lean NAFLD patients; however, this difference was not significant (Figure 

21A). The secondary to primary BA ratio was significantly higher in patients with lean 

compared to non-lean NAFLD (p = 0.018) (Figure 21B). 
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Figure 19. Bile acid levels between lean and non-lean stratified 

by fibrosis degrees 

A) Mean concentration of total bile acids, total primary bile acids and total secondary 

bile acids in lean and non-lean patients with absent/mild fibrosis. The x-axis shows 

lean (n = 75) and non-lean (n = 239) patients with absent/mild (F0–F1) hepatic 

fibrosis and the y-axis shows the mean concentration of bile acid levels in µmol/L. B) 

Mean concentration of total bile acids, total primary bile acids and total secondary 

bile acids in lean and non-lean patients with moderate/severe fibrosis. The-x axis 

shows lean (n = 24) and non-lean (n = 200) patients with moderate/severe (F2–F4) 

hepatic fibrosis and the y-axis shows the mean concentration of bile acid levels in 

µmol/L. Results are expressed as mean ± SEM and P value was calculated using the 

Mann-Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  

 

A. 

B. 
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Figure 20. Individual bile acids between lean and non-lean 

A) Mean concentration of deoxycholic acid (DCA). The x-axis shows lean (n = 99) and 

non-lean patients (n = 439), and the y-axis shows the mean concentration of bile acid 

levels in µmol/L. B) Mean concentration of Ursodeoxycholic acid (UDCA). The x-axis 

shows lean (n = 99) and non-lean NAFLD patients (n = 439), and the y-axis shows the 

mean concentration of bile acid levels in µmol/L. Results are expressed as 

mean ± SEM and P value was calculated using the Mann-Whitney non-parametric t-

test. *P < 0.05, ** P<0.01, *** P<0.001.  

A. 

B. 
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Figure 21. GCA levels and secondary/primary BA ratio in lean 

and non-lean NAFLD 

A) Mean concentration of glycocholic acid (GCA). The x-axis shows lean (n = 99) and 

non-lean patients (n = 439), and the y-axis shows the mean concentration of bile acid 

levels in µmol/L. B) Secondary to primary BA ratio in lean and non-lean NAFLD 

patients. The x-axis shows lean (n = 99) and non-lean NAFLD patients (n = 439), and 

the y-axis shos secondary to primary BA ratio. Results are expressed as mean ± SEM 

and P value was calculated using the Mann-Whitney non-parametric t-test. *P < 0.05, 

** P<0.01, *** P<0.001.  

 

A. 
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In a subsequent analysis we determined the relevant clinical factors associated with 

secondary BA levels. Consistently, on univariable analysis, BMI, fibrosis and 

ballooning were associated with secondary bile acid levels. On multivariable analysis, 

only BMI and fibrosis stage remained independently, negatively and positively 

associated with secondary BA levels, respectively (Table 8).  
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Table 8. Univariable and multivariable analysis of total 
secondary bile acids with relevant clinical factors 

Clinical 
factors 

Univariable analysis Multivariable analysis 

β 95% CI p-
value 

β 95% CI p-
value 

Age 0.072 -0.001 0.022 0.082     

Gender -0.021 -0.385 0.222 0.599     

BMI -0.09 -0.059 -0.003 0.029 -0.125 -0.077 -0.014 0.005 

Diabetes -0.046 -0.536 0.148 0.266     

Hypertension 0.016 -0.248 0.369 0.7     

Dyslipidaemia -0.036 -0.413 0.16 0.386     

Total 
cholesterol 

-0.046 -0.191 0.053 0.266     

HOMA-IR 0.027 -0.025 0.042 0.625     

Fibrosis 0.141 0.082 0.333 0.001 0.128 0.052 0.326 0.007 

Steatosis -0.055 -0.331 0.074 0.214     

Ballooning 0.135 0.114 0.513 0.002 0.094 0.009 0.429 0.051 

Lobular 
inflammation 

-0.037 -0.36 0.142 0.396     

Portal 
Inflammation 

-0.03 -0.442 0.248 0.58     

NAS 0.007 -0.09 0.107 0.869     
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4.3.4 Lean NAFLD patients have higher serum FGF19 levels 

 

FXR dysregulation has been implicated in the pathogenesis of NAFLD so we were 

interested to determine if differential effects are observed in lean versus non-lean 

NAFLD (Jiao et al. 2017; Puri et al. 2017). To examine for this, serum FGF19 a 

surrogate marker of FXR activity was measured. In this analysis, reduced levels of 

FGF19 were observed with the advancement of fibrosis stage (p = 0.030) (Figure 22). 

Patients with lean NAFLD had significantly higher FGF19 levels compared to non-

lean NAFLD patients (p = 0.028) (Figure 23A). Interestingly, when stratified 

according to fibrosis severity, the differences were more profound in those with mild 

fibrosis (F0-F1) (p = 0.005), with the reverse being true as fibrosis severity increased; 

this was however not significant (Figure 23B-C). 
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Figure 22. FGF-19 in early and late fibrosis 
 

Mean concentration of FGF19 according to hepatic fibrosis. The x-axis shows hepatic 

fibrosis dichotomized as absent/mild (F0–F1, n = 314) or moderate/severe (F2–F4, n = 

224), and the y-axis shows the mean concentration of FGF19 in pg/mL. Results are 

expressed as mean ± SEM and P value was calculated using the Mann-Whitney non-

parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  
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B. 

  

 

Figure 23. FGF-19 in lean and non-lean, and stratified by fibrosis 

degree 

A) Mean concentration of FGF19 in lean and non-lean NAFLD patients. The x-axis 

shows lean (n = 99) and non-lean (n = 439) NAFLD patients, and the y-axis shows the 

mean concentrations of FGF-19 levels in pg/mL. B) Mean concentration of FGF19 

levels in lean and non-lean patients according to BMI and hepatic fibrosis. The x-axis 

shows lean and non-lean NAFLD patients with absent/mild fibrosis (F0–F1, n = 75 for 

lean and n = 239 for non-lean NAFLD) and and the y-axis shows the mean 

concentrations of FGF-19 levels in pg/mL. C) Mean concentration of FGF19 levels in 

lean and non-lean patients according to BMI and hepatic fibrosis. The x-axis shows 

lean and non-lean NAFLD patients with moderate/severe fibrosis (F2-4, n = 24 for 

lean and n = 200 for non-lean); and the y-axis shows the mean concentrations of FGF-

19 levels in pg/mL. Results are expressed as mean ± SEM and P value was calculated 

using the Mann-Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  

A. 

C. 
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4.3.5 Lean NAFLD patients have lower C4 levels 

 

To investigate differences in bile acid metabolism between lean and non-lean NAFLD, 

C4 levels, a bile acid synthesis intermediate was measured as a marker of de novo BA 

synthesis. In this analysis, no difference in levels of C4 was observed according to 

fibrosis stage (Figure 24A). However, as expected, patients with lean NAFLD had 

significantly lower C4 levels compared to their non-lean counterparts (p = 0.016) 

(Figure 24B). This difference was more predominant in those with mild fibrosis (F0-

F1) (p = 0.010), but not in those with moderate/severe fibrosis (F2-F4) (Figure 24C-

D).  
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Figure 24. C4 levels between lean and non-lean 

A) Mean concentration of C4 according to hepatic fibrosis. The x-axis shows hepatic 

fibrosis dichotomized as absent/mild (F0–F1, n = 314) or moderate/severe (F2–F4, n = 

224), and the y-axis shows the mean concentration of C4 in umol/mL. B) Mean 

concentration of C4 in lean and non-lean NAFLD patients. The x-axis shows lean (n = 

99) and non-lean (n = 439) NAFLD patients, and the y-axis shows the mean 

concentrations of C4 in umol/mL. C) Mean concentration of C4 levels according to 

BMI and hepatic fibrosis. The x-axis shows lean and non-lean NAFLD patients with 

absent/mild fibrosis (F0–F1, n = 75 for lean and n = 239 for non-lean NAFLD) and the 

y-axis shows the mean concentration of C4 in umol/mL D) Mean concentration of C4 

levels according to BMI and hepatic fibrosis. The x-axis shows lean and non-lean 

NAFLD patients with moderate/severe fibrosis (F2-4, right panel, n = 24 for lean and n 

= 200 for non-lean); and the y-axis shows the mean concentration of C4 in umol/mL. 

Results are expressed as mean ± SEM and P value was calculated using the Mann-

Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  
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4.3.6 Lean NAFLD patients have a distinct microbiota profile  

 

The composition of the gut microbiome and their interaction with BAs affects FXR-

mediated signalling in both the liver and intestine and is implicated in NAFLD 

pathogenesis (Jiao et al. 2017; Ramirez-Perez et al. 2017). Hence, we determined gut 

microbiome composition in a small exploratory subset of patients with available stool 

samples by 16S rRNA amplicon sequencing. At the phylum level, no differences in 

taxonomic composition of the gut microbiome were observed according to lean versus 

obese BMI status. At the genus level, Erysipelotrichaceae UCG-003, as well as several 

bacterial genera within the Clostridiales order including Ruminococcus, Clostridium 

sensu stricto 1, Romboutsia and Ruminococcaceae UCG-008 were enriched in lean 

patients, while Ruminiclostridium and Streptococcus were enriched in obese NAFLD 

patients (Mann-Whitney test, p<0.05) (Figures 25 and 26A-F). These changes 

remained significant for Ruminococcaceae UCG-008 when corrected for multiple 

comparison testing (FDR p= 0.010). 
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Figure 25. Microbiota profile between lean and non-lean 

Microbiota abundance differences between the lean and non-lean NAFLD patients. 

The colour denoting each taxa represents the group in which the taxa was identified 

to be significantly increased compared to the comparison group (p < 0.05). 
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D. 

  

  

Figure 26. Individual taxa differences between lean and non-lean 

Abundance of bacterial genera and species that differ between patients with lean 

(n=5) and obese NAFLD (n=24). A) Romboutsia, B) Ruminococcus, C) 

Erysipelotrichaceae, D) Ruminoclostridium. Results are expressed as mean ± SEM and 

P value was calculated using the Mann-Whitney non-parametric t-test. *P < 0.05, ** 

P<0.01, *** P<0.001.  

 

 

A. B. 

C. 



 

 108 

4.4 DISCUSSION 

 

Lean NAFLD constitutes a significant proportion of NAFLD patients though its 

pathogenesis is not well understood. Herein we provide a testable hypothesis for the 

pathophysiological distinction between lean and non-lean NAFLD that can be 

examined in other cohorts. Using biopsy proven Caucasian patients in whom the lean 

NAFLD entity is less frequent than in cohorts from Asia, we demonstrate that lean 

patients have distinct metabolic, genetic, histologic and bile acid profiles, C4 levels, as 

well as differences in FXR activity and gut microbiota compared to their non-lean 

counterparts.  

 

Consistent with other reports (Z. Younossi et al. 2018a), around 1 in 5 Caucasian 

patients with NAFLD are lean and have a favourable metabolic and pathological 

profile, with less insulin resistance and dyslipidaemia, and milder liver histology. A 

reciprocal and intimate interaction between bile acids and gut microbiota is 

associated with, and thought to regulate, metabolic and hepatic traits (Arab et al. 2017; 

Schnabl and Brenner 2014). Although myriad factors could explain the differences we 

observed, our results in toto suggest that the balance and interaction between the 

systemic metabolic milieu and changes in the intestinal microbiome and bile acid 

physiology govern the expression of hepatic disease and the onset and progression 

of NAFLD in patients with a normal BMI.  

 

To elaborate, increased bile acid levels as we observed in lean NAFLD, are reported 

to mediate resistance to diet-induced obesity, a phenomenon called “obesity-
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resistance” (Watanabe et al. 2006; Watanabe et al. 2011). Obesity-resistant rodents 

can burn more dietary fat by increasing energy expenditure. Of relevance, bile acids 

(including major bile acid species such as CA, TCA, DCA and CDCA) increase 

energy expenditure (Watanabe et al. 2006) and CDCA increases human brown 

adipose tissue activity (E. P. M. Broeders et al. 2015). FGF19 which was also 

increased in lean NAFLD, is reported to be a key regulator of energy expenditure 

and improves glucose and lipid homeostasis (Fu et al. 2004), while gut-restricted 

FXR agonism promotes metabolic improvements and enhances thermogenesis and 

browning of white adipose tissue (WAT) in mice (Fang et al. 2015). At microbiota 

level, patients with lean NAFLD had distinct gut microbiota compared to those who 

were non-lean. Lean NAFLD had an increased abundance of members belonging to 

the Clostridium genus, and as well Ruminococcaceae that are involved in the 

formation of bile acids (Kakiyama et al. 2013; Wahlstrom et al. 2016b). Thus, we 

surmise that patients with lean NAFLD have an obesity-resistant phenotype in part 

mediated by greater levels of bile acids, FGF19 and microbiota changes. 

 

The milder disease and favourable metabolic profile of patients with lean NAFLD 

could be explained by the current findings. There is strong evidence that activation 

of bile acid signalling induces improvements in metabolic (glucose and lipid) 

phenotype in murine models, mediated through the actions of FXR activity and 

Takeda G protein-coupled receptor 5 (TGR5) (Pathak et al. 2018; Pierre et al. 

2016). Activation of the FXR in hepatic stellate cells has also been shown in murine 

models to protect against liver fibrosis formation (Schumacher et al. 2020). 

Furthermore, in both humans and murine models, elevated bile acids play a role in 

the metabolic improvements after bariatric surgery, including in type 2 diabetes, 
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dyslipidemia and NASH, even before significant weight loss (A. P. Chambers et al. 

2011; Kohli et al. 2015; Patti et al. 2009). Thus, we suggest that lean patients can 

adapt metabolically and excrete greater amounts of bile acids while their obese 

counterparts are those less able to excrete adequate amounts of bile acids to rid 

themselves of excess cholesterol, even if they are able to maintain a plasma 

cholesterol level comparable to that of lean patients. Consistently, in humans, lean 

and obese patients have differential defence mechanisms to maintain stable serum 

cholesterol levels, wherein dietary cholesterol appears to preferentially induce bile 

acid synthesis in lean compared to obese patients (Klass et al. 2006).  

Notably, we did not observe any association between bile acid levels and hepatic 

steatosis, indicating a potential lack of a protective effect of bile acids on the 

development of steatosis, as opposed to changes in peripheral tissues. Alternatively, 

changes in microbiota might explain the development of steatosis (Chu et al. 2018). 

Similarly, compared to non-lean NAFLD they had an increased relative abundance 

of several phylotypes within the Erysipelotrichaceae family in both patient and 

murine models that have been repeatedly linked to host lipid and cholesterol 

phenotypes in different species (humans, mice, and hamsters) and positively 

associates with changes in liver fat in humans (Martinez et al. 2013). Use of plant 

sterol esters (PSE) to reduce cholesterol in hamsters likewise reduced 

Erysipelotrichaceae abundance (Martinez et al. 2013). Ruminococcaceae UCG-008, 

Clostridium sensu stricto 1 and Romboutsia, which were also enriched in lean 

NAFLD are reported to be strongly correlate with hepatic triglycerides (L. Zhao et 

al. 2018). 
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At a genetic level, we demonstrated that while there was no significant difference in 

the proportions of patients with PNPLA3 rs738409 GG genotype, a significantly 

greater proportion of patients with lean NAFLD carried the TM6SF2 rs58542926 (T) 

allele than non-lean NAFLD patients. Interestingly, TM6SF2 is implicated in 

cholestrol synthesis (Fan et al. 2016) and TM6SF2, but not PNPLA3 genotypes 

correlate with endotoxemia (Pang et al. 2017). Hence, the lean NAFLD phenotype 

might be consistent with “obesity-resistance”, where individuals are still prone to 

develop steatosis in response to an obesogenic environment (and perhaps a diet 

enriched in cholesterol), likely by genetic and gut-driven mechanisms. 

 

We observed that differences between lean and non-lean patients were more 

profound in those with early stages of liver fibrosis. This suggests that with disease 

progression, homeostatic responses might possibly no longer be able to limit 

inflammation and fibrosis, leading ultimately to long-term adverse outcomes, 

despite a favourable baseline metabolic and histological profile (A. C. Dela Cruz et 

al. 2014; Hagstrom et al. 2018). This hypothesis is supported by the higher serum 

bile acid levels and lower FGF19 levels in patients with significant fibrosis. 

Longitudinal studies would be needed to confirm the findings. 

 

The strengths of our report include the study of a large, well-defined, biopsy-proven 

Caucasian cohort, and as detailed an investigation as is possible, from cross-

sectional data. However, our study also has limitations. First, patients were seen in 

tertiary referral centres, and may suffer from selection bias. In addition, dietary 

histories were not available given the accumulation of cohorts over several years, 
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while the cross-sectional design did not allow for interventions or longitudinal 

outcomes and thus, a causal relationship cannot be demonstrated. Lastly, our study 

is limited by the small sample size with regards to microbiome analysis. It would 

also be interesting in future studies to measure differences in faecal bile acids. 

 

4.5 CONCLUSION 

 

In conclusion, in contrast to non-lean NAFLD, lean patients are likely to have a 

distinct pathophysiology. We suggest that the onset of disease occurs at a lower 

BMI set point (with lower measures of insulin resistance and dyslipidaemia) and is 

shaped by the genetics background and early alterations in bile acid and gut 

microbiota profile. These changes might reflect altered dietary composition (perhaps 

with an excess of dietary cholesterol, as previously reported in patients with lean 

NAFLD (Enjoji et al. 2012; Musso et al. 2003; Yasutake et al. 2009b)), altered 

cholesterol metabolism, limitations in adipocyte numbers in childhood, or 

differences in mucosal immunology. Secondary or concomitant alterations in gut 

microbiota composition also drives the phenotype to a greater extent than in patients 

with non-lean NAFLD. This hypothesis does not negate the possibility that there are 

overweight/obese NAFLD patients with a similar pattern of compensatory 

mechanisms but suggests that lean patients have a preponderance of a gut-mediated 

phenotype. Further studies are needed to investigate the contribution of early-stage 

adaptive mechanisms on the long-term hepatic and extrahepatic outcomes of this 

disease. Our hypothesis would suggest that these individuals will have more severe 

and progressive liver disease as it has been suggested before (A. C. Dela Cruz et al. 

2014; Hagstrom et al. 2018), but this hypothesis needs further confirmation.  
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5  CHARACTERISATION OF METABOLIC ADAPTATION IN MICE 

MODELS OF LEAN AND NON-LEAN NAFLD  

 

5.1 INTRODUCTION 

 

Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disease with a spectrum 

ranging from simple steatosis to the more severe form, non-alcoholic steatohepatitis 

(NASH) with its associated morbidity and mortality. Various modifiable factors such 

as diet, microbiota and lifestyle, as well as non-modifiable factors such as genetics and 

epigenetics influence NAFLD pathogenesis.  

 

Given the complexity of NAFLD pathogenesis, animal models have become an 

integral part of elucidating the pathophysiology and the effects of treatment for 

NAFLD. Generally, the C57BL/6 strain in mice and Wistar and Sprague Dawley rat 

strains are preferred for NAFLD models due to the intrinsic predilection to develop 

obesity, type 2 diabetes mellitus and NAFLD (Van Herck et al. 2017).  

 

NAFLD and its metabolic syndrome components can be induced in animal models 

using nutritional, chemical or genetic models, or a combination of these. The ideal 

animal model of NAFLD should reflect the pathophysiology of human 

NAFLD/NASH with the hepatic as well as metabolic manifestations. Although many 

of the genetic models of NASH induce steatohepatitis, they do not occur very quickly 

as in the dietary models, in addition to them being more costly. Furthermore, many 

genetic models of NASH require a secondary stimulus such as dietary or endotoxin to 
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promote progression from steatosis to steatohepatitis. Lastly, the implicated mutations 

used in the genetic models of NASH are often not prevalent in human patients, making 

the models less applicable (Jacobs et al. 2016). Chemically induced animal models 

like the genetic models also often require a combination of dietary interventions to 

achieve the desired outcomes. Hence these models are more useful for investigation of 

a more advanced NAFLD phenotype such as advanced fibrosis, cirrhosis and HCC 

(Jacobs et al. 2016). Therefore, dietary animal models of NAFLD are more commonly 

utilised. 

 

One of the diets commonly used in NAFLD animal models is the atherogenic (Ath) 

diet. This diet contains a relatively high dose of cholesterol and cholic acid. The 

atherogenic diet induces steatosis and inflammation typically after 6 weeks, with 

hepatocellular ballooning and fibrosis. In addition, these animals display increased 

levels of ALT and total cholesterol, with minimal weight gain. The addition of a high-

fat component to the Ath diet can increase hepatic insulin resistance and further 

accelerate disease progression (Van Herck et al. 2017). 

 

The excessive intake of fructose, a monosaccharide primarily metabolized in the liver 

has been associated with the development and progression of NAFLD by promoting 

fat deposition, inflammation, oxidative stress, insulin resistance and fibrosis 

(Stephenson et al. 2018). Fructose-supplemented drinking water in both rats and mice 

induces simple steatosis after 8 weeks with significant increases in body weight, 

plasma triglycerides and glucose levels. In addition, there is intestinal bacterial 
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overgrowth observed, followed by increased endotoxin levels in the portal blood and 

activation of Kupffer cells (Van Herck et al. 2017). 

 

In our study, we were interested to see if the findings found in lean and non-lean 

NAFLD patients could be replicated in mice models. For this, we used C57BL/6 mice 

fed either an atherogenic (Ath) diet to replicate lean NAFLD given its ability to induce 

steatosis and inflammation without inducing weight gain, or a high sucrose (HS) diet 

to replicate our non-lean NAFLD models given its ability to promote NAFLD 

development and progression with insulin resistance and the associated significant 

weight gain. 

 

5.2 METHODS 

 

Five to six male C57BL/6 mice were fed either a high sucrose diet (HS) diet or 

cholesterol rich diet (ChR) to recapitulate human non-lean and lean NAFLD features, 

respectively. Details of the source of mice, dietary composition for the two groups as 

well as methods for RNA extraction from mice tissues, cDNA synthesis and qPCR are 

described in chapter 2. Bile acid profile measurement, serum fgf15 level and gut 

microbiota profile methods are  described in chapter 2. 
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5.3 RESULTS 

5.3.1 High sucrose, but not the cholesterol rich diet results in 

weight gain and increased steatosis 

 

Mice fed the high sucrose (HS) diet gained an average 30-40% of weight compared to 

their baseline weight. This is in contrast to mice fed the ChR diet where they remained 

lean (Figure 27A and B) 
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Figure 27. Body weight and liver/body weight ratio in mice fed 

cholesterol rich (ChR) and high sucrose (HS) diet 

A. Changes in body weight over time. The x-axis shows the number of weeks and the 

y-axis shows the % change in body weight from baseline. B. Liver/body weight ratio in 

ChR diet mice and HS diet mice. The x-axis shows the ChR and HS fed mice and the y-

axis shows the ratio of the liver to total body weight. Results are expressed as 

mean ± SEM and P value was calculated using the Mann-Whitney non-parametric t-

test. *P < 0.05, ** P<0.01, *** P<0.001.  

 

 

A.
 

B. 
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Additionally, mice fed the HS diet had higher fasting serum glucose level with worse 

glucose tolerance test compared to mice fed the ChR diet (Figure 28A and B). In both 

groups, a glucose loading dose was administered and blood sugar level was measured 

every 20 minutes. There was a peak of blood glucose concentration seen in both 

groups after a glucose loading, followed by more rapid resolution of the glucose peak 

in the ChR mice group, indicating better glucose tolerance. 
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Figure 28. A. Fasting blood glucose levels and B. glucose 

tolerance test between mice fed cholesterol rich (ChR) and high 

sucrose (HS) diet.  

The x-axis shows the ChR (n=5) and HS (n=6) groups in A, and time after blood 

glucose loading in minutes in B and the y-axis shows blood glucose levels in mg/dL. 
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All mice in both groups developed NAFLD at the end of the study. As shown in the 

representative histology images in Figure 29, mice fed the HS diet developed 

increased steatosis; mice fed the ChR diet developed steatosis with increased 

inflammatory infiltrates.  

 

 

Figure 29. Histology images of mice fed cholesterol rich (ChR) 

and high sucrose (HS) diet.  

Hematoxylin and Eosin (H&E) images of liver biopsies taken from ChR (n=5) and HS 

(n=6) mice 
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5.3.2 Lean NAFLD mice models have higher bile acid levels with 

distinct profile 

 

Like our human results, our lean NAFLD mice models had higher total (p = 0.01), 

primary (p = 0.02) and secondary bile acids (p = 0.06) compared to the non-lean 

NAFLD mice models, although this was only significant for total and primary BA 

levels  (Figure 30).  

 

Figure 30. Total bile acids, total primary bile acids and total 

secondary bile acids level in mice fed cholesterol rich (ChR) and 

high sucrose (HS) diet.  

The x-axis shows total BA, total primary BA and total secondary BA in ChR (blue, n=5) 

and HS (red, n=6) diet fed mice. The y-axis shows mean BA concentration in uMol/L. 

Results are expressed as mean ± SEM and P value was calculated using the Mann-

Whitney non-parametric t-test. *P < 0.05, ** P<0.01, *** P<0.001.  
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In terms of BA distribution profile, the primary BAs cholic acid (CA) and its 

conjugate taurocholic acid (TCA), as well as taurodeoxycholic acid (TDCA) were 

present in higher proportion in the ChR group compared to the HS group (Figure 31). 

On the other hand, muricholic acid (MCA), deoxycholic acid (DCA) and lithocholic 

acid (LC) were present in a higher proportion in the HS compared to the ChR group 

(Figure 31). 
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Figure 31. Bile acid distribution between mice fed cholesterol 
rich (ChR) and high sucrose (HS) diet.  
The x-axis shows the cholesterol rich (ChR, n=5) and high sucrose (HS, n=6) fed mice 

groups. The y-axis shows proportion of each BA in %. 
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5.3.3 Lean NAFLD mice model has a distinct gut microbiota 

profile 

 

Analysis of the microbiota demonstrated a distinct and separate microbiota profile 

between lean NAFLD and non-lean NAFLD mice models, with changes in 

composition (PERMANOVA P= 0.009, pseudo-F= 18.58, 126 permutations, Figure 

32A) as reflected broadly by significant changes in the relative abundances of the two 

major phyla, Firmicutes and Bacteroidetes, as well as in Actinobacteria, Cyanobacteria 

and Proteobacteria. Mice fed the ChR diet were observed to have an increased relative 

abundance of Bacteroidetes and a decrease in Firmicutes compared to those fed high 

sucrose (Figure 32B). As we observed in humans, similar trends were noted for the 

abundance of members of the Ruminococcaceae bacterial family in the high 

cholesterol diet fed (lean NAFLD) mice. These changes were also observed for 

several phylotypes within the Erysipelotrichaceae (Figures 32C and D). 
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Figure 32. Gut microbiota profile in mice fed cholesterol rich 

(ChR) diet and mice fed high sucrose (HS) diet.  

A. Microbiota composition between the two groups showing distinct separation of 

profiles. B. Comparison of the abundance of the phyla Firmicutes and Bacteroidetes 

between the two groups. C. Microbiota abundance differences between the two 

groups. The colour denoting each taxa represents the group in which the taxa was 

identified to be significantly increased compared to the comparison group (p < 0.05). 

D. Microbiota composition between the two groups. Each colour denotes each taxa 

and the y-axis represents the % abundance. 

 

C. 
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5.3.4 The increased bile acids in lean NAFLD mice model is due 

to increased bile acid synthesis 

 

To investigate if the increased levels of BA seen in the lean NAFLD mice model is 

due to increased BA production or increased BA reuptake from the enterohepatic 

circulation, we performed qPCR on mice liver and ileal tissues to quantify the mRNA 

levels of several BA synthetic enzymes as well as BA transporters.  

 

Our results showed that in the lean NAFLD model, BA synthetic enzyme mRNAs in 

the liver were significantly higher compared to those in the non-lean NAFLD mice 

model. This was true for both the BA synthetic enzymes involved in the classical 

pathway (p = 0.0016 for CYP7A1 (Figure 33A and C) and p = 0.001 for CYP8B1) as 

well as alternative pathway (p = 0.0031 for CYP27A1) (Figure 33B).  
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Figure 33. Liver bile acid synthetic enzyme mRNA levels in mice 

fed a cholesterol rich (ChR) or a high sucrose (HS) diets.  

A. Cytochrome P450 7A1 (CYP7A1, classical pathway). B. Cytochrome P450 27A1 

(CYP27A1, alternative pathway) and C. Cytochrome P450 8B1 (CYP8B1, classical 

pathway). The x-axis shows the two groups, cholesterol rich (ChR, n=5) versus high 

sucrose (HS, n=6) fed mice. The y-axis shows mRNA levels in folds, using 36B4 as 

housekeeping gene. Results are expressed as mean ± SEM and P value was calculated 

using the Mann-Whitney non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 

 

 

C. 
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When we compared the BA transporter mRNA levels between lean and non-lean 

NAFLD models, although it appeared that there was increased expression of BA 

transporters OST beta and ASBT in the ileum of lean NAFLD models, this was not 

significant (p = 0.1049 for OST beta and p = 0.3450 for ASBT) (Figure 34A and B). 
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Figure 34. Ileal bile acid transporters organic solute transporter 

beta (OST beta) and apical sodium bile acid transporter (ASBT) 

in mice fed a cholesterol rich (ChR) or a high sucrose (HS) diet 

A. OST beta bile acid transporter and B. ASBT bile acid transporter. The x-axis shows 

the two groups, cholesterol rich (ChR, n=5) versus high sucrose (HS, n=6) fed mice. 

The y-axis showed mRNA levels in folds, using 36B4 as housekeeping gene. Results 

are expressed as mean ± SEM and P value was calculated using the Mann-Whitney 

non-parametric t-test. P < 0.05, ** P<0.01, *** P<0.001. 

A. 

B. 
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5.3.5 Lean NAFLD mice model have elevated FXR activity  

 

Analysis of ileal fibroblast growth factor 15 (fgf15), the mouse equivalent of human 

FGF-19 showed significantly higher levels in our lean NAFLD, compared to the 

non-lean NAFLD mice (Figure 35A).  The increased fgf15 levels activates the FGF 

receptor in the liver to stimulate hepatic FXR activity (Figure 35B). 

 

 

 

Figure 35. Serum fgf15 levels (A) and FXR mRNA levels (B) in 
mice fed a cholesterol rich (ChR) or a high sucrose (HS) diet.  
The x-axis shows the cholesterol rich (ChR, blue, n=5) and high sucrose (HS, red, n=6) 

diet fed mice. The y-axis showed the mean serum fgf15 levels in pg/ml in A, and 

mRNA levels in folds in B, using 36B4 as housekeeping gene. Results are expressed as 

mean ± SEM and P value was calculated using the Mann-Whitney non-parametric t-

test. P < 0.05, ** P<0.01, *** P<0.001. 

A. 

B. 
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5.4 DISCUSSION  

 

We used mice fed a cholesterol rich diet (ChR) to replicate human lean NAFLD and 

mice fed a high sucrose (HS) diet to replicate non-lean NAFLD patients. Mice fed the 

ChR diet like in human lean NAFLD maintained their weight throughout the period, as 

opposed to mice fed a HS diet. The latter gained significant amounts of weight during 

the experiment. Furthermore, mice in the ChR diet group had significantly better 

fasting glucose levels as well as a better response to the glucose tolerance test 

suggesting better insulin sensitivity. Histologically, both mice groups developed 

steatosis, however, the lean NAFLD mice demonstrated increased inflammatory 

infiltrates.  

 

Like in human NAFLD, the gut microbiota profile in the mice models showed similar 

patterns between the groups. There was increased Bacteroidetes and decreased 

Firmicutes in the lean NAFLD compared to the non-lean NAFLD mice. Previous 

studies have demonstrated possible roles of certain families of microbiota including in 

Bacteroidaceae and Erysipelotrichaceae with BA metabolism. Increased BA levels are 

associated with increased levels of these families (Zietak 2016). This may explain our 

finding of increased BA production through up-regulation of BA synthetic enzyme 

mRNA. Furthermore, certain taxa belonging to the family Erysipelotrichaceae and 

Coriobacteriaceae have been shown to be decreased in non-obese humans or those 

who have lost weight after gastric bypass compared to obese humans (Zhang et al. 

2009). This is similar to our mice where the levels of the taxa belonging to 

Erysipelotrichaceae was lower in the lean compared to the non-lean NAFLD mice.  
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We were able to demonstrate increased levels of bile acids in lean NAFLD mice which 

is similar to what was seen in human NAFLD patients. Further testing also suggested 

that the increased level of bile acid is due to increased bile acid production, as 

evidenced by the up regulation of BA synthetic enzymes involved in both the classical 

and alternative pathways.  

 

The increased levels of ileal bile acid transporter mRNAs for ASBT and OSTβ (which 

accounts for more than 95% of intestinal BA reabsorption from the distal ileum 

enterocytes (Chavez-Talavera et al. 2017)), despite not being significant, may reflect 

the better metabolic adaptation seen in lean NAFLD mice, as in our human lean 

patients. Bile acids stimulate secretion of several hormones including fgf15 (mouse 

equivalent of human FGF-19) from the enteroendocrine cells which has positive 

metabolic effects, including improved glucose tolerance. In addition, fgf15 is involved 

in metabolic adaptation through mediating bile acid synthesis in the liver, acting via 

the FXR pathway.  

 

Despite the many similarities and benefits of using mice models to study human 

disease in terms of their homogeneity and more standardized nutritional manipulation,  

there are also differences between mice and humans. Thus , results from mice models 

must be interpreted with caution. Mice for example have distinct bile acid homeostasis 

compared to humans. Whereas in humans the primary bile acid pool is made up of 

cholic acid (CA) and chenodeoxycholic acid (CDCA) and their conjugates, in mice the 

majority of the primary BA pool is comprised of T-βmuricholic acid (T-βMCA) and 
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T-αmuricholic acid (T-αMCA) which are formed through hydroxylation of CDCA and 

UDCA respectively, via the enzyme CYP2c70 (McGlone et al. 2019). This difference 

in BA pool composition also affects the physiology seen in the two species, as MCA 

are FXR antagonists, whereas CDCA is a potent FXR agonist (McGlone et al. 2019). 

In addition, there are also differences in the homeostasis of BA in humans and mice. 

In mice, bile acids are almost exclusively conjugated with taurine which has greater 

solubility, whereas in humans, the majority of bile acids are conjugated with glycine, 

with only a small proportion being conjugated to taurine (McGlone et al. 2019). 

 

5.5 CONCLUSION 

 

Lean NAFLD is a unique sub-group of NAFLD with unclear pathophysiology. In this 

study we demonstrated using mice models fed a cholesterol rich or a high sucrose diet, 

certain similarities to human NAFLD patients, namely in their histological and 

metabolic profile, as well as in bile acid homeostasis. We also demonstrated a distinct 

and improved metabolic adaptation in the lean mice similar to human patients with 

respect to increased FXR activity. Although the results suggests the potential to 

undertake interventional experiments on NAFLD pathophysiology, including lean 

NAFLD, mice models have key differences with respect to their bile acid physiology 

and results must therefore be interpreted with caution. 
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6 METABOLOMIC ANALYSIS OF LEAN NAFLD COMPARED TO 

NON-LEAN NAFLD AND LEAN HEALTHY CONTROLS 

 

6.1 INTRODUCTION 

 

The search for non-invasive biomarkers for the diagnosis and staging of NAFLD is an 

unmet need. Liver biopsy remains the gold standard for diagnosing and staging 

NAFLD, but it is invasive and subject to sampling error and inter-observer variability 

(Brunt et al. 2011). Although multiple non-invasive methods have been studied for use 

in quantification of hepatic steatosis and fibrosis including magnetic resonance 

imaging proton density fat fraction (MRI-PDFF) and magnetic resonance elastography 

(MRE), these modalities lack the ability to quantify hepatic inflammation, ballooning 

and injury, all essential for the diagnosis of NASH (Mayo et al. 2018).   

 

Current therapeutic options for NAFLD and NASH are limited to lifestyle intervention 

but the optimal dietary nutrient composition and exercise requirement are still 

debatable to achieve the greatest histologic benefit. Although several drugs have been 

considered useful for use in NAFLD, their benefit and long-term efficacy as well as 

safety are uncertain. Hence, metabolomics might provide an interesting tool to achieve 

early and better diagnosis, understand disease pathogenesis and suggest targets for 

development of new treatments (Gitto et al. 2018). 

 

Previous studies on metabolomic profiling in patients with NAFLD and NASH have 

shown modifications in the metabolites including lipids, amino acids, glucose and bile 
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acid pathways. The results however remain conflicting due to the vast range of sample 

sizes, differences in populations as well as methods of metabolomic profiling (Gitto et 

al. 2018).  

 

We identified the bile acid pathway to be significantly altered between different stages 

of NAFLD as well as between lean and non-lean NAFLD. Hence, in this chapter we 

aim to further explore this from a metabolomics perspective to determine if other 

metabolic pathways are different between the lean and non-lean NAFLD groups. 

 

6.2 METHODS 

 

We selected a sub-group of patients from our large cohort for metabolomics analysis 

keeping the ratio between the lean and non-lean NAFLD groups similar to that of our 

previous comparisons. A total of 181 patients were analysed (19 lean and 162 non-lean 

NAFLD). We performed untargeted metabolomics analysis using two different 

platforms, the AMIDE (negative ion mode) and the HILIC (positive ion mode) 

methods, which look into different metabolic pathways as described below. 

 

6.2.1 AMIDE METHOD 

 

The AMIDE method measures polar compounds by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) using electrospray ionization (ESI) in the negative 

ion mode.  Positive mode can also be used. Analytes include amino acids, 

nucleotides, nucleosides, nucleotide triphosphates, high-energy intermediates, organic 

acids, TCA cycle intermediates, bile acids and vitamins. 
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Briefly, 80μL of amide IS-IS is added to 20μL of each serum sample and the mixture 

vortexed to promote protein precipitation. The sample mixtures are centrifuged at 

14000rpm for 20 minutes at 4oC. After that, 75μL of the supernatant is transferred 

into glass vials with inserts, taking care to avoid transferring protein pellet particles. 

The vial is capped and stored at -30oC until time of analysis. Further details on 

reagent preparation, mass spectrometer settings and list of metabolites are in the 

Appendix section. 

 

6.2.2 HILIC METHOD 

 

The HILIC method measures polar compounds by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) using electrospray ionization (ESI) in the positive ion 

mode. Analytes include amino acids, nucleotides, neurotransmitters and selected 

medications and vitamins. 

 

Briefly, to 10μL of serum, 90 μL of HILIC IS-IS is added and the mixture vortexed to 

promote protein precipitation. The sample mixtures are then centrifuged at 14000 rpm 

for 20 minutes at 4oC. After that, 75μL of supernatant is transferred into glass vials 

with inserts, taking care to avoid transferring protein pellet particles. The vial is 

capped tightly and stored at -30oC until time of analysis. Further details on reagent 

preparation, mass spectrometer settings and list of metabolites are in the Appendix 

section. 
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6.2.3 STATISTICAL ANALYSIS 

 

Ions from both ESI- and ESI+ are merged and imported into the SIMCA-P program 

(version 14.1) for multivariate analysis. A principal components analysis (PCA) is first 

used as an unsupervised method for data visualization and outlier identification. 

Supervised regression modelling is then performed on the data set by use of partial 

least squares discriminant analysis (PLS-DA) or orthogonal partial least squares 

discriminant analysis (OPLS-DA) to identify the potential biomarkers. The biomarkers 

are filtered and confirmed by combining the results of the VIP values (VIP > 1.5) and 

t-test (p < 0.05). The quality of the fitting model can be explained by R2 and Q2 values. 

R2 displays the variance explained in the model and indicates the quality of the fit. Q2 

displays the variance in the data indicating the model’s predictability. Figure 36 

shows a flowchart of how metabolomics analysis was performed. 
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Figure 36. Flowchart of metabolomics analysis from sample 

preparation to identification 
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6.3 RESULTS 

 

6.3.1 Patient demographics 

 

We analysed a total of 181 well-characterised, biopsied NAFLD patients (19 lean and 

162 non-lean). The baseline patient demographics are shown in Table 9. 

 

Patients in both lean and non-lean NAFLD groups were selected to match in terms of 

their age and gender. Apart from patients in the non-lean NAFLD patients having 

significantly more diabetes, there was no significant difference in the total cholesterol 

level as well as their histological profile between the two groups. 
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Table 9. Baseline characteristics of lean and non-lean NAFLD 

patients for metabolomics analysis 

  Lean NAFLD (n = 19) Non-lean NAFLD (n = 162) p-value 
Age (years) 50 ± 8.01 51 ± 13.6 0.7541 
Male (%) 10 (52.6) 81 (50) 1.000 
BMI (kg/m2) 23.0 ± 1.3 32.4 ± 5.8 <0.001 
ALT (IU/ml) 65.2 ± 36.0 74.0 ± 52.8 0.4808 
Diabetes (%) 2 (10.5) 39 (24.1) <0.001 
Hypertension (%) 7 (36.8) 58 (35.8) 1.000 
Dyslipidaemia (%) 9 (47.4) 90 (55.6) 0.6274 
Total Cholesterol (mmol/L) 5.3 ± 1.2 5.1 ± 1.2 0.4928 
Fibrosis (%) 
   F 0-1 (%) 
   F 2-4 (%) 

14 (73.7) 
5 (26.3) 

100 (61.7) 
62 (38.3) 0.4519  

Ballooning (%) 
   No ballooning (%) 
   Any ballooning (%) 

14 (73.7) 
5 (26.3) 

105 (64.8) 
57 (35.2) 0.6105  

Steatosis (%)** 
   Grade 1-2 (%) 
   Grade 3 (%) 

15 (78.9) 
4 (11.1) 

133 (82.1) 
29 (17.9) 0.7548  

Portal inflammation  
   No inflammation (%) 
   Inflammation (%) 

10 (52.6) 
9 (47.4) 

78 (48.1) 
84 (51.9) 0.8181  

Lobular inflammation  
   No inflammation (%) 
   Inflammation (%) 

8 (42.1) 
11 (57.9) 

77 (47.5) 
 85 (52.5) 0.8089  

NAS score  2 ± 2 3 ± 2 0.0407 
 

Values are mean±SD, or number (%), p-value was calculated using Fisher’s exact test and 
student’s t-test.  
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6.3.2 Principal component analysis demonstrates unclear 

groupings between the two groups 
 

After normalization is carried out, a line plot was used and all the peaks are merged 

and imported into the SIMCA-P software for multivariate statistical analysis. As 

shown in Figure 37, the line plot demonstrated relative system instability during 

sample analysis 

 

Figure 37. The line plot of samples 

Line plot of samples to evaluate the methodology. The x-axis indicates the number of 

samples and the y-axis indicates the 95% confidence interval. 

 

To investigate global metabolism variations, we first use PCA to analyse all 

observations acquired in both ion modes. PCA is a technique used to emphasize 
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variation and bring out strong patterns in a dataset. It is often used to make data easy 

to explore and visualize. It also acts as an unsupervised pattern recognition method for 

handling metabolomics data and can classify the metabolic phenotypes based on all 

imported samples. Due to the unsupervised pattern, the result can be unsatisfactory 

sometimes. As shown in the PCA plot (Figure 38), an overview of all samples in the 

data can be observed and exhibit an unclear grouping trend between the two groups. 

 

Figure 38. The scores scatter plot of the PCA model. 

The x-axis represents the first component and the y-axis represents the second 

component. The two groups are denoted as 1 (lean NAFLD) and 2 (non-lean NAFLD). 
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6.3.3 Metabolic changes in the two groups 
 

In order to eliminate any non-specific effects of the operative technique and confirm 

the biomarkers, partial least square discriminant analysis (PLS-DA) and orthogonal 

partial least square discriminant analysis (OPLS-DA) was performed to compare 

metabolic changes in the two groups, respectively. 

In PLS-DA score plot, as well as the OPLS-DA score plot, an unclear separation of the 

two groups is observed (Figures 39 and 40). 

 

Figure 39. The scores scatter plot of partial least squares 

discriminant analysis (PLS-DA) model between lean and non-

lean NAFLD. 

The groups are marked as 1 (lean NAFLD) and 2 (non-lean NAFLD) 
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Figure 40. The scores scatter plot of the orthogonal partial least 

squares discriminant analysis (OPLS-DA) model between lean 

and non-lean NAFLD 

The groups are marked as 1 (lean NAFLD) and 2 (non-lean NAFLD). 
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Interestingly, while there was no clear separation between the two groups when 

analysed based on lean and non-lean NAFLD groups overall, there was distinct 

separation in the OPLS-DA model between the extremes of lean NAFLD patients with 

advanced fibrosis and non-lean NAFLD patients with none/mild fibrosis (Figure 41).  

This could reflect differences in metabolism between advanced and none/mild fibrosis. 

 

Figure 41. Scores scatter plot of the orthogonal partial least 

squares discriminant analysis (OPLS-DA) between lean NAFLD 

with advanced fibrosis and non-lean NAFLD with none/mild 

fibrosis 
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6.3.4 Single variable analysis based on significant variable 

importance of projection (VIP) values 

 

Significantly changed metabolites between the groups were filtered out based on the 

variable importance of projection (VIP) values. Significant VIP values are considered 

to be VIP > 1.5. The PLS-DA loading plot is shown in Figure 42 with metabolites in 

red labelled as significant compounds (VIP > 1.5).  

 

Figure 42. The loading plot of the PLS-DA model, with 

metabolites in red labelled as significant compounds (VIP>1.5).  

Var_60 is Cystamine and Var_19 is Pyruvate.  

 

 

 

Univariate analysis was then performed on a volcano plot, shown in Figure 43, 

including fold change analysis and t-test. As shown, the result from the univariate 



 

 150 

analysis did not show any significance, likely due to the small number of samples and 

the instability of sample analysis. 

 

Figure 43. Volcano plot of data. 

Univariate analysis of metabolites with values of Y > 1.30 and X > 1 considered to be a 

significant increase; values of Y > 1.30 and X < 1 considered to be a significant 

decrease. 
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6.3.5 Identification of potential biomarkers 

 

The chemical structures of important metabolites were then identified according to 

online databases such as the Human Metabolome Database (www.hmdb.ca), Metlin 

(www.metlin.scripps.edu) and massbank (www.massbank.jp) using the data of 

accurate masses and MS/MS fragments. When necessary, further confirmation was 

acquired through comparisons with authentic standards including retention times and 

MS/MS fragmentation patterns.  

 

6.3.6 Cluster analysis  

 

Mean values of metabolite contents are used to calculate the metabolite ratio. After log 

transformation of the data, median centred ratios are then normalized. Hierarchical 

clustering analysis (HCA) is performed using the complete linkage algorithm of the 

program Cluster 3.0 (Stanford University) and the results are visualized using 

Treeview (Stanford University). Metabolite ratios from two independent experiments 

of every significant metabolite are used for the HCA. Colour intensity correlates with 

degree of increase (red) and decrease (blue) relative to the mean metabolite ratio. The 

HCA of metabolomics data from the lean and non-lean NAFLD groups is shown in 

Figure 44. 

http://www.hmdb.ca/
http://www.metlin.scripps.edu/
http://www.massbank.jp/
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Figure 44. Hierarchical cluster analysis of metabolomics data 

from significant metabolites 

Hierarchical cluster analysis (HCA) from metabolite ratios of every significant 

metabolite. Red denotes degree of increase and blue denotes degree of decrease 

relative to the mean metabolite ratio. 

 

After performing the HCA, the top 3 metabolites with the most significant fold change 

were identified. Table 10 shows the fold change for the top 3 metabolites and the t-test 

analysis between the two groups. 

 

Table 10. T-test analysis of the top 3 metabolites  
Metabolite  Mean metabolite ratio Fold change (FC) Log2FC p-value 
ATP 11.6739 0.655834 -0.6086 0.011797 
Fructose-6-phosphate 1.013142 0.795882 -0.32943 0.01206 
Cysteine 1.331316 0.944543 -0.08231 0.009122 
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6.3.7. Correlation network of metabolites 

 

To investigate the latent relationships of the metabolites, a correlation network 

diagram was constructed based on the KEGG databases and MBRole. All significant 

metabolites are imported to obtain the categorical annotations, including pathways, 

enzyme interactions and other biological annotations, using the limiting condition of p 

< 0.05 in the MBRole.  

A metabolic pathway map is then constructed based on relevant literature and the 

KEGG database. The correlation map is shown in Figure 45. 

 

 

Figure 45. Metabolic network of the significantly changed 

metabolites.  

Red represents increase and green represents decrease. 
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6.4 DISCUSSION 

 

In this chapter, we performed non-targeted metabolomics analysis comparing 

metabolites in lean and non-lean NAFLD patients. As previously outlined by us and 

other studies, lean NAFLD represents a distinct subgroup characterised by better 

metabolic adaptation mediated by the interplay of gut microbiota, bile acid 

metabolism, genetic background and lifestyle factors. We aimed to perform untargeted 

metabolomics analysis to determine if we were able to find signature metabolites 

which are characteristic of lean NAFLD. The metabolomics analysis demonstrated a 

few salient findings.  

 

Firstly, one of the top 3 metabolites that were identified to be different between the 

two groups was fructose-6-phosphate. Fructose-6-phosphate is a metabolite from 

glucose and fructose metabolism which has been implicated in human and animal 

studies to be involved in the pathogenesis of NAFLD and NASH through promotion 

of fat accumulation in the liver due to both increased lipogenesis and decreased fat 

oxidation (Jensen et al. 2018). This is partly mediated through the metabolism of 

fructose by fructokinase C with associated ATP consumption, which results in 

nucleotide turnover and uric acid generation. This promotes fat accumulation (Jensen 

et al. 2018). Interestingly, ATP was also identified as one of the significantly different 

metabolites between lean and non-lean NAFLD groups, further supporting this 

hypothesis. 
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Cysteine, a trans-sulphuration product from a sulphur containing amino acid 

homocysteine, was also identified to be significantly different between lean and non-

lean NAFLD patients. Disturbances in the metabolism of homocysteine and cysteine 

has been implicated in a number of conditions such as cardiovascular disease and 

type-2- diabetes, as well as in obese NAFLD through promotion of hepatic oxidative 

stress (Francque et al. 2016; Kalhan et al. 2011). Furthermore, a study on 

metabolomics profile in paediatric patients with NAFLD also found a positive 

correlation between plasma cysteine level and presence of hepatic fibrosis suggesting 

its potential role in disease progression (Pastore et al. 2014) 

 

The significantly altered ABC (ATP-binding cassette) transporters pathway between 

lean and non-lean NAFLD is also interesting. ABC transporters are a group of 

membrane transporters, which consist of a wide variety of proteins that hydrolyze 

ATP to actively transport xenobiotics, endobiotics and their conjugates across cellular 

membranes. These efflux transporters reside on the sinusoidal and canalicular 

membranes of hepatocytes and transport substrates into the blood and bile, 

respectively (Hardwick et al. 2011). Disruptions of these transporter functions have 

been implicated in multiple diseases including NAFLD. In one study of ABC 

transporter functions during progression of NAFLD to NASH, increased expression of 

multiple efflux transporters and altered cellular localization of ABC transporters, 

especially ABCC2 was found in NASH (Hardwick et al. 2011). 

 

Bile acid metabolism although not considered to be the top significantly altered 

pathway in our study remained significantly different between lean and non-lean 
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NAFLD groups (p = 0.0101). This is consistent with results from our previous 

chapters as well as multiple other studies in NAFLD. 

 

Metabolomic profiling between lean and non-lean NAFLD has previously been 

undertaken. In one study, the serum metabolome of 187 subjects from lean healthy, 

lean NAFLD and obese NAFLD was compared; this showed differences in 

phosphatidylcholine and lysine, and branched chain amino acids lysine, tyrosine and 

valine to be significantly different on multiple logistic regression analysis (Feldman et 

al. 2017b). Unfortunately, due to the instability of the sample analysis (owing to 

technical reasons which resulted in the run being interrupted several times) as well as 

the underpowered sample size, most of the results were insignificant. However, when 

samples were analysed based on the extremes of BMI in the two groups, the scatter 

plot demonstrated a much clearer separation between two groups, although this could 

be due to differences in metabolism between patients with advanced versus mild 

fibrosis and not necessarily BMI driven. Unfortunately, there were only a small 

number of patients with advanced fibrosis in the lean group making this analysis 

limited.  

 

Future directions would involve increasing the number of samples, especially those at 

extremes of BMI and fibrosis to hopefully distinguish the two groups better and 

potentially identify metabolites which are able to be used as potential biomarkers for 

diagnosis or prognostication purposes in patients with lean NAFLD.  
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6.5 CONCLUSION 

 

In conclusion, metabolomics analysis remains a useful tool for identification of 

biomarkers for many diseases including lean NAFLD. Our analysis, although mostly 

insignificant, suggested a few differences in metabolism between lean and non-lean 

patients, especially for those involved in fructose/glucose metabolism as well as in 

active transporters. Further studies are required to better characterise this important 

subgroup of NAFLD. 
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7 SUMMARY AND CONCLUSIONS 

 

7.1 SUMMARY OF FINDINGS 

 

This series of chapters are part of a project to investigate the underlying pathogenesis 

of lean NAFLD, a subgroup which is under-recognized with unclear mechanisms.  

 

We have introduced the concept of metabolic health and how it governs an 

individual’s risk for development of metabolic disease, including NAFLD. This is 

mediated through the regulation of adiposity, insulin resistance, inflammation and bile 

acid metabolism. In the first result chapter we investigated the role of metabolic health 

in bile acid metabolism in lean NAFLD compared to lean and non-lean healthy 

controls. We found that metabolic health status played a greater role in determining 

their bile acid levels. Subsequently, we investigated the difference in bile acid 

metabolism and regulatory pathways between lean NAFLD and lean healthy controls 

in more detail and found that in addition to lean patients demonstrating higher levels 

of bile acids, they also had a distinct gut microbiota profile. Taken together, this 

appears to have increased their inflammatory profile as shown by the trend to an 

increase in inflammatory cytokines compared to their lean healthy counterparts. 

 

In the next chapter we compared the characteristics of lean NAFLD patients with 

those who were non-lean. We discovered that bile acid levels tended to increase as 

fibrosis degree increased. Interestingly, the bile acid levels, especially secondary bile 

acid levels, were significantly higher in lean NAFLD patients compared to their non-
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lean counterparts. Lean patients also demonstrated a higher proportion of TM6SF2 risk 

allele carriage compared to the non-lean NAFLD patients, as well as a distinct 

microbiota profile. The enriched species have been described to be involved in bile 

acid synthesis and hepatic steatosis formation. However, on further investigation we 

discovered that although the bile acid levels were higher in lean NAFLD, these 

patients tended to have milder histology and fibrosis at baseline. This suggests a 

compensatory mechanism to counteract the increased bile acid levels. We looked into 

the bile acid regulatory mechanisms and discovered that there is increased level of 

FXR activity (measured through serum FGF-19 levels) in the lean NAFLD patients, 

especially in the early stages of the disease. This increase in FXR activity may act as a 

compensatory metabolic adaptation mechanism by decreasing bile acid formation (as 

shown by the reduced level of serum C4) as well as non-bile acid mediated pathway 

through its action on glucose and insulin sensitivity and reduction in liver fibrosis 

(Pathak et al. 2018; Schumacher et al. 2020). At least in the early stages of the disease 

this may explain the milder histology. The increased bile acid levels along with 

increased FXR activity and altered gut microbiota profile may also support the 

metabolic adaptation capacity that lean NAFLD patients possess in order to rid 

themselves of excess cholesterol and remain obesity-resistant. However, this 

adaptation capacity tends to be lost with disease progression as shown by the marked 

decrease in FXR activity, increased serum C4 levels and subsequently increased bile 

acid levels, resulting in rapid progression of liver disease. The proposed hypothesis is 

summarised in Figure 46. 
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Figure 46. Proposed model for the differential pathophysiology 

between lean and obese patients with NAFLD.  

Lean patients have better metabolic and liver histology profiles. Consistent with the 

notion that lean patients have appropriate metabolic adaptation to an obesogenic 

environment, they are obesity resistant. The compensatory mechanisms include 

increases in bile acids and FXR activity and distinct gut microbiota profiles despite 

steatosis development. Similar features were observed in murine models of lean and 

obese NAFLD. We suggest that the relative contribution of the systemic milieu versus 

that of the gut governs the lean versus non-lean phenotype. 
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Having demonstrated the metabolic adaptive capacity of lean NAFLD in humans, we 

proceeded to replicate the findings using mice models. Using mice fed a cholesterol 

rich diet to simulate lean NAFLD and mice fed a high sucrose diet to simulate non-

lean NAFLD, their bile acid profile, gut microbiota and bile acid regulatory 

components were investigated. We found that like in humans, lean NAFLD mice had 

significantly higher serum bile acid levels. In addition, further interrogation uncovered 

increased bile acid production and increased bile acid reabsorption through the ileum 

as possible underlying reasons for the increased bile acid levels. Interestingly, like in 

human cohorts, lean mice models also demonstrated better metabolic adaptive 

capacity as shown by increased serum fgf15 levels, the orthologue of human FGF-19. 

We also demonstrated a distinct gut microbiota profile further supporting a 

predominant gut-driven pathogenesis for lean NAFLD.  

 

Having explored the difference in the bile acid pathway between lean and non-lean 

NAFLD, we were interested to explore other potential pathways and markers, which 

may be useful for understanding pathogenesis. Although our experiment was 

underpowered with respect to the number of samples and the quality of the analysis, it 

did reveal a couple of salient findings. Firstly, bile acid metabolism remained 

significantly different between lean and non-lean NAFLD confirming our earlier 

findings. Secondly, a number of metabolites, namely fructose-6-phosphate, ATP and 

cysteine, which have been implicated in previous studies were significantly different 

between the two groups. 
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7.2 SIGNIFICANCE OF FINDINGS 
 

Our series of experiments have shown an evolution in our understanding of lean 

NAFLD pathogenesis through the integration of bile acid metabolism, gut microbiota, 

genetic background and lifestyle factors. Studies on lean NAFLD in the literature have 

previously focussed on descriptive reports comparing them to healthy controls or 

obese NAFLD. Hence, this is the first study to examine the pathogenesis of lean 

NAFLD in detail using large, well-characterised samples.  

 

This project is also the first to introduce the concepts of metabolic health and 

metabolic adaptation and describe their roles in the pathogenesis of lean NAFLD 

development and progression. While metabolic health governs an individual’s risk for 

developing metabolic diseases including NAFLD, a person’s metabolic adaptive 

capacity dictates when the person develops the metabolic disease. Given that 

metabolic health and metabolic adaptive capacity have an impact on the risk for and 

progression of NAFLD, BMI itself may be a less robust predictor of NAFLD 

outcomes. Instead, BMI should perhaps be better considered a marker of 

maladaptation.  

 

Moreover, an individual may respond to increased dietary cholesterol or caloric intake 

with appropriate metabolic adaptation to maintain body weight, or they may have 

complete loss of metabolic adaptation resulting in weight gain, increased adiposity and 

hepatic steatosis. In some individuals however, increased caloric intake may only 

result in partial loss of metabolic adaptation where the outcome is lean NAFLD. In 

this scenario, as outlined in Figure 47, increased dietary cholesterol intake in lean 
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NAFLD (as suggested by earlier studies) in the context of perturbed metabolic 

adaptive capacity associates with some metabolic adaptation through increased 

production of bile acids, especially secondary bile acids and increased FXR activity to 

maintain body weight and serum cholesterol levels, as well as maintain favourable 

liver histology (F. Chen et al. 2019; Enjoji et al. 2012; Schumacher et al. 2020). 
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Figure 47. The role of metabolic adaptation in lean NAFLD 
Schematic representation of differences in metabolic adaptation between individuals 

with lean and obese NAFLD. In obese patients there is relatively poor metabolic 

adaptation resulting in adiposity and the development of liver disease. In contrast, 

among lean NAFLD patients there is partial metabolic adaptation at least in the early 

stages of the disease. In the example shown, this is through increased bile acid 

production and FXR activity (other mechanisms may also be operative). This results in 

an “obesity resistant” phenotype” which appears to be lost as the disease progresses. 

Abbreviations: NAFLD – Non-alcoholic fatty liver disease; FXR – Farsenoid X 

receptor.  
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7.3 CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS 

 

In this thesis we presented data on the complex pathophysiology of lean NAFLD, a 

distinct subset of patients with poor metabolic health but good metabolic adaptation. 

In summary, lean and non-lean NAFLD represents one of the best examples of disease 

heterogeneity and the wide spectrum of fatty liver disease. An obvious implication is 

that future clinical trials should consider stratifying patients into lean and non-lean as 

the subgroups have a different underlying patho-biology and drivers, and likely 

differences in outcome. In addition, given the importance of metabolic health to 

NAFLD pathophysiology, classification of patients based on their metabolic health 

status warrants further attention.  

 

Future studies on lean NAFLD should be directed at longitudinal follow-up of lean 

NAFLD patients to better understand its underlying pathogenesis and what triggers the 

loss of metabolic adaptation as the disease progresses into more advanced fibrosis. 

This should incorporate an understanding of lifestyle factors such as detailed dietary 

histories as well as information on physical activity. Measurements of other non-bile 

acid mediated pathway of the FXR activity, such as through the actions of other 

factors such as Takeda G-protein coupled receptor 5 (TGR5), Glucagon like peptide 1 

(GLP1) or Peroxisome proliferator-activated receptor gamma (PPAR gamma) activity 

on liver histology and metabolism would also be of benefit to complete our 

understanding of the mechanism for which increased FXR acitivity protects against 

liver damage, especially in early stages of the lean NAFLD.  Furthermore, 

measurement of faecal bile acids in addition to serum bile acids would benefit to 

further understand bile acid metabolism in these patients. 
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Another potential source for improvement in our understanding would be to increase 

the number of samples analysed for the gut microbiota profile and metabolomics 

analysis in lean and non-lean patients as well as in lean healthy controls in order to 

increase the power of the analysis. 

 

Lastly, a potential application of our results would be to implement an FXR based 

treatment in the mouse models to determine if there is a role for this in the 

management of lean patients. Another potential application would be to use the bile 

acid metabolic signatures for the development of an algorithm to prognosticate in lean 

NAFLD patients to identify those with poorer metabolic adaptation who are at risk of 

rapid liver disease progression.  

 

 

7.4 CONCLUSIONS 

 
In conclusion, lean NAFLD presents as a unique sub-phenotype of patients with fatty 

liver disease. Metabolic health status plays a major role in the development of NAFLD 

and among lean individuals with the disease, their genetic, epigenetic, gut microbiota 

and bile acid profiles, enterohepatic circulation and lifestyle factors explain their 

phenotype despite a normal BMI. The distinct and better adaptation of lean patients 

allows them to respond to adverse metabolic inputs to maintain body weight despite an 

increase in cardiometabolic risk. Whether or not this partial metabolic adaptation is 

preserved in the long run and what triggers the switch to maladaptation with disease 

progression remains to be elucidated. 
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Lean NAFLD: A Distinct Entity Shaped 
by Differential Metabolic Adaptation
Fei Chen,1* Saeed Esmaili ,1,2* Geraint B. Rogers,3 Elisabetta Bugianesi,4 Salvatore Petta,5 Giulio Marchesini,6 Ali Bayoumi,1 
Mayada Metwally,1 Mahmoud Karimi Azardaryany,1 Sally Coulter,1 Jocelyn M. Choo,3 Ramy Younes,4 Chiara Rosso ,4 
Christopher Liddle,1 Leon A. Adams,7 Antonio Craxì,5 Jacob George,1 and Mohammed Eslam1

BaCKgRoUND aND aIMS: Nonalcoholic fatty liver dis-
ease (NAFLD) affects a quarter of the adult population. A 
significant subset of patients are lean, but their underlying 
pathophysiology is not well understood.

appRoaCH aND ReSUltS: We investigated the role of 
bile acids (BAs) and the gut microbiome in the pathogen-
esis of lean NAFLD. BA and fibroblast growth factor (FGF) 
19 levels (a surrogate for intestinal farnesoid X receptor 
[FXR] activity), patatin-like phospholipase domain contain-
ing 3 (PNPLA3), and transmembrane 6 superfamily member 
2 (TM6SF2) variants, and gut microbiota profiles in lean and 
nonlean NAFLD were investigated in a cohort of Caucasian 
patients with biopsy-proven NAFLD (n  =  538), lean healthy 
controls (n  =  30), and experimental murine models. Patients 
with lean NAFLD had a more favorable metabolic and his-
tological profile compared with those with nonlean NAFLD 
(P  <  0.05 for all). BA levels were significantly higher in 
NAFLD with advanced compared with earlier stages of liver 
fibrosis. Patients with lean NAFLD had higher serum sec-
ondary BA and FGF19 levels and reduced 7-alpha-hydroxy-
4-cholesten-3-one (C4) levels (P  <  0.05 for all). These
differences were more profound in early compared with ad-
vanced stages of fibrosis (P  <  0.05 for both). Lean patients
demonstrated an altered gut microbiota profile. Similar find-
ings were demonstrated in lean and nonlean murine models
of NAFLD. Treating mice with an apical sodium-dependent
BA transporter inhibitor (SC-435) resulted in marked in-
creases in fgf15, a shift in the BA and microbiota profiles,
and improved steatohepatitis in the lean model.

CoNClUSIoNS: Differences in metabolic adaptation be-
tween patients with lean and nonlean NAFLD, at least in 
part, explain the pathophysiology and provide options for 
therapy. (Hepatology 2020;0:1-15).

Nonalcoholic fatty liver disease (NAFLD) 
affects approximately 20% to 30% of the 
world’s population and is a leading cause for 

end-stage liver disease, cancer, and transplantation.(1) 
Despite this, the existence and clinical course of the 
entity known as “lean NAFLD” or “NAFLD in lean 
patients” has been the subject of intense debate and 
controversy. To many, “lean NAFLD” refers to indi-
viduals manifesting the disease in the context of a 
normal body mass index (BMI) but having excess 
visceral adiposity and insulin resistance as well as 
metabolic dysfunction that is typically observed in 
people with obesity,(2) the so-called metabolically 
obese normal-weight individual. The prevalence of 
lean NAFLD varies widely according to the criteria 
used for its definition but ranges from 5% to 45%.(3) 
By this interpretation, lean NAFLD is similar if not 
identical to NAFLD associated with obesity and 
being overweight, with insulin resistance at its core.

Accumulating evidence, however, suggests that lean 
NAFLD might be a distinct pathophysiological entity, 

Abbreviations: ALT, alanine aminotransferase; BA, bile acid; BMI, body mass index; C4, 7-alpha-hydroxy-4-cholesten-3-one; CA, cholic acid; CDCA, 
chenodeoxycholic acid; ChR, cholesterol-rich; CI, conf idence interval; DCA, deoxycholic acid; FGF, f ibroblast growth factor; FXR, farnesoid X receptor; 
NAFLD, nonalcoholic fatty liver disease; NAS, nonalcoholic fatty liver disease activity score; NASH, nonalcoholic steatohepatitis; PERMANOVA, 
permutational multivariate analysis of variance; PNPLA3, patatin-like phospholipase domain containing 3; TM6SF2, transmembrane 6 superfamily 
member 2; UDCA, ursodeoxycholic acid.
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with approximately half (47%-65%) having nonalcoholic 
steatohepatitis (NASH).(4) Although lean NAFLD was 
first described in Asia, it has since been recognized 
globally.(1) Most aspects of lean NAFLD, including its 
operational classification, have not been systematically 
characterized. The most frequently used definition is 
that of hepatic steatosis with a BMI  <  25  kg/m2 (or 
<23  kg/m2 in Asians) in the absence of significant 
alcohol intake.(5) The natural history of lean NAFLD 
is even less well characterized; some data suggest that 
they have worse mortality and accelerated disease pro-
gression despite a more favorable metabolic risk pro-
file.(6,7) Finally, the pathogenesis and mechanisms for 
their favorable metabolic profile compared with obese 
NAFLD are puzzling and poorly understood, and ther-
apeutic options for lean NAFLD remain undefined.

For metabolic homeostasis, in addition to the 
neuroendocrine axis, caloric intake, and physical 
activity, the enterohepatic circulation, including bile 
acids (BAs) and their metabolites and gut microbi-
ota, are intimately involved. BAs are the principal 
route for cholesterol catabolism, and recent evidence 
demonstrates that a high intake of dietary choles-
terol,(8) elevated levels of hepatic cholesterol,(9-11) 
and disrupted hepatic cholesterol homeostasis are 
pivotal drivers of NAFLD.(9-11) However, individ-
ual responses to changes in dietary cholesterol vary 

widely, suggesting a modifying role for other envi-
ronmental or genetic factors. It is of interest that 
it has been suggested that cholesterol intake is 
higher in lean compared with obese NAFLD.(12-14)  
BAs also regulate glucose and lipid metabolism and 
energy expenditure,(15) and in turn their production, 
transport, and metabolism are regulated by spe-
cific nuclear BA receptors, the farnesoid X recep-
tor (FXR) and circulating fibroblast growth factor 
(FGF19), likely by means of dependent and inde-
pendent mechanisms.(15,16) The gut microbiome is 
also intimately involved in the pathogenesis of sev-
eral metabolic diseases, including body weight reg-
ulation, NAFLD, and liver cancer, in part through 
direct interactions with BAs.(17-19)

We hypothesized that the pathogenesis of lean 
and obese NAFLD and their distinct metabolic and 
histological profiles is caused by more than just dif-
ferences in body weight and BMI. We considered 
that the clinical phenotype of lean NAFLD might 
reflect differences in the integration of signals from 
the diet and the systemic metabolic milieu as well 
as the enterohepatic axis comprising both BAs 
and gut microbiota. We tested this hypothesis in 
a large, well-phenotyped, biopsy-proven cohort of 
538 Caucasian patients with NAFLD and 30 lean 
healthy controls.
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Patients and Methods
patIeNt SeleCtIoN

A total of 538 consecutive Caucasian patients with 
histologically characterized NAFLD and 30 lean healthy 
controls were included. The inclusion criteria and clin-
ical and laboratory assessments and histopathology 
are described in detail in the Supporting Information. 
Ethics approval was obtained and conformed to the 
ethical guidelines of the 1975 Declaration of Helsinki, 
from the human ethics committee of the Western 
Sydney Local Health District and the University of 
Sydney. All other sites had ethics approval from their 
respective ethics committees. Written informed con-
sent was obtained from all patients.

Methods of genotyping, high-throughput BA 
profiling, and quantification of 7-alpha-hydroxy-4- 
cholesten-3-one (C4), FGF19, fgf15, and microbiome 
analysis are provided in the Supporting Information.

NaFlD MICe MoDelS
Male C57BL/6 mice obtained from the Animal 

Resources Centre (Perth, Australia) were used for diet 
studies commencing at week 8; details are provided in the 
Supporting Information. All procedures were approved 
by the Western Sydney Local Health District animal 
ethics committee and conducted in accordance with 
the animal experimentation guidelines of the National 
Health and Medical Research Council of Australia.

StatIStICal aNalySIS
Data were analyzed using SPSS version 24.0 (IBM, 

Armonk, NY). Values are expressed as mean ±  stan-
dard deviation, median, and interquartile range or 
frequency (percentage) as appropriate. Statistical 
significance was considered as P  <  0.05 throughout; 
details are provided in the Supporting Information.

Results
ClINICal, HIStologICal, aND 
geNetIC CHaRaCteRIStICS oF 
patIeNtS WItH leaN NaFlD

A total of 538 patients with biopsy-proven 
NAFLD were recruited for the study. Of the 

patients, 99 (18%) were lean. The clinical and bio-
chemical characteristics of lean NAFLD compared 
with their counterpart nonlean patients are pre-
sented in Table 1 and representative images of his-
tological images of liver biopsies are presented in 
Supporting Fig S1. In addition to lower BMI, lean 
patients had lower waist-to-hip ratios and better 
metabolic profiles, including significantly lower fre-
quency of diabetes, higher serum high-density lipo-
protein, and lower serum triglycerides, fasting blood 
glucose, and homeostasis model assessment of insu-
lin resistance values compared with their nonlean 
counterparts. Histologically, lean patients had lower 
fibrosis scores and nonalcoholic fatty liver disease 
activity scores (NAS; P  <  0.001 for both) as well 
as lower serum alanine aminotransferase (ALT). In 
total, lean patients have favorable metabolic and his-
tological features compared with nonlean NAFLD.

Patients with lean NAFLD had a significantly 
higher prevalence of carriage of the transmembrane 
6 superfamily member 2 (TM6SF2) rs58542926 (T) 
allele compared with nonlean patients but a similar 
prevalence of the patatin-like phospholipase domain 
containing 3 (PNPLA3) GG polymorphism (Table 1). 
To adjust for the effect of confounding factors, the 
TM6SF2 rs58542926 (T) allele still associated with 
lean NAFLD in a multivariable model adjusting for 
age, sex, ALT, diabetes, total cholesterol level, fibrosis, 
steatosis, and PNPLA3 genotype (odds ratio, 2.567; 
95% confidence interval [CI], 1.426-4.619; P = 0.002).

SeRUM Ba pRoFIle IS 
aSSoCIateD WItH NaFlD 
SeVeRIty BUt Not SteatoSIS

Although there is increasing evidence to suggest a 
critical role for BAs in metabolic diseases, including 
NAFLD, their correlation with disease severity is con-
flicting, which is likely because of the limited sample 
sizes of previous studies. We explored the association 
between the BA profile and liver histology.

No differences in total BA, total primary BA, or 
total secondary BA levels were noted between patients 
with mild steatosis (S1-S2) compared with those with 
severe steatosis (S3; Supporting Fig. S2C). Next, the 
association with steatohepatitis activity, including the 
severity of inflammation and hepatocyte ballooning, 
was tested. In this analysis, significantly higher total 
BAs (P  = 0.006), primary BAs (P  = 0.031), and sec-
ondary BAs (P < 0.001) were found in patients with 
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hepatocyte ballooning compared with those without 
ballooning (Supporting Fig. S2A).

When comparing degrees of inflammation, higher 
grades of lobular inflammation were associated with 
higher total and secondary BAs (P  =  0.027 and 
P  =  0.026, respectively), whereas there was no sig-
nificant difference in primary BA levels (P  =  0.073; 
Supporting Fig. S2B). Finally, the association of BAs 
with NAFLD fibrosis stage was tested. The distribu-
tion of all individual BAs between patients with none/
mild fibrosis and those with significant fibrosis is 
depicted in Fig. 1A. Patients with significant fibrosis 

(≥F2) had higher total (P = 0.017), primary (P = 0.018), 
and secondary (P  =  0.045) BA levels compared with 
those with none/mild fibrosis (F0-F1; Fig. 1B).  
At the level of individual BAs, the level of cholic acid 
(CA) was significantly higher in patients with signif-
icant fibrosis compared with those with none/mild 
fibrosis (P  =  0.026; Fig. 1C). Similarly, the levels of 
glycine and taurine-conjugated BAs were significantly 
higher in patients with significant fibrosis compared 
with those with none/mild fibrosis (P  =  0.002 and 
P  <  0.001, respectively; Fig. 1D,E). The association 
between BA levels and fibrosis remained significant 

taBle 1. Clinical and Histological Characteristics of patients with lean and Nonlean NaFlD

Lean NAFLD (n = 99) Nonlean NAFLD (n = 439) P Value

Age (years) 46 ± 11.7 47 ± 13.0 0.445

Male (%) 69 (69.7) 290 (64.9) 0.413

BMI (kg/m2) 23.2 ± 1.5 30.8 ± 4.7 <0.001

PNPLA3 I148M (CC/CG/GG) 32 (36.8)/39 (44.8)/16 (18.4) 145 (37.8)/172 (44.8)/67 (17.4) 0.973

TM6SF2 E167K (CC/CT/TT) 59 (70.2)/22 (26.2)/3 (3.6) 321 (85.1)/50 (13.3)/6 (1.6) 0.005

ALT (IU/mL) 57.9 ± 35.6 72.3 ± 46.8 <0.001

WHR* 0.919 ± 0.062 0.971 ± 0.079 <0.001

Normal WHR 25 (29.2) 46 (10.3)

Elevated WHR 29 (29.3) 189 (42.3)

Phosphatidylethanol level (ng/mL) 66.35 ± 48.59 66.45 ± 52.72 0.8829

Diabetes (%) 11 (11.1) 128 (28.6) <0.001

Hypertension (%) 25 (25.3) 158 (35.3) 0.060

Dyslipidemia (%) 43 (43.4) 242 (54.1) 0.059

Total cholesterol (mmol/L) 5.1 ± 1.2 5.2 ± 1.2 0.472

HDL-C (mmol/L) 1.5 ± 0.6 1.2 ± 0.3 <0.001

LDL-C (mmol/L) 3.6 ± 1.6 3.5 ± 1.6 0.667

Triglyceride (mmol/L) 1.6 ± 1.4 1.9 ± 1.2 0.083

Fasting BSL (mmol/L) 5.3 ± 1.8 5.9 ± 1.8 0.006

HOMA-IR 2.8 ± 1.9 5.4 ± 5.9 <0.001

Fibrosis (%)

F0-F1 (%) 75 (75.8) 239 (54.6) <0.001

F2-F4 (%) 24 (24.2) 200 (45.4)

Ballooning (%)

No ballooning (%) 37 (37.4) 131 (30.4) 0.1510

Any ballooning (%) 62 (62.6) 308 (69.6)

Steatosis (%)

Grades 1-2 (%) 85 (85.9) 351 (81.2) 0.2530

Grade 3 (%) 14 (14.1) 88 (18.8)

Lobular inflammation

Grades 0-1 (%) 88 (88.9) 352 (80.5) 0.0782

Grade 2 or more (%) 11 (11.1) 87 (19.5)

NAS 3 ± 2 4 ± 2 0.001

Values are mean ± SD or n (%). P value was calculated using Fisher’s exact test and Student t test.
*WHR based on 54 lean patients and 235 nonlean patients. Normal WHR defined as <0.90 for males and <0.85 for females. DNA was
available for 471 patients (86%). The bold values indicate statistically significant results. Abbreviation: HOMA-IR, homeostasis model
assessment of insulin resistance.
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after adjusting for age, BMI, sex, diabetes, ALT, and 
platelets in a multivariable linear regression analysis 
(β  =  0.115; 95% CI, 0.061-0.168; P  <  0.01 for total 
secondary BA levels, and β  =  0.302; 95% CI, 0.145-
0.458; P < 0.01 for ursodeoxycholic acid [UDCA]).

Higher levels of total BAs (P  =  0.001), primary 
BAs (P  =  0.001), and secondary BAs (P  =  0.002) 
were seen in patients with higher NAS, defined as >3, 
compared with patients with lower scores (Supporting 
Fig. S3). Similarly, patients with NASH had higher 

levels of total, primary, and secondary BAs compared 
with patients with steatosis, but only the secondary 
BA levels were significantly different between the two 
groups (P = 0.047).

leaN NaFlD patIeNtS HaVe 
HIgHeR SeRUM Ba leVelS

Next, we explored the differential BA profile 
between patients with lean and nonlean NAFLD. 

FIg. 1. Serum BA levels and liver fibrosis. (A) BA composition as a percentage according to hepatic fibrosis. The x axis shows patients 
with absent/mild (F0-F1, left, n = 314) and moderate/severe (F2-F4, right, n = 224) fibrosis, and the y axis shows the composition of each 
individual BA in percent. (B) Mean concentration of total BAs, total primary BAs, and total secondary BAs according to hepatic fibrosis. 
The x axis shows hepatic fibrosis dichotomized as absent/mild (F0-F1, n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows 
the mean concentration of BA levels in µmol/L. (C) Mean concentration of CA according to hepatic fibrosis. The x axis shows hepatic 
fibrosis dichotomized as absent/mild (F0-F1, n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows the mean concentration 
of BA levels in µmol/L. (D) Mean concentration of glycine-conjugated BAs according to hepatic fibrosis. The x axis shows hepatic fibrosis 
dichotomized as absent/mild (F0-F1, n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows the mean concentration of 
BA levels in µmol/L. (E) Mean concentration of taurine-conjugated BAs according to hepatic fibrosis. The x axis shows hepatic fibrosis 
dichotomized as absent/mild (F0-F1, n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows the mean concentration of BA 
levels in µmol/L. Results are expressed as mean ± SEM, and P value was calculated using the Mann-Whitney nonparametric t test. *P < 0.05, 
**P < 0.01, ***P < 0.001. Abbreviations: CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; 
GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLC, glycolithocholic acid; GUDCA, Glycoursodeoxycholic acid; 
HCA, hyocholic acid; HDCA, hyodeoxycholic acid; LC, lithocholic acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; 
TDCA, taurodeoxycholic acid; TLC, taurolithocholic acid; TUDCA, tauroursodeoxycholic acid; UDCA, ursodeoxycholic acid.
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Interestingly, patients with lean NAFLD had higher 
total, primary, and secondary BA levels compared with 
those with nonlean NAFLD, although this was only 
significant for the secondary BAs (P = 0.010; Fig. 2B).  
The composition of individual BAs also differed 
between patients with lean and nonlean NAFLD, 
wherein lean patients had lower deoxycholic acid 
(DCA), glycochenodeoxycholic acid, and chenode-

oxycholic acid (CDCA) but more glycocholic acid 
(GCA) compared with the nonlean patients (Fig. 2A).  
Patients with lean NAFLD also had nonsignificantly 
higher total conjugated and total unconjugated BAs 
compared with patients with nonlean NAFLD.

Given the strong correlation between BA profiles 
and fibrosis, we examined the relationship between 
BAs and lean NAFLD stratified by fibrosis stage. 

FIg. 2. Serum BA levels in patients with lean and nonlean NAFLD. (A) BA composition in percentage between patients with lean and 
nonlean NAFLD. The x axis shows patients with lean (n = 99) and nonlean (n = 439) NAFLD, and the y axis shows the composition of 
each individual BA in percent. (B) Mean concentration of total BAs, total primary BAs, and total secondary BAs in patients with lean and 
nonlean NAFLD. The x axis shows patients with lean (n = 99) and nonlean (n = 439) NAFLD, and the y axis shows the mean concentration 
of BA levels in µmol/L. (C) Mean concentration of total BAs, total primary BAs, and total secondary BAs in lean and nonlean patients 
with absent/mild fibrosis. The x axis shows lean (n = 75) and nonlean (n = 239) patients with absent/mild (F0-F1) hepatic fibrosis, and the 
y axis shows the mean concentration of BA levels in µmol/L. (D) Mean concentration of total BAs, total primary BAs, and total secondary 
BAs in lean and nonlean patients with moderate/severe fibrosis. The x axis shows lean (n = 24) and nonlean (n = 200) patients with 
moderate/severe (F2-F4) hepatic fibrosis, and the y axis shows the mean concentration of BA levels in µmol/L. (E) Mean concentration 
of DCA. The x axis shows lean (n = 99) and nonlean (n = 439) patients, and the y axis shows the mean concentration of BA levels in 
µmol/L. (F) Mean concentration of UDCA. The x axis shows patients with lean (n = 99) and nonlean (n = 439) NAFLD, and the y axis 
shows the mean concentration of BA levels in µmol/L. Results are expressed as mean ± SEM, and P value was calculated using the Mann-
Whitney nonparametric t test. *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviations: CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, 
deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLC, glycolithocholic 
acid; GUDCA, Glycoursodeoxycholic acid; HCA, hyocholic acid; HDCA, hyodeoxycholic acid; LC, lithocholic acid; TCA, taurocholic 
acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLC, taurolithocholic acid; TUDCA, tauroursodeoxycholic 
acid; UDCA, ursodeoxycholic acid.
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When stratified in this way, in those with mild fibro-
sis (F0-F1), higher total secondary BA levels were 
observed in patients with lean NAFLD compared 
with patients with nonlean NAFLD (P  =  0.004). 
No significant difference between lean and nonlean 
patients was observed in those with more severe 
fibrosis (Fig. 2C,D). The predominant secondary 
BAs contributing to this difference were DCA and 
UDCA (P < 0.05 for both; Fig. 2E,F). GCA was also 
higher in patients with lean NAFLD; however, this 
difference was not significant (Supporting Fig. S4B). 
The secondary to primary BA ratio was significantly 
higher in patients with lean compared with nonlean 
NAFLD (P = 0.018; Supporting Fig. S4A).

In a subsequent analysis, we determined the rel-
evant clinical factors associated with secondary BA 
levels. Consistently, on univariable analysis, BMI, 
fibrosis, and ballooning were associated with second-
ary BA levels. On multivariable analysis, only BMI 
and fibrosis stage remained independently, negatively, 
and positively associated with secondary BA levels, 
respectively (Supporting Table S1).

patIeNtS WItH leaN NaFlD 
HaVe HIgHeR SeRUM FgF19 
leVelS

FXR dysregulation has been implicated in the 
pathogenesis of NAFLD; therefore, we were inter-
ested to determine if differential effects are observed 
in lean versus nonlean NAFLD.(20,21) To examine 
for this, serum FGF19, a surrogate marker of FXR 
activity, was measured. In this analysis, reduced lev-
els of FGF19 were observed with the advancement of 
fibrosis stage (P = 0.030; Fig. 3A). Patients with lean 
NAFLD had significantly higher FGF19 levels com-
pared with patients with nonlean NAFLD (P = 0.028; 
Fig. 3B). Interestingly, when stratified according to 
fibrosis severity, the differences were more profound 
in those with mild fibrosis (F0-F1; P  =  0.005), with 
the reverse being true as fibrosis severity increased; 
this was, however, not significant (Fig. 3C).

patIeNtS WItH leaN NaFlD 
HaVe loWeR C4 leVelS

To investigate differences in BA metabolism 
between lean and nonlean NAFLD, levels of C4, a BA 
synthesis intermediate, were measured as a marker of 

de novo BA synthesis. In this analysis, no difference in 
levels of C4 was observed according to fibrosis stage 
(Fig. 3D). However, as expected, patients with lean 
NAFLD had significantly lower C4 levels compared 
with their nonlean counterparts (P = 0.016; Fig. 3E).  
This difference was more predominant in those with 
mild fibrosis (F0-F1; P = 0.010) but not in those with 
moderate/severe fibrosis (F2-F4; Fig. 3F).

patIeNtS WItH leaN NaFlD 
HaVe a DIStINCt MICRoBIota 
pRoFIle

The composition of the gut microbiome and its 
interaction with BAs affects FXR-mediated signaling 
in both the liver and intestine and is implicated in 
NAFLD pathogenesis.(20,22) Hence, we determined 
gut microbiome composition in a small exploratory 
subset of patients with available stool samples by 16S 
ribosomal RNA amplicon sequencing. The clinical 
characteristics of these patients is found in Supporting 
Table S2. At the phylum level, no differences in tax-
onomic composition of the gut microbiome were 
observed according to lean versus obese BMI status. 
At the genus level, Erysipelotrichaceae UCG-003 as 
well as several bacterial genera within the Clostridiales 
order, including Ruminococcus, Clostridium sensu stricto 
1, Romboutsia, and Ruminococcaceae UCG-008, were 
enriched in lean patients, and Ruminiclostridium and 
Streptococcus were enriched in patients with NAFLD 
who were obese (Mann-Whitney test; P  <  0.05; 
Fig. 4A-F). These changes remained significant for 
Ruminococcaceae UCG-008 when corrected for 
multiple comparison testing (false discovery rate; 
P = 0.010).

patIeNtS WItH leaN NaFlD 
HaVe DIFFeReNtIal Ba 
aND MICRoBIota pRoFIleS 
CoMpaReD WItH leaN HealtHy 
CoNtRolS

We next compared our cohort of patients with lean 
NAFLD with lean healthy controls matched by age 
and sex. Their baseline demographics in comparison to 
patients with lean NAFLD are shown in Supporting 
Table S3. Patients with lean NAFLD had significantly 
higher total BAs, total primary BAs, and total sec-
ondary BAs compared with the lean healthy controls 
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(Supporting Fig. S5A). There was no significant differ-
ence in levels of FGF19 between lean healthy controls 
and patients with lean NAFLD with none/mild fibro-
sis (F0-F1). However, in patients with lean NAFLD 
and moderate/severe fibrosis (F2-F4), the level of 
FGF19 was significantly lower compared with that in 
lean healthy controls (Supporting Fig. S5B). Analysis 
of microbiota demonstrated a distinct separation 

in profiles between lean healthy controls and lean 
NAFLD (permutational multivariate analysis of vari-
ance [PERMANOVA] P = 0.069, Pseudo-F = 2.019; 
Supporting Fig. S5C). More specifically, in the lean 
NAFLD group, there was an increased abundance of 
the species Dorea and a reduction in the relative abun-
dance of a number of species, including Marvinbryantia 
and the Christensellenaceae R7 group.

FIg. 3. Serum FGF19 levels and C4 levels. (A) Mean concentration of FGF19 according to hepatic fibrosis. The x axis shows hepatic 
fibrosis dichotomized as absent/mild (F0-F1, n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows the mean concentration 
of FGF19 in pg/mL. (B) Mean concentration of FGF19 in patients with lean and nonlean NAFLD. The x axis shows patients with 
lean (n = 99) and nonlean (n = 439) NAFLD, and the y axis shows the mean concentrations of FGF19 levels in pg/mL. (C) Mean 
concentration of FGF19 levels in lean and nonlean patients according to BMI and hepatic fibrosis. The x axis shows patients with lean 
and nonlean NAFLD with absent/mild fibrosis (F0-F1, left panel, n = 75 for lean and n = 239 for nonlean NAFLD) and moderate/severe 
fibrosis (F2-F4, right panel, n = 24 for lean and n = 200 for nonlean), and the y axis shows the mean concentrations of FGF19 levels in pg/mL.  
(D) Mean concentration of C4 according to hepatic fibrosis. The x axis shows hepatic fibrosis dichotomized as absent/mild (F0-F1,
n = 314) or moderate/severe (F2-F4, n = 224), and the y axis shows the mean concentration of C4 in μmol/mL. (E) Mean concentration
of C4 in patients with lean and nonlean NAFLD. The x axis shows patients with lean (n = 99) and nonlean (n = 439) NAFLD, and the
y axis shows the mean concentrations of C4 in μmol/mL. (F) Mean concentration of C4 levels according to BMI and hepatic fibrosis.
The x axis shows patients with lean and nonlean NAFLD with absent/mild fibrosis (F0-F1, left panel, n = 75 for lean and n = 239 for
nonlean NAFLD) and moderate/severe fibrosis (F2-F4, right panel, n = 24 for lean and n = 200 for nonlean), and the y axis shows the
mean concentration of C4 in μmol/mL. Results are expressed as mean ± SEM, and P value was calculated using the Mann-Whitney
nonparametric t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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a MURINe leaN NaFlD MoDel
HaS INCReaSeD Bas aND 
alteReD gUt MICRoBIota

To further test our hypothesis, we investigated alter-
ations in BA levels and the gut microbiome in a murine 
model of lean versus nonlean NAFLD. Mice were fed 
either a cholesterol-rich (ChR) or a high-sucrose diet 
for 16  weeks. Mice fed the ChR diet remained lean 
despite the development of NAFLD, which is con-
sistent with other studies,(23,24) whereas those fed the 
high-sucrose diet demonstrated significant weight 
gain. Histology images are shown in Fig. 5A. Like our 
human results, mice fed the ChR diet had significantly 
higher total (P = 0.01), primary (P = 0.02), and second-
ary (P  =  0.06) BAs (Fig. 5B). Analysis of ileal fgf15, 

the mouse equivalent of human FGF19, showed signifi-
cantly higher levels in mice fed the ChR compared with 
the high-sucrose diet (Fig. 5C).

Analysis of the microbiota demonstrated a change 
in composition (PERMANOVA P  =  0.009, pseu-
do-F = 18.58, 126 permutations) as reflected broadly 
by significant changes in the relative abundances of 
the two major phyla, Firmicutes and Bacteroidetes, 
as well as in Actinobacteria, Cyanobacteria, and 
Proteobacteria. Mice fed the ChR diet were 
observed to have an increased relative abundance of 
Bacteroidetes and a decrease in Firmicutes compared 
with those fed with high sucrose (Fig. 5D). As we 
observed in humans, similar trends were noted for the 
abundance of members of the Ruminococcaceae bac-
terial family in the mice fed the high-cholesterol diet 

FIg. 4. Gut microbiota associated with lean NAFLD. Abundance of bacterial genera and species that differ between patients with 
lean (n = 5) and obese (n = 24) NAFLD. Results are expressed as mean ± SEM, and P value was calculated using the Mann-Whitney 
nonparametric t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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(lean NAFLD). These changes were also observed for 
several phylotypes within the Erysipelotrichaceae. A 
correlation plot between different BAs and the bacte-
rial taxa altered in both models is shown in Supporting 
Fig. S6F.

INHIBItINg Ba ReaBSoRptIoN 
ReSUlteD IN IMpRoVeD 
SteatoHepatItIS IN a leaN 
NaFlD MoDel

Finally, to investigate the therapeutic implications of 
our findings, we treated the ChR diet–fed mice (lean 
model) with or without apical sodium-dependent BA 
transporter inhibitor (SC-435), which mediates the 

active reabsorption of BAs into the enterohepatic cir-
culation. Supplementing with SC-435 led to a reduc-
tion in liver/body weight ratio (Supporting Fig. S6A) 
and hepatic total and free cholesterol accumulation 
(Supporting Fig. S6B,C) but not body or epididymal 
weights. Histologically, SC-435 treatment resulted in 
reduced inflammation and fibrosis on hematoxylin 
and eosin and sirius red staining and reduced NAS 
(Fig. 6A) and serum ALT levels (Fig. 6B). As expected, 
this was accompanied by a reduction in the messenger 
RNA expression of inflammatory and fibrosis markers 
(Fig. 6C).

In additional analyses, treatment with SC-435 
resulted in a shift in the BA profile to one with 
increased FXR agonistic BAs, such as DCA and 

FIg. 5. Serum BA levels and microbiota profile in a murine experimental model of NAFLD. (A) Histology images from a mouse model 
of lean NAFLD. Hematoxylin and eosin (H&E) image of liver biopsy section from a mouse fed the ChR diet and a mouse fed the high-
sucrose (HS) diet. (B) Mean concentrations of total BAs, total primary BAs, and total secondary BAs in a mouse model of lean NAFLD. 
The x axis shows mice fed a diet high in cholesterol (blue bar, n = 9) and mice fed a diet high in sucrose (red bar, n = 5), and the y axis 
shows the mean concentrations of BA levels in µmol/L. (C) Mean concentrations of ileal fgf15 in a mouse model of lean NAFLD. The x 
axis shows mice fed a diet high in cholesterol (blue bar, n = 9) and mice fed a diet high in sucrose (red bar, n = 5), and the y axis shows the 
mean concentrations of ileal fgf15 levels in pg/mL. (D) Relative abundance of the phyla Firmicutes and Bacteroidetes in ceca of mice fed 
the high-cholesterol or the high-sucrose diet, as determined by 16S ribosomal RNA sequencing. Results are expressed as mean ± SEM, 
and P value was calculated using the Mann-Whitney nonparametric t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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taurochenodeoxycholic acid (Fig. 6D), increased 
ileal fgf15 levels (Supporting Fig. S6E), and hepatic 
mRNA expression of genes involved in the regula-
tion of BAs, such as retinoid X receptor and FXR 
(Fig. 6E). Interestingly, SC-435 increased the weight 
of ceca of mice that were fed the diet (Supporting 
Fig. S6D) and altered the gut microbiota, with an 
increase in the relative abundances of Bacteroides and 
a decreased relative abundance of members of the 
Lachnospiraceae family compared with control mice 
(Fig. 6F).

Discussion
Lean NAFLD constitutes a significant proportion 

of patients with NAFLD, although its pathogenesis 
is not well understood. Here, we provide a testable 

hypothesis for the pathophysiological distinction 
between lean and nonlean NAFLD that can be exam-
ined in other cohorts. Using biopsy-proven Caucasian 
patients in whom the lean NAFLD entity is less fre-
quent than in cohorts from Asia, we demonstrate that 
lean patients have distinct metabolic, genetic, histo-
logic, and BA profiles and C4 levels, as well as differ-
ences in FXR activity and gut microbiota, compared 
with their nonlean counterparts and lean healthy 
controls.

Consistent with other reports,(1) approximately 1 
in 5 Caucasian patients with NAFLD are lean and 
have a favorable metabolic and pathological profile, 
with less insulin resistance and dyslipidemia and 
milder liver histology. A reciprocal and intimate inter-
action between BAs and gut microbiota is associated 
with, and thought to regulate, metabolic and hepatic 
traits.(15,18) Although myriad factors could explain 

FIg. 6. Administration of SC-435 reduces NASH and alters BA and microbiota profiles in a lean NAFLD model. (A) H&E staining 
of liver sections indicates reductions in liver inflammation. Sirius red staining shows reduced liver fibrosis (scale bars, 250 µm). (B) NAS 
indicates a lower level of inflammation in mice treated with SC-435. (C) Serum ALT levels are decreased in mice treated with SC-435. 
(D) Reduction in mRNA expression of CD68, MCP-1 (macrophage and inflammatory markers), and Col1a1 (fibrotic marker). Data
are presented as relative expression or log2 RNA expression. (E) SC-435 led to a shift in BA profiles. (F) SC-435 increased mRNA
expression of FXR and retinoid X receptor, which are involved in BA regulation and FXR activity. (G) Analysis of taxa indicates significant 
differences between mice treated with and without SC-435 (PERMANOVA; pseudo-F = 8.64, p [perm] = 0.012). Data are presented
as mean ± SEM, and P value was calculated using the Mann-Whitney nonparametric t test. *P < 0.05, **P < 0.01, ***P < 0.001; n = 5-6
mice per group. Abbreviations: b-MCA, beta muricholic acid; CA, cholic acid; ChR, cholesterol rich; DCA, deoxycholic acid; FXR,
farsenoid X receptor; HDCA, hyodeoxycholic acid; NAS, NAFLD activity score; RXR, retinoid X receptor; T-CA, taurocholic acid;
T-CDCA, taurochenodeoxycholic acid; T-DCA, taurodeoxycholic acid; T-HDCA, tauro hyodeoxycholic acid; T-LC, tauro lithocholic
acid; T-UDCA, tauro ursodeoxycholid acid; UDCA, ursodeoxycholic acid; w-MCA, omega muricholic acid.
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the differences we observed, our results in toto sug-
gest that the balance and interaction between the sys-
temic metabolic milieu and changes in the intestinal 
microbiome and BA physiology govern the expression 
of hepatic disease and the onset and progression of 
NAFLD in patients with a normal BMI.

To elaborate, increased BA levels, as we observed 
in lean NAFLD, are reported to mediate resistance 
to diet-induced obesity, a phenomenon called “obesity 
resistance.”(25,26) Obesity-resistant rodents can burn 
more dietary fat by increasing energy expenditure. It is 
of relevance, BAs (including major BA species, such as 
CA, trichloroacetic acid, DCA, and CDCA) increase 
energy expenditure,(26) and CDCA increases human 
brown adipose tissue activity.(27) FGF19, which was 
also increased in lean NAFLD, is reported to be a key 
regulator of energy expenditure and improves glucose 
and lipid homeostasis,(28) and gut-restricted FXR ago-
nism promotes metabolic improvements and enhances 
thermogenesis and browning of white adipose tissue 
in mice.(29) At the microbiota level, patients with 
lean NAFLD had distinct gut microbiota compared 
with those who were nonlean. Lean NAFLD had an 
increased abundance of members belonging to the 
Clostridium genus as well as Ruminococcaceae, which are 
involved in the formation of BAs.(30,31) Consistently, 
in an experimental model that involved feeding mice 
a ChR diet,(23,24) we recapitulated several features of 
the phenotype, including lean body weight, steatohep-
atitis, and less insulin resistance, compared with mice 
receiving a high-sucrose diet, with similar changes in 
BA profiles with higher total BAs and fgf15 levels 
and similar trends observed in gut microbiota. Thus, 
we surmise that patients with lean NAFLD have an  
obesity-resistant phenotype in part mediated by greater 
levels of BAs and FGF19 and microbiota changes. 
The decreased levels of C4 in lean NAFLD further 
support the concept of metabolic adaptation whereby 
the increased FXR activity (as represented by FGF-19 
levels) results in negative feedback on BA synthesis.

The milder disease and favorable metabolic pro-
file of patients with lean NAFLD could be explained 
by the current findings. There is strong evidence that 
activation of BA signaling induces improvements in 
metabolic (glucose and lipid) phenotypes in murine 
models.(32) Furthermore, in both humans and murine 
models, elevated BAs play a role in the metabolic 
improvements after bariatric surgery, including in 
type 2 diabetes, dyslipidemia, and NASH, even before 

significant weight loss.(33-35) Thus, we suggest that 
patients who are lean can adapt metabolically and 
excrete greater amounts of BAs, whereas their obese 
counterparts are those less able to excrete adequate 
amounts of BAs to rid themselves of excess cholesterol, 
even if they are able to maintain a plasma cholesterol 
level comparable to that of lean patients. Consistently, 
in humans, patients who are lean and patients who are 
obese have differential defense mechanisms to main-
tain stable serum cholesterol levels, wherein dietary 
cholesterol appears to preferentially induce BA syn-
thesis in patients who are lean compared with patients 
who are obese.(36)

Notably, we did not observe any association between 
BA levels and hepatic steatosis, indicating a potential 
lack of a protective effect of BAs on the development 
of steatosis, as opposed to changes in peripheral tissues. 
Alternatively, changes in microbiota might explain 
the development of steatosis.(37) Lean NAFLD had 
a distinct separation in microbiota profile compared 
with the healthy controls, with an increased abun-
dance of Dorea that has been implicated in the patho-
genesis and progression of NASH(38) and a decrease 
of several species protective for NAFLD, such as 
Marvinbryantia and Christensellenaceae R7 group.(39,40) 
Similarly, compared with nonlean NAFLD, they had 
an increased relative abundance of several phylotypes 
within the Erysipelotrichaceae family in both patient 
and murine models that have been repeatedly linked 
to host lipid and cholesterol phenotypes in different 
species (humans, mice, and hamsters) and positively 
associate with changes in liver fat in humans.(41) Use 
of plant sterol esters to reduce cholesterol in hamsters 
likewise reduced Erysipelotrichaceae abundance.(41) 
Ruminococcaceae UCG-008, Clostridium sensu stricto 
1, and Romboutsia, which were also enriched in lean 
NAFLD, are reported to be strongly correlated with 
hepatic triglycerides.(42)

At a genetic level, we demonstrated that although 
there was no significant difference in the proportions 
of patients with PNPLA3 rs738409 GG genotype, a 
significantly greater proportion of patients with lean 
NAFLD carried the TM6SF2 rs58542926 (T) allele 
than patients with nonlean NAFLD. Interestingly, 
TM6SF2 has been implicated in cholesterol synthe-
sis.(43) In addition, TM6SF2, but not PNPLA3, geno-
types correlate with endotoxemia.(44) Hence, the lean 
NAFLD phenotype might be consistent with obe-
sity resistance, in which individuals are still prone to 
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develop steatosis in response to an obesogenic envi-
ronment (and perhaps a diet enriched in cholesterol), 
likely by genetic and gut-driven mechanisms.

We observed that differences between lean and 
nonlean patients or lean controls were more profound 
in those with early stages of liver fibrosis. This suggests 
that with disease progression, homeostatic responses 
might possibly no longer be able to limit inflammation 
and fibrosis, leading ultimately to long-term adverse 
outcomes despite a favorable baseline metabolic and 
histological profile.(6,7) This hypothesis is supported by 
the higher serum BA levels and lower FGF19 levels in 
patients with significant fibrosis. Longitudinal studies 
would be needed to confirm the findings.

To investigate the therapeutic implications of our 
findings, we demonstrated that use of the apical 

sodium-dependent BA transporter inhibitor SC-435 
results in marked increases in fgf15 and a shift in BA 
and microbiota profiles as well as improved steatohep-
atitis in the lean model.

The strengths of our report include the study of 
a large, well-defined, biopsy-proven Caucasian cohort 
and as detailed an investigation as possible from 
cross-sectional data and complementary mouse stud-
ies. However, our study also has limitations. First, 
patients were seen in tertiary referral centers and may 
suffer from selection bias. In addition, dietary histories 
were not available given the accumulation of cohorts 
over several years, and the cross-sectional design did 
not allow for interventions or longitudinal outcomes; 
thus, a causal relationship cannot be demonstrated. 
Finally, our study is limited by the small sample size 

FIg. 7. Proposed model for the differential pathophysiology between patients who are lean and obese with NAFLD. Patients who were 
lean had better metabolic and liver histology profiles. Consistent with the notion that lean patients have appropriate metabolic adaptation 
to an obesogenic environment, they are obesity resistant. The compensatory mechanisms include increases in BAs and FXR activity and 
distinct gut microbiota profiles that explain the favorable profile despite steatosis development. Similar features were observed in murine 
models of lean and obese NAFLD.
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with regard to microbiome analysis. It would also be 
interesting in future studies to measure differences in 
fecal BAs.

In conclusion, in contrast to nonlean NAFLD, 
lean patients are likely to have a distinct pathophys-
iology. We suggest that the onset of disease occurs 
at a lower BMI set point (with lower measures of 
insulin resistance and dyslipidemia) and is shaped by 
the genetics background and early alterations in the 
BA and gut microbiota profile. These changes might 
reflect altered dietary composition (perhaps with an 
excess of dietary cholesterol, as reported in patients 
with lean NAFLD(12-14)), altered cholesterol metabo-
lism, limitations in adipocyte numbers in childhood, 
or differences in mucosal immunology. Secondary or 
concomitant alterations in gut microbiota composi-
tion also drive the phenotype to a greater extent than 
in patients with nonlean NAFLD. This hypothesis 
does not negate the possibility that there are patients 
who are overweight/obese with NAFLD with a simi-
lar pattern of compensatory mechanisms but suggests 
that lean patients have a preponderance of a gut- 
mediated phenotype (Fig. 7). Further studies are 
needed to investigate the contribution of early-stage 
adaptive mechanisms on the long-term hepatic and 
extrahepatic outcomes of this disease. Our hypoth-
esis would suggest that these individuals will have 
more severe and progressive liver disease, as has 
been suggested,(6,7) but this hypothesis needs further 
confirmation.
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) affects about 20-30% of the global population 

and increases the risk of hepatic and extra-hepatic complications including cardiovascular 

disease, diabetes and some types of cancer (Z. Younossi et al. 2018a).  While NAFLD is 

strongly associated with obesity, not all obese subjects will develop disease; conversely, a 

significant proportion of patients will have a normal body mass index (BMI) and are 

commonly referred to as having ‘lean NAFLD’ or NAFLD in a lean person.  

Definition  

Lean NAFLD is defined as disease that develops in subjects with a normal BMI based on 

ethnic-specific cut-offs of 25 kg/m2 in Caucasians and 23 kg/m2 in Asian patients. A 

limitation of this definition is that it relies solely on BMI, an imperfect index of body fat 

topography and fails to identify body fatness in nearly half of adults. Notably, visceral 

adiposity is more strongly implicated in the predisposition to NAFLD development 

irrespective of BMI. Similarly, there is a lack of incorporation of concepts surrounding 

metabolic health in the current definition with nearly a third of lean individuals likely being 

metabolically unhealthy (Figure 1).  

Prevalence 

Lean NAFLD prevalence ranges from 5 to 26%; 5% to 45% in Asians and 5-20% in 

European populations (Z. Younossi et al. 2018a) (Figure 2). In China, of 6,905 subjects 

with a BMI <25 kg/m2, 7.27% had ultrasonographic evidence of hepatic steatosis while in 

another study of 2,000 Chinese with BMI <24 kg/m2, 18% had NAFLD. In Hong Kong the 

prevalence of NAFLD based on proton-magnetic resonance spectroscopy (1HMRS) 
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spectroscopy was 19% in subjects with a BMI <25 kg/m2.  Other countries in Asia 

demonstrate a similar prevalence of BMI-based lean NAFLD (Japan: 15.2% in 3,271 non-

obese subjects; India (urban West Bengal): 5% in those with BMI<25 kg/m2 based on 

ultrasonography and subsequent CT validation; Korea: 12.6% in 29,994 health check non-

obese participants). In western populations, the Dallas Heart Study revealed a prevalence of 

hepatic steatosis by 1H-MRS that ranged from 11% in African Americans to 20% in 

Caucasians and 26% in Hispanics with a BMI <30 kg/m2. Similarly, a large study including 

subjects from Australia and Italy suggested that the prevalence of NAFLD was 20% in 

those of Caucasian descent with BMI <25 kg/m2(F. Chen et al. 2019). Data on the true 

population prevalence and ethnicity-based variations in lean NAFLD prevalence are still 

limited. 

Clinical, histological characteristics and outcome of lean NAFLD  

By definition, patients with lean NAFLD have a lower BMI but they also have a lower 

waist circumference and a more favourable metabolic profile with lower levels of 

dyslipidemia, diabetes, hypertension, glycemia and homeostasis model assessment insulin 

resistance index (HOMA-IRI) compared to their obese counterparts. In cross-sectional 

studies, lean patients also have less hepatic inflammation and fibrosis. Despite the 

favourable phenotype however (F. Chen et al. 2019; J. C. F. Leung et al. 2017b), lean 

patients with NAFLD may have a worse outcome and accelerated disease progression (A. 

C. Dela Cruz et al. 2014; Hagstrom et al. 2018), though one study in Chinese patients with 

shorter follow up (4 years) suggested that non-obese patients may have a better prognosis, 

though this was not significant (J. C. F. Leung et al. 2017b). As would be expected from 

the underlying metabolic abnormalities, lean NAFLD is associated with an increased risk 
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of incident diabetes and cardiovascular disease compared to those without NAFLD (Sinn et 

al. 2019).  

 

Pathophysiology 

The pathophysiological pathways underlying the development and progression of NAFLD 

in lean subjects are not entirely clear. However, emerging evidence indicates that lean 

NAFLD is a distinct entity shaped by the dynamic interaction of genetic predisposition, 

metabolic dysregulation, the gut microbiota and the enterohepatic circulation. Comparing 

lean and non-lean patients with NAFLD, the prevalence of the PNPLA3 (G) allele was 

reported to be higher in lean individuals in some but not others reports (Eslam et al. 2018b; 

Feldman et al. 2017a). An increased prevalence of the TM6SF2 (T) (F. Chen et al. 2019) 

and IFNL3/IFNL4 (C) allele among lean patients has also been demonstrated (Eslam et al. 

2015a; Petta et al. 2017a).   

Lean NAFLD patients tend to have a distinct metabolic and gut microbiota profile with 

higher concentrations of lysine that is implicated in visceral fat accumulation (Feldman et 

al. 2017a). In another study, patients were reported to have increased bile acids and FXR 

activity (measured by FGF15/19), implying that they have better metabolic adaptation and 

are perhaps relatively obese resistant. Notably, this adaptation attenuates with progression 

of disease (F. Chen et al. 2019) (Figure 3). Intriguingly, pilot data suggest that patients 

with lean NAFLD may have a distinct gut microbiota profile with enrichment of species 

implicated in the generation of liver fat (F. Chen et al. 2019).  
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Approach to management 

No specific guidelines exist for the management of lean, as opposed to non-lean NAFLD. 

The current recommendations of the American Association for the Study of Liver Disease 

and the European Association for the Study of the Liver recommends weight loss alone or 

accompanied by increased physical activity for all patients with NAFLD. Although weight 

loss might intuitively appear to be less beneficial in lean patients, there are demonstrable 

effects of lifestyle intervention even in this sub-group (V. W. S. Wong et al. 2018). High 

fructose and cholesterol intake has been reported in patients with lean NAFLD and it would 

seem appropriate to recommend reducing intake of these nutrients, while encouraging 

adoption of a Mediterranean-type diet. The latter also has beneficial effects on 

cardiovascular disease and visceral fat accumulation (Estruch et al. 2018). Similarly, 

emerging evidence indicates that exercise can reduce liver fat independent of weight loss 

(Johnson et al. 2009).  

Lean NAFLD patients are underrepresented in ongoing clinical trials; thus, the impact of 

current investigational agents on lean disease is unclear. Of interest, inhibition of ileal bile 

acid uptake led to resolution of steatohepatitis in a mouse model (F. Chen et al. 2019), 

while liraglutide, a glucagon-like peptide- 1 (GLP-1) analogue improved liver histology in 

lean patients (Ipsen et al. 2018). 

Conclusion 

A significant proportion of patients with NAFLD are lean, however this entity remains 

poorly characterized and understood. While these patients demonstrate distinct 

pathophysiological mechanisms culminating in similar liver histology to obese patients, 
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individuals with lean NAFLD remain at risk of developing hepatic and extra-hepatic 

complications. Targeted studies are required to further clarify lean NAFLD pathogenesis 

and to develop appropriate management approaches.  
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Figures and legends: 

 

Figure 1: Relationship between body mass index (BMI) and metabolic health status. 

Subjects who are obese by BMI criteria can be metabolically healthy, while a proportion of 

those who have a normal BMI are metabolically unhealthy. The term “metabolic health” 

refers to the metabolic health status of an individual and is a composite of a number of 

metabolic indicators. A metabolically healthy individual has a low risk of impending 

cardiometabolic disease. Metabolic health is related to, but not the same as, the absence of 

metabolic syndrome. Currently there are different subsets of variables that define 

“metabolic health”, with no universal consensus(Maclagan and Tu 2015).  
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Figure 2: Prevalence of NAFLD in lean patients in the published literature.  In these 

studies, BMI < 25 Kg/m2 was used as a cut-off for definition of leanness in most of the 

studies.  
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Figure 3: Metabolic adaptation in patients with NAFLD. Conceptually, the evolution of 

NAFLD in lean patients can be divided in three stages: 1. Subjects at high risk of NAFLD 

have increase susceptibility likely from genetic factors, the foetal microenvironment, 

dietary intake including its composition, changes in the epigenetic code during the 

intrauterine period and early life, as well as changes in gut microbiota; 2. in lean patients 

with NAFLD, there is a phase of adaptation through increasing bile acids, FXR activity and 

potentially other mechanisms; 3. with advancement of disease, individuals with lean 

NAFLD have a failure of metabolic adaptation brought about by the interaction of various 

and complex systemic processes. 

  



 

 
206 

References 

 

1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, et al. Global 
burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nature Reviews 
Gastroenterology & Hepatology 2018;15:11-20. 
2. Chen F, Esmaili S, Rogers G, Bugianesi E, Petta S, Marchesini G, Bayoumi A, et al. Lean 
NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2019. 
3. Leung JCF, Loong TCW, Wei JL, Wong GLH, Chan AWH, Choi PCL, Shu SST, et al. Histological 
Severity and Clinical Outcomes of Nonalcoholic Fatty Liver Disease in Nonobese Patients. 
Hepatology 2017;65:54-64. 
4. Dela Cruz AC, Bugianesi E, George J, Day CP, Liaquat H, Charatcharoenwitthaya P, Mills PR, 
et al. Characteristics and Long-Term Prognosis of Lean Patients With Nonalcoholic Fatty Liver 
Disease. Gastroenterology 2014;146:S909-S909. 
5. Hagstrom H, Nasr P, Ekstedt M, Hammar U, Stal P, Hultcrantz R, Kechagias S. Risk for 
development of severe liver disease in lean patients with nonalcoholic fatty liver disease: A long-
term follow-up study. Hepatol Commun 2018;2:48-57. 
6. Sinn DH, Kang D, Choi SJ, Paik SW, Guallar E, Cho J, Gwak GY. Lean non-alcoholic fatty liver 
disease and development of diabetes: a cohort study. European Journal of Endocrinology 
2019;181:185-192. 
7. Feldman A, Eder SK, Felder TK, Kedenko L, Paulweber B, Stadlmayr A, Huber-Schonauer U, 
et al. Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic Fatty 
Liver. American Journal of Gastroenterology 2017;112:102-110. 
8. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical 
impact. Journal of Hepatology 2018;68:268-279. 
9. Petta S, Valenti L, Tuttolomondo A, Dongiovanni P, Pipitone RM, Camma C, Cabibi D, et al. 
Interferon Lambda 4 rs368234815 TT >delta G Variant Is Associated With Liver Damage in Patients 
With Nonalcoholic Fatty Liver Disease. Hepatology 2017;66:1885-1893. 
10. Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, Dore GJ, Chan HLK, et al. 
Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver 
disease. Nature Communications 2015;6. 
11. Wong VWS, Wong GLH, Chan RSM, Shu SST, Cheung BHK, Li LS, Chim AML, et al. Beneficial 
effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. Journal 
of Hepatology 2018;69:1349-1356. 
12. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, et al. 
Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with 
Extra-Virgin Olive Oil or Nuts. N Engl J Med 2018;378:e34. 
13. Johnson NA, Sachinwalla T, Walton DW, Smith K, Armstrong A, Thompson MW, George J. 
Aerobic Exercise Training Reduces Hepatic and Visceral Lipids in Obese Individuals Without Weight 
Loss. Hepatology 2009;50:1105-1112. 
14. Ipsen DH, Rolin B, Rakipovski G, Skovsted GF, Madsen A, Kolstrup S, Schou-Pedersen AM, 
et al. Liraglutide Decreases Hepatic Inflammation and Injury in Advanced Lean Non-Alcoholic 
Steatohepatitis. Basic & Clinical Pharmacology & Toxicology 2018;123:704-713. 
15. Maclagan LC, Tu JV. Using the concept of ideal cardiovascular health to measure 
population health: a review. Current Opinion in Cardiology 2015;30:518-524. 

 



 

 
207 

 
9.1.3 Nature Reviews Gastroenterology and Hepatology  
 

Chen, F, Younossi, ZM, Anstee, QM, Rinella, M, Wong, VWS, 

George, J, Eslam, M; The role of metabolic health and metabolic 

adaptation in lean NAFLD; invited review and submitted for 

publication in Nature Reviews Gastroenterology and Hepatology 28 

January 2020; manuscript no: NRGH-19-237V1 

 

 

 

 

 

 

 

 

 



 

 
208 

The role of metabolic health and metabolic adaptation in lean MAFLD 

Fei Chen1, Zobair M. Younossi2, Quentin M Anstee3, Mary Rinella4, Vincent Wai-Sun 

Wong5, Jacob George1, Mohammed Eslam1 

 
1 Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and 
University of Sydney 
2  Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls 
Church, VA, USA 
3 Institute of Translational & Clinical Research, Faculty of Medical Sciences, Newcastle 
University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical 
Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon 
Tyne, United Kingdom. 
4 Department of Gastroenterology and Hepatology, Northwestern University Feinberg 
School of Medicine, Chicago, IL, USA. 
5 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong 
Kong 

 

Competing interest’s statement: The authors declare no competing interests for this 
manuscript. 
  
Acknowledgements: ME and JG are supported by the Robert W. Storr Bequest to the 
Sydney Medical Foundation, University of Sydney; a National Health and Medical 
Research Council of Australia (NHMRC) Program Grant (APP1053206, APP1149976) and 
Project grants (APP1107178 and APP1108422). FC is supported by the Commonwealth 
government of Australia Research Training Program (RTP) scholarship and the Westmead 
Institute of Medical Research Top-up grant. QMA is supported by the EPoS (Elucidating 
Pathways of Steatohepatitis) consortium funded by the Horizon 2020 Framework Program 
of the European Union under Grant Agreement 634413, the LITMUS (Liver Investigation: 
Testing Biomarker Utility in Steatohepatitis) consortium funded by the IMI2 H2020 
Framework Program of the European Union under Grant Agreement 777377 and the 
Newcastle NIHR Biomedical Research Centre. 
 

  



 

 
209 

Corresponding Author 

Jacob George: Storr Liver Centre, Westmead Institute for Medical Research, Westmead 

Hospital and University of Sydney, Westmead 2145, NSW, Australia, Ph: 61-2-88907705; 

Fx 61-2-96357582. Email: jacob.george@sydney.edu.au 

Mohammed Eslam: Storr Liver Centre, Westmead Institute for Medical Research, 

Westmead Hospital and University of Sydney, Westmead 2145, NSW, Australia, Ph: 61-2-

88907705.               Email: mohammed.eslam@sydney.edu.au 

 

Word count: 6,213 words. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

mailto:jacob.george@sydney.edu.au
mailto:mohammed.eslam@sydney.edu.au


 

 
210 

Abstract 
Metabolic associated fatty liver disease (MAFLD) affects between 20-30% of the 

population in many countries; its incidence and prevalence have risen in parallel with rising 

rates of obesity and type 2 diabetes. MAFLD is a leading cause for end-stage liver disease, 

cancer and liver transplantation, as well as for death from associated extrahepatic 

consequences including cardiometabolic disease. However, there is growing evidence that 

not all obese individuals suffer from the metabolic consequences of obesity, including 

MAFLD. Conversely, not all lean people are metabolically healthy compared to their obese 

counterparts and a significant proportion develop fatty liver disease, referred to as lean 

MAFLD. The clinical characteristics, natural history and pathophysiology of this subgroup 

of patients is poorly characterised. In this review we describe the epidemiology and natural 

history of MAFLD and outline the concepts of metabolic health and metabolic adaptation 

that can be used as a framework to understand the development of MAFLD, including in 

lean people. It is hoped this will lead to a better understanding of the entity and result in 

improved methods for diagnosis and management. 
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Introduction 
 

The global rise in the prevalence of obesity and type 2 diabetes has been the impetus for 

the growth in non-communicable chronic diseases that places a considerable burden on 

health systems, both in developed and developing nations(Agbim et al. 2019). Worldwide, 

the prevalence of overweight and obesity has risen between 1980 to 2013 in both men 

(from 28.8% to 36.9%) and women (from 29.8% to 38.0%) and is continuing to rise at 

pandemic rates(Bluher 2019; Ng et al. 2014). Similarly, the prevalence of overweight and 

obesity in children and adolescents has increased in both developing (up to 12.9% in boys 

and 13.9% in girls) and developed countries (up to 23.8% in boys and 22.6% in girls)(Ng et 

al. 2014). Nearly a third of adults in the USA are obese (defined as having a body mass 

index (BMI) of more than 30 kg/m2)(Ng et al. 2014), while at least 50% of men in Tonga 

and women in Kuwait, Kiribati, Libya, Qatar and Samoa are overweight or obese (defined 

as having a BMI of more than 25 kg/m2 or 30kg/m2, respectively)(Ng et al. 2014).  

These increases are driven by a combination of excess energy intake relative to 

expenditure, nutritionally imbalanced diets, and a sedentary lifestyle with increased 

physical inactivity. The societal changes are an outcome of increased urbanisation, access 

to energy dense foods in rural and urban areas and increased availability of labour saving 

devices and technologies(Bluher 2019; Popkin 2006). A recent study estimated the 

prevalence of insufficient physical activity at around 23.3% in 2010(Hallal et al. 2012). 

Alarmingly, a more recent report on worldwide trends in physical inactivity between 2001-

2016 suggested that the prevalence of physical inactivity has not altered since 2001, with 
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the rate being twice as high in high income countries, and rising over time(Guthold et al. 

2018). 

One of the non-communicable diseases with well-described adverse clinical outcomes that 

has risen in parallel with obesity is metabolic associated fatty liver disease (MAFLD) 

(formerly known as NAFLD), which affects about 20-30% of the population(Eslam et al. 

2019; Sarin et al. 2020; Z. Younossi et al. 2018a). MAFLD is a leading cause for end-stage 

liver disease, cancer and liver transplantation, with an estimated 20 million likely to 

eventually die from liver disease(Bellentani 2017; Le et al. 2017; Z. Younossi et al. 2018b). 

Using Global Burden of Disease dataset, it has been shown that MAFLD is fastest growing 

global driver of cirrhosis and liver cancer(Paik et al. 2019). In addition, MAFLD represents 

a significant economic burden to society that reduces quality of life including through 

increased symptoms of fatigue and decreased mental well-being. This affects how well a 

person is able to function in their daily activities (Sayiner et al. 2016). In the United States, 

patients with MAFLD are reported to have higher annual health care expenditure ($19,390 

versus $5,567) with higher rates of unemployment (55% versus 30%) and disability related 

unemployment (30.5% versus 6.6%) compared to those without chronic liver disease. In 

Europe, MAFLD is estimated to have an annual cost of about €35billion (from €354 to 

€1,163 per patient; highest in patients aged 45-65) (Stepanova et al. 2017; Z. M. Younossi 

et al. 2016b). Although MAFLD and its subtype of NASH have been considered 

“asymptomatic” diseases, they are associated with significant impairment pf patient 

reported outcomes(Golabi et al. 2016). In fact, as NASH progresses this negative impact on 

PROs become even more pronounced(Huber et al. 2019; Z. M. Younossi et al. 2019b; Z. 

M. Younossi et al. 2019a). 
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MAFLD classically presents in close association with metabolic syndrome or one of its 

components, including obesity, hypertension, type 2 diabetes mellitus and dyslipidaemia. 

Some regard excess liver fat deposition as the hepatic manifestation of the metabolic 

syndrome (Chalasani et al. 2012; Z. M. Younossi et al. 2016a). Attesting to this link, a 

2016 meta-analysis of 21 cohort studies found obesity to be associated with a 3.5-fold 

increased risk of developing MAFLD, with a dose-dependent relationship to BMI(L. Li et 

al. 2016). Similarly, dual biopsy natural history studies indicate that incident type 2 

diabetes and hypertension are key factors linked to disease progression (McPherson et al. 

2015; Singh et al. 2015). In addition to high prevalence, increasing number of components 

of metabolic syndrome also increases the risk for mortality in MAFLD(Golabi et al. 2018). 

Finally, it is important to note that MAFLD is not only associated with adverse liver related 

outcomes (cirrhosis, HCC and liver mortality) but also extrahepatic manifestation such as 

CVD, extra-hepatic cancers, CKD, Osteoarthritis, obstructive sleep apnea, gallbladder 

disease and psoriasis(Z. M. Younossi 2019).  

Routine assessment of obesity has thus become part of clinical practice with several 

methods used for its assessment. They include anthropometric methods such as calculating 

the body mass index (BMI), waist/hip ratio (WHR), densitometry measurements and 

imaging (Han et al. 2006). BMI and WHR when done together and correctly, provide a 

rapid and inexpensive measure to estimate body fat and body fat distribution. However, 

there are inter-operator variations and the cut-offs for different ethnic backgrounds have 

not been fully defined (Han et al. 2006). Importantly, BMI, the single most frequently used 

measure of adiposity cannot adequately distinguish lean body mass from fat mass(Agbim et 

al. 2019). Densitometry measurements and imaging techniques on the other hand can be 
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used in small-scale studies and provides better information about lean body mass and 

visceral fat depot distribution. However, these techniques are expensive, time-consuming, 

involves exposure to radiation, and are not suitable for population level data gathering (Han 

et al. 2006).  

The outcome from many of the reported studies reveals a remarkable and less well-

understood paradox that not all obese patients (as defined by BMI) suffer from the 

metabolic disturbances related to obesity, including MAFLD. Conversely, not all lean 

people are metabolically healthy compared to their obese counterparts. The concept of 

“metabolically healthy obesity” present in up to 30% of all obese individuals refers to those 

with no evidence of metabolic or cardiovascular complications(Wildman et al. 2008). At 

the other end of the spectrum, 20% of the normal weight adult population are considered 

metabolically unhealthy with a higher risk for developing MAFLD and greater than a 3-

fold higher all-cause mortality and/or cardiovascular event rate compared to those who 

have normal weight and are metabolically healthy(Das and Chowdhury 2013; Stefan et al. 

2017; Z. M. Younossi et al. 2012). This subset of lean individuals with MAFLD is often 

referred to as lean MAFLD, or as MAFLD arising in lean individuals. Lean MAFLD is 

usually defined as fatty liver disease in people with a BMI less than 25 kg/m2 in reports 

from Caucasian populations and less than 23 kg/m2 in studies from Asia (D. Kim and Kim 

2017). The existence, pathogenesis and long-term outcomes of lean MAFLD are still 

debated due to inconsistencies in the literature, the heterogeneity of studies and the lack of 

generally accepted criteria for its definition(A. C. e. a. Dela Cruz 2014; Fracanzani et al. 

2011; D. Kim and Kim 2017; J. C. Leung et al. 2017a; Sookoian and Pirola 2017; Z. M. 

Younossi et al. 2012).  
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In this review, we describe the epidemiology and natural history of MAFLD and outline 

concepts of metabolic health and metabolic adaptation that can be used as a framework to 

understand the development of MAFLD, including disease in lean people. It is hoped that 

these concepts will lead to a better understanding of the entity and result in improved 

methods for diagnosis and management.  

Lean MAFLD  
Epidemiology 

The first population study describing lean MAFLD was conducted in Korea in 2004, where 

lean MAFLD was present in 23.4% of the non-obese population with associated metabolic 

disorders (H. J. Kim et al. 2004). Since then, lean MAFLD has been described in several 

Asian and Caucasian reports. (Figure 1 and Supplementary Table 1) These data indicate 

that there are patients with fatty liver who are lean by BMI criteria and secondly that 

disease prevalence is between 5 - 26% in Asian and 7 - 20% in Western populations 

(Younes and Bugianesi 2019). In one study, up to 75% of patients with MAFLD and 

significant liver disease prevalence was shown to have normal BMI in a rural Indian 

population (Das et al. 2010). However, owing to the lack of a widely accepted definition of 

“lean” across studies, as well as the heterogeneity in MAFLD diagnostic criteria, the 

current data suffers from many limitations.  

Histological characteristics 

The histological characteristics of MAFLD vary between ethnic groups irrespective of BMI 

classification.  A recent systematic review from cross sectional studies shows that liver 

fibrosis stage is significantly lower in lean compared to overweight/obese 

MAFLD(Sookoian and Pirola 2018). Similarly, the MAFLD activity scores and presence 
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of steatohepatitis are lower compared to overweight/obese patients, although there was 

substantial heterogeneity in the results (Sookoian and Pirola 2018). In contrast, some 

studies however have reported a more severe histological picture in lean patients with 

higher rates of advanced fibrosis, ballooning and lobular inflammation, as well as greater 

steatohepatitis compared to their non-lean counterparts (Denkmayr et al. 2018; Q. Wang et 

al. 2019).  

Genetic contribution  

Several gene loci are associated with the risk of MAFLD development and progression; 

some have been studied after stratification to lean versus non-lean. The most widely 

examined variant is the PNPLA3 isoleucine to methionine substitution at position 148 

(rs738409 C>G encoding for PNPLA3 I148M) that induces loss of function of the 

enzymatic hydrolase activity resulting in entrapment of triglycerides and retinyl esters in 

lipid droplets within hepatocytes and hepatic stellate cells. The polymorphism 

consequently leads to liver lipid retention and injury with the end result being fibrosis 

development and hepatocellular carcinoma (Eslam et al. 2018a; Eslam and George 2020; 

Liu et al. 2014a). The allele frequency of rs738409 C>G appears to be higher in Asian 

patients with lean- compared to obese MAFLD, although in a study of Western lean 

patients, no difference in the risk allele frequency was observed (Fracanzani et al. 2017; 

Wei et al. 2015). Nevertheless, many reports have demonstrated independent associations 

of the PNPLA3 risk allele with steatohepatitis development and higher stages of fibrosis 

(stage 2 or more) in lean patients (Fracanzani et al. 2017; Wei et al. 2015).  

Another variant strongly implicated with MAFLD is the rs58542926 C>T variant in the 

transmembrane 6 superfamily member 2 (TM6SF2) gene which encodes an amino acid 
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substitution (E167K) involved in the enrichment of triglycerides to apolipoprotein B100 in 

the pathway for very low density lipoprotein (VLDL) secretion by hepatocytes (Eslam et 

al. 2016b; Liu et al. 2014b). Carriers of the mutation have higher liver triglyceride content 

and lower circulating lipoproteins resulting in a greater risk for MAFLD but a lower risk of 

cardiovascular disease (Eslam et al. 2018a; Kahali et al. 2015). In a recent study, carriers of 

the risk variant had significantly more endotoxemia (Pang et al. 2017). A report comparing 

obese to lean MAFLD patients reported higher rates of carriage of the rs58542926 C>T 

allele in the latter(Fracanzani et al. 2017; Q. Wang et al. 2019). 

Recently, the membrane bound O-acyltransferase domain-containing 7 (MBOAT7) 

rs641738 C>T variant was found to be associated with the risk of MAFLD, inflammation 

and fibrosis, as well as risk of progression to hepatocellular carcinoma (HCC) (Thabet et al. 

2016; Thabet et al. 2017). This protein is involved in remodelling of phosphatidylinositol 

with arachidonic acid as part of the Land’s cycle. The rs641738 C>T variant results in 

downregulation of MBOAT7 at the mRNA and protein level, which reduces the level of 

phosphatidyl-inositol containing arachidonic acid in hepatocytes and in the 

circulation(Mancina et al. 2016). In a large study from Austria, there was no significant 

difference in carriage of the MBOAT7 rs641738 C>T allele between lean and obese 

MAFLD patients (Denkmayr et al. 2018). Finally, interferon (IFN) lambda 3/4 variants, 

initially described to be associated with severity of hepatitis and fibrosis progression in 

hepatitis C virus infection, has now been recognised to be associated with liver damage in 

patients with MAFLD, with more profound effect on lean individuals (Eslam et al. 2015b; 

Petta et al. 2017b). 
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Prognosis 

In contrast to studies that examine the prevalence and presentation of lean MAFLD, data 

on its long-term prognosis have been scarce and conflicting. Some reports suggest that 

clinical events and prognosis are worse in the obese compared to the lean MAFLD 

population, with higher cardiovascular events and death (Fracanzani et al. 2011; J. C. 

Leung et al. 2017a). One recent study with a median follow up of 49 months reported a 

clinical event rate of 11.9% in obese compared to 8.3% in the lean MAFLD population (J. 

C. Leung et al. 2017a).  However a study in 2014 by Delacruz et al. looking at the long-

term prognosis of lean patients with MAFLD and a median follow up of 11 years has 

challenged this finding (A. C. e. a. Dela Cruz 2014). This international cohort study 

included 483 patients with biopsy-proven disease and suggested that the median survival 

free of liver transplantation was in fact lower in those who were lean compared to obese. 

This occurred despite having a better metabolic profile and less advanced liver fibrosis (A. 

C. e. a. Dela Cruz 2014). This result was supported by another report of 646 Swedish 

patients with biopsy proven MAFLD and a median 19.9 years follow up where although 

patients with lean disease did not have increased mortality, they had an increased risk for 

the development and progression to severe liver disease compared to obese patients (hazard 

ratio 2.69, p = 0.007) (Hagstrom et al. 2018). 

While lean MAFLD reflects the hepatic manifestation of a metabolically unhealthy normal 

weight, studies involving other organ systems also indicate that individuals with a 

metabolically unhealthy phenotype may suffer a worse prognosis despite a normal BMI. 

Studies of diabetes mellitus in underweight or normal weight people suggest a distinct, 

albeit less well characterized pathophysiology to disease in the overweight/obese 
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population, with higher mortality rates(George et al. 2015). Similarly, metabolic health (as 

measured by the number of components of metabolic syndrome) has been shown to be a 

stronger predictor for myocardial dysfunction than simply BMI or fat mass alone (Dobson 

et al. 2016). 
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Explaining MAFLD pathogenesis in lean individuals: metabolic health 

and metabolic adaptation 

Metabolic health – not all fat is the same 
The most widely accepted definition of metabolic health is the absence of insulin 

resistance, no evidence of subclinical inflammation as determined by high sensitivity C-

reactive protein (CRP), together with only one component of the metabolic syndrome 

according to the Adult Treatment Panel III criteria (Table 1)(Lorenzo et al. 2007; Wildman 

et al. 2008).  

Table 1. Clinical parameters used for the diagnosis of metabolic health  

Systemic inflammation hs-CRP level < 0.1mg/L 

Insulin resistance HOMA-IR < 5.13 

Plus only one (or none) of the following components: 

Clinical parameter Criteria for metabolic abnormality 

Blood pressure Systolic/diastolic blood pressure ≥ 130/85 mmHg or anti-

hypertensive drug use 

Triglyceride level Fasting triglyceride level ≥ 150mg/dL (or ≥ 1.7 mmol/L) 

HDL-C level HDL-C level < 40mg/dL (or < 1.0 mmol/L) in men or < 

50mg/dL (or < 1.3 mmol/L) in women or use of lipid lowering 

medication 

Glucose level Fasting glucose level ≥ 100mg/dL (or ≥ 5.6 mmol/L) or use of 

anti-diabetic medication 

Metabolic health is defined as absence of systemic inflammation with only one (or none) 
other component of metabolic syndrome. Abbreviations: hs-CRP, high sensitivity C-
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reactive protein; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic 
model of insulin resistance. 

 

Mechanisms for variation in metabolic health  
While it is not entirely clear as to the underlying mechanisms explaining individual 

variation in metabolic health, the term “adiposopathy” or defective/sick adipose tissue has 

been introduced. Adiposopathy governs an individual’s cardiometabolic risk, above and 

beyond BMI alone(H. E. Bays 2011) and refers to the pathogenic enlargement of fat cells 

and fat tissue, resulting in anatomic and functional disturbances leading to altered lipid 

metabolism, adipose inflammation and adverse clinical outcomes(H. E. Bays et al. 2008).  

However, given that adipose tissue is not a single, functionally uniform organ, it is not only 

how fat is stored (adipocyte proliferation versus adipocyte hypertrophy) that matters, but 

where the fat is stored (visceral versus subcutaneous, upper body versus lower body) and 

the type of fat (brown versus white). The ‘where’ and ‘type’ of adiposity has a greater 

impact on an individual’s metabolic health than total fat mass(Iacobini et al. 2019). Thus, 

visceral and subcutaneous adipose tissues differ with regards to their contribution to 

metabolic risk. Visceral adipose tissue (VAT) as well as ectopic fat in or around the liver, 

heart and skeletal muscle lipid content (intramyocellular) has been linked to impaired 

glucose homeostasis, insulin resistance and cardiovascular disease(Lim and Meigs 2013). 

Generally, subcutaneous adipose tissue (SAT) is believed to confer significantly lower 

metabolic risk.  However the distribution of SAT seems to matter with lower body SAT 

(gluteofemoral body fat) being characteristic of metabolically healthy individuals and aa 

lower risk for metabolic diseases (Goodpaster et al. 2005; Manolopoulos et al. 2010). In 

contrast, and upper body subcutaneous fat, the primary source of circulating free fatty acids 
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and hence an important determinant of insulin resistance and metabolic impairment. This 

has been demonstrated in several disease states associated with accumulation of upper body 

fat, including Cushing’s syndrome, lipodystrophy and human immunodeficiency virus 

associated lipodystrophy (Ebbert and Jensen 2013; J. J. Lee et al. 2017) (Figure 2). 

The adipocyte responds to positive energy balance through adipocyte hypertrophy as well 

as adipocyte hyperplasia (i.e. recruitment and proliferation of adipocyte precursors). 

Adipose tissue expandability and the increase in fat mass, especially SAT expansion, has 

been linked in previous studies to metabolic improvement and protection from type 2 

diabetes(J. Y. Kim et al. 2007; McLaughlin et al. 2011). Whereas SAT expansion protects 

from metabolic risk, expansion of VAT or limited expansion of SAT is strongly associated 

with insulin resistance due to its hyperlipolytic state that is resistant to the anabolic actions 

of insulin, thereby producing larger amounts of circulating free fatty acids(Despres and 

Lemieux 2006; O'Connell et al. 2010). Although both SAT and VAT sizes correlate with 

the degree of fatty liver, only VAT size is related to metabolic health and progression from 

hepatic steatosis to fibrosis(O'Connell et al. 2010). Previous studies have shown that 

surgical removal of abdominal SAT through liposuction does not improve insulin 

resistance in obese individuals, whereas transplantation of SAT into the abdominal cavity 

results in improved insulin sensitivity and glucose metabolism. This supports the notion 

that differences in metabolic health appear to be reflected by the “fitness” of SAT, while 

dysfunctional SAT (adiposopathy) is characteristic of the metabolically unhealthy state 

(Iacobini et al. 2019; Klein et al. 2004; Tran et al. 2008). 
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Factors that influence metabolic health (adiposopathy) 
Ethnic differences 

Racial/ethnic differences impact fat distribution and obesity and through this, metabolic 

health. For example, data from population datasets of the Framingham Heart Study (FHS) 

and the Jackson Heart study (JHS) as well as the National Health and Nutrition 

Examination Survey (NHANES) reveal that age-adjusted adult obesity prevalence is higher 

in Hispanics and non-Hispanic blacks compared to non-Hispanic whites and Asians(Agbim 

et al. 2019). Plasma adiponectin levels, an adipocytokine associated with cardiometabolic 

health is higher in non-Hispanic whites compared to non-Hispanic blacks and higher in 

women than men (Jiang et al. 2016).  

Correspondingly, studies of fat distribution between ethnic groups suggest that when total 

body fat is controlled, persons of South Asian and Chinese ancestry have more VAT than 

Europeans, with the impact of body weight gain more detrimental in Asians compared to 

non-Hispanic whites, Hispanics and non-Hispanic blacks. Each one unit increase in BMI is 

thus associated with a higher risk of hypertension and diabetes in Asians(Agbim et al. 

2019; R. J. Wong et al. 2014). As a result, the WHO has proposed a BMI cut-off as a 

trigger for public health action for Asians, with a BMI of ≥ 23 kg/m2 as increased risk, 

≥27.5 kg/m2 as high risk, ≥32.5 kg/m2 as higher than high risk and ≥37.4 kg/m2 as the 

highest risk, as they have higher body fat percentage at a lower BMI compared with non-

hispanic whites(WHO 2004). While the underlying mechanism(s) governing these ethnic 

differences remain unclear, the increased risk of cardiometabolic disorders seen in lower 

obesity prevalence ethnicities suggest that metabolic health plays a greater role than BMI 

alone, and might explain why lean MAFLD exists. 
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Environmental factors 

Lifestyle habits clearly contribute to the heterogeneity of metabolic health between 

individuals. Population based cross-sectional studies have also shown that metabolically 

healthy obesity is more prevalent in younger and female adults, and that these individuals 

are more likely to exercise and less likely to smoke or drink heavily (Goday et al. 2016; 

Matheson et al. 2012). The possible mechanisms governing this difference may lie in how 

individuals modulate whole body energy metabolism as evidenced by the fact that 

concurrent physical activity increases fatty acid oxidation during high calorie intake 

periods (S. R. Smith et al. 2000). In addition, a healthy diet and lifestyle is associated with 

a lower fasting respiratory quotient (which assesses nutrient utilization using indirect 

calorimetry by measuring the ratio between carbon dioxide production and oxygen 

consumption) and an increased ability to extract energy from fat (Pujia et al. 2016). Other 

lifestyle factors contributing to cardio metabolic health risk include sleep duration and 

sleep quality factors (Koren and Taveras 2018). A study in China for example found that 

patients with MAFLD had a shorter duration of sleep compared to healthy controls (C. Li 

et al. 2019). The most commonly used definition of a healthy lifestyle includes the 

incorporation of four healthy habits which include moderate alcohol intake, not smoking, 

30 minutes of daily exercise and eating five or more servings of vegetables and fruits a day 

(Matheson et al. 2012).   

In the first study on the lifestyle of patients with different types of MAFLD, total caloric 

intake as well as carbohydrate, protein, fat and iron intake was similar between lean and 

non-lean MAFLD patients compared to healthy controls (C. Li et al. 2019). Another study 

demonstrated that the percentage of carbohydrate energy intake is higher in lean MAFLD 
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patients compared to healthy controls (Kwak et al. 2018). This suggests that an unhealthy 

diet in those with lean MAFLD further contributes to their adverse metabolic health status. 

Genetic factors 

Considerable inter-individual variation exists with regards to the metabolic risk for a given 

BMI. Evidence for a role for genetics in determining how an individual responds to excess 

energy dates back over 25 years ago where a study involving 12 pairs of identical twins 

demonstrated variations in weight gain and fat distribution among the pairs in response to 

overfeeding(Bouchard et al. 1990). In that study, monozygotic young male twins were 

overfed a total of 84,000 kCal over 100-days. There were significant similarities within 

each pair with respect to weight gain, changes in regional fat distribution and amount of 

abdominal visceral fat, but about six times as much variance between pairs (Bouchard et al. 

1990) 

The waist hip ratio used as a surrogate measure of regional fat distribution is estimated to 

have a heritable contribution of up to 60%, independent of the risk for overall obesity 

(Schleinitz et al. 2014). In the era of genome wide association studies (GWAS), many loci 

have been identified that regulate obesity and control body fat distribution, as well as the 

metabolic profile of excess adiposity (i.e. metabolically healthy obesity versus 

metabolically unhealthy obesity)(Iacobini et al. 2019). As an example, a single nucleotide 

polymorphism (SNP) near the MC4R (melanocortin 4 receptor) gene that is involved in 

insulin resistance and obesity is one of the major loci associated with waist circumference 

(J. C. Chambers et al. 2008).  A meta-analysis of GWAS in 2010 uncovered 13 loci 

associated with WHR adjusted for BMI; the known association signal at LYPLAL1 

involved in lipase activity was confirmed, with effect sizes reaching 0.059 per risk allele in 
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women (Heid et al. 2010). Many of these loci are associated with metabolic traits such as 

fasting glucose, insulin, adiponectin levels and BMI, as well as with diseases such as type 2 

diabetes, hypertension and coronary artery disease(Kilpelainen et al. 2011; Schleinitz et al. 

2014). Equally, several gene variants have been associated with a lower risk of metabolic 

abnormalities despite having a BMI in the obese range(Yaghootkar et al. 2016). 

Interestingly, the same genetic variants seem to share similar patterns of metabolic trait 

association with the monogenic lipodystrophy phenotype, including lower BMI, higher 

VAT to SAT ratio, impaired insulin sensitivity and increased risk of type 2 diabetes 

(Iacobini et al. 2019; Yaghootkar et al. 2014). This suggests that unlike in specific altered 

fat distribution phenotypes like lipodystrophy where there is a clear genetic mutation 

involved, the common type of obesity and leanness is polygenic in nature and influences 

fat distribution (visceral versus subcutaneous) and metabolic traits, with individual variants 

having low effect sizes and with further modulation by factors such as epigenetic, 

environmental and biologic factors (Schleinitz et al. 2014).  

Although there have been no specific studies looking into the genetic variations in lean 

MAFLD patients, the studies above shed light into the heritability of adiposity and fat 

distribution, which may partly explain the underlying pathophysiology of lean MAFLD. 

Epigenetic factors  

Despite advances in genetic analyses to identify polymorphisms associated with waist hip 

ratio and fat distribution, the reported variants only explain a small proportion of the 

phenotypic variance and genetic heritability(Eslam et al. 2018a). Therefore, other factors 

linking genetic to environmental risks such as epigenetics need to be considered (Hardy 

and Mann 2016). Epigenetic changes link an individual’s genetic background with 
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environmental (exposure) cues and are dynamically regulated throughout an individual’s 

lifespan(Hardy and Mann 2016). Known epigenetic modifiers include DNA methylation, 

histone modifications and chromatin remodeling, and non-coding RNAs (Hardy and Mann 

2016).  

Strong adipose tissue-specific gene expression patterns in early development seem to be 

preserved from one pre-adipocyte to the next over several generations, suggesting the 

existence of yet unknown mechanisms to maintain these expression profiles over 

time(Schleinitz et al. 2014). Genome-wide methylation analysis using methylated DNA 

immunoprecipitation sequencing of eight different adipose depots in three pig breeds 

displaying different fat levels despite living in a comparable environment demonstrated 

functionally relevant methylation differences between different adipose depots. Visceral 

adipose tissue which carries the highest metabolic risk was associated with impaired 

inflammatory and immune responses(M. Li et al. 2012). Whether similar differences occur 

in humans is not yet known. 

Several human studies support a role for epigenetics in the regulation of fat distribution. 

The expression of leptin, an important adipokine involved in regulation of energy 

homeostasis primarily in adipocytes, is positively correlated to adiposity. The overall 

expression and tissue distribution of leptin is influenced to a degree by the DNA 

methylation pattern at the leptin promoter, which is determined during embryogenesis, and 

remains stable despite alterations in leptin expression levels in white adipose tissue during 

changes in body weight(Marchi et al. 2011). In another recent study, altered DNA 

methylation at the IGF2/H19 locus as a result of an adverse in-utero environment was 

associated with changes in subcutaneous fat measures, but not visceral or central 
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adiposity(Huang et al. 2012). This suggests an important role for epigenetics in 

determining fat distribution from very early life.  

Studies involving several species have demonstrated that oscillations in intrauterine and 

early postnatal nutritional, metabolic and hormonal environments increase the 

susceptibility to develop metabolic disorders and diseases in later life(Plagemann 2004). 

For example, maternal gestational diabetes and early postnatal overfeeding have been 

associated with fetal and neonatal hyperinsulinemia (Plagemann 2004). Furthermore, 

maternal nutrition during pregnancy contributes to perinatal programming of the genome 

which has an influence on fetal body composition and fat distribution, and ultimately the 

risk of obesity and metabolic diseases later in life(Blumfield et al. 2012). This ‘embryonic 

or fetal programming’ suggests that metabolic health and adiposopathy is trans-

generational (H. Bays and Scinta 2015).  

Overall the metabolic health of an individual plays a large part in the pathogenesis of 

MAFLD, is partly determined in the early stages of life, and remains stable throughout a 

life, despite variations in environmental stimuli. 

The world within – Gut microbiota, bile acids and the enterohepatic circulation 

Aside from calorie content, the nutrient composition of a person’s diet plays an important 

role in overall physiological responses including the gut microbiota profile, adiposity and 

insulin resistance. About 10-100 trillion micro-organisms composed of bacteria, fungi, 

archae and viruses reside inside or on the body. The majority of these microbial symbionts 

(collectively known as the microbiota) reside within the digestive tract (Turnbaugh et al. 

2007). Four main phyla of bacteria make up the human microbiome: Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria, although the Firmicutes and 
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Bacteroidetes make up about more than 90% of the gut microbiota species (Turnbaugh et 

al. 2007).  

Diet exerts a dominant effect on microbiota composition, irrespective of the host genotype 

(Carmody 2015). Studies have also shown that long-term dietary habits are strongly 

associated with specific enterotype clustering of microbiota, where a Bacteroides 

enterotype is associated with a diet rich in animal fat and protein and the Prevotella 

enterotype with carbohydrate rich diets (De Filippo et al. 2010; Wu et al. 2011). 

Furthermore, although alterations in diet can lead to changes in microbiota composition 

within 24 hours, an individual’s enterotype identity is only affected by their long-term 

dietary habits (Wu et al. 2011).  Common to all published studies in the literature on the 

role of microbiota in MAFLD and lean MAFLD, is that there are measurable differences in 

the microbiome diversity and composition between different stages of MAFLD and 

steatohepatitis compared to healthy controls (B. Wang et al. 2016; Wieland et al. 2015). 

In the gut, in addition to their roles in energy harvest of nutrients and regulation of mucosal 

permeability and inflammation, the microbiome also plays important roles in bile acid 

physiology, through the conversion of primary to secondary bile acids (Tremaroli and 

Backhed 2012). Bile acids (BA) are steroid molecules synthesized in the liver from 

cholesterol through the actions of about 15 enzymes. The primary bile acids 

chenodeoxycholate (CDCA) and cholate (CA) are synthesized from cholesterol, mostly 

through the classical pathway, initiated by the rate-limiting enzyme cytochrome P450 

cholesterol 7α-hydroxylase (CYP7A1)(Arab et al. 2017). A small proportion of the BA 

pool (between 3% to 18%) is synthesized through an alternative pathway initiated by 

cytochrome P450 27α-hydroxylase (CYP27A1)(Khalid et al. 2015). Primary BAs are then 
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conjugated into their taurine or glycine conjugates and excreted into bile where they assist 

in fat emulsification and absorption. Primary bile acids undergo conversion to the 

secondary bile acids deoxycholate (DCA), lithocolic acid (LCA) and ursodeoxycholic acid 

(UDCA) by intestinal bacteria and are mostly reabsorbed in the distal ileum via the 

enterohepatic circulation (Arab et al. 2017; Khalid et al. 2015). The conversion of primary 

to secondary bile acids requires an initial deconjugation by bile salt hydrolase (BSH) 

before downstream modifications by 7-alpha dehydroxylase to produce deoxycholic acid 

(DCA) and lithocholic acid (LCA) or by 7-alpha hydroxysteroid dehydrogenase to produce 

ursodeoxycholic acid (UDCA) (Jiao et al. 2017; Ridlon et al. 2006). BSH activity is present 

in all major gut bacterial species, however the conversion of primary to secondary bile 

acids by 7-dehydroxylation is restricted to bacteria with bile acid inducible genes. These 

include those belonging to the genera Clostridium (clusters XIVa and XI), Eubacterium, 

Blautia, Ruminococcaceae and Lachnospiraceae, all of which belong to the Firmicutes 

phylum (Wahlstrom et al. 2016a; Yokota et al. 2012).  

Alteration in the gut microbiota profile therefore, concert with an individual’s genetic 

make-up and dietary intake, contributes to the propensity to develop metabolic diseases 

including obesity and MAFLD through regulation of bile acid composition which 

eventually affects lipid and glucose metabolism (Dabke et al. 2019) (Figure 3). 

Besides their role in the digestion and absorption of fat and fat soluble vitamins, bile acids 

are signalling molecules involved in the regulation of lipid and glucose metabolism, as well 

as inflammatory modulators in the liver and several other tissues (Arab et al. 2017; 

Chavez-Talavera et al. 2017; Khalid et al. 2015). These actions are mediated through 

binding specific bile acid receptors, including members of the farsenoid X receptor (FXR), 
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pregnane X receptor (PXR), Vitamin D receptor and Takeda G protein coupled receptor 5 

(TGR5) families (Arab et al. 2017).  

The binding of bile acids to FXR in ileocytes trigger transcription and production of 

Fibroblast Growth Factor 19 (FGF-19), which is then transported to the liver where it binds 

to the tyrosine kinase FGF receptor 4 (FGFR4)/beta Klotho complex(Khalid et al. 2015). 

This activates c-Jun N terminal-kinases 1/2 signalling and subsequently down regulates 

CYP7A1 the key P450 enzyme in the classical bile acid synthesis pathway (Khalid et al. 

2015). FXR can be stimulated by most bile acids although at varying potency, with CDCA 

displaying the highest potency, followed by DCA and CA, then LCA (Khalid et al. 2015). 

In addition to regulating bile acid synthesis, FGF-19 plays a significant role in glucose and 

cholesterol homeostasis by promoting hepatic glycogen storage, fatty acid beta oxidation 

and decreasing hepatic lipogenesis, as well as playing a role in liver regeneration/ repair 

(Arab et al. 2017; Chavez-Talavera et al. 2017; Khalid et al. 2015). BA can also activate 

TGR5 receptors with different potencies (LCA>DCA>CDCA>CA) in the enteroendocrine 

L cells along the gastrointestinal tract (mostly in the colon) which subsequently induces 

preproglucagon gene expression and glucose like peptide-1 (GLP-1) secretion (Chavez-

Talavera et al. 2017). Both FXR and TGR5 are also expressed in pancreatic β-cells where 

they have positive effects on the synthesis and secretion of insulin, in response of glucose 

intake, suggesting a crucial role for BA in glucose homeostasis (Chavez-Talavera et al. 

2017). 

FXR and TGR5 receptors are also differentially expressed in adipocytes, FXR in white, 

and TGR5 in brown adipocytes, respectively, as well as in certain immune-inflammatory 

cells in adipose tissue(E. P. Broeders 2015). In adipocytes, FXR regulates the 
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differentiation and functions of adipocytes and promotes peroxisome proliferator-activated 

receptor-γ (PPARγ) activity which interferes with the Wnt/β-catenin pathway, while TGR5 

activates the thyroid hormone receptor to uncouple mitochondrial function and increase 

thermogenesis in brown adipose tissue, which further contributes to their anti-inflammatory 

and insulin-sensitizing effects (Abdelkarim et al. 2010; Watanabe et al. 2006). The 

enzymes involved in bile acid synthesis are controlled tightly in response to changing 

metabolic conditions and metabolic alterations, along with chronic low-grade 

inflammation, which are characteristics of meta-inflammatory disorders such as obesity, 

type 2 diabetes and MAFLD(Chavez-Talavera et al. 2017; Xie et al. 2015).  

Therefore, the interplay between an individual’s lifestyle factors, combined with their 

microbiota and bile acid profile, shaped in part by their dietary composition and genetic as 

well as epigenetic backgrounds, has a significant impact on an individual’s overall 

metabolic health. This in turn governs the risk for metabolic disorders, including MAFLD. 

Relationship between metabolic health and MAFLD  
Given that metabolic health status (defined as per Table 1) is an integral aspect of MAFLD 

pathophysiology, several studies have investigated the relationship between metabolic 

health and MAFLD. In these, the risk of developing steatohepatitis and significant fibrosis 

increases progressively as the number of metabolic risk factors increases(Ampuero et al. 

2018). Consistently, a cross-sectional study of more than 1,000 patients with biopsy proven 

MAFLD demonstrated that metabolic health has a greater impact on the risk of NASH 

development, significant fibrosis, atherogenic dyslipidaemia and kidney dysfunction than 

obesity or BMI alone(Ampuero et al. 2018). That study also found a similar risk for 

steatohepatitis and fibrosis in a metabolically unhealthy group, regardless of their body 
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weight, suggesting that metabolic health has a greater impact on the severity of liver 

disease than BMI, possibly through unfavourable body fat distribution (and/or as yet 

unknown factors) with a long but important period of subclinical systemic 

inflammation(Ampuero et al. 2018). Similar findings have been demonstrated in Asian and 

Mexican populations (Gutierrez-Grobe et al. 2017; M. K. Lee et al. 2015; Sung et al. 

2014).  

Despite these data, metabolically healthy obesity cannot be considered entirely benign as it 

carries almost double the risk of steatohepatitis compared to individuals who are 

metabolically healthy and normal weight(Sung et al. 2014). This implies that healthy 

obesity (acting through subclinical or as yet be discovered impacts on metabolic health) 

perhaps represents a “honeymoon phase” that in some individuals eventually progresses to 

a metabolically unhealthy obese state (Kramer et al. 2013). Conversely, the presence of 

MAFLD can promote (or at least be associated with) the conversion of an individual’s 

metabolic health from metabolically healthy to metabolically unhealthy, independent of 

age, sex, BMI, lifestyle factors, individual components of metabolic syndrome and insulin 

resistance. The effect is greater in those with a lower BMI and body fat mass compared to 

those with high BMI and body fat mass(Hwang et al. 2019). 

Metabolic adaptation 
The human body has great capacity to maintain body weight homeostasis through effects 

on food intake and energy expenditure. The ability of the body to increase or decrease 

energy expenditure beyond the obligatory energy costs of depositing and maintaining new 

tissues, digesting food, moving and maintaining body mass, without any change in body 

mass is defined as metabolic adaptation(Johannsen et al. 2019). Adaptation is achieved 
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through a fine balance of regulatory systems through the interaction of hormones, 

chemokine signals and the neuroendocrine axis (Johannsen et al. 2019). In response to 

certain nutrition and/or physical activity conditions, several cytokines or peptides secreted 

from muscles (myokines), adipose tissue (adipokines) and liver (hepatokines) engage in 

cross-talk to maintain energy homeostasis by governing lipid and glucose metabolism as 

well as by mediating local and systemic inflammation. Any perturbations in the systems 

involved results in loss of metabolic adaptation, resulting in abnormal expansion of adipose 

tissue and obesity, hepatic fat accumulation, and insulin resistance(Oh et al. 2016).  

In addition, the enterohepatic circulation including bile acids (BA) and their metabolites, as 

well as gut microbiota play important roles in metabolic adaptation which occurs in part 

due to genetic and developmental influences(Wahlstrom et al. 2016a). A number of early 

experiments involving protein overfeeding have shown large variations in weight gain 

among nonrelated subjects but high correlation within twin pairs(Bouchard et al. 1990). 

Further, studies have shown that the change in energy expenditure was due to a change in 

non-exercise activity thermogenesis(Diaz et al. 1992; Leibel et al. 1995). This concept of 

metabolic adaptation may explain why some individuals appear to be obesity resistant 

while others gain weight easily when challenged with caloric abundance.  

Impact of metabolic adaptation on lean MAFLD pathogenesis 
Given the complex and multifactorial pathogenesis of MAFLD(Buzzetti et al. 2016) and 

knowing that not all obese people have MAFLD and not all MAFLD patients are 

obese(Younes and Bugianesi 2019), how an individual adapts to an unfavorable set of 

metabolic circumstances will govern when he/she will manifest fatty liver disease. This 
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adaptive ability is the capability of the body to increase or decrease energy expenditure 

beyond obligatory energy requirements without any change in body mass.  

Thus, an individual may respond to increased dietary cholesterol or caloric intake with 

appropriate metabolic adaptation to maintain body weight, or they may have complete loss 

of metabolic adaptation, resulting in weight gain, with increased adiposity/adiposopathy 

and hepatic fat accumulation. In other individuals, increased caloric intake may only result 

in partial loss of metabolic adaptation, where the outcome is lean MAFLD. In this scenario, 

as outlined in Figure 4 as an example, increased dietary cholesterol in the context of 

perturbed metabolic adaptive capacity (shaped by their background genetic, epigenetic and 

gut microbiota profile), associates with some metabolic adaptation through increased 

production of bile acids, especially secondary bile acids and increased FXR activity to 

maintain body weight and serum cholesterol levels(F. Chen et al. 2019). This metabolic 

adaptation as reflected by higher FXR activity (measured through FGF-19 levels) and 

lower C4 levels (bile acid synthetic marker) may explain why these patients have better 

liver histology, at least in the earlier stages of their disease(F. Chen et al. 2019). 

Interestingly, with regard to nutrients, other studies have suggested that patients with lean 

MAFLD have higher dietary cholesterol and lower dietary polyunsaturated fatty acids 

(PUFAs are associated with lower hepatic TNFα and improved insulin resistance) intake 

compared to non-lean MAFLD patients and healthy controls(Enjoji et al. 2012; Yasutake et 

al. 2009a). Similar findings have been demonstrated in animal models where feeding a 

cholesterol rich diet results in steatohepatitis without obesity or insulin resistance(Kainuma 

et al. 2006). In addition, dietary cholesterol itself, rather than hepatic steatosis is associated 
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with the risk of progression to hepatic inflammation in murine models(Wouters et al. 

2008). 

BMI – A marker of maladaptation?   
Given that metabolic health and metabolic adaptive capacity have an impact on the risk for 

and the progression of MAFLD, equally BMI may be a less robust predictor of MAFLD 

outcomes. In this context, BMI is thus perhaps better considered a marker of 

maladaptation. Consideration in future therefore needs be given to classifying MAFLD 

based on metabolic health and adaptive responses rather than measures of BMI. How this is 

quantified remains an open question.  

Clinical implications and future directions – MAFLD is not a single 
disease entity 
In this review, we have presented data on the complex pathophysiology of MAFLD 

focusing mainly on lean MAFLD, a distinct subset with poor metabolic health but better 

metabolic adaptation. Therefore, lean and non-lean MAFLD represents one of the best 

examples of disease heterogeneity, and the wide spectrum of disease. An obvious 

implication is that future clinical trials should stratify patients into lean and non-lean, as the 

subgroups have a different underlying patho-biology and drivers, and likely differences in 

outcome. In addition, given the importance of metabolic health to MAFLD 

pathophysiology, classification of patients based on their metabolic health status warrants 

further attention. 

Conclusion 
Lean MAFLD presents as a unique phenotype of patients with fatty liver disease with 

distinct characteristics. Metabolic health status plays a major role in the development of 
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MAFLD and among lean individuals with the disease, their genetic, epigenetic, gut 

microbiota and bile acid profiles, enterohepatic circulation and lifestyle factors explain 

their phenotype despite a normal BMI. The distinct and better adaptation of lean patients 

allows them to respond to adverse metabolic inputs to maintain lean body weight despite an 

increase in cardiometabolic risk. Whether or not this partial metabolic adaptation is 

preserved in the long run and what triggers the switch to maladaptation with disease 

progression remains to be elucidated. 

  



 

 
238 

References 
 

Abdelkarim, Mouaadh, et al. (2010), 'The Farnesoid X Receptor Regulates Adipocyte 
Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-γ 
and Interfering with the Wnt/β-Catenin Pathways', Journal of Biological Chemistry, 285 
(47), 36759-67. 

Agbim, U., et al. (2019), 'Ethnic Disparities in Adiposity: Focus on Non-alcoholic Fatty Liver Disease, 
Visceral, and Generalized Obesity', Curr Obes Rep, 8 (3), 243-54. 

Alam, S., et al. (2014), 'Clinical, anthropometric, biochemical, and histological characteristics of 
nonobese nonalcoholic fatty liver disease patients of Bangladesh', Indian J Gastroenterol, 
33 (5), 452-7. 

Albaugh, V. L., et al. (2019), 'Role of Bile Acids and GLP-1 in Mediating the Metabolic 
Improvements of Bariatric Surgery', Gastroenterology, 156 (4), 1041-51 e4. 

Ampuero, J., et al. (2018), 'The effects of metabolic status on non-alcoholic fatty liver disease-
related outcomes, beyond the presence of obesity', Aliment Pharmacol Ther, 48 (11-12), 
1260-70. 

Angulo, P., et al. (2015), 'Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-
term Outcomes of Patients With Nonalcoholic Fatty Liver Disease', Gastroenterology, 149 
(2), 389-97 e10. 

Arab, J. P., et al. (2017), 'Bile acids and nonalcoholic fatty liver disease: Molecular insights and 
therapeutic perspectives', Hepatology, 65 (1), 350-62. 

Asrani, S. K., et al. (2019), 'Burden of liver diseases in the world', J Hepatol, 70 (1), 151-71. 
Bays, H. and Scinta, W. (2015), 'Adiposopathy and epigenetics: an introduction to obesity as a 

transgenerational disease', Curr Med Res Opin, 31 (11), 2059-69. 
Bays, H. E. (2011), 'Adiposopathy is "sick fat" a cardiovascular disease?', J Am Coll Cardiol, 57 (25), 

2461-73. 
Bays, H. E., et al. (2008), 'Is adiposopathy (sick fat) an endocrine disease?', Int J Clin Pract, 62 (10), 

1474-83. 
Bedossa, P. (2016), 'Histological Assessment of NAFLD', Dig Dis Sci, 61 (5), 1348-55. 
Bellentani, S. (2017), 'The epidemiology of non-alcoholic fatty liver disease', Liver Int, 37 Suppl 1, 

81-84. 
Bergman, Y. and Cedar, H. (2013), 'DNA methylation dynamics in health and disease', Nat Struct 

Mol Biol, 20 (3), 274-81. 
Bernstein, B. E., Meissner, A., and Lander, E. S. (2007), 'The mammalian epigenome', Cell, 128 (4), 

669-81. 
Bhat, G., et al. (2013), 'Insulin resistance and metabolic syndrome in nonobese Indian patients 

with non-alcoholic fatty liver disease', Trop Gastroenterol, 34 (1), 18-24. 
Bian, E. B., et al. (2013), 'DNA methylation: new therapeutic implications for hepatic fibrosis', Cell 

Signal, 25 (1), 355-8. 
Bluher, M. (2019), 'Obesity: global epidemiology and pathogenesis', Nat Rev Endocrinol, 15 (5), 

288-98. 
Blumfield, M. L., et al. (2012), 'Dietary balance during pregnancy is associated with fetal adiposity 

and fat distribution', Am J Clin Nutr, 96 (5), 1032-41. 
Bouchard, C., et al. (1990), 'The response to long-term overfeeding in identical twins', N Engl J 

Med, 322 (21), 1477-82. 



 

 
239 

Broeders, E. P. (2015), 'The bile acid chenodeoxycholic acid increases human brown adipose tissue 
activity', Cell Metab., 22, 418-26. 

Broeders, E. P. M., et al. (2015), 'The Bile Acid Chenodeoxycholic Acid Increases Human Brown 
Adipose Tissue Activity', Cell Metabolism, 22 (3), 418-26. 

Browning, M. G., et al. (2019), 'Changes in Bile Acid Metabolism, Transport, and Signaling as 
Central Drivers for Metabolic Improvements After Bariatric Surgery', Curr Obes Rep. 

Brunt, E. M., et al. (2011), 'Nonalcoholic fatty liver disease (NAFLD) activity score and the 
histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings', Hepatology, 53 
(3), 810-20. 

Buzzetti, E., Pinzani, M., and Tsochatzis, E. A. (2016), 'The multiple-hit pathogenesis of non-
alcoholic fatty liver disease (NAFLD)', Metabolism, 65 (8), 1038-48. 

Cani, P. D., et al. (2008), 'Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced 
Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice', Diabetes, 57 (6), 
1470-81. 

Carmody, R. N. (2015), 'Diet dominates host genotype in shaping the murine gut microbiota', Cell 
Host Microbe, 17, 72-84. 

Chalasani, N., et al. (2012), 'The diagnosis and management of non-alcoholic fatty liver disease: 
practice guideline by the American Gastroenterological Association, American Association 
for the Study of Liver Diseases, and American College of Gastroenterology', 
Gastroenterology, 142 (7), 1592-609. 

Chambers, A. P., et al. (2011), 'Weight-independent changes in blood glucose homeostasis after 
gastric bypass or vertical sleeve gastrectomy in rats', Gastroenterology, 141 (3), 950-8. 

Chambers, J. C., et al. (2008), 'Common genetic variation near MC4R is associated with waist 
circumference and insulin resistance', Nat Genet, 40 (6), 716-8. 

Chavez-Talavera, O., et al. (2017), 'Bile Acid Control of Metabolism and Inflammation in Obesity, 
Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease', Gastroenterology, 
152 (7), 1679-94 e3. 

Chen, C. H., et al. (2006), 'Prevalence and risk factors of nonalcoholic fatty liver disease in an adult 
population of taiwan: metabolic significance of nonalcoholic fatty liver disease in 
nonobese adults', J Clin Gastroenterol, 40 (8), 745-52. 

Chen, F., et al. (2019), 'Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation', 
Hepatology. 

Cho, H. C. (2016), 'Prevalence and Factors Associated with Nonalcoholic Fatty Liver Disease in a 
Nonobese Korean Population', Gut Liver, 10 (1), 117-25. 

Choo, J. M., Leong, L. E. X., and Rogers, G. B. (2015), 'Sample storage conditions significantly 
influence faecal microbiome profiles', Scientific Reports, 5. 

Chu, H., et al. (2018), 'Small metabolites, possible big changes: a microbiota-centered view of non-
alcoholic fatty liver disease', Gut. 

Cole, A. J., et al. (2015), 'The Influence of Bariatric Surgery on Serum Bile Acids in Humans and 
Potential Metabolic and Hormonal Implications: a Systematic Review', Curr Obes Rep, 4 
(4), 441-50. 

Dabke, K., Hendrick, G., and Devkota, S. (2019), 'The gut microbiome and metabolic syndrome', J 
Clin Invest, 129 (10), 4050-57. 

Das, K. and Chowdhury, A. (2013), 'Lean NASH: distinctiveness and clinical implication', Hepatol 
Int, 7 Suppl 2, 806-13. 

Das, K., et al. (2010), 'Nonobese population in a developing country has a high prevalence of 
nonalcoholic fatty liver and significant liver disease', Hepatology, 51 (5), 1593-602. 



 

 
240 

De Filippo, C., et al. (2010), 'Impact of diet in shaping gut microbiota revealed by a comparative 
study in children from Europe and rural Africa', Proc Natl Acad Sci U S A, 107 (33), 14691-
6. 

Del Chierico, F., et al. (2017a), 'Gut microbiota profiling of pediatric nonalcoholic fatty liver disease 
and obese patients unveiled by an integrated meta-omics-based approach', Hepatology, 
65 (2), 451-64. 

Del Chierico, F., et al. (2017b), 'Gut microbiota profiling of pediatric nonalcoholic fatty liver disease 
and obese patients unveiled by an integrated meta-omics-based approach', Hepatology, 
65 (2), 451-64. 

Dela Cruz, A. C., et al. (2014), 'Characteristics and Long-Term Prognosis of Lean Patients With 
Nonalcoholic Fatty Liver Disease', Gastroenterology, 146 (5), S909-S09. 

Dela Cruz, A. C. et al (2014), 'Characteristics and long-term prognosis of lean patients with 
nonalcoholic fatty liver disease', Gastroenterology, 146 (S-909). 

Denkmayr, L., et al. (2018), 'Lean Patients with Non-Alcoholic Fatty Liver Disease Have a Severe 
Histological Phenotype Similar to Obese Patients', J Clin Med, 7 (12). 

Despres, J. P. and Lemieux, I. (2006), 'Abdominal obesity and metabolic syndrome', Nature, 444 
(7121), 881-7. 

Diaz, E. O., et al. (1992), 'Metabolic response to experimental overfeeding in lean and overweight 
healthy volunteers', Am J Clin Nutr, 56 (4), 641-55. 

Ding, C., Chan, Z. L., and Magkos, F. (2016), 'Lean, but not healthy: the "metabolically obese, 
normal-weight' phenotype', Current Opinion in Clinical Nutrition and Metabolic Care, 19 
(6), 408-17. 

Dobson, R., et al. (2016), 'Metabolically healthy and unhealthy obesity: differential effects on 
myocardial function according to metabolic syndrome, rather than obesity', Int J Obes 
(Lond), 40 (1), 153-61. 

Dutia, R., et al. (2015), 'Temporal changes in bile acid levels and 12alpha-hydroxylation after Roux-
en-Y gastric bypass surgery in type 2 diabetes', Int J Obes (Lond), 39 (5), 806-13. 

Duwaerts, C. C. and Maher, J. J. (2014), 'Mechanisms of Liver Injury in Non-Alcoholic 
Steatohepatitis', Curr Hepatol Rep, 13 (2), 119-29. 

Ebbert, J. O. and Jensen, M. D. (2013), 'Fat depots, free fatty acids, and dyslipidemia', Nutrients, 5 
(2), 498-508. 

Eckel, N., et al. (2015), 'Characterization of metabolically unhealthy normal-weight individuals: 
Risk factors and their associations with type 2 diabetes', Metabolism, 64 (8), 862-71. 

Enjoji, M., et al. (2012), 'Nutrition and nonalcoholic Fatty liver disease: the significance of 
cholesterol', Int J Hepatol, 2012, 925807. 

Eslam, M. and George, J. (2016), 'Genetic and epigenetic mechanisms of NASH', Hepatol Int, 10 (3), 
394-406. 

--- (2020), 'Genetic contributions to NAFLD: leveraging shared genetics to uncover systems 
biology', Nat Rev Gastroenterol Hepatol, 17 (1), 40-52. 

Eslam, M., Valenti, L., and Romeo, S. (2018a), 'Genetics and epigenetics of NAFLD and NASH: 
Clinical impact', J Hepatol, 68 (2), 268-79. 

--- (2018b), 'Genetics and epigenetics of NAFLD and NASH: Clinical impact', Journal of Hepatology, 
68 (2), 268-79. 

Eslam, M., Sanyal, A. J., and George, J. (2019), 'Toward More Accurate Nomenclature for Fatty 
Liver Diseases', Gastroenterology, 157 (3), 590-93. 

Eslam, M., et al. (2011), 'Use of HOMA-IR in hepatitis C', J Viral Hepat, 18 (10), 675-84. 
Eslam, M., et al. (2016a), 'Diverse Impacts of the rs58542926 E167K Variant in TM6SF2 on Viral 

and Metabolic Liver Disease Phenotypes', Hepatology, 64 (1), 34-46. 



 

 
241 

Eslam, M., et al. (2016b), 'Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and 
metabolic liver disease phenotypes', Hepatology, 64 (1), 34-46. 

Eslam, M., et al. (2015a), 'Interferon-lambda rs12979860 genotype and liver fibrosis in viral and 
non-viral chronic liver disease', Nature Communications, 6. 

Eslam, M., et al. (2015b), 'Interferon-lambda rs12979860 genotype and liver fibrosis in viral and 
non-viral chronic liver disease', Nat Commun, 6, 6422. 

Eslam, M., et al. (2016c), 'FibroGENE: A gene-based model for staging liver fibrosis', Journal of 
Hepatology, 64 (2), 390-98. 

Esteller, M. (2008), 'Epigenetics in Cancer', N Engl J Med, 358, 1148 - 59. 
Estruch, R., et al. (2018), 'Primary Prevention of Cardiovascular Disease with a Mediterranean Diet 

Supplemented with Extra-Virgin Olive Oil or Nuts', N Engl J Med, 378 (25), e34. 
Fan, Y., et al. (2016), 'Hepatic Transmembrane 6 Superfamily Member 2 Regulates Cholesterol 

Metabolism in Mice', Gastroenterology, 150 (5), 1208-18. 
Fang, S., et al. (2015), 'Intestinal FXR agonism promotes adipose tissue browning and reduces 

obesity and insulin resistance', Nature Medicine, 21 (2), 71-77. 
Feinberg, A. P. and Vogelstein, B. (1983), 'Hypomethylation distinguishes genes of some human 

cancers from their normal counterparts', Nature, 301 (5895), 89-92. 
Feldman, A., et al. (2017a), 'Clinical and Metabolic Characterization of Lean Caucasian Subjects 

With Non-alcoholic Fatty Liver', American Journal of Gastroenterology, 112 (1), 102-10. 
--- (2017b), 'Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic 

Fatty Liver', Am J Gastroenterol, 112 (1), 102-10. 
Feng, R. N., et al. (2014), 'Lean-non-alcoholic fatty liver disease increases risk for metabolic 

disorders in a normal weight Chinese population', World J Gastroenterol, 20 (47), 17932-
40. 

Ferslew, B. C., et al. (2015), 'Altered Bile Acid Metabolome in Patients with Nonalcoholic 
Steatohepatitis', Dig Dis Sci, 60 (11), 3318-28. 

Fracanzani, A. L., et al. (2011), 'Risk of nonalcoholic steatohepatitis and fibrosis in patients with 
nonalcoholic fatty liver disease and low visceral adiposity', J Hepatol, 54 (6), 1244-9. 

Fracanzani, A. L., et al. (2017), 'Liver and Cardiovascular Damage in Patients With Lean 
Nonalcoholic Fatty Liver Disease, and Association With Visceral Obesity', Clin 
Gastroenterol Hepatol, 15 (10), 1604-11 e1. 

Francque, S. M., van der Graaff, D., and Kwanten, W. J. (2016), 'Non-alcoholic fatty liver disease 
and cardiovascular risk: Pathophysiological mechanisms and implications', J Hepatol, 65 
(2), 425-43. 

Fu, L., et al. (2004), 'Fibroblast growth factor 19 increases metabolic rate and reverses dietary and 
leptin-deficient diabetes', Endocrinology, 145 (6), 2594-603. 

George, A. M., Jacob, A. G., and Fogelfeld, L. (2015), 'Lean diabetes mellitus: An emerging entity in 
the era of obesity', World J Diabetes, 6 (4), 613-20. 

Gitto, S., et al. (2018), 'Study of the Serum Metabolomic Profile in Nonalcoholic Fatty Liver 
Disease: Research and Clinical Perspectives', Metabolites, 8 (1). 

Goday, A., et al. (2016), 'Prevalence and clinical characteristics of metabolically healthy obese 
individuals and other obese/non-obese metabolic phenotypes in a working population: 
results from the Icaria study', BMC Public Health, 16, 248. 

Golabi, P., et al. (2018), 'Components of metabolic syndrome increase the risk of mortality in 
nonalcoholic fatty liver disease (NAFLD)', Medicine, 97 (13). 

Golabi, P., et al. (2016), 'Non-alcoholic Fatty Liver Disease (NAFLD) is associated with impairment 
of Health Related Quality of Life (HRQOL)', Health and Quality of Life Outcomes, 14. 



 

 
242 

Gonzalez-Cantero, J., et al. (2018), 'Insulin resistance in lean and overweight non-diabetic 
Caucasian adults: Study of its relationship with liver triglyceride content, waist 
circumference and BMI', PLoS One, 13 (2), e0192663. 

Goodpaster, B. H., et al. (2005), 'Obesity, regional body fat distribution, and the metabolic 
syndrome in older men and women', Arch Intern Med, 165 (7), 777-83. 

Guerrero, R., et al. (2009), 'Ethnic differences in hepatic steatosis: an insulin resistance paradox?', 
Hepatology, 49 (3), 791-801. 

Guthold, Regina, et al. (2018), 'Worldwide trends in insufficient physical activity from 2001 to 
2016: a pooled analysis of 358 population-based surveys with 1·9 million participants', The 
Lancet Global Health, 6 (10), e1077-e86. 

Gutierrez-Grobe, Y., et al. (2017), 'Less liver fibrosis in metabolically healthy compared with 
metabolically unhealthy obese patients with non-alcoholic fatty liver disease', Diabetes 
Metab, 43 (4), 332-37. 

Hagstrom, H., et al. (2018), 'Risk for development of severe liver disease in lean patients with 
nonalcoholic fatty liver disease: A long-term follow-up study', Hepatol Commun, 2 (1), 48-
57. 

Hallal, Pedro C., et al. (2012), 'Global physical activity levels: surveillance progress, pitfalls, and 
prospects', The Lancet, 380 (9838), 247-57. 

Han, T. S., Sattar, N., and Lean, M. (2006), 'ABC of obesity. Assessment of obesity and its clinical 
implications', Bmj, 333 (7570), 695-8. 

Hardwick, R. N., et al. (2011), 'Variations in ATP-binding cassette transporter regulation during the 
progression of human nonalcoholic fatty liver disease', Drug Metab Dispos, 39 (12), 2395-
402. 

Hardy, T. and Mann, D. A. (2016), 'Epigenetics in liver disease: from biology to therapeutics', Gut. 
Hardy, T., et al. (2016), 'Plasma DNA methylation: a potential biomarker for stratification of liver 

fibrosis in non-alcoholic fatty liver disease', Gut. 
Harrison, Stephen A., et al. (2018), 'NGM282 for treatment of non-alcoholic steatohepatitis: a 

multicentre, randomised, double-blind, placebo-controlled, phase 2 trial', The Lancet, 391 
(10126), 1174-85. 

Heid, I. M., et al. (2010), 'Meta-analysis identifies 13 new loci associated with waist-hip ratio and 
reveals sexual dimorphism in the genetic basis of fat distribution', Nat Genet, 42 (11), 949-
60. 

Huang, R. C., et al. (2012), 'DNA methylation of the IGF2/H19 imprinting control region and 
adiposity distribution in young adults', Clin Epigenetics, 4 (1), 21. 

Huber, Y., et al. (2019), 'Health-related Quality of Life in Nonalcoholic Fatty Liver Disease 
Associates With Hepatic Inflammation', Clinical Gastroenterology and Hepatology, 17 (10), 
2085-+. 

Hwang, Y. C., Ahn, H. Y., and Park, C. Y. (2019), 'Association Between Nonalcoholic Fatty Liver 
Disease and Future Deterioration of Metabolic Health: A Cohort Study', Obesity (Silver 
Spring), 27 (8), 1360-66. 

Iacobini, C., et al. (2019), 'Metabolically healthy versus metabolically unhealthy obesity', 
Metabolism, 92, 51-60. 

Ioannou, G. N., et al. (2009), 'Association between dietary nutrient composition and the incidence 
of cirrhosis or liver cancer in the United States population', Hepatology, 50 (1), 175-84. 

Ipsen, D. H., et al. (2018), 'Liraglutide Decreases Hepatic Inflammation and Injury in Advanced 
Lean Non-Alcoholic Steatohepatitis', Basic & Clinical Pharmacology & Toxicology, 123 (6), 
704-13. 



 

 
243 

Jacobs, A., et al. (2016), 'An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From 
Past to Present', Curr Protoc Mouse Biol, 6 (2), 185-200. 

Jensen, T., et al. (2018), 'Fructose and sugar: A major mediator of non-alcoholic fatty liver disease', 
J Hepatol, 68 (5), 1063-75. 

Jiang, Y., et al. (2016), 'Adiponectin levels predict prediabetes risk: the Pathobiology of 
Prediabetes in A Biracial Cohort (POP-ABC) study', BMJ Open Diabetes Res Care, 4 (1), 
e000194. 

Jiao, N., et al. (2017), 'Suppressed hepatic bile acid signalling despite elevated production of 
primary and secondary bile acids in NAFLD', Gut. 

Johannsen, D. L., et al. (2019), 'Metabolic adaptation is not observed after 8 weeks of overfeeding 
but energy expenditure variability is associated with weight recovery', Am J Clin Nutr. 

Johnson, N. A., et al. (2009), 'Aerobic Exercise Training Reduces Hepatic and Visceral Lipids in 
Obese Individuals Without Weight Loss', Hepatology, 50 (4), 1105-12. 

Kahali, B., et al. (2015), 'TM6SF2: catch-22 in the fight against nonalcoholic fatty liver disease and 
cardiovascular disease?', Gastroenterology, 148 (4), 679-84. 

Kainuma, M., et al. (2006), 'Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, 
non-insulin-resistant fatty liver disease with characteristic fibrosis', J Gastroenterol, 41 
(10), 971-80. 

Kakiyama, G., et al. (2013), 'Modulation of the fecal bile acid profile by gut microbiota in cirrhosis', 
Journal of Hepatology, 58 (5), 949-55. 

Kalhan, S. C., et al. (2011), 'Plasma metabolomic profile in nonalcoholic fatty liver disease', 
Metabolism, 60 (3), 404-13. 

Kazankov, K., et al. (2016), 'The macrophage activation marker sCD163 is associated with 
morphological disease stages in patients with non-alcoholic fatty liver disease', Liver 
International, 36 (10), 1549-57. 

Kechagias, S., et al. (2015), 'Phosphatidylethanol Compared with Other Blood Tests as a Biomarker 
of Moderate Alcohol Consumption in Healthy Volunteers: A Prospective Randomized 
Study', Alcohol Alcohol, 50 (4), 399-406. 

Khalid, Quratulain, Bailey, Ian, and Patel, Vinood B. (2015), 'Non-Alcoholic Fatty Liver Disease: The 
Effect of Bile Acids and Farnesoid X Receptor Agonists on Pathophysiology and 
Treatment', Liver Research - Open Journal, 1 (2), 32-40. 

Kilpelainen, T. O., et al. (2011), 'Genetic variation near IRS1 associates with reduced adiposity and 
an impaired metabolic profile', Nat Genet, 43 (8), 753-60. 

Kim, D. and Kim, W. R. (2017), 'Nonobese Fatty Liver Disease', Clin Gastroenterol Hepatol, 15 (4), 
474-85. 

Kim, H. J., et al. (2004), 'Metabolic significance of nonalcoholic fatty liver disease in nonobese, 
nondiabetic adults', Arch Intern Med, 164 (19), 2169-75. 

Kim, J. Y., et al. (2007), 'Obesity-associated improvements in metabolic profile through expansion 
of adipose tissue', J Clin Invest, 117 (9), 2621-37. 

Klass, D. M., et al. (2006), 'Biliary lipids, cholesterol and bile synthesis: different adaptive 
mechanisms to dietary cholesterol in lean and obese subjects', Aliment Pharmacol Ther, 
23 (7), 895-905. 

Klein, S., et al. (2004), 'Absence of an effect of liposuction on insulin action and risk factors for 
coronary heart disease', N Engl J Med, 350 (25), 2549-57. 

Kleiner, D. E., et al. (2005a), 'Design and validation of a histological scoring system for nonalcoholic 
fatty liver disease', Hepatology, 41 (6), 1313-21. 

Kleiner, D. E., et al. (2005b), 'Design and validation of a histological scoring system for 
nonalcoholic fatty liver disease', Hepatology, 41 (6), 1313-21. 



 

 
244 

Kohli, R., et al. (2013), 'Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic 
adjustable gastric banding increases circulating bile acids', J Clin Endocrinol Metab, 98 (4), 
E708-12. 

Kohli, R., et al. (2015), 'Bile Acid Signaling: Mechanism for Bariatric Surgery, Cure for NASH?', Dig 
Dis, 33 (3), 440-6. 

Koren, D. and Taveras, E. M. (2018), 'Association of sleep disturbances with obesity, insulin 
resistance and the metabolic syndrome', Metabolism, 84, 67-75. 

Kozlitina, J., et al. (2014), 'Exome-wide association study identifies a TM6SF2 variant that confers 
susceptibility to nonalcoholic fatty liver disease', Nat Genet, 46 (4), 352-6. 

Kramer, C. K., Zinman, B., and Retnakaran, R. (2013), 'Are metabolically healthy overweight and 
obesity benign conditions?: A systematic review and meta-analysis', Ann Intern Med, 159 
(11), 758-69. 

Kumar, R., et al. (2013), 'Clinicopathological characteristics and metabolic profiles of non-alcoholic 
fatty liver disease in Indian patients with normal body mass index: Do they differ from 
obese or overweight non-alcoholic fatty liver disease?', Indian J Endocrinol Metab, 17 (4), 
665-71. 

Kwak, J. H., et al. (2018), 'Lifestyle predictors of obese and non-obese patients with nonalcoholic 
fatty liver disease: A cross-sectional study', Clin Nutr, 37 (5), 1550-57. 

Le, M. H., et al. (2017), 'Prevalence of non-alcoholic fatty liver disease and risk factors for 
advanced fibrosis and mortality in the United States', PLoS One, 12 (3), e0173499. 

Lee, J. J., et al. (2017), 'Upper Body Subcutaneous Fat Is Associated with Cardiometabolic Risk 
Factors', Am J Med, 130 (8), 958-66 e1. 

Lee, M. K., et al. (2015), 'Metabolic Health Is More Important than Obesity in the Development of 
Nonalcoholic Fatty Liver Disease: A 4-Year Retrospective Study', Endocrinol Metab (Seoul), 
30 (4), 522-30. 

Legry, V., et al. (2017), 'Bile acid alterations are associated with insulin resistance, but not with 
NASH in obese subjects', J Clin Endocrinol Metab. 

Leibel, R. L., Rosenbaum, M., and Hirsch, J. (1995), 'Changes in energy expenditure resulting from 
altered body weight', N Engl J Med, 332 (10), 621-8. 

Leung, J. C., et al. (2017a), 'Histological severity and clinical outcomes of nonalcoholic fatty liver 
disease in nonobese patients', Hepatology, 65 (1), 54-64. 

Leung, J. C. F., et al. (2017b), 'Histological Severity and Clinical Outcomes of Nonalcoholic Fatty 
Liver Disease in Nonobese Patients', Hepatology, 65 (1), 54-64. 

Li, C., et al. (2019), 'Lean non-alcoholic fatty liver disease patients had comparable total caloric, 
carbohydrate, protein, fat, iron, sleep duration and overtime work as obese non-alcoholic 
fatty liver disease patients', J Gastroenterol Hepatol, 34 (1), 256-62. 

Li, L., et al. (2016), 'Obesity is an independent risk factor for non-alcoholic fatty liver disease: 
evidence from a meta-analysis of 21 cohort studies', Obes Rev, 17 (6), 510-9. 

Li, M., et al. (2012), 'Co-methylated genes in different adipose depots of pig are associated with 
metabolic, inflammatory and immune processes', Int J Biol Sci, 8 (6), 831-7. 

Lim, S. and Meigs, J. B. (2013), 'Ectopic fat and cardiometabolic and vascular risk', Int J Cardiol, 169 
(3), 166-76. 

Liu, Y. L., et al. (2014a), 'Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased 
risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma', J Hepatol, 61 
(1), 75-81. 

Liu, Y. L., et al. (2014b), 'TM6SF2 rs58542926 influences hepatic fibrosis progression in patients 
with non-alcoholic fatty liver disease', Nat Commun, 5, 4309. 



 

 
245 

Lorenzo, C., et al. (2007), 'The National Cholesterol Education Program - Adult Treatment Panel III, 
International Diabetes Federation, and World Health Organization definitions of the 
metabolic syndrome as predictors of incident cardiovascular disease and diabetes', 
Diabetes Care, 30 (1), 8-13. 

Lozano, R., et al. (2012), 'Global and regional mortality from 235 causes of death for 20 age groups 
in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010', 
Lancet, 380 (9859), 2095-128. 

Ma, J., Zhou, Q., and Li, H. (2017), 'Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights 
on Mechanisms and Therapy', Nutrients, 9 (10). 

Maclagan, L. C. and Tu, J. V. (2015), 'Using the concept of ideal cardiovascular health to measure 
population health: a review', Current Opinion in Cardiology, 30 (5), 518-24. 

Mancina, R. M., et al. (2016), 'The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic 
Fatty Liver Disease in Individuals of European Descent', Gastroenterology, 150 (5), 1219-30 
e6. 

Mann, D. A. (2014), 'Epigenetics in liver disease', Hepatology, 60 (4), 1418-25. 
Manolio, T. A., et al. (2009), 'Finding the missing heritability of complex diseases', Nature, 461 

(7265), 747-53. 
Manolopoulos, K. N., Karpe, F., and Frayn, K. N. (2010), 'Gluteofemoral body fat as a determinant 

of metabolic health', Int J Obes (Lond), 34 (6), 949-59. 
Marchi, M., et al. (2011), 'Human leptin tissue distribution, but not weight loss-dependent change 

in expression, is associated with methylation of its promoter', Epigenetics, 6 (10), 1198-
206. 

Margariti, E., et al. (2012), 'Non-alcoholic fatty liver disease may develop in individuals with 
normal body mass index', Ann Gastroenterol, 25 (1), 45-51. 

Martinez, I., et al. (2013), 'Diet-induced alterations of host cholesterol metabolism are likely to 
affect the gut microbiota composition in hamsters', Appl Environ Microbiol, 79 (2), 516-24. 

Matheson, E. M., King, D. E., and Everett, C. J. (2012), 'Healthy lifestyle habits and mortality in 
overweight and obese individuals', J Am Board Fam Med, 25 (1), 9-15. 

Matthews, D. R., et al. (1985), 'Homeostasis model assessment: insulin resistance and beta-cell 
function from fasting plasma glucose and insulin concentrations in man', Diabetologia, 28 
(7), 412-9. 

Mayo, R., et al. (2018), 'Metabolomic-based noninvasive serum test to diagnose nonalcoholic 
steatohepatitis: Results from discovery and validation cohorts', Hepatol Commun, 2 (7), 
807-20. 

McGlone, E. R., et al. (2019), 'Bile acid mediated changes after bariatric surgery: what can we learn 
from mouse models?', Gastroenterology. 

McLaughlin, T., et al. (2011), 'Preferential fat deposition in subcutaneous versus visceral depots is 
associated with insulin sensitivity', J Clin Endocrinol Metab, 96 (11), E1756-60. 

McPherson, S., et al. (2015), 'Evidence of NAFLD progression from steatosis to fibrosing-
steatohepatitis using paired biopsies: Implications for prognosis and clinical management', 
J Hepatol, 62 (5), 1148-55. 

Min, H. K., et al. (2012), 'Increased hepatic synthesis and dysregulation of cholesterol metabolism 
is associated with the severity of nonalcoholic Fatty liver disease', Cell Metab, 15 (5), 665-
74. 

Mudaliar, S., et al. (2013), 'Efficacy and safety of the farnesoid X receptor agonist obeticholic acid 
in patients with type 2 diabetes and nonalcoholic fatty liver disease', Gastroenterology, 
145 (3), 574-82.e1. 



 

 
246 

Musso, G., et al. (2003), 'Dietary habits and their relations to insulin resistance and postprandial 
lipemia in nonalcoholic steatohepatitis', Hepatology, 37 (4), 909-16. 

Neuschwander-Tetri, B. A., et al. (2015), 'Farnesoid X nuclear receptor ligand obeticholic acid for 
non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-
controlled trial', Lancet, 385 (9972), 956-65. 

Ng, Marie, et al. (2014), 'Global, regional, and national prevalence of overweight and obesity in 
children and adults during 1980–2013: a systematic analysis for the Global Burden of 
Disease Study 2013', The Lancet, 384 (9945), 766-81. 

Niriella, M. A., et al. (2019), 'Lean non-alcoholic fatty liver disease (lean NAFLD): characteristics, 
metabolic outcomes and risk factors from a 7-year prospective, community cohort study 
from Sri Lanka', Hepatol Int, 13 (3), 314-22. 

Nishioji, K., et al. (2015), 'Prevalence of and risk factors for non-alcoholic fatty liver disease in a 
non-obese Japanese population, 2011-2012', J Gastroenterol, 50 (1), 95-108. 

O'Connell, J., et al. (2010), 'The relationship of omental and subcutaneous adipocyte size to 
metabolic disease in severe obesity', PLoS One, 5 (4), e9997. 

Oh, K. J., et al. (2016), 'Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, 
Adipokines and Hepatokines', Int J Mol Sci, 18 (1). 

Paik, J. M., et al. (2019), 'Mortality Related to Nonalcoholic Fatty Liver Disease Is Increasing in the 
United States', Hepatology Communications, 3 (11), 1459-71. 

Pang, J., et al. (2017), 'Significant positive association of endotoxemia with histological severity in 
237 patients with non-alcoholic fatty liver disease', Aliment Pharmacol Ther, 46 (2), 175-
82. 

Pastore, A., et al. (2014), 'Plasma levels of homocysteine and cysteine increased in pediatric 
NAFLD and strongly correlated with severity of liver damage', Int J Mol Sci, 15 (11), 21202-
14. 

Pathak, P., et al. (2018), 'Intestine farnesoid X receptor agonist and the gut microbiota activate G-
protein bile acid receptor-1 signaling to improve metabolism', Hepatology, 68 (4), 1574-
88. 

Patti, M. E., et al. (2009), 'Serum bile acids are higher in humans with prior gastric bypass: 
potential contribution to improved glucose and lipid metabolism', Obesity (Silver Spring), 
17 (9), 1671-7. 

Perez, M. J. and Briz, O. (2009), 'Bile-acid-induced cell injury and protection', World J 
Gastroenterol, 15 (14), 1677-89. 

Petta, S., et al. (2017a), 'Interferon Lambda 4 rs368234815 TT >delta G Variant Is Associated With 
Liver Damage in Patients With Nonalcoholic Fatty Liver Disease', Hepatology, 66 (6), 1885-
93. 

--- (2017b), 'Interferon lambda 4 rs368234815 TT>deltaG variant is associated with liver damage in 
patients with nonalcoholic fatty liver disease', Hepatology, 66 (6), 1885-93. 

Pierre, J. F., et al. (2019), 'Bile Diversion Improves Metabolic Phenotype Dependent on Farnesoid X 
Receptor (FXR)', Obesity (Silver Spring), 27 (5), 803-12. 

Pierre, J. F., et al. (2016), 'Activation of bile acid signaling improves metabolic phenotypes in high-
fat diet-induced obese mice', Am J Physiol Gastrointest Liver Physiol, 311 (2), G286-304. 

Plagemann, A. (2004), ''Fetal programming' and 'functional teratogenesis': on epigenetic 
mechanisms and prevention of perinatally acquired lasting health risks', J Perinat Med, 32 
(4), 297-305. 

Popkin, B. M. (2006), 'Global nutrition dynamics: the world is shifting rapidly toward a diet linked 
with noncommunicable diseases', Am J Clin Nutr, 84 (2), 289-98. 



 

 
247 

Pournaras, D. J., et al. (2012), 'The Role of Bile After Roux-en-Y Gastric Bypass in Promoting Weight 
Loss and Improving Glycaemic Control', Endocrinology, 153 (8), 3613-19. 

Pujia, A., et al. (2016), 'Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat 
Utilization than Metabolically Unhealthy Individuals', Nutrients, 8 (1). 

Puri, P., et al. (2007), 'A lipidomic analysis of nonalcoholic fatty liver disease', Hepatology, 46 (4), 
1081-90. 

Puri, P., et al. (2017), 'The presence and severity of nonalcoholic steatohepatitis is associated with 
specific changes in circulating bile acids', Hepatology. 

Ramirez-Perez, O., et al. (2017), 'The Role of the Gut Microbiota in Bile Acid Metabolism', Ann 
Hepatol, 16 (Suppl. 1: s3-105.), s15-s20. 

Ridlon, J. M., Kang, D. J., and Hylemon, P. B. (2006), 'Bile salt biotransformations by human 
intestinal bacteria', J Lipid Res, 47 (2), 241-59. 

Romeo, S., et al. (2008), 'Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty 
liver disease', Nat Genet, 40 (12), 1461-5. 

Ruderman, N., et al. (1998), 'The metabolically obese, normal-weight individual revisited', 
Diabetes, 47 (5), 699-713. 

Sachdev, S., et al. (2016), 'FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but 
Not After Medical Management in Patients with Type 2 Diabetes', Obes Surg, 26 (5), 957-
65. 

Sarin, S. K., et al. (2020), 'Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & 
Hepatology Commission', Lancet Gastroenterol Hepatol, 5 (2), 167-228. 

Sayiner, M., et al. (2016), 'Assessment of health utilities and quality of life in patients with non-
alcoholic fatty liver disease', BMJ Open Gastroenterol, 3 (1), e000106. 

Schleinitz, D., et al. (2014), 'The genetics of fat distribution', Diabetologia, 57 (7), 1276-86. 
Schnabl, B. and Brenner, D. A. (2014), 'Interactions Between the Intestinal Microbiome and Liver 

Diseases', Gastroenterology, 146 (6), 1513-24. 
Schumacher, J. D., et al. (2020), 'Direct and Indirect Effects of Fibroblast Growth Factor (FGF) 15 

and FGF19 on Liver Fibrosis Development', Hepatology, 71 (2), 670-85. 
Schwimmer, J. B., et al. (2009), 'Heritability of nonalcoholic fatty liver disease', Gastroenterology, 

136 (5), 1585-92. 
Simonen, M., et al. (2013), 'Desmosterol in human nonalcoholic steatohepatitis', Hepatology, 58 

(3), 976-82. 
Singh, S., et al. (2015), 'Fibrosis Progression in Nonalcoholic Fatty Liver vs Nonalcoholic 

Steatohepatitis: A Systematic Review and Meta-analysis of Paired-Biopsy Studies', Clin 
Gastroenterol Hepatol, 13 (4), 643-54 e9. 

Sinn, D. H., et al. (2019), 'Lean non-alcoholic fatty liver disease and development of diabetes: a 
cohort study', European Journal of Endocrinology, 181 (2), 185-92. 

Smith, Gordon I., Mittendorfer, Bettina, and Klein, Samuel (2019), 'Metabolically healthy obesity: 
facts and fantasies', Journal of Clinical Investigation, 129 (10), 3978-89. 

Smith, S. R., et al. (2000), 'Concurrent physical activity increases fat oxidation during the shift to a 
high-fat diet', Am J Clin Nutr, 72 (1), 131-8. 

Sookoian, S. and Pirola, C. J. (2011), 'Meta-analysis of the influence of I148M variant of patatin-like 
phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological 
severity of nonalcoholic fatty liver disease', Hepatology, 53 (6), 1883-94. 

--- (2017), 'Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease 
suggest a shared altered metabolic and cardiovascular profile between lean and obese 
patients', Aliment Pharmacol Ther, 46 (2), 85-95. 



 

 
248 

--- (2018), 'Systematic review with meta-analysis: the significance of histological disease severity in 
lean patients with nonalcoholic fatty liver disease', Aliment Pharmacol Ther, 47 (1), 16-25. 

Sookoian, S., et al. (2010), 'Epigenetic regulation of insulin resistance in nonalcoholic fatty liver 
disease: impact of liver methylation of the peroxisome proliferator-activated receptor 
gamma coactivator 1alpha promoter', Hepatology, 52 (6), 1992-2000. 

Speliotes, E. K., et al. (2011), 'Genome-wide association analysis identifies variants associated with 
nonalcoholic fatty liver disease that have distinct effects on metabolic traits', PLoS Genet, 
7 (3), e1001324. 

Stefan, N., Schick, F., and Haring, H. U. (2017), 'Causes, Characteristics, and Consequences of 
Metabolically Unhealthy Normal Weight in Humans', Cell Metab, 26 (2), 292-300. 

Stepanova, M., et al. (2017), 'Direct and Indirect Economic Burden of Chronic Liver Disease in the 
United States', Clin Gastroenterol Hepatol, 15 (5), 759-66.e5. 

Stephenson, K., et al. (2018), 'Updates on Dietary Models of Nonalcoholic Fatty Liver Disease: 
Current Studies and Insights', Gene Expr, 18 (1), 5-17. 

Sung, K. C., et al. (2014), 'Metabolically healthy obese subjects are at risk of fatty liver but not of 
pre-clinical atherosclerosis', Nutr Metab Cardiovasc Dis, 24 (3), 256-62. 

Thabet, K., et al. (2017), 'The membrane-bound O-acyltransferase domain-containing 7 variant 
rs641738 increases inflammation and fibrosis in chronic hepatitis B', Hepatology, 65 (6), 
1840-50. 

Thabet, K., et al. (2016), 'MBOAT7 rs641738 increases risk of liver inflammation and transition to 
fibrosis in chronic hepatitis C', Nat Commun, 7, 12757. 

Tobari, M., et al. (2018), 'Characteristics of non-alcoholic steatohepatitis among lean patients in 
Japan: Not uncommon and not always benign', J Gastroenterol Hepatol. 

Trabelsi, M. S., et al. (2015), 'Farnesoid X receptor inhibits glucagon-like peptide-1 production by 
enteroendocrine L cells', Nat Commun, 6, 7629. 

Tran, T. T., et al. (2008), 'Beneficial effects of subcutaneous fat transplantation on metabolism', 
Cell Metab, 7 (5), 410-20. 

Tremaroli, V. and Backhed, F. (2012), 'Functional interactions between the gut microbiota and 
host metabolism', Nature, 489 (7415), 242-9. 

Turnbaugh, P. J., et al. (2007), 'The human microbiome project', Nature, 449 (7164), 804-10. 
van der Poorten, D., et al. (2013), 'Hepatic fat loss in advanced nonalcoholic steatohepatitis: are 

alterations in serum adiponectin the cause?', Hepatology, 57 (6), 2180-8. 
Van Herck, M. A., Vonghia, L., and Francque, S. M. (2017), 'Animal Models of Nonalcoholic Fatty 

Liver Disease-A Starter's Guide', Nutrients, 9 (10). 
Van Rooyen, D. M., et al. (2011), 'Hepatic free cholesterol accumulates in obese, diabetic mice and 

causes nonalcoholic steatohepatitis', Gastroenterology, 141 (4), 1393-403, 403 e1-5. 
Vendhan, R., et al. (2014), 'Comparison of characteristics between nonobese and 

overweight/obese subjects with nonalcoholic fatty liver disease in a South Indian 
population', Diabetes Technol Ther, 16 (1), 48-55. 

Wahlstrom, A., et al. (2016a), 'Intestinal Crosstalk between Bile Acids and Microbiota and Its 
Impact on Host Metabolism', Cell Metab, 24 (1), 41-50. 

--- (2016b), 'Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host 
Metabolism', Cell Metabolism, 24 (1), 41-50. 

Wang, B., et al. (2016), 'Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese 
Patients with Non-alcoholic Fatty Liver Disease', Sci Rep, 6, 32002. 

Wang, Qianyi, et al. (2019), 'Non-obese histologically confirmed NASH patients with abnormal liver 
biochemistry have more advanced fibrosis', Hepatology International, 13 (6), 766-76. 



 

 
249 

Watanabe, M., et al. (2011), 'Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor 
(FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure', Journal 
of Biological Chemistry, 286 (30), 26913-20. 

Watanabe, M., et al. (2006), 'Bile acids induce energy expenditure by promoting intracellular 
thyroid hormone activation', Nature, 439 (7075), 484-9. 

Wei, J. L., et al. (2015), 'Prevalence and Severity of Nonalcoholic Fatty Liver Disease in Non-Obese 
Patients: A Population Study Using Proton-Magnetic Resonance Spectroscopy', Am J 
Gastroenterol, 110 (9), 1306-14; quiz 15. 

Werling, M., et al. (2013), 'Enhanced fasting and post-prandial plasma bile acid responses after 
Roux-en-Y gastric bypass surgery', Scand J Gastroenterol, 48 (11), 1257-64. 

WHO, Expert Consultation (2004), 'Appropriate body-mass index for Asian populations and its 
implications for policy and intervention strategies', The Lancet, 363 (9403), 157-63. 

Wieland, A., et al. (2015), 'Systematic review: microbial dysbiosis and nonalcoholic fatty liver 
disease', Aliment Pharmacol Ther, 42 (9), 1051-63. 

Wildman, R. P., et al. (2008), 'The obese without cardiometabolic risk factor clustering and the 
normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 
phenotypes among the US population (NHANES 1999-2004)', Arch Intern Med, 168 (15), 
1617-24. 

Wong, R. J., et al. (2014), 'Ethnic disparities in the association of body mass index with the risk of 
hypertension and diabetes', J Community Health, 39 (3), 437-45. 

Wong, V. W. S., et al. (2018), 'Beneficial effects of lifestyle intervention in non-obese patients with 
non-alcoholic fatty liver disease', Journal of Hepatology, 69 (6), 1349-56. 

Wouters, K., et al. (2008), 'Dietary cholesterol, rather than liver steatosis, leads to hepatic 
inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis', 
Hepatology, 48 (2), 474-86. 

Wu, G. D., et al. (2011), 'Linking long-term dietary patterns with gut microbial enterotypes', 
Science, 334 (6052), 105-8. 

Xie, G., et al. (2015), 'Profiling of serum bile acids in a healthy Chinese population using UPLC-
MS/MS', J Proteome Res, 14 (2), 850-9. 

Xu, Aimin, et al. (2003), 'The fat-derived hormone adiponectin alleviates alcoholic and 
nonalcoholic fatty liver diseases in mice', Journal of Clinical Investigation, 112 (1), 91-100. 

Yaghootkar, H., et al. (2014), 'Genetic evidence for a normal-weight "metabolically obese" 
phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 
diabetes', Diabetes, 63 (12), 4369-77. 

Yaghootkar, H., et al. (2016), 'Genetic Evidence for a Link Between Favorable Adiposity and Lower 
Risk of Type 2 Diabetes, Hypertension, and Heart Disease', Diabetes, 65 (8), 2448-60. 

Yasutake, K., et al. (2009a), 'Nutritional investigation of non-obese patients with non-alcoholic 
fatty liver disease: the significance of dietary cholesterol', Scand J Gastroenterol, 44 (4), 
471-7. 

--- (2009b), 'Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: 
The significance of dietary cholesterol', Scandinavian Journal of Gastroenterology, 44 (4), 
471-77. 

Yilmaz, Y., et al. (2019), 'Growing burden of nonalcoholic fatty liver disease in Turkey: A single-
center experience', Turk J Gastroenterol, 30 (10), 892-98. 

Yokota, A., et al. (2012), 'Is bile acid a determinant of the gut microbiota on a high-fat diet?', Gut 
Microbes, 3 (5), 455-9. 

Younes, R. and Bugianesi, E. (2019), 'NASH in Lean Individuals', Semin Liver Dis, 39 (1), 86-95. 



 

 
250 

Younossi, Z., et al. (2018a), 'Global burden of NAFLD and NASH: trends, predictions, risk factors 
and prevention', Nature Reviews Gastroenterology & Hepatology, 15 (1), 11-20. 

--- (2018b), 'Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention', 
Nat Rev Gastroenterol Hepatol, 15 (1), 11-20. 

Younossi, Z. M. (2019), 'Non-alcoholic fatty liver disease - A global public health perspective', 
Journal of Hepatology, 70 (3), 531-44. 

Younossi, Z. M., et al. (2016a), 'Global epidemiology of nonalcoholic fatty liver disease-Meta-
analytic assessment of prevalence, incidence, and outcomes', Hepatology, 64 (1), 73-84. 

Younossi, Z. M., et al. (2012), 'Nonalcoholic fatty liver disease in lean individuals in the United 
States', Medicine (Baltimore), 91 (6), 319-27. 

Younossi, Z. M., et al. (2016b), 'The economic and clinical burden of nonalcoholic fatty liver 
disease in the United States and Europe', Hepatology, 64 (5), 1577-86. 

Younossi, Z. M., et al. (2019a), 'Reduced Patient-Reported Outcome Scores Associate With Level of 
Fibrosis in Patients With Nonalcoholic Steatohepatitis', Clin Gastroenterol Hepatol, 17 
(12), 2552-60 e10. 

Younossi, Z. M., et al. (2019b), 'Reduced Patient-Reported Outcome Scores Associate With Level of 
Fibrosis in Patients With Nonalcoholic Steatohepatitis', Clinical Gastroenterology and 
Hepatology, 17 (12), 2552-+. 

Zain, S. M., Mohamed, Z., and Mohamed, R. (2015), 'Common variant in the glucokinase 
regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis', J 
Gastroenterol Hepatol, 30 (1), 21-7. 

Zaratiegui, M., Irvine, D. V., and Martienssen, R. A. (2007), 'Noncoding RNAs and gene silencing', 
Cell, 128 (4), 763-76. 

Zeybel, M., et al. (2015), 'Differential DNA methylation of genes involved in fibrosis progression in 
non-alcoholic fatty liver disease and alcoholic liver disease', Clin Epigenetics, 7, 25. 

Zhang, H., et al. (2009), 'Human gut microbiota in obesity and after gastric bypass', Proc Natl Acad 
Sci U S A, 106 (7), 2365-70. 

Zhao, L., et al. (2018), 'A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating 
the Structure of Gut Microbiota', Front Endocrinol (Lausanne), 9, 233. 

Zhao, Z. H., et al. (2019), 'Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to 
attenuate steatohepatitis in rats', Exp Mol Med, 51 (9), 103. 

Zhou, D. and Fan, J. G. (2019), 'Microbial metabolites in non-alcoholic fatty liver disease', World J 
Gastroenterol, 25 (17), 2019-28. 

Zhou, D., et al. (2017), 'Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice 
by improving gut microbiota and gastrointestinal barrier', World J Gastroenterol, 23 (1), 
60-75. 

Zietak, M. (2016), 'Altered microbiota contributes to reduced diet-induced obesity upon cold 
exposure', Cell Metab., 23, 1216-23. 

 

 

 

 

 



251 

Figures and legends 

Figure 1. Worldwide prevalence of MAFLD and of lean MAFLD as a proportion of 

total MAFLD 

Worldwide distribution of MAFLD with data on the prevalence of lean MAFLD (light blue; 

where available). Abbreviation: MAFLD – Metabolic associated fatty liver disease. 
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Figure 2. Adiposity phenotype based on metabolic health status and body weight. 

The difference in fat depots, insulin sensitivity, inflammatory marker and hepatic fat content 

in individuals with metabolically healthy lean, metabolically unhealthy lean (lean MAFLD), 

metabolically healthy obese and metabolically unhealthy obese phenotypes. Abbreviations: 

SAT – Subcutaneous adipose tissue; VAT – Visceral adipose tissue; MAFLD – Metabolic 

associated fatty liver disease. 

 

 

 



 

 
253 

 
 

Figure 3. The interplay between factors affecting lean MAFLD pathogenesis. 

Environmental, genetic and epigenetic factors, along with the gut microbiota profile 

influence lean MAFLD pathogenesis through regulation of fat accumulation, 

inflammation and bile acid metabolism. Abbreviation: MAFLD – Metabolic 

associated fatty liver disease. 
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Figure 4. The role of metabolic adaptation in lean and obese MAFLD 

pathogenesis. 

Schematic representation of the differences in metabolic adaptation between 

individuals with lean and obese MAFLD on a background of metabolic and genetic 

predisposition. In obese MAFLD patients, there is relatively poor metabolic 

adaptation resulting in adiposity and the development of liver disease. In contrast, 

among lean MAFLD patients there is partial metabolic adaptation at least in the early 

stages of the disease. In the example shown, this is through increased bile acid 

production and FXR activity (other mechanisms may also be operative). This results 

in an “obesity resistant” phenotype”, which appears to be lost as the disease 

progresses. Abbreviations: MAFLD – Metabolic associated fatty liver disease; FXR – 

Farsenoid X receptor.         
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Supplementary Table 1. Summary of a selection of published literature on lean MAFLD 

Author, year, country Definition of lean MAFLD Sample size Main findings 
Kim, HJ, 2004, Korea (H. J. 
Kim et al. 2004) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound  

74 lean and 106 non-lean MAFLD; 
386 lean healthy and 202 non-lean 
healthy controls 

Metabolic disorders are present in MAFLD subjects 
with normal weight 

Chen, CH, 2006, Taiwan (C. 
H. Chen et al. 2006) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

61 lean and 291 non-lean MAFLD; 
1383 lean healthy and 654 non-lean 
healthy controls 

Hypertriglyceridaemia was related to MAFLD in 
non-obese subjects  

Das, K, 2010, India (Das et 
al. 2010) 

Lean BMI  < 25 kg/m2, hepatic 
steatosis on liver ultrasound, 
confirmed on CT 

123 lean and 41 non-lean MAFLD; 
1660 lean healthy and 87 non-lean 
healthy controls 

Lean MAFLD is present in 75% of this 
predominantly non-obese population, with 
potentially significant liver disease 

Younossi, 2012, USA (Z. M. 
Younossi et al. 2012) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

431 lean and 2061 non-lean 
MAFLD; 
4026 lean healthy and 5095 non-
lean healthy controls 

Lean MAFLD patients (20.9%) are younger, have 
lower metabolic syndrome and is more common in 
females 

Margariti, 2012, Greece 
(Margariti et al. 2012) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

19 lean and 143 non-lean MAFLD Lean MAFLD patients (12%) have lower metabolic 
syndrome and higher ALT/AST than non-lean 
MAFLD 

Bhat, 2013, India (Bhat et al. 
2013) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

30 lean and 120 non-lean MAFLD Lean MAFLD present in 20% of patients. Insulin 
resistance is common amongst patients with 
MAFLD, including lean MAFLD (80%) 

Kumar, 2013, India (Kumar 
et al. 2013) 

Lean BMI < 23 kg/m2, biopsy 
proven MAFLD 

27 lean and 141 non-lean MAFLD Lean MAFLD patients (13.2%) have less severe 
histology and lower insulin resistance than non-lean 
MAFLD 

Delacruz, 2014, Australia 
(A. C. e. a. Dela Cruz 2014) 

Lean BMI < 25 kg/m2, biopsy 
proven MAFLD 

125 lean and 965 non-lean MAFLD Lean MAFLD patients (11.5%) have higher mortality 
than patients with non-lean MAFLD despite 
presenting with healthier metabolic profile 

Alam, 2014, India (Alam et 
al. 2014) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound, 
biopsy in some (220/465) 

119 lean and 346 non-lean MAFLD Lean MAFLD patients (25.6%) were metabolically 
and histologically similar to non-lean MAFLD 
patients, with similar rates of NASH and fibrosis 

Feng, 2014, China (Feng et 
al. 2014) 

Lean BMI < 24 kg/m2, hepatic 
steatosis on liver ultrasound 

134 lean and 764 non-lean 
MAFLD; 
597 lean healthy and 284 non-lean 
healthy controls 

Lean MAFLD patients (14.9%) had higher visceral 
adiposity index and comparable metabolic risk 
profile to non-lean MAFLD  

Vendhan, 2014, India 
(Vendhan et al. 2014) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

48 lean and 125 non-lean MAFLD Lean MAFLD patients (27.7%) had better metabolic 
profile but similar association to coronary artery 
disease as non-lean MAFLD  
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Wei, 2015, Hong Kong (Wei 
et al. 2015) 

Lean BMI < 25 kg/m2, liver fat 
assessed by proton-magnetic 
resonance spectroscopy 

135 lean and 127 non-lean MAFLD Lean MAFLD patients (19.3%) had similar 
intrahepatic triglyceride content, but lower 
cytokeratin-18 fragments and liver fibrosis. PNPLA3 
G allele was more common in lean MAFLD. 

Nishioji, 2015, Japan 
(Nishioji et al. 2015) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

411 lean and 394 non-lean 
MAFLD; 
2285 lean healthy and 181 non-lean 
healthy controls 

Lifestyle and metabolic factors (higher triglycerides 
and waist circumference) increases the risk of 
MAFLD, even in lean patients (15.2%) 

Cho, 2016, Korea (Cho 
2016) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

213 lean and 347 non-lean 
MAFLD; 
1498 lean healthy controls 

Lean MAFLD patients (12.4%) had higher 
proportion of females, lower insulin resistance and 
fewer metabolic risk factors than non-lean MAFLD 

Feldman, 2017, Austria 
(Feldman et al. 2017b) 

Lean BMI < 25 kg/m2, hepatic 
steatosis on liver ultrasound 

55 lean and 61 non-lean MAFLD;  
71 lean healthy controls 

Lean MAFLD patients (29.4%) had impaired glucose 
tolerance, low adiponectin concentrations and a 
distinct metabolic profile with increased PNPLA3 
risk allele carriage 

Leung, 2017, Hong Kong (J. 
C. Leung et al. 2017a) 

Lean BMI < 25 kg/m2, biopsy-
proven MAFLD 

72 lean and 235 non-lean MAFLD Lean MAFLD patients (23.5%) had less severe 
disease and better prognosis than non-lean MAFLD. 
Hypertriglyceridaemia and high creatinine were 
associated with advanced liver disease in lean 
MAFLD 

Fracanzani, 2017, Italy 
(Fracanzani et al. 2017) 

Lean BMI < 25 kg/m2, biopsy-
proven MAFLD 

143 lean and 526 non-lean MAFLD Lean MAFLD patients (21.4%) had higher TM6SF2 
risk allele carriage and lower metabolic syndrome, 
less NASH and lower fibrosis but thinner carotid 
intima compared to non-lean MAFLD 

Sookoian, 2017, Argentina 
(Sookoian and Pirola 2018) 

Systematic review, lean BMI ≤ 
25 kg/m2 

493 lean and 2209 non-lean 
MAFLD 

Lean patients tended to have milder histological 
features compared to non-lean MAFLD 

Sookoian, 2017, Argentina 
(Sookoian and Pirola 2017) 

Systematic review with meta-
analysis, lean BMI ≤ 25 kg/m2, 
hepatic steatosis on liver 
ultrasound 

1966 lean and 5938 non-lean 
MAFLD; 9946 lean healthy and 
6027 obese healthy controls 

Lean MAFLD shared common altered metabolic and 
cardiovascular profile compared to non-lean 
MAFLD, although the effect is less severe in lean 
MAFLD 

Hagstorm, 2017, Sweden 
(Hagstrom et al. 2018) 

Lean BMI < 25 kg/m2, biopsy 
proven MAFLD 

123 lean, 335 overweight and 188 
obese MAFLD  

Lean MAFLD patients (19%) had lower fibrosis at 
better metabolic profile at baseline but increased risk 
of development of severe liver disease 

Denkmayr, 2018, Austria 
(Denkmayr et al. 2018) 

Lean BMI ≤ 25 kg/m2, biopsy 
proven MAFLD 

72 lean, 242 overweight and 150 
obese MAFLD 

Lean MAFLD patients (15.9%) had severe 
histological features similar to obese but more 
progressed than overweight MAFLD 

Tobari, 2018, Japan (Tobari 
et al. 2018) 

Lean BMI < 25 kg/m2, biopsy 
proven MAFLD 

116 lean, 173 overweight and 115 
obese MAFLD 

Advanced fibrosis was not associated with BMI but 
histological steatosis was more common in lean 
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MAFLD 

Li, 2019, China (C. Li et al. 
2019) 

Lean BMI < 24 kg/m2, hepatic 
steatosis on liver ultrasound 

84 lean and 85 non-lean MAFLD;  
90 lean healthy and 92 non-lean 
healthy controls 

Lean MAFLD patients had comparable total caloric, 
calorigenic nutrition, iron, sleep duration and 
overtime work as obese MAFLD 

Niriella, 2019, Srilanka 
(Niriella et al. 2019) 

Lean BMI < 23 kg/m2, hepatic 
steatosis on liver ultrasound 

120 lean and 816 non-lean 
MAFLD; 1206 healthy controls 

Lean MAFLD patients (4%) had similar risk of 
developing metabolic comorbidities compared to 
non-lean MAFLD, with higher MAFLD associated 
with PNPLA3 incidence 

Yilmaz, 2019, Turkey 
(Yilmaz et al. 2019) 

Lean BMI < 25 kg/m2, biopsy 
proven MAFLD 

30 lean and 428 non-lean MAFLD Lean MAFLD was present in 6.4% of the study 
sample, with metabolic syndrome present in 63% of 
the sample population 

Wang, 2019, China (Q. 
Wang et al. 2019) 

Lean BMI < 25 kg/m2, biopsy 
confirmed MAFLD 

36 lean and 48 non-lean MAFLD Lean MAFLD patients (42.9%) have a female 
predominance and more advanced fibrosis compared 
to non-lean MAFLD patients 
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9.2 SUPPLEMENTARY PROTOCOLS 

 

9.2.1 AMIDE protocol 
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Introduction 

AMIDE Method 

 

This method measures polar compounds by liquid chromatography-tandem mass spectrometry (LC-
MS/MS) using electrospray ionization (ESI) in the negative ion mode. Positive mode can also be used. 
Analytes include amino acids, nucleotides, nucleosides, nucleotide triphosphates, high energy 
intermediates, organic acids, TCA cycle intermediates, bile acids and vitamins. 

 
Materials 

Chemicals: 
 

Methanol (MeOH) Thermo Fisher FSBA456-4 Methanol OPTIMA LC/MS grade– 4L 
Acetonitrile (ACN) Thermo Fisher FSBA955-4 Acetonitrile OPTIMA LC/MS grade– 4L 

Water Thermo Fisher FSBW6-4 Water OPTIMA LC/MS grade– 4L 
Ammonium Hydroxide Sigma 17837-100ml Fluka, puriss. p.a., ~98% 

Ammonium Acetate Sigma 73594-100G Fluka 
L-Phenylalanine-d8 (98%) CIL* DLM-372-1 Isotopically labeled internal standard 

Thymine-d4    
Inosine-15N4 Sigma  Isotopically labeled internal standard 

*CIL = Cambridge Isotope Laboratories, Inc. 
Equipment: 
 

Pipettors Eppendorf various Research plus 
Multitube vortexer Ratek VM1 Vortex mixer (By CPC) 

Centrifuge Thermo Fisher FRESCO 21 Centrifuge (By CPC) 
Agilent Vial Rack Agilent 5067-0243 Rack for 2 mL glass vials 

 

Consumable supplies: 

 
XBridge Amide column Waters 186004868 XBridge Amide 4.6 x 100mm, 3.5 µm 

Glass Vials Waters 186000273 Clear screw-top vial, 100 per pack 
Glass Vial Inserts Waters WAT072294DV 200 µL deactivated glass insert, 100 per pack 

Vial Caps Waters 186000274 Screw cap with bonded PTFE/silicone septa 
Pipet tips Eppendorf various Tips for Pipettes Research plus 

 
Reagent Preparation 

 
Amide Injection Solvent:  Acetonitrile:Methanol (75:25, v:v) 

1. Add 125 mL of methanol in a 500 mL glass bottle. 
2. Add 375 mL of acetonitrile. 
3. Store the solvent tightly-capped to prevent evaporation. 
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Mobile Phase A: (95:5 H2): Acetonitrile (v:v) with 20mM Ammonium Acetate and 20mM Ammonium Hydroxide 
1. Transfer 1.54g of ammonium acetate to 945 mL of HPLC grade water in a 1L glass bottle 
2. Add 7mL of HPLC grade 10% ammonium hydroxide 
3. Add 50mL of acetonitrile 
4. 4. Confirm pH = 9.0 with pH paper. Store at room temperature, tightly capped. Store for up to 2 weeks. 

 
Mobile phase B: 100% acetonitrile 

1. Add 1000mL of HPLC grade acetonitrile in a 1L glass bottle 
2. 2. Store at room temperature, tightly-capped. Store for up to 6 weeks. 

 
 

 

Stock Solution of Internal Standards:  (10 mM final concentrations) 

1. Weigh out 17.32 mg of isotopically labeled reference standard L-Phenylalanine-d8, 13.01 mg of thymine-d4 

and 12.52 mg of L-Valine-d8  in a 15 mL screw cap vial. 
2. Add 10 mL of methanol to yield a final concentration of 10 mM. 
3. Store at -20°C, tightly-capped to prevent evaporation. 

 
Amide IS-IS: Generic injection solvent with Amide Internal Standards: (10 mM of L-Phe-d8 stock, 10 mM of thymine-d4 

stock, 10 mM of L-Valine-d8  stock solution) 

1. For 500 mL: 
100 µL of 10 mM stock solution of 
Phenylalanine-d8, 100 µL of 10 mM thymine-d4, 
and 
100 µL of 10 mM Valine-d8 

fill bottle with 500 mL of Generic Injection Solvent. 
2. Store at -4°C, tightly-capped to prevent evaporation
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Standards Preparation for LC-MS/MS 
 
Standards: 

1. Add 30 µL of 500 µM analytical standard to 70 µL of Amide IS-SS solution for a final volume of 100 µL in a 
0.6 mL microfuge tube to yield a final concentration of 100 µM. 

2. Vortex the samples to mix both. 
3. Pipet 70 µL of sample into a glass vial with glass insert. Cap each vial tightly and store at 4°C (or 10°C in the 

autosampler stack). 
 
Sample preparation 
 
Extraction for Routine samples for negative mode: 

1. Transfer 20 uL of plasma into a 0.6mL microfuge tube, Add 80uL of amide IS-IS (cooled to -200C) 
for a final volume of 100uL. 

2. Vortex the samples to promote protein precipitation 
3. Centrifuge samples at 14000 rpm for 20 minutes at 4oC 
4. Transfer 75uL of supernatant into glass vial with inserts, taking care to avoid transferring protein 

pellet particles. Cap each vial tightly and store at -30oC (or 10oC in the autosampler stack) 
 
 

For plasma spiked with standards: 
 

1. Transfer each sample into a 0.6 mL microfuge tube. 
2. Add 20 µL of 500 µM analytical standard to 30 µL of plasma to a final volume of 50 µL. 
3. Vortex the samples to mix both. 
4. Pipet 30 µL of the mixture and add to 70 µL of Generic IS-IS solution for a final volume of 100 µL in  another 

0.6 mL microfuge tube. 
5. Vortex the samples to promote protein precipitation. 
6. Centrifuge samples at 14000 rpm for 20 min at 4°C. 
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7. Pipet 75 µL of sample into a glass vial with glass insert, taking care to avoid transferring protein pellet 
particles.  Cap each vial tightly and store at 4°C (or 10°C in the autosampler stack). 

 
Analysis 
 
Analyst 1.5.1 Acquisition Method Name: AMIDE_unsched_MRM.dam 

 

Autosampler settings: 

 
Autosampler: Agilent 1260 Infinity Standard Autosmapler 

Syringe: 50 µL 
Needle Rinse 1: 75:25 HPLC Water:Acetonitrile 
Needle Rinse 2: Acetonitrile 

Sample Stack Temperature 10°C 
 

Cycle Name:  
Delay Time Column 1: 0 sec 

Inject 2 Time: 1200 sec 
Delay Time Column 2: 0 sec 

Pre-clean with Solvent 2: 1 
Pre Inject Delay: 500 ms 
Post Inject Delay: 500 ms 

Column Sample Volume: 10 µL 
Filling Speed: 5 µL/sec 

Injection Speed: 10 µL/sec 
Post Clean with Solution 1: 2 
Post Clean with Solution 2: 2 

Valve Clean with Solution 1: 2 
Valve Clean with Solution 2: 2 

Replicate Count: 1 
 

HLPC settings 

HPLC: Agilent 1260 HPLC 
Guard column: XBridge BEH Amide Van Guard Catridge, 3.5µm, 
2.1x5mm Column: XBridge Amide, 3.5µm, 4.6 x 100mm 
Flow rate: 0.250 – 0.500 mL/min 
Column Sleeve: 25 cm column sleeve 
Column Temp: 30°C 
Injection Volume: 10 µL 
Run Time: 16 minutes 

Mobile Phase A: 95:5 H2O:Acetonitrile (v:v) with 20mM Ammonium Acetate and 
20mM Ammonium Hydroxide (pH 9.0) 

Mobile Phase B: Acetonitrile 
Needle Rinse 1: Water:Acetonitrile (75:25, 
v:v) Needle Rinse 2: Acetonitrile 
 

Step Total Time (min) Flow Rate 
(µL/min) 

% A % B 

0 0.0 250 15 85 
1 8.0 250 65 35 
2 9.0 250 98 2 
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3 10.0 250 98 2 
4 11.0 250 15 85 
5 12.5 500 15 85 
6 15.0 500 15 85 
7 16.0 250 15 85 

 

Mass Spectrometer settings 

Mass Spectrometer: AB Sciex API-5500 QTrap triple quadrupole mass 
spectrometer Interface: Turboionspray, negative ionization mode 
Scan Mode: Scheduled multiple reaction monitoring 
(MRM) MRM Window: 30 sec 
Target Scan Time: 1.0 sec 
Source Temp: 450°C 
Ion Source position: Vertical: 1, 
Horizontal: 5 Parameters 

CAD Gas: High CUR Gas: 25 Ion 
Spray (v): 4500 
TEMP: 350 Gas 1: 33 Gas 2: 33 
Exit Potential (EP): -10 
Resolution Q1: Unit 
Resolution Q3: Unit 
 
Diverter Valve: 

Valve: Valco Diverter Valve 10 port 2 position 
LTG WC027522 (Applied Biosystems), or 
equivalent 

Valve Cable Assembly 2 position actuator, WC024740 
Position A: Flow to waste 
Position B: Flow to ion source 
 

Negative Ionization Mode 

  
Q1 

 
Q3 

QTRAP 
5500 (RT) 

 
Metabolites 

 
DP 

 
EP 

 
CE 

 
CX

 

KEGG 
Identifier 

 
1 

 
146.993 

 
100.9 

 
12.68 

2-hydroxy-2-methylbutyric acid 
(2H2MB) 

 
-55 

 
-10 

 
-20 

 
-13 

 
HMDB01987 

2 146.957 128.8 12.68 2-hydroxyglutarate (2-HG) -55 -10 -18 -7 C02630 
 
3 

 
128.646 

 
101 

 
4.80 

2-ketohexanoic acid (2- 
KH) 

 
-105 

 
-10 

 
-14 

 
-19 

 
C00902 

 
4 

 
910.09 

 
159 

 
12.93 

3-hydroxy-3-methylglutaryl 
coA (3H3MGcoA) 

 
-165 

 
-10 

 
-108 

 
-17 

 
C00356 

5 102.95 58.8 11.78 3-hydroxybutyrate (3-HB) -30 -10 -14 -7 C01089 
 
6 

 
184.885 

 
78.7 

 
13.02 

3-phosphoglycerate (3- 
PG) 

 
-125 

 
-10 

 
-56 

 
-39 

 
C00597 

 
7 

 
190.952 

 
146.8 

 
11.07 

5-hydroxyindoleacetic acid 
(5-HIAA) 

 
-35 

 
-10 

 
-18 

 
-21 

 
C05635 

8 425.576 78.6 13.02 ADP.1 -105 -10 -102 -29 C00008 

9 157.078 42 11.50 Allantoin -30 -10 -46 -7 C02350 

10 505.894 158.9 13.08 ATP.1 -115 -10 -44 -17 C00002 

11 505.894 78.9 13.08 ATP.2 -115 -10 -122 -9 C00002 
 

12 
 

465.163 
 

96.7 
 
3.59 

Cholesteryl sulfate 
(CholSO4) 

 
-220 

 
-10 

 
-94 

 
-31 

 
C18043 

http://www.genome.jp/dbget-bin/www_bget?cpd%3AC00902
http://www.genome.jp/dbget-bin/www_bget?cpd%3AC00902
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13 327.982 134.2 11.90 cAMP -60 -10 -46 -13 C00575 

14 407.275 343.4 11.00 Cholic acid -160 -10 -48 -19 C00695 

15 391.225 345.1 6.88 Deoxycholic acid (DCA) -150 -10 -48 -19 C04483 

16 116 74.3 13.10 Guanidoacetic acid (GAA) -25 -10 -16 -11 C00581 
 

17 
 

131.011 
 

84.9 
 
5.23 

Hydroxyisocaproic acid 
(HICA) 

 
-65 

 
-10 

 
-22 

 
-9 

 
HMDB00746 

18 134.971 91.8 11.14 Hypoxanthine -5 -10 -24 -11 C00262 

19 207.012 190 11.99 Kynurenine -50 -10 -12 -27 C00328 

20 132.932 114.9 12.78 Malate -50 -10 -18 -13 C00149 

21 130.005 88 11.75 N-Acetyl-L-Alanine -30 -10 -16 -15 C01073 

22 165.129 147.1 6.49 Phenyllactic -40 -10 -18 -11 C05607 

23 163.123 91.1 4.69 Phenylpyruvate -30 -10 -16 -1 C00166 

24 127.947 82.2 12.23 Pyroglutamic acid -40 -10 -22 -11 C01879 

25 242.949 42.1 11.06 Uridine -75 -10 -44 -9 C00299 

26 150.961 107.9 11.96 Xanthine -20 -10 -24 -5 C00385 

27 282.932 150.9 12.55 Xanthosine -75 -10 -28 -15 C01762 

28 203.939 159.8 11.75 Xanthurenic acid (XAN) -50 -10 -22 -19 C02470 

29 808.099 79.1 12.75 Acetyl-coA -135 -10 -130 -41 C00024 

30 345.905 78.8 12.78 AMP.1 -85 -10 -84 -21 C00020 

31 345.905 134.2 12.78 AMP.2 -85 -10 -50 -13 C00020 

32 242.991 42.2 11.85 Biotin -50 -10 -56 -7 C00120 

33 267.022 135.1 11.96 Inosine -40 -10 -36 -21 C00294 

34 204.819 170.8 6.70 Lipoate -30 -10 -16 -35 C00725 

35 174.999 131.8 13.12 N-carbomyl-aspartate -45 -10 -18 -7 C00438 

36 449.201 434.2 4.07 Phytonadione -30 -10 -42 -25 C02059 

37 283.094 182.9 3.78 Tropisetron (Drug) -135 -10 -44 -29 D02130 

38 88.83 42.94 11.64 Lactate -34 -10 -17 -11 C00186 
 

39 
 

175.055 
 

114.9 
 

12.60 
2-isopropylmalic acid (2- 

IPM) 
 

-65 
 

-10 
 

-20 
 

-13 
 

C02504 
 

40 
 

99 
 

71 
 
6.89 

2-methylacetoacetate (2- 
MAA) 

 
-30 

 
-10 

 
-16 

 
-19 

 
HMDB03771 

41 100.963 57.1 6.90 2-oxobutanoate (2-OB) -60 -10 -12 -9 C00109 
 

42 
 

150.99 
 

106.9 
 

11.04 
4-hydroxyphenylacetic 

acid (4-HPA) 
 

-20 
 

-10 
 

-14 
 

-17 
 

C00642 

43 138.881 78.7 6.30 Acetylphosphate (ACP) -5 -10 -34 -9 C00227 

44 425.576 134 13.02 ADP.2 -105 -10 -34 -13 C00008 

45 128.959 85 12.50 Citraconic acid -5 -10 -16 -11 C02226 
 

46 
 

611.072 
 

306.1 
 

13.08 
Glutathione oxidized (GSSG)  

-85 
 

-10 
 

-36 
 

-17 
 

C00127 

47 167.044 123.1 6.57 Homogentisate -40 -10 -18 -13 C00544 

48 852.062 78.9 12.92 Malonyl-coA -135 -10 -128 -9 C00083 

49 147.187 59.1 11.55 Mevaloate (MEV) -40 -10 -20 -9 C00418 

50 121.652 78.1 11.18 Nicotinate -55 -10 -18 -9 C00253 
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51 

 
176.892 

 
78.9 

14.32 (wider 
MRM-60s) 

 
Pyrophosphate 

 
-35 

 
-10 

 
-46 

 
-9 

 
C00013 

 
52 

 
87 

 
43 

7.90 (wider 
MRM-60s) 

 
Pyruvate 

 
-25 

 
-10 

 
-16 

 
-11 

 
C00022 

53 177.038 128.8 9.15 D-Glucolactone -50 -10 -14 -33 C00198 

54 440.076 174.8 12.75 Folate -95 -10 -50 -11 C00504 

55 130.996 87.9 12.61 Ureidopropionic acid -40 -10 -14 -11 C02642 
 

56 
 

114.985 
 

70.9 
 
7.06 

3-methyl-2-oxobutyrate 
(3M2OB) 

 
-40 

 
-10 

 
-14 

 
-9 

 
C00141 

57 159.059 59.1 12.63 2-oxodipate (2-OD) -30 -10 -20 -5 C00322 
 

58 
 

223.023 
 

206 
 
5.94 

3-hydroxykynurenine (3- 
HK) 

 
-35 

 
-10 

 
-14 

 
-13 

 
C02794 

59 172.821 128.9 13.00 Aconitate -15 -10 -12 -19 C00417 

60 160.002 116.1 12.97 Aminoadipidic acid (AAD) -60 -10 -20 -7 C00956 

61 174.999 115 12.74 Ascorbic acid -50 -10 -18 -7 C00072 

62 343.982 149.9 12.47 cGMP -75 -10 -34 -27 C00942 
 

63 
 

212.933 
 

79 
 

12.88 
Deoxyribose-phosphate (DRP)  

-115 
 

-10 
 

-58 
 

-9 
 

C00672 

64 338.925 78.8 13.19 Fruc-1,6-bP -55 -10 -92 -9 C00354 

65 259.089 78.7 13.14 Fruc-6-P -65 -10 -84 -11 C00085 
 

66 
 

305.92 
 

142.8 
 

12.70 
Glutathione reduced 

ss(GSSH) 
 

-55 
 

-10 
 

-30 
 

-19 
 

C00051 

67 89 59 6.98 D/L-Glyceraldehyde -25 -10 -10 -5 C02426/C00577 

68 181.944 79.8 12.80 Homocysteic acid (HCA) -70 -10 -38 -13 C16511 

69 190.913 72.9 13.04 Isocitrate -35 -10 -36 -35 C00311 

70 187.975 144 8.30 Kynurenic acid -105 -10 -24 -15 C01717 

71 114.531 70.982 13.15 Fumarate -22 -10 -13 -10 C00122 

72 154.936 111 7.04 Orotate -25 -10 -16 -13 C00295 
 

73 
 

135.974 
 

92.2 
 
5.51 

p-aminobenzoic acid (p- 
AB) 

 
-80 

 
-10 

 
-16 

 
-11 

 
C00568 

 
74 

 
167.047 

 
79 

 
13.03 

Phosphoenolpyruvate 
(PEP) 

 
-10 

 
-10 

 
-46 

 
-13 

 
C00074 

75 274.797 257.1 13.13 Saccharopine -40 -10 -22 -19 C00449 
 

76 
 

383.063 
 

133.9 
 

13.07 
S-adenosyl-L- 
homocysteine 

 
-40 

 
-10 

 
-40 

 
-21 

 
C00021 

77 866.034 158.6 12.89 Suc-coA -180 -10 -90 -27 C00091 

78 124 80 12.61 Taurine -50 -10 -22 -55 C00245 
 

79 
 

497.727 
 

79.8 
 
6.90 

Taurodeoxycholic acid 
(TDCA) 

 
-280 

 
-10 

 
-108 

 
-25 

 
C05463 

 
80 

 
423.946 

 
78.9 

 
13.26 

Thiamine pyrophosphate 
(TPP) 

 
-50 

 
-10 

 
-80 

 
-9 

 
C00068 

81 241.037 42.1 8.10 Thymidine -80 -10 -60 -11 C00214 

82 111.05 42.1 8.24 Uracil -35 -10 -24 -11 C00106 
 
 

83 

 
 

182.983 

 
 

149.9 

 
 
6.94 

3-methoxy-4- 
hydroxyphenylglycol 

(3M4HPG) 

 
 

-50 

 
 

-10 

 
 

-20 

 
 

-25 

 
 

C05594 

84 135.913 91.8 5.21 Anthranilic acid (AA) -50 -10 -22 -27 C00108 
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85 289.046 271 13.20 Arginosuccinate -75 -10 -18 -19 C03406 
 

86 
 

198.852 
 

79.1 
 

13.04 
Erythrose 4-phosphate 

(E4P.1) 
 

-50 
 

-10 
 

-62 
 

-13 
 

C00279 

87 198.852 97 13.04 E4P.2 -50 -10 -16 -3 C00279 
 

88 
 

168.879 
 

78.9 
 

12.87 
Glyceraldehyde 3- 
phosphate (G3P) 

 
-5 

 
-10 

 
-40 

 
-15 

 
C00118 

89 273.993 130.8 12.82 Glutarylcarnitine (C5-DC) -30 -10 -18 -15 HMDB13130 

90 102.945 59 12.77 Malonate -15 -10 -14 -15 C00383 

91 120.712 42.2 7.18 Niacinamide -30 -10 -70 -9 C00153 

92 130.974 86.9 12.72 Oxaloacetate -40 -10 -16 -13 C00036 

93 224.988 162.8 12.72 Prephenate -40 -10 -12 -9 C00254 

94 300.924 151 6.82 Quercetin -80 -10 -34 -25 C00389 
 
 

95 

 
 

454.988 

 
 

79.1 

 
 

12.77 

Riboflavin 5'- 
monophosphate (R5'MP.1) 

 
 

-90 

 
 

-10 

 
 

-106 

 
 

-9 

 
 

C00061 

96 454.988 96.8 12.76 R5'MP.2 -90 -10 -46 -15 C00061 
 

97 
 

605.994 
 

78.7 
 

12.89 
UDP-N-acetyl- 
glucosamine 

 
-140 

 
-10 

 
-128 

 
-9 

 
C00043 

 
98 

 
402.972 

 
79 

 
13.06 

Uridine 5'-diphosphate 
(U5'dP) 

 
-100 

 
-10 

 
-30 

 
-15 

 
C00015 

99 123.78 76.9 13.03 Val-d8 -85 -10 -18 -13  

100 172.075 154.2 12.55 Phe-d8 -130 -10 -20 -9  

101 129.026 42.1 7.95 Thymine-d4 -100 -10 -30 -15  

102 258.988 78.9 13.32 Glucose-6-phosphate -75 -10 -80 -9 C00092 

103 116.72 72.98 13.43 Succinate -24 -10 -17 -10 C00042 
 

104 
 

230.9 
 

80 
 
6.48 

CSA (Camphor-10- 
sulfonic acid) 

 
-170 

 
-10 

 
-40 

 
-13 

 

 
105 

 
664.42 

158.893 
(514, 649) 

 
13.17 

 
NADH 

 
-110 

 
-10 

 
-69 

 
-16 

 
C00004 

106 179.037 32 13.56 Glucose -45 -10 -26 -15 C00031 
 

107 
 

663.606 
78.9(158.9, 

540.4) 
 

13.19 
 

NAD 
 

-70 
 

-10 
 

-124 
 

-11 
 

C00003 

108 743.939 158.919 13.39 NADPH -88 -10 -77 -15 C00005 

109 743.293 621.079 13.52 NADP.1 -72 -10 -27 -28 C00006 

110 743.293 158.895 13.52 NADP.2 -72 -10 -55 -22 C00006 

111 190.843 110.970 12.89 Citrate -50 -10 -19 -12  

112 152.016 107.900 7.20 3-hydroxyanthralinic acid -85 -10 -20 -11  
 

**FROM JOHN (We use HILIC method for +ve Ionization) 

Ionization Q1 Q3 RT eV Metabolite name KEGG 
 

mode 
 

Precursor 
 

Product 
Retention 

time 
Collision 

energy 
 

gray boxes are isobaric 
 

Identifier 
+ 61.1 44.2  25 Urea C00086 
+ 62.1 44.2  12 ethanolamine C00189 
+ 69 42.24  23 Imidazole C01589 
+ 76 48  10 glycine_HILIC  
+ 76.1 30.5  18 glycine C00037 
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+ 76.1 42  50 trimethylamine-N-oxide  
+ 78 61  20 cysteamine  
+ 89 72  12 putrescine C00134 
+ 90.01 72  13 beta-alanine  
+ 90.04 44.1  20 sarcosine C00213 
+ 90.1 44.2  13 alanine C00041 
+ 93 57  12 glycerol  
+ 102 58  21 betaine aldehyde C00576 
+ 104 60  21 choline C00114 
+ 104.1 60  27 choline_HILIC  
+ 104.01 69  22 4-aminobutyrate C00334 
+ 104.02 58  21 dimethylglycine C01026 
+ 104.1 87  17 GABA  
+ 104.1 86  16 aminoisobutyric acid  
+ 106 60  15 serine C00065 
+ 112 95  26 histamine  
+ 112.1 95  19 cytosine C00380 
+ 114 44.2  19 Creatinine C00791 
+ 116.1 70.1  13 proline C00148 
+ 118 91  26 indole C16074 
+ 118.02 58  36 betaine C00719 
+ 118.1 55.2  13 valine C00183 
+ 118.1 72  18 valine_HILIC  
+ 118.1 58  41 betaine  
+ 119.1 87  8 methyl-hydroxyisobutyric acid  
+ 120 74  13 threonine C00188 
+ 120.15 44.2  32 homoserine C00263 
+ 121 94  25 purine C00465 
+ 122.1 59.1  29 cysteine C00491 
+ 123 80  30 niacinamide  
+ 123.1 80  22 nicotinamide C00153 
+ 126.1 68.1  29 1-methylhistamine  
+ 126.2 44.1  31 taurine  
+ 127.002 81  15 Imidazoleacetic acid C05828 
+ 127.1 110  19 thymine C00178 
+ 130 84  18 DL-Pipecolic acid C00408 
+ 131.001 114  12 N-Acetylputrescine C02714 
+ 132.004 68.2  19 hydroxyproline C01157 
+ 132.1 86  13 leucine-isoleucine C00123 
+ 132.1 90  17 creatine  
+ 132.1 86.2  18 cis/trans hydroxyproline  
+ 133 70  14 ornithine C00077 
+ 133.4 70  30 ornithine_HILIC  
+ 133.1 74  19 asparagine C00152 
+ 133.1 115  12 N-carbomoyl-beta-alanine  
+ 134 74  17 aspartate C00049 
+ 136 119  26 adenine C00147 
+ 136 90  20 homocysteine  
+ 136.02 119.02  12 Methylcysteine C00155 
+ 136.12 90.1  17 homocysteine C00155 
+ 137.001 94  20 methylnicotinamide C02918 
+ 138 120  18 anthranilic acid  
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+ 142 44  22 phosphoethanolamine  
+ 142.1 95  20 histidinol C00860 
+ 146 112  15 spermidine C00315 
+ 146.1 87  21 acetylcholine  
+ 146.2 72  22 spermidine  
+ 147 67  32 lysine C00047 
+ 147.1 84  25 lysine_HILIC  
+ 147.1 84.1  17 glutamine C00064 
+ 148 106  14 O-acetyl-L-serine C00979 
+ 148.1 84.1  17 glutamate C00025 
+ 150.1 133  12 methionine C00073 
+ 150.1 61  31 methionine_HILIC  
+ 152.2 110  20 guanine C00242 
+ 153 135  9 xanthine  
+ 153 108  16 cystamine  
+ 154 136.2  18 3-hydroxyanthranilic acid  
+ 156.1 110.1  14 histidine C00135 
+ 159 116  11 allantoin  
+ 160 55.3  21 2-Aminooctanoic acid HMDB00991 
+ 162.1 103  20 carnitine C00318 
+ 162.1 85  29 carnitine-HILIC  
+ 163.1 85  29 glucose  
+ 166 74  14 Methionine sulfoxide HMDB02005 
+ 166.1 103  30 phenylalanine C00079 
+ 166.1 120.2  19 phenylalanine_HILIC  
+ 169 134  25 Pyridoxamine C00534 
+ 170 134  24 pyridoxine C00314 
+ 170.1 124  20 1-Methyl-Histidine C01152 
+ 174.2 128  19 phenylalanine-d8  
+ 175 115.1  16 N-acetyl-L-ornithine C00437 
+ 175.02 60  16 arginine C00062 
+ 175.1 70  32 arginine_HILIC  
+ 176 159  14 citrulline C00327 
+ 176 113.2  20 citrulline_HILIC  
+ 177.05 74  19 N-carbamoyl-L-aspartate C00438 
+ 177.1 80  34 cotinine  
+ 177.1 160  18 serotonin  
+ 180 162  12 glucosamine C00329 
+ 182.1 77  39 tyrosine C00082 
+ 182.5 136.1  19 tyrosine_HILIC  
+ 184.001 125  23 Phosphorylcholine C00588 
+ 186 88  12 3-phospho-serine C01005 
+ 189.001 84.2  26 N6-Acetyl-L-lysine C02727 
+ 189.002 84  23 Acetyllysine C02727 
+ 189.1 130  17 N-acetyl-glutamine HMDB06029 
+ 189.1 70  40 NMMA  
+ 190.1 84.1  24 N-acetyl-glutamate C00624 
+ 190.2 144  29 kynurenic acid  
+ 192.3 146.2  18 5-HIAA  
+ 202.1 129.1  19 spermine C00750 
+ 203.2 129.3  20 spermine_HILIC  
+ 203 70  24 Ng,NG-dimethyl-L-arginine C03626 
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+ 203.1 70.3  40 ADMA/SDMA  
+ 204 85  19 Acetylcarnitine DL C02571 
+ 204.4 85.1  28 C2-carnitine  
+ 205 146  18 tryptophan C00078 
+ 205.5 188.3  16 tryptophan_HILIC  
+ 206 160  30 xanthurenate  
+ 209 146  25 Kynurenine C00328 
+ 218.4 85.1  28 C3-carnitine  
+ 221.1 204  18 5-hydroxytryptophan  
+ 222 138  18 N-acetyl-glucosamine C00140 
+ 223 121  29 Flavone C15608 
+ 223 134  13 cystathionine C00542 
+ 225 208  30 3-hydroxy kynurenine  
+ 227.1 110  33 carnosine  
+ 228.1 112.1  15 2'-deoxycytidine  
+ 231 216  27 Visnagin  
+ 232.003 90  14 creatine C00300 
+ 232.4 85.1  28 C4-butyryl-carnitines  
+ 234.2 113.2  33 carnosine-d7  
+ 235 176  22 5-methoxytryptophan HMDB02339 
+ 241.002 74  32 Cystine C00491 
+ 241.1 109.1  33 anserine  
+ 243.1 127  16 thymidine  
+ 244.1 112  14 cytidine C00475 
+ 245.1 227  20 biotin C00120 
+ 245.2 113.1  17 uridine  
+ 246.5 85.1  27 C5-valeryl-carnitines  
+ 248.4 85.1  28 C3-malonyl-carnitine  
+ 252 136  22 deoxyadenosine C00559 
+ 258.1 104  16 Glycerophosphocholine C00670 
+ 259 110  24 acadesine D02742 
+ 260 126  17 D-glucosamine-6-phosphate C00352 
+ 260.1 162.1  17 D-glucosamine-1-phosphate C03783 
+ 260.5 85.1  27 C6-carnitine  
+ 262.4 85.1  28 C4-methylmalonyl-carnitine  
+ 265 122  19 thiamine C00378 
+ 267.2 190.3  27 atenolol  
+ 268 88  31 S-ribosyl-L-homocysteine_pos C03539 
+ 268.1 152  17 deoxyguanosine C00212 
+ 268.15 136.1  29 adenosine C00212 
+ 268.2 116.3  30 metoprolol  
+ 274.5 85.1  27 C7-carnitine  
+ 276.5 85.1  27 C5-glutaryl-carnitine  
+ 281.8 150  27 1-Methyladenosine C02494 
+ 284.1 135  35 guanosine C00387 
+ 285.1 153  18 xanthosine  
+ 288.5 85.1  27 C8-carnitine  
+ 291 70  37 L-arginino-succinate C03406 
+ 291.1 70  54 arginosuccinate_HILIC  
+ 298 136  29 S-methyl-5-thioadenosine C00170 
+ 298.002 166  24 7-methylguanosine HMDB01107 
+ 302.5 85.1  27 C9-carnitine  
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+ 308 112  18 dCMP C00239 
+ 308.1 162  21 glutathione C00051 
+ 309.2 251  20 Warfarin  
+ 316.6 85.1  27 C10-carnitine  
+ 323 81  19 dTMP C00364 
+ 324 112  18 CMP C00055 
+ 325 97  14 UMP C00105 
+ 330.3 136.2  30 cAMP  
+ 332.1 136  23 dAMP C00360 
+ 335 123  30 Nicotinamide ribotide C00455 
+ 339 110  32 C9H15N4O8P  
+ 344.6 85.1  31 C12-carnitine  
+ 345.2 122  15 thiamine-phosphate C01081 
+ 348.1 135  38 dGMP C00362 
+ 348.15 136  23 AMP C00020 
+ 348.2 62.3  37 anandamide  
+ 349 137  21 IMP C00130 
+ 355 250  20 S-adenosyl-L-methioninamine C01137 
+ 357.9 139  20 Indomethacin  
+ 364 152  21 GMP C06193 
+ 365 97  13 xanthosine-5-phosphate C00655 
+ 372.7 85.1  31 C14-carnitine  
+ 377 243  26 riboflavin C00255 
+ 385.1 136  21 S-adenosyl-L-homoCysteine_pos C00021 
+ 399.1 250  15 S-adenosyl-L-methionine C00019 
+ 400.7 85.1  35 C16-carnitine  
+ 406.2 84  60 lisinopril  
+ 407.2 100  30 carvedilol  
+ 424.7 85.1  35 C18:2-carnitine  
+ 426.7 85.1  35 C18:1-carnitine  
+ 428.7 85.1  35 C18-carnitine  
+ 442 295  18 folate C00504 
+ 444.2 178  32 7,8-dihydrofolate C00415 
+ 455.3 165.3  40 verapamil  
+ 460.1 313.1  21 5-methyl-THF C00440 
+ 475.2 100.2  45 sildenafil  
+ 489.3 184.2  55 citicholine  
+ 494.1 169.1  51 glyburide  
+ 505.8 85.1  35 C24:4-carnitine  
+ 525.5 352.8  31 Diiodothyronine HMDB00582 
+ 540.9 85.1  35 C26-carnitine  
+ 559.3 440.3  30 atorvastatin  
+ 613 231  35 glutathione disulfide_pos C00127 
+ 651.9 606.1  35 triiodothyronine  
+ 664.1 428  32 NAD+_pos C00003 
+ 666.1 514  28 NADH C00004 
+ 678.3 147.3  52 cobalamin  
+ 688 348  27 dephospho-CoA_pos C00882 
+ 744.2 136  50 NADP+_pos C00006 
+ 746.15 729  18 NADPH C00005 
+ 768 261  39 coenzyme A_pos C00010 
+ 777.8 732  35 thyroxine  
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+ 786 348  26 FAD C00016 
+ 810 303  30 acetyl-CoA_pos C00024 
+ 824.1 317.1  35 propionyl-CoA_pos C00100 
+ 852 345  36 acetoacetyl-CoA_pos C00332 
+ 854 347  28 malonyl-CoA_pos C00083 
+ 868.1 361.1  40 succinyl-CoA_pos C00091 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 272 

 

9.2.2 HILIC protocol 
 

 

 

 
Introduction 

HILIC Method 

 

This method measures polar compounds by liquid chromatography-tandem mass spectrometry (LC-
MS/MS) using electrospray ionization (ESI) in the positive ion mode. Analytes include amino acids, 
nucleotides, neurotransmitters and selected medications and vitamins. 

 
Materials 

 
Chemicals: 

 
Methanol (MeOH) Thermo Fisher FSBA456-4 Methanol OPTIMA LC/MS grade– 4L 
Acetonitrile (ACN) Thermo Fisher FSBA955-4 Acetonitrile OPTIMA LC/MS grade– 4L 
Water Thermo Fisher FSBW6-4 Water OPTIMA LC/MS grade– 4L 
Formic Acid Sigma 06440 Fluka, puriss. p.a., ~98% 
L-Phenylalanine-d8 (98%) CIL* DLM-372-1 Isotopically labeled internal standard 
L-Valine-d8 (98%) Sigma 486027 Isotopically labeled internal standard 

*CIL = Cambridge Isotope Laboratories, Inc. 
Equipment: 

 
Pipettors Eppendorf various Research plus 
Multitube vortexer Ratek VM1 Vortex mixer (By CPC) 
Centrifuge Thermo Fisher FRESCO 21 Centrifuge (By CPC) 
Agilent Vial Rack Agilent 5067-0243 Rack for 2 mL glass vials 

*ASP = Analytical Sales & Products 
Consumable supplies: 

 
HPLC HILIC column Waters 186002015 Atlantis HILIC Silica 2.1 x 150mm, 3 µm 
Glass Vials Waters 186000273 Clear screw-top vial, 100 per pack 
Glass Vial Inserts Waters WAT072294DV 200 µL deactivated glass insert, 100 per pack 
Vial Caps Waters 186000274 Screw cap with bonded PTFE/silicone septa 
Pipet tips Eppendorf various Tips for Pipettes Research plus 

 
 

Reagent Preparation 

 
Extraction Medium:  Acetonitrile:Methanol:Formic Acid (75:25:0.2, v:v:v) 

1. Add 1 mL of formic acid to 125 mL of methanol in a 500 mL glass bottle. 
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2. Add 375 mL of acetonitrile. 
3. Store the solvent tightly-capped to prevent evaporation. 

 
Mobile Phase A:  0.1% Formic acid, 10 mM Ammonium Formate 

1. Transfer 0.631 g of Ammonium formate to 999 mL of HPLC grade water in a 1 L glass bottle. 
2. Add 1 mL of HPLC grade formic acid. 
3. Store at room temperature, tightly capped. 

 
Mobile Phase B:  0.1% Formic acid in Acetonitrile 

1. Add 1 mL of HPLC grade formic acid to 999 mL of HPLC grade acetonitrile in a 1 L glass bottle. 
2. Store at room temperature, tightly-capped. 
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Stock Solution of Internal Standards:  (10 mM of L-Valine-d8  stock and 10 mM of L-Phe-d8 stock solution) 

1. Weigh out 17.32 mg of isotopically labeled reference standard (L-Phenylalanine-d8) and 12.52 mg of L- 
Valine-d8  in a 15 mL screw cap vial. 

2. Add 10 mL of methanol to yield a final concentration of 10 mM. 
3. Store at -20°C, tightly-capped to prevent evaporation. 

 
HILIC IS-SS: Extraction Medium with Internal Standard: 

1. Pipet 100 µL of the stock solution containing 10 mM L-Phenylalanine-d8 and 10 mM L-Valine-d8 into a 500 
mL glass bottle containing 500 mL of Extraction Medium. 

2. Final concentration of each internal standard is 0.002 mM. Store at -4°C, tightly-capped to 
prevent evaporation. 

 
Master Mix of Reference Compounds: (0.2 µg/mL) 

1. To validate the HPLC retention times and tandem MS/MS transitions of the target analytes, a single 
master mix can be made. 

2. The final concentration of each analyte is 0.2 µg/mL, which corresponds to a 1:500 dilution from 
each standard’s stock solution. 

3. Store at -20°C, tightly-capped to prevent evaporation. 
 
Calibration Curve: 

1. A calibration curve for a specified analyte can be constructed from a stable isotope-labeled standard in 
pooled plasma, using serial dilutions. 

2. Starting with the 1000 µg/mL stock solution, make serial dilutions of the standard in Extraction Medium 
to achieve a final concentration of the standard of 0, 0.05, 0.1, 0.5, 1, 10, 50 and 100 µg/mL in pooled 
plasma. 

 
Standards Preparation for LC-MS/MS 

 
Standards: 

1. Add 20 µL of 500 µM analytical standard to 80 µL of HILIC IS-SS solution for a final volume of 100 µL in a 
0.6 mL microfuge tube to yield a final concentration of 100 µM. 

2. Vortex the samples to mix both. 
3. Pipet 70 µL of sample into a glass vial with glass insert. Cap each vial tightly and store at 4°C (or 10°C in the 

autosampler stack). 
 
Sample Preparation 

Extraction: 
1. Transfer 10uL of plasma into a 0.6mL microfuge tube. Add 90uL of HILIC IS-IS (cooled to -30oC) for 

a final volume of 100uL. 
2. Vortex the samples to promote protein precipitation. 
3. Centrifuge samples at 14000 rpm for 20 min at 4oc 
4. Transfer 75uL of supernatant into glass vial with inserts, taking care to avoid transferring protein 

pellet particles. Cap each vial tightly and store at -30oC (or 10oC in the autosampler stack) 
 

For making pooled plasma: 
1. Transfer 20 µL of each plasma from different groups (preferably from the same study mice/patient) into a 0.6 

mL microfuge tube. Vortex to mix the samples. Aliquot the required amount and stored the remains in -80°C. 
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2. Add 90 µL of HILIC IS-SS/ 70 µL of Amide IS-SS solution and 10 µL of the pre-mixed plasma/ 30 µL of the pre-
mixed plasma for Amide method to a new 0.6 mL microfuge tube to make up a final volume of 100 µL. 

3. Vortex the samples to promote protein precipitation. 
4. Centrifuge samples at 14000 rpm for 20 min at 4°C. 
5. Pipet 75 µL of sample into a glass vial with glass insert, taking care to avoid transferring protein pellet  

particles.  Cap each vial tightly and store at -20°C (or 10°C in the autosampler stack). 
 

For plasma spiked with standards: 
 

1. Transfer each sample into a 0.6 mL microfuge tube. 
2. Add 20 µL of 500 µM analytical standard to 30 µL of plasma to a final volume of 50 µL. 
3. Vortex the samples to mix both. 
4. Pipet 30 µL of the mixture and add to 70 µL of HILIC IS-SS solution for a final volume of 100 µL in another 

0.6 mL microfuge tube. 
5. Vortex the samples to promote protein precipitation. 
6. Centrifuge samples at 14000 rpm for 10 min at 4°C. 
7. Pipet 70 µL of sample into a glass vial with glass insert, taking care to avoid transferring protein pellet 

particles.  Cap each vial tightly and store at 4°C (or 10°C in the autosampler stack). 
 
Equilibration 

Equilibration is required for brand new columns or when you switch columns. New HILIC columns must  be 
equilibrated with 50:50 ACN:Water for 100 min at 0.25 ml/min followed by 40 minutes of the initial mobile phase 
conditions. If just switching between columns, then equilibrate with initial mobile phase conditions for 60 minutes. 

 
Analysis 

Analyst 1.5.1 Acquisition Method Name: HILIC_MRM_CNY_New.dam 

Autosampler settings: 

Autosampler: Leap CTC Pal or equivalent system 
Syringe: 50 µL 
Needle Rinse 1: 75:25 HPLC Water:Acetonitrile 
Needle Rinse 2: Acetonitrile 
Sample Stack Temperature 10°C 

 
Cycle Name:  
Delay Time Column 1: 0 sec 
Inject 2 Time: 1200 sec 
Delay Time Column 2: 0 sec 
Pre-clean with Solvent 2: 1 
Pre Inject Delay: 500 ms 
Post Inject Delay: 500 ms 
Column Sample Volume: 10 µL 
Filling Speed: 5 µL/sec 
Injection Speed: 10 µL/sec 
Post Clean with Solution 1: 2 
Post Clean with Solution 2: 2 
Valve Clean with Solution 1: 2 
Valve Clean with Solution 2: 2 
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Replicate Count: 1 
 

HLPC settings 

HPLC: Agilent QTRAP 5500 
Guard column: XBridge BEH Amide Van Guard Catridge, 3.5µm, 
2.1x5mm Column: Atlantis HILIC Silica, 3µm, 2.1x150mm 
Flow rate: 0.250 – 0.400 mL/min 
Column Sleeve: 25 cm column sleeve 
Column Temp: 30°C (can be modified to optimize separation and peak 
shape) Injection Volume: 10 µL 
Run Time: 25 minutes 
Mobile Phase A: 0.1% Formic acid in 10 mM Ammonium Formate (pH 
~2.5) Mobile Phase B: 0.1% Formic Acid in Acetonitrile 
Needle Rinse 1: Water:Acetonitrile (75:25, 
v:v) Needle Rinse 2: Acetonitrile 

 
Step Total Time (min) Flow Rate 

(µL/min) 
% A % B 

0 0.0 250 5 95 
1 0.5 250 5 95 
2 6.0 250 60 40 
3 9.0 250 60 40 
4 10.0 250 5 95 
5 11.0 400 5 95 
6 23.5 400 5 95 
7 24.5 250 5 95 
6 25.0 250 5 95 

 
Mass Spectrometer settings 
 

  
Q1 

 
Q3 

QTRAP 5500 
(RT) 

 
Metabolites 

 
DP 

 
EP 

 
CE 

 
CX

 

KEGG/HMDB 
Identifier 

1 76.018 30 10.14 Glycine 40 10 9 13 C00037 
2 90.23 44.069 10.15 Alanine 41 10 16 8 C00041 
3 116.095 70.04 10.49 Proline 51 10 24 13 C00148 
4 118.076 72.03 9.87 Valine 61 10 16 15 C00183 
5 120.099 74.055 10 Threonine 44 10 15 8 C00188 
6 121.94 59.1 11.01 Cysteine 63 10 26 9 C00491 
7 132.17 86.06 9.81 Isoleucine_Leucine 37 10 16 22  

8 132.17 69.01 9.63 Isoleucine 46 10 25 16 C00407 
9 132.17 43 9.52 Leucine 46 10 44 10 C00123 

10 134.14 73.97 10.23 Aspartate 85 10 19.5 12.5 C00049 
11 147.14 84.007 11.97 Lysine 51 10 25 12 C00047 
12 147.14 44 10.24 Glutamine_spec 51 10 73 10 C00064 

13 150.088 61.072 9.55 Methionine 44 10 33 10 C00073 
14 166.117 120.04 9.38 Phenylalanine 40 10 21 14 C00079 
15 182.139 91.066 9.41 Tyrosine 41 10 40 10 C00082 

 
16 

 
182.1 

 
136 

 
9.80 

Methionine sulfone 
(MetSul) 

 
51 

 
10 

 
15 

 
8 

 
HMDB02005 
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17 196.12 100 9.01 Methylsulfone (MES) 140 10 31 25  
18 205.114 188.047 9.21 Tryptophan 43 10 15 12 C00078 
19 133.15 74 10.2 Asparagine 56 10 22 10 C00152 
20 203.069 70.3 12.12 ADMA/SDMA 41 10 41 12 C03626 

21 118.013 58 11.09 Betaine 66 10 43 16 C00719 
22 232.076 85.1 10.84 C4-butyrl-carnitine 51 10 29 4  

 
23 

 
329.93 

 
135.9 

 
9.52 

Adenosine 3',5'-cyclic 
phosphate (cAMP) 

 
41 

 
10 

 
47 

 
16 

 
C00575 

24 104.808 59.8 11.28 Choline 111 10 31 12 C00114 
25 176.062 113.1 10.56 Citrulline 36 10 27 8 C00327 

 
26 

 
103.893 

 
57.9 

 
10.79 

Gamma aminobutyric 
acid (GABA) 

 
296 

 
10 

 
27 

 
26 

 
C00334 

27 189.974 144 8.23 Kynurenic acid 36 10 29 16 C01717 

28 132.92 70.1 11.48 Ornithine 46 10 25 8 C00077 
29 177.086 159.9 9.14 Serotonin 1 10 19 16 C00978 
30 125.901 44.1 9.26 Taurine 41 10 29 10 C00245 

31 777.623 731.8 8.71 Thyroxine 71 10 43 42 C01829 
32 651.783 605.8 8.71 Triidothyronine 31 10 31 16 C02465 

 
33 

 
75.87 

 
58 

 
10.81 

Trimethylamine N-oxide 
(TMAO) 

 
96 

 
10 

 
27 

 
8 

 
C01104 

34 267.004 135 9.81 3-deaazadenosine 106 10 35 14  
35 204.066 85 11.72 Acetylcarnitine 46 10 31 16 C02571 

36 147.059 88.2 11.3 Acetylcholine 51 10 21 14 C01996 
37 162.106 60 11.54 Carnitine 41 10 23 8 C00318 
38 120.086 74 9.73 L-Homoserine 51 10 17 10 C00263 
39 189 130 9.33 N-acetylglutamine 46 10 19 12 C00624 

 
40 

 
189.036 

 
70 

 
11.67 

NG-monomethyl-L- arginine 
(L-NMMA) 

 
56 

 
10 

 
35 

 
14 

 
C03884 

41 379.391 105.2 4.98 2-Arachidonyl glycerol 151 10 61 20 C13856 
42 305.298 77.1 5.01 Arachidonic acid 21 10 95 10 C00219 
43 162.079 98.1 10.67 Aminoadipic acid (AAD) 1 10 21 14 C00956 
44 268.002 136 8.30 Adenosine 26 10 29 18 C00212 
45 202.013 70.3 10.25 DMGV 46 10 23 8  

46 90.092 72 10.66 beta-Alanine 51 10 11 10 C00099 
47 131.928 62.8 8.95 Creatine 66 10 29 10 C00300 
48 184.964 98.9 11.77 Phosphocholine 61 10 29 12 C00588 

 
49 

 
131.753 

 
63.1 

 
8.98 

trans-hydroxyproline (t- 
HYP) 

 
51 

 
10 

 
51 

 
6 

 
C01157 

50 104.024 85.9 10.24 BAIBA 61 10 11 12 C05145 

51 106.074 88.094 10.08 Serine 46 10 15 10 C00065 
52 163.123 45.068 12.12 GlucosePos2 54 10 28 9 C00031 
53 175.139 70.02 11.27 Arginine 43 10 32 10 C00062 

54 126.1 80 0 Valine-d8 40 10 18 15  
55 174.2 128 0 Phe-d8 40 10 19 15  
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56 126.002 85.1 11.61 1-methylhistamine 41 10 27 10 C05127 
57 252.068 57 8.48 2'-deoxyadenosine 46 10 57 16 C00559 
58 227.976 111.9 9.02 2'-deoxycytidine 71 10 21 52 C00881 

 
59 

 
191.966 

 
146 

 
5.25 

5-hydroxyindoleacetic acid 
(5-HIAA) 

 
61 

 
10 

 
27 

 
24 

 
C05635 

60 158.926 117.9 11.56 Allantoin 41 10 17 12 C01551 
61 241.033 109.2 12.67 Anserine 31 10 35 16 C01262 
62 177.059 80.2 8.51 Cotinine 41 10 35 12 HMDB01046 
63 152.907 65.1 7.80 Cystamine 51 10 33 10  
64 78.858 61 12.64 Cysteamine 16 10 29 8 C01678 

65 243.977 112.1 8.5 Cytidine 71 10 29 28 C00475 
66 112.004 95 9.19 Cytosine 101 10 23 10 C00380 
67 92.83 75 12.47 Glycerol 46 10 15 10 C00116 

68 112.921 68.1 12.59 Histamine 36 10 45 8 C00388 
69 202.977 70.1 11.9 Spermine 56 10 37 10 C00750 
70 265.916 122 12.96 Thiamine 36 10 29 14 C00378 
71 242.985 127.2 6.27 Thymidine 26 10 29 6 C00214 

72 244.982 113.1 6.84 Uridine 66 10 23 10 C00299 
 

73 
 
190.001 

 
129.9 

 
4.92 

3-indolepropionic acid 
(3-IPA) 

 
56 

 
10 

 
31 

 
14 

 
HMDB02302 

74 120.977 94.2 7.99 Purine 56 10 31 14 C15587 
75 169.988 151.9 9.75 Pyridoxine 36 10 21 18 C00314 
76 377.047 243 7.71 Riboflavin 21 10 33 18 C00255 

77 348.133 67 5.67 Anandamide 76 10 30 15 C11695 
78 148.15 84 9.95 Glutamate 54 10 23 10 C00025 
79 156.072 110 11.34 Histidine 49 10 21 12 C00135 

 
80 

 
224.996 

 
208.1 

 
9.35 

3-hydroxykynurenine 
(3HK) 

 
61 

 
10 

 
13 

 
6 

 
C02794 

81 227.002 110 12.48 Carnosine 51 10 33 14 C00386 

82 141.868 58 11.31 Phosphoethanolamine 291 10 37 6 C00346 
83 400.141 358.3 7.58 Colchicine 116 10 31 16 HMDB15466 

https://www.google.com.au/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0ahUKEwis0Nj0mpTUAhWBW5QKHZh1Do0QFggjMAA&amp;url=http%3A%2F%2Fwww.genome.jp%2Fdbget-bin%2Fwww_bget%3FC11695&amp;usg=AFQjCNGfpm7AUThJTvFq5NjqIZklnhwekg&amp;sig2=3BsxVtIBE3W2Uej79bXrEg
https://www.google.com.au/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;cad=rja&amp;uact=8&amp;ved=0ahUKEwjlpYGqm5TUAhWBqJQKHeXwAmAQFggjMAA&amp;url=http%3A%2F%2Fwww.genome.jp%2Fdbget-bin%2Fwww_bget%3Fcpd%3AC00025&amp;usg=AFQjCNEZGcLrjfbyPbejtkoeZU0NVX-kZQ&amp;sig2=IWM7Ulxr0tZn314diDKLWw
https://www.google.com.au/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;cad=rja&amp;uact=8&amp;ved=0ahUKEwjaroPJnJTUAhXIKZQKHWvFAv4QFggjMAA&amp;url=http%3A%2F%2Fwww.genome.jp%2Fdbget-bin%2Fwww_bget%3Fcpd%3AC02794&amp;usg=AFQjCNFscLBezHShgN7YEZgIrIsRZQJiiw&amp;sig2=aDdnAhXo_ReWRwbvK_sKqA
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Mass Spectrometer: AB Sciex API-5500 QTrap triple quadrupole mass 
spectrometer Interface: Turboionspray, positive ionization mode 
Scan Mode: Scheduled multiple reaction monitoring 
(MRM) sMRM Window: 30 sec 
Target Scan Time: 1.0 sec 
Source Temp: 450°C 
Ion Source position: Vertical: 1, Horizontal: 
5 Parameters 
CAD Gas: High CUR Gas: 
25 Ion Spray (v): 4500 
TEMP: 350 Gas 1: 30 
Gas 2: 30 Exit Potential (EP): 
10 Resolution Q1: Unit 
Resolution Q3: Unit 

 
Diverter Valve: 

Valve: Valco Diverter Valve 10 port 2 position LTG 
WC027522 (Applied Biosystems), or 
equivalent 
Valve Cable Assembly 2 position actuator, 

WC024740 Position A: Flow to waste 
Position B: Flow to ion source 

 
 
Notes when integrating peaks: 

 
Leucine and isoleucine in same window. Leucine is first and isoleucine is second peak. 
ADMA/SDMA. Integrate both peaks 

Glutamate: 1st peak 
Glutamine: 2nd peak 

5 OH tryptophan: 1st peak 
Cytosine: middle peak
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