
ORIGINAL PAPER

Rainfall and dry spell occurrence in Ghana: trends and seasonal
predictions with a dynamical and a statistical model

Talardia Gbangou1
& Fulco Ludwig1

& Erik van Slobbe1 & Wouter Greuell1 & Gordana Kranjac-Berisavljevic2

Received: 12 September 2019 /Accepted: 1 April 2020
# The Author(s) 2020

Abstract
Improved information on the distribution of seasonal rainfall is important for crop production in Ghana. The predictability of key
agro-meteorological indices, namely, seasonal rainfall, maximum dry spell length (MDSL) and dry spell frequency (DSF) was
investigated across Ghana (with an interest on the coastal savannah agro-ecological zone). These three variables are relevant for
local agricultural water management. A dynamical model (i.e. European Centre for Medium-Range Weather Forecasts
(ECMWF) System 4 seasonal forecasts) and a statistical model (i.e. response to sea surface temperatures (SSTs)) were used
and analysed using correlation and other discrimination skill metrics. ECMWF-System 4 was bias-corrected and verified with 14
local stations’ observations. Results show that differences in variability and skills of the agro-meteorological indices are small
between agro-ecological zones as compared to the differences between stations. The dynamic model System 4 explains up to
31% of the variability of the MDSL and seasonal rainfall indices. Coastal savannah exhibits the highest level of discrimination
skills. However, these skills are generally higher for the below and above normal MDSL and seasonal rainfall categories at lead
time 0. Similarity in skills for the agro-meteorological indices over the same zones and stations is found both for the dynamical
and statistical models. Although System 4 performs slightly better than the statistical model, especially, for dry spell length and
seasonal rainfall. For dry spell frequency and longer lead time dry spell length, the statistical model tends to perform better. These
results suggest that the agro-meteorological indices derived from System 4′ updated versions, corrected with local observations,
together with the response to SST information, can potentially support decision-making of local smallholder farmers in Ghana.

1 Introduction

In Ghana, West Africa, demands for operational predictions of
rainfall and related indices are growing to support rural com-
munities (Vitart et al. 2017; Gbangou et al. 2019; Nyadzi et al.
2019). This is especially true where rainfed smallholder
farmers are affected by climate variability and change
(Mendelsohn et al. 2006; Codjoe et al. 2014; Gbangou et al.
2019). Provision of forecasts of water availability indicators
with sufficient accuracy and appropriate lead time can

potentially improve management for rainfed or semi-rainfed
farming systems in Ghana. Seasonal forecast of the likelihood
of the growing season’s water availability can help inform
farmers with long-term planning. For example, the
Waterapps research project (www.waterapps.net) aims to
develop tailored water information services with and for
farmers in peri-urban areas in the urbanizing deltas of Accra,
Ghana to improve the water and food security. The project
focusses on Ghana’s urbanizing delta because of agricultural
intensification, water availability issues and the increasing
possibilities of farmers to use ICT for climate information
service. Also, risks in terms of crop failure due to unexpected
rainfall events are growing and hence the need for improved
rainfall forecasts is growing too. Therefore, this study focusses
on the coastal savannah agro-ecological zone along the delta
area (Fig. 1).

There is a need for agro-meteorological forecast informa-
tion about seasonal rainfall and dry spell occurrences for West
African farmers in general (Usman and Reason 2004; Codjoe
et al. 2014; Yaro 2013) and more specifically in the coastal
savannah of Ghana delta area (Gbangou et al. 2019). This
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information can help to improve specific decision-making of
many local farmers by optimizing the selection of crop types/
varieties, reducing the cost of land preparation and avoiding
crops failure due to premature or late planting time. Dry spells
during the growing season have a large impact on crops, and
the cumulative rainfall does not fully explain impacts on ag-
riculture, because a few heavy rainfall events may lead to an
erroneous impression that a growing season is good (Usman
and Reason 2004). According to Usman and Reason (2004),
crops are more likely to do well with uniformly spread ‘light’
rains compared to a few ‘heavy’ rainfall events interrupted by
dry periods. So, the timing of breaks in rainfall events (dry
spells) relative to the cropping calendar rather than total sea-
sonal rainfall is fundamental to crop viability and production.

West African rainfall is highly variable on interannual and
decadal time scales and is highly correlated with sea surface
temperature (SST) (Zhang et al. 2015). Globally, dry condi-
tions over the Sahel and wet conditions over Guinea are asso-
ciated with positive El Niño–Southern Oscillation (ENSO)
SST anomalies of the eastern tropical Pacific, with positive
SST anomalies of the Southern Hemisphere Atlantic and with
negative anomalies of the Northern Hemisphere Atlantic (the
Atlantic dipole) and positive SST anomalies of the tropical
Indian Ocean (Folland et al. 1986; Janicot et al. 1998;
Rowell 2001; Matthews 2004). The majority of these studies

have focussed on large areas (e.g. Sahel and Guinea) of West
Africa. Hence, the mentioned rainfall teleconnection may not
account for the considerable variability at a more local scale
(Diro et al. 2011).

Additionally, global-gridded rainfall products have been
shown to exhibit clear ENSO signals over West Africa (Jury
et al. 2002; Joly and Voldoire 2009; Alizadeh-Choobari et al.
2018). However, the societal effects of rainfall characteristics
are often felt on local scales (Matthews et al. 2013; Wetterhall
et al. 2015; Gbangou et al. 2018). For example, small-scale
rain-fed agriculture in Ghana or local industrial operations
may be crucially dependent on the rainfall in the immediate
vicinity but not directly connected to large-scale aggregated
rainfall patterns. Hence, the question of whether a large-scale
system such as ENSO is ‘felt’ at the local level and for a
specific season of interest can be an important one. No study
has yet addressed precisely ENSO effects on dry spells agro-
met indices during critical growing seasons in Ghana using
local station data.

There are also some limitations on seasonal forecast eval-
uation approaches for the purpose of local communities. More
often, large-scale observational products are used as reference
for comparison or for bias correction (Fitzpatrick et al. 2015;
Vellinga et al. 2013; Wetterhall et al. 2015; Joly and Voldoire
2009) instead of local station data. Although these approaches

Fig. 1 Map of Ghana showing the location of the 22 gauges stations (left) collected from GMet and sorted into 14 gauges stations (right) across the four
main agro-ecological zones previously used in Owusu and Waylen (2009, 2013)
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are often justified by the recurent lack of consistent local ob-
servations over West Africa, including Ghana (Owusu and
Waylen 2009, 2013), findings at large-scale level may have
litle benefit for smallholder farmers.

Localized data analysis on dry spell occurrence and sea-
sonal rainfall is important from the point of view of farmers.
Farmers need information on these indicators, especially in the
first three rainy season months. This type of analysis is yet
lacking. March–April–May (MAM) and April–May–June
(AMJ) seasons over the coast–south and transition–north
agro-ecological zones, respectively (see Fig. 1, Table 1), have
been given minimal attention compared to other seasons in
Ghana. However, for agricultural applications, these are criti-
cal seasons during crops’ growing stages as they are highly
sensitive to onset, dry spell occurrence and rainfall totals
(Gbangou et al. 2019).

This paper examines the skill of ECMWF-System 4 sea-
sonal climate forecasts, a dynamical model, in reproducing the
variability of seasonal rainfall and dry spells agro-
meteorological indices and explores the effect of pre-rainy
season SST on these indices over Ghana using local station
observations as reference and focusing its analysis on the
coastal zone. The response to SST is being considered as a
statistical model. Trend and variability in historical observa-
tions are explored prior to skill assessment in order to ascertain
the climatic conditions and the challenges related to the pre-
dictability of the indices.

The study area is Ghana’s coastal savannah area, but to
identify possible difference between local stations and agro-
ecological zones, we covered the entire Ghana focussing on
14 stations (Fig. 1).

2 Data

2.1 ECMWF-system 4 seasonal climate hindcasts

ECMWF-System 4 seasonal climate re-forecasts were used.
They consist of 15 ensemble members, with initial date on the
1st of eachmonth and then run for 7 months (i.e. leadmonths).
The re-forecasts (also referred to as hindcasts) extend over the

1981–2010 period. They were acquired from the ECOMS
User Gateway (Cofiño et al. (2018); http://meteo.unican.es/
ecoms-udg) and used to verify the performance of System 4
to reproduce dry spell occurrence and seasonal rainfall.
Forecasts for periods starting in March and April (i.e. MAM
and AMJ seasons) were considered for stations located
respectively within the (i) southern and coastal and (ii) transi-
tion and northern agro-ecological zones (Table 1). These sea-
sons were selected considering the local cropping calendar
and the northward shift with the time of rainfall across
Ghana (Sultan and Janicot 2003; Gbangou et al. 2019).

Considering that Ghana has an area of 238,535 km2, 14
stations correspond to a mean of 17,038 km2 per station
(Fig. 1). This is considered as sparse coverage, according to
Masinde et al. (2012), as many models gridded cells (e.g.
System 4 has 0.75 × 0.75 grid size) may not contain any sta-
tion within their grid-cell area (Fig. 1). Therefore, instead of
interpolating point station rainfall to grid format, which re-
quires a well distributed synoptic stations over Ghana, we
rather extracted model gridded data for each of the 14 stations.
This was done by applying the nearest neighbour interpolation
as described by Manzanas et al. (2014a). Hence, this tech-
nique provides relatively good estimates of forecasts time se-
ries at each station.

2.2 Local station data

Primary data used in this study are the time series of daily
rainfall totals from rain gauges at 14 stations out the 22 syn-
optic stations in Ghana (Fig. 1) over 30 years (1981–2010).
These data were used to assess the skill of the forecasts and
assess the response to SST anomalies. Datasets were acquired
from Ghana Meteorological Agency (GMet). The stations
have been grouped according to the four main agro-
ecological zones in Ghana (Fig. 1).

2.3 Sea surface temperature data

SST data for February, January and December and for March,
February and January lagged months were used to assess the
response of the agro-meteorological indices duringMAM and

Table 1 System 4 lead month
selection per zone (Gbangou et al.
2019)

Lead time Costal and southern zone Transition and northern zone

Lead
month
0

Forecast start date is 1st March and MAM
season is considered

Forecast start date is 1st April and AMJ season
is considered

Lead
month
1

Forecast start date is 1st February and MAM
season is considered

Forecast start date is 1st March and AMJ
season is considered

Lead
month
2

Forecast start date is 1st January and MAM
season is considered

Forecast start date is 1st February and AMJ
season is considered
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AMJ seasons, respectively. This was done on purpose to ex-
plore longer lag time teleconnection and to be consistent with
lead months from System 4 (see Table 1). The South Atlantic
Tropical SST index (SAT), the Tropical Southern Atlantic
index (TSA) and Niño3.4 SST were acquired from NOAA
website (https://stateoftheocean.osmc.noaa.gov/sur/)
(Reynolds et al. 2002). Niño3.4 SSTs are widely used to char-
acterize ENSO conditions (Huang et al. 2015). The SSTs are
averages for the areas shown in Fig. 2. The data cover the
seasonal System 4 hindcast period, i.e. 1981–2010. For the
remote Niño3.4 SSTs, we also performed analyses for much
longer lead times, i.e. SSTs for September, October and
November and for October, November and December were
related to the MAM and AMJ agro-meteorological indices,
respectively. However, these results are only presented in the
Supplemental.

3 Methods

The area of interest for this study is the coastal savannah area.
However, in order to analyse possible differences between
large (i.e. entire Ghana) and local (i.e. station and agro-
ecological zones) scale, we compared outcomes with all se-
lected stations in Ghana.

3.1 Bias correction

System 4 seasonal hindcasts were bias-corrected against ref-
erence GMet observations following the quantile mapping
bias correction method. For each station, the method adjusts
the forecasted rainfall (System 4) to the observed rainfall
(GMet) by matching the cumulative density functions (CDF)

of daily rainfall (Gudmundsson et al. 2012; Gudmundsson
2016). The method is proven to be successful in many hydro-
logical and climate impact studies (Maurer and Hidalgo 2008;
Li et al. 2010; Wetterhall et al. 2012; Themeßl et al. 2012;
Cooper 2019) as well as in medium-range (Voisin et al. 2010)
and seasonal forecasts (Wood et al. 2002).

Wetterhall et al. (2015) demonstrated that this bias correc-
tion technique can improve the skill of dry spell length and
frequency in comparison with the use of raw forecasts. In a
previous study, Ogutu et al. (2017) showed that bias correction
does not necessarily improve the skill of rainfall prediction.
Therefore, in order to check the bias correction sensitivity, we
also analysed un-corrected forecasts. The results were very
similar compared to bias-corrected forecasts in terms of skills
and were in agreement with the study of Manzanas et al.
(2019). However, only bias-corrected results are presented
and discussed in this paper. Furthermore, we checked the need
for frequency adaptation correction, which is required when
the predicted frequency of dry days in the model is larger than
the observed one (Themeßl et al. 2012). In all of our cases, the
frequency of dry days was higher in the model than in the
observations, so this correction was not made in the present
study (see Supplemental 2, Table S1).

3.2 Definition of the agro-meteorological indices

The dry spell occurrence definition was adopted from Usman
and Reason (2004). During the rainy season, it is not expected
that precipitation will occur on a daily basis. However, when
breaks in between rains spells are prolonged, plants may wilt
and die or have reduced yield. Breaks of equal to or more than
15 days are considered serious anomalies (Adefolalu 1988;
Barronfiño 2004). Here, we define the number or frequency

Fig. 2 South Atlantic Tropical SST index (SAT), Tropical Southern
Atlantic index (TSA) and Niño3.4 SST box locations. SAT–SST anoma-
lies are in the box 15°W–5° E, 5° S–5° N. TSA–SSTanomalies are in the

box 30° W–10° E, 20° S–EQ. 4. Niño3.4–SST anomalies are in the box
170° W–120° W, 5° S–5° N

T. Gbangou et al.
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of dry spell and the longest or maximum dry spell length as
follows:

& Longest/maximum dry spell: the largest number of con-
secutive days during which the rainfall is less than 1 mm/
day over the season.

& Frequency/number of dry spells: the number of dry spells
with a length of more than 5 days during which precipita-
tion is less than 1 mm/day over the season.

& Total seasonal rainfall: the sum of rainfall over the season.

Seasons are defined as March–April–May for the south–
coast and April–May–June for the transition–north agro-
ecological zones.

3.3 Skill assessment metrics of the dynamical model

Different metrics for assessing the forecasts usefulness for
decision making were computed. Seasonal rainfall and dry
spell occurrence agro-meteorological indices, derived from
System 4 ensemble forecasts, were then verified against
GMet observations using (i) Pearson correlation with the en-
semble mean (EnsCorr), (ii) the generalized discrimination
score for ensemble forecasts (Ens2AFC) (Weigel and Mason
2011) and (iii) relative operating characteristic skill score
(ROCSS) computed from the ROC area (Jolliffe and
Stephenson 2012). All the three metrics, globally, show the
discrimination ability of the forecasts. EnsCorr is a measure of
variability and measures how well the forecast anomalies cor-
respond to the observed anomalies over the hindcast period
1981–2010 at each station. Significant correlations indicate
that System 4, at least partly, reproduced the variability of
observed indices.

Ens2AFC quantified globally, whether a set of observed
agro-meteorological indices can be correctly discriminated
by the corresponding forecasts (i.e. it is a measure of the skill
attribute of discrimination). Positively skilled forecasts will
show Ens2AFC > 0.5 (Mason 2013). The ROCSS metric
plays the same role as Ens2AFC but gives more details at
tercile category level (i.e. below normal, normal and above
normal categories). A ROCSS > 0 for a specific category in-
dicates forecasts with positive skill for discriminating forecast
categories (i.e. better than the climatology) (Mason 2013).
The ROCSS metric is conditioned on the observations and
often needs the reliability diagram, as a partner, which is con-
ditioned on the forecast (i.e. given that an event was predicted,
what was the outcome?). The reliability diagram measures
how well the predicted probabilities of an event correspond
to their observed frequencies.

All the skill metrics were computed using R-packages
‘Specs Verification’ (Siegert 2017) and ‘Easy Verification’
(MeteoSwiss 2017). These metrics and packages have been

widely used to evaluate the skill of the climate predictions
(Cofiño et al. 2018; Manzanas et al. 2018; Ogutu et al. 2017).

3.4 Analysis of the skills of the statistical model

The response of agro-meteorological indices (i.e. maximum
dry spell length (MDSL), dry spell frequency (DSF) and sea-
sonal rainfall) to SST was expressed using a statistical model
(i.e. linear regression) driven by SST indices to assess the
predictability. This was done using the (i) two SST indices
of relatively nearby areas, namely the South Atlantic index
(SAT) and the TSA and (ii) one index of a more remote area,
namely the Tropical Pacific Niño index (Niño3.4) (Fig. 2).
The statistical forecasts were obtained using a linear regres-
sion model between observed agro-meteorological indices
and SSTs for individual months (i.e. in a univariate mode).
This regression was done in a leave-one-year-out cross-
validation mode. Then, the observed agro-meteorological in-
dices from GMet were correlated with the forecasted ones
derived from the statistical model over the period 1981–
2010 and at individual stations across the agro-ecological
zones. We recall that the agro-meteorological indices were
computed for MAM over the coast–south and for AMJ season
over the transition–north agro-ecological zones. To assess the
effect of lead time, SST data for February, January, December
and for March, February and January were considered for the
coast–south (i.e. MAM season) and transition–north (i.e. AMJ
season) agro-ecological zones, respectively.

3.5 Statistical trend, variability and significance
analyses

Several statistical significance tests were applied. The Mann–
Kendall test analysis of linear trend significance was carried
out on observed agro-meteorological indices. This method is
proven to be robust for trend analyses of time series (Partal
and Kahya 2006; Obot et al. 2010; Manzanas et al. 2014a).
The coefficient of variation (Cv) was used as a measure inter-
annual variability as suggested by Obarein and Amanambu
(2019). The t test was used to determine both the (i) signifi-
cance of correlation relationships between the dynamical fore-
casts System 4 and GMet derived agro-meteorological indices
and the (ii) significance of correlation relationships between
statistical forecasts driven by SST and GMet-derived agro-
meteorological indices. The relation is significant when, for
an infinite number of tests, one out of 10 (p threshold of 0.10)
is found.

The term ‘skilful’ forecast is used for positive and signifi-
cant EnsCorr and ROCSS throughout the paper. Considering
that Ens2AFC metric does not have a build-in test for signif-
icance at individual stations as for the EnsCorr and ROCSS
(Weigel and Mason 2011), a binomial distribution test was
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used alternatively to identify lead time with significant
forecasts.

4 Results

4.1 Observed trend and variability of dry spell
occurrence and seasonal rainfall

Observed trends of the agro-meteorological indices, over
1981–2010 period, generally, show no clear significant de-
creasing and increasing patterns for MAM and AMJ seasons
(Table 2) except for 4 stations out of the 14 stations. These 4
stations with significant trend are Ada, Akuse, Wa and Yendi.
MDSL at Ada is significantly increasing implying that the
prolonged dry spells have increased (p < 0.10). DSF at
Akuse shows a decreasing pattern with 90% confidence level
as well, implying that the frequency of dry spells has reduced

in that location. Seasonal rainfall significantly increased at Wa
and Yendi.

The mean and relative variability of MDSL, DSF and sea-
sonal rainfall varies by location and by agro-ecological zones
(Fig. 3; Table 2). Average MDSL and DSF are higher along
the coast and in northern Ghana compared to the south and
transition zones. Southern and transition zones have the
highest average seasonal rainfall. MDSL in the overall coastal
and northern Ghana have higher relative variability compared
to the south and transition zones. The coastal savannah also
has the highest variability of seasonal rainfall.

4.2 Ability of System 4 in reproducing dry spell
occurrence and seasonal rainfall (dynamical model)

The EnsCorr for the three agro-met indices (i.e. MDSL, DSF
and seasonal rainfall) range from − 0.35 to 0.56 for different
lead times and different stations across Ghana (Fig. 4). This

Table 2 Mean, coefficient of variation and trend significance test of the
agro-meteorological indices for the 14 stations over 1981–2010. Asterisk
indicates significant trend at 95% confidence. Positive (blue bar) and

negative (i.e. red bar) tau indicate increasing and decreasing trends, re-
spectively. Bold values indicate the average over each agro-ecological
zone

Indices         MDSL (days) DSF (number) Seasonal rainfall (mm)

Climate Trend Climate Trend Climate Trend

tau/p-value tau/p-value tau/p-value

Stations Mean (Cv) Mean (Cv) Mean (Cv)

Accra 18 (34%) 5 (33%) 282.4 (46%)

Ada 19 (36%) 5 (30%) 319.6 (32%)

Saltpond 16 (45%) 4 (31%) 362.7 (37%)

<Coast> 18 (38%) 5 (31%) 321.6 (38%)

Akuse 13 (37%) 4 (35%) 349.8 (30%)

Axim 13 (47%) 2 (44%) 579.1 (34%)

Ho 13 (34%) 4 (38%) 386.2 (25%)

Kumassi 11 (28%) 3 (37%) 422.8 (24%)

<South> 12 (36%) 3 (38%) 434.5 (28%)

Ketekrachi 13 (39%) 3 (39%) 435.9 (30%)

Wenchi 8 (35%) 2 (67%) 459.5 (23%)

<Trans> 10 (37%) 2 (53%) 447.7 (26%)

Bole 10 (38%) 3 (41%) 382.0 (25%)

Navrongo 16 (41%) 4 (30%) 293.6 (22%)

Tamale 13 (44%) 4 (28%) 355.7 (25%)

Wa 11 (35%) 4 (50%) 344.9 (27%)

Yendi 13 (48%) 3 (35%) 373.87 (19%)

<North> 13 (41%) 4 (37%) 350 (24%)

*

*

*
*

-0.4 0.4

Decrease Increase Decrease Increase

0 -0.4 0.4

Decrease Increase

-0.4 0.40 0
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Fig. 3 Spatial variation of the climatology for the MDSL, DSF and
seasonal rainfall across Ghana stations and agro-ecological zones.
MAM and AMJ seasons are considered for coast–south and transition–

northern agro-ecological zones, respectively. Error bars represent
standard deviation of annual values of the agro-meteorological indices
at each station
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range of values implies that the three observed indices (i.e.
indices calculated from GMet data) have weak correlation
relationship with predicted indices (i.e. agro-met indices de-
rived from System 4 simulations). The significance test show,
however, that some stations are significant. For MDSL, lead
times 0, 1 and 2 have, respectively, (i) 12/14, 8/14 and 10/14
fractions of stations with positive skill and (ii) 7/14, 2/14 and
2/14 fractions of stations with positive and significant skill
(Fig. 4). More positive and significant stations are found in

coast–south (4) as compared to the transition–north zone (2)
for MDSL.

In the case of DSF (Fig. 4), lead times 0, 1 and 2 count,
respectively, (i) 4/14, 9/14 and 3/14 fractions of stations with
positive skill and (ii) only one station with positive and sig-
nificant skill. As for seasonal rainfall presented in Fig. 4, lead
time 0, 1 and 2 have, respectively, (i) 10/14, 11/14 and 13/14
fractions of stations with positive skills and (ii) 4/14, 1/14 and
4/14 fractions of stations with positive and significant skills. A

Fig. 4 Ensemble correlation (EnsCorr) between GMet and the dynamical
model System 4 forecasts for the maximum dry spell length (MDSL), dry
spell frequency (DSF) and seasonal rainfall. Lead0, 1 and 2 represent
initialisation in February (March), January (February) and December

(January) considered for MAM (AMJ) seasons, respectively. Asterisk
indicates the correlation significance at p < 0.10. The overall significant
EnsCorr ranges from 0.30 to 0.56

T. Gbangou et al.



large number of positive and significant stations are also found
in the coast–south (i.e. 4) as compared to the transition–north
zone (i.e. 3) for seasonal rainfall.

Summarizing, lead time 0, generally gives the highest pos-
itive and significant skills, especially for MDSL and seasonal
rainfall. The coastal south zone has a higher number of sta-
tions with positive and significant skills than the transition–
northern zone for both MDSL and seasonal rainfall. DSF
show the lowest positive and significant skills. Findings on
the correlation relationship show that System 4 can explain up
to 31% of the variability (i.e. correlation peaks at 0.56) of the
indices, especially for MDSF at the coastal and southern
zones.

The generalized discriminant skill score over the 14 loca-
tions ranges from 0.37 to 0.66 over lead months 0, 1 and 2
(Fig. 5). Figure 5 reveals that, forMDSL, leadmonths 0, 1 and
2 have respectively 12/14, 8/14 and 7/14 fractions of stations
where Ens2AFC > 0.5. Recalling that significance for
Ens2AFC cannot be tested at individual stations, the applica-
tion of the binomial distribution test show that System 4 has
significant skill at lead time 0 (see details in Supplemental 5,
Table S2). Results for DSF and seasonal rainfall are the same
as for the ensemble correlation in terms of patterns of skills
(i.e. skills in DSF are the lowest and skill in seasonal rainfall is
similar to that of MDSL) (see Supplemental 4, Fig. S4).
Coastal savannah area, including Ada, Accra, Saltpond and
Akuse, a nearby station from the southern region, shows the
highest skills.

At categorical level, skilful and non-skilful categories
were found over different time leads and for different
agro-meteorological indices. Positive ROCSS ranges from
0 to 0. 58 for MDSL (Fig. 6). The figure reveals that a large

number of stations have positive skill (i.e. ROCSS > 0) for
the below and above normal categories (i.e. 13/14, 8/14
and 9/14 fractions of stations with positive skill for lead
times 0, 1 and 2, respectively, for each category) in com-
parison to the near normal category (i.e. 9/14, 5/14 and 6/
14 fractions of stations with positive skill for lead times 0,
1 and 2, respectively). Also, the number of stations with
significant skills is higher for below (above) normal cate-
gories (i.e. 5/14 (5/14), 4/14 (3/14) and 3/14 (5/14) for lead
times 0, 1 and 2, respectively) when compared to the near
normal category (i.e. 1/14, 3/14 and 5/14 for lead times 0, 1
and 2, respectively). Additionally, the majority of stations
with positive and significant skills are found in coast–south
(i.e. 6 and 7 for the below and above normal categories
across the lead times) compared to the transition–north
zone (i.e. 4 for both below and above normal categories
across the lead times) for MDSL. Results for DSF and
seasonal rainfall are also the same as for the ensemble
correlation in terms of patterns of the skills (i.e. skills in
DSF are the lowest, whereas the skills for seasonal rainfall
are similar to MDSL) (see Supplemental 6, Figs. S5 and
S6). The reliability diagrams, constructed for two sample
locations (Ada and Tamale) with skilful lead times (see
Supplemental S7, Fig. S7), show some proximity of the
curves with the perfectly reliable line and suggest that fore-
cast probability and mean observed frequency have, rela-
tively, good agreement.

In conclusion, the generalized and categorical skills in dis-
criminating prolonged dry spell and seasonal rainfall are gen-
erally better than that of dry spell frequency over MAM and
AMJ seasons in Ghana. System 4 performs better at
distinguishing the bellow and above normal categories as it

Fig. 5 Generalized discriminant score (Ens2AFC) between GMet and
System 4 forecasts for the maximum dry spell length (MDSL). Lead0,
1 and 2 represent initialisation in February (March), January (February)
and December (January) considered for MAM (AMJ) seasons,

respectively. Plus sign indicates the stations where Ens2AFC is greater
than 0.5 (i.e. forecast better than random guessing). The overall Ens2AFC
scores ranges from 0.37 to 0.66
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accounts a majority of positive and significant skilled stations
in comparison to the near normal category. Lead time 0 gen-
erally has the highest skills with the exception of seasonal
rainfall where lead time 2 has, surprisingly, more skilful sta-
tions. Considering the agro-ecological zone together with the
two best categories (i.e. bellow and above normal), the fore-
casts tend to perform better in the south-coast compared to the
north-transition zones especially for prolonged dry spell and
the seasonal rainfall.

4.3 Response of seasonal rainfall and dry spell
occurrence to SSTs (statistical model)

The response of agro-meteorological indices to SAT, TSA
and Niño3.4 SST is expressed as a statistical model (i.e. a
linear regression model) and used to examine the seasonal
prediction ability. Results presented in Fig. 7 show the
spatial variation of the correlational relationship between
the observed agro-meteorological indices and their

Fig. 6 ROCSS between GMet and the dynamical model System 4
forecasts for the maximum dry spell length (MDSL) and for the below
normal, near normal and above normal categories. Lead0, 1 and 2 repre-
sent initialisation in February (March), January (February) and December

(January) considered for MAM (AMJ) seasons, respectively. Asterisk
indicates the correlation significance at p < 0.10. The overall positive
ROCSS ranges from 0 to 0.58
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statistical forecasts driven by the SSTs. SAT–SST tends to
have weak and non-significant correlations (i.e. correla-
tion ranging from 0 to 0.25) for the agro-meteorological
indices with the exception of DSF which is significantly
correlated with SAT–SST at (i) Ada, Tamale, Wenchi and
Navrongo; (ii) Ada, Tamale and Navrongo; and (iii)
Kumassi for lead months 0, 1 and 2 (Fig. 7). Compared
to SAT–SST, the statistical model driven by Niño3.4–SST

tends to have stronger and correlations and stations with
significant correlation relationships (i.e. correlations rang-
ing from 0.30 to 0.45) across lead times and Ghana (Fig.
8). This is especially the case for MDSL and applies to all
lead times. Analysis for lead times longer than 2 months
shows less skill (See Supplemental 8, Fig. S9). The sta-
tistical forecasts for MDSL, DSF and seasonal rainfall are
all positively correlated with the observed ones across

Fig. 7 Correlation between GMet and the statistical model forecasts
driven by SAT–SST (SM_SAT) for the maximum dry spell length
(MDSL), dry spell frequency (DSF) and seasonal rainfall. Lead0, 1 and
2 represent the relation between SSTs for February (March),

January(February) and December(January) and agro-meteorological in-
dices considered for the MAM (AMJ) seasons, respectively. Asterisk
indicates significance at p < 0.10. The overall significant correlation co-
efficients range from 0.30 to 0.43
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Ghana. At the agro-ecological zone levels, the statistical
model driven by Niño3.4–SST has more stations with
significant correlations over coastal and northern for
MDSL as compared to other regions. Analyses for TSA–
SST show similar resul ts as for SAT–SST (see
Supplemental 9, Fig. S10); therefore, only SAT results
are presented.

In summary, results show that the statistical model driven
by Tropical Pacific SST (i.e. Niño3.4) has a better correlation
relationship with local agro-meteorological indices in compar-
ison to the Tropical Atlantic SSTs (i.e. SAT or TSA). The
statistical model can explain up to 20% of the variability (i.e.
correlation peaks at 0.45) of the agro-meteorological indices,
especially for MDSL in the coastal zones.

Fig. 8 Correlation between GMet and the statistical model forecasts
driven by Niño3.4–SST (SM_Niño3.4) for the maximum dry spell
length (MDSL), dry spell frequency (DSF) and seasonal rainfall. Lead0,
1 and 2 represent the relation between SSTs for February (March),

January(February) and December(January) and agro-meteorological in-
dices considered for MAM (AMJ) seasons, respectively. Asterisk indi-
cates significance at p < 0.10. The overall significant correlations coeffi-
cients from 0.30 to 0.45
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4.4 Comparing the predictability of the dynamical
(system 4) with the statistical model (SSTs)

The values of significant correlation coefficients for both the
dynamical model (i.e. System 4) and the statistical model (i.e.
response-to-SST) have more or less the same range across
Ghana (see Sects. 4.2 and 4.3). Although, the positive corre-
lations peak at 0.56 and 0.45 for the dynamical and statistical
models, respectively. Figure 9 shows the difference in corre-
lation coefficients between the dynamical and the Niño3.4-

driven statistical model. The figure indicates that the spatial
distribution of significant correlations varies with lead times
and agro-meteorological indices. For MDSL, the statistical
model driven by Niño3.4 is more successful than the dynam-
ical model with the exception of lead time 0 where both
models have similar skill in terms of distribution of significant
correlations coefficients. The statistical model is also more
skilful than the dynamical one for DSF with a larger share of
significant correlation coefficients. However, for seasonal
rainfall, System 4 largely dominates the statistical model for

Fig. 9 Comparison of the predictive skill between the dynamical model
System 4 (i.e. DM) and statistical model driven by Niño3.4 (i.e. SM) in
terms of difference in the correlation relationships with GMet observed
agro-meteorological indices. Lead 0, 1 and 2 represent the relation

between SSTs for February (March), January(February) and
December(January) and agro-meteorological indices considered for
MAM (AMJ) seasons, respectively. ‘Corr.’ and ‘sig.’ mean, respectively,
correlation and significant
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all three lead months. The dynamical model is also more skil-
ful than the statistical model driven by SAT for the agro-
meteorological indices with the exception of DSF that has
more significant correlation coefficients (see Supplemental
10, Fig. S11).

The comparison reveals that the dynamical model (i.e.
System 4) has, slightly, a higher predictive skill (i.e. in terms
of difference in correlation coefficients) than the statistical
model for MDSL and seasonal rainfall at short lead times
(i.e. lead0). For longer lead times, the statistical model driven
by Niño3.4 tends to perform better for MDSL. Also, DSF is
better predicted by the statistical model driven by both SST
indices.

5 Discussion

The aim of the current work was to assess the predictability of
seasonal rainfall, dry spell length and frequency using local
station observations as reference. In this process, both trend
and interannual variability are first explored in view of ascer-
taining the climatic conditions prior the verification with the
dynamical model (i.e. System 4). The effects of SSTs on var-
ious agro-meteorological indices are also examined as a sta-
tistical model.

5.1 Trend, variability and predictability

We showed that across Ghana and over the period 1981–2010,
the coastal zone has the longest dry spells (i.e. MDSL) and the
highest frequency of dry spells (i.e. DSF) and the lowest mean
rainfall during the rainy season (i.e. MAM). It is also interest-
ing to note that variations of the agro-met indices between
zones are small in comparison to differences between stations.
Both coastal and northern zones have higher variability for
MDSL. Coastal zone has also the highest interannual variabil-
ity in terms of seasonal rainfall. This variability ranging from
19 to 67% (Table 2) for all indices is high with reference to the
study of Obarein and Amanambu (2019). These results are
broadly in agreement with more recent studies on rainfall pat-
terns over this area with large-scale dataset (Baidu et al. 2017;
Atiah et al. 2019).With such level of variability, one can guess
why local communities are facing challenges to make predic-
tions based on their traditional knowledge. Over the coastal
zone, the complex series of coastal/oceanic and atmospheric
interactions contribute to this uncertainty (Acheampong 1982;
Owusu and Waylen 2009; Manzanas et al. 2014a).

The analyses also show higher correlations between
System 4 and GMet for the dry spell length and seasonal
rainfall as compared to the dry spell frequency (see Sect.
4.2). The correlations found are generally weak over various
stations and agro-ecological zones (i.e. correlations peaks at
0.56). This support the statement that seasonal forecast usually

performs poorly in reproducing rainfall indices variability, in-
cluding onset of the rainy season (Fitzpatrick et al. 2015;
Gbangou et al. 2019). Interestingly, the coastal area, which
has the highest dry spell length/lowest seasonal rainfall, was
found to have the highest level of predictability in terms of
correlation relationships where System 4 was able to explain
up to 31% of the variability of dry spell length.

The discrimination ability of System 4 is also confirmed by
the results from the Ens2AFC and ROCSS (see Section 4.3)
especially for dry spell length and seasonal rainfall agro-
meteorological indices over the coast. Discrimination skills
are shown to vary with the lead times and categories. The
below and above normal categories at the majority of stations
tend to have higher skills than the near normal category; this is
consistent with the findings of Manzanas et al. (2014b).
Results on dry spell length are also consistent with those
found over another African region by Wetterhall et al.
(2015). These authors also find discrimination skills for dry
spell agro-meteorological indices. This implies that the use of
System 4 agro-meteorological information for decision mak-
ing remains better than the use of climatology or than
guessing.

5.2 Performance of the dynamical and statistical
model

Surprisingly, the statistical model (i.e. linear regressionmodel)
driven by the remote Tropical Pacific SSTs (i.e. Niño3.4–SST)
showed higher correlations with local agro-meteorological in-
dices as compared to the one driven by local (nearby)
Southern Tropical Atlantic SST (SAT or TSA), especially,
for MDSL and seasonal rainfall. Findings (i.e. level of corre-
lations) with local SSTs are, however, consistent with a previ-
ous study on precipitation teleconnections over Ghana
(Opoku-Ankomah and Cordery 1994). The authors showed
that the relationship of local SSTs with local rainfall is strong
from July to September but very weak from March to June.
Our findings suggest that during the most important seasons
(i.e. MAM and AMJ) where correlations with local SST are
weak, farm planning can rely on predictions based on the
remote SST, namely Niño3.4–SST. Although the correlations
peak at 0.45, the teleconnection is still strong enough to pro-
vide information to farmers on the likelihood of the indices
during MAM and AMJ seasons (Opoku-Ankomah and
Cordery 1994; Alhamshry et al. 2019).

The dynamical model explains up to 31% (i.e. correlation
peaks at 0.56) of the variance of agro-meteorological indices
while the statistical model driven by Tropical Pacific SST can
only explain 20% (i.e. correlation peaks at 0.45) of the vari-
ance (see Sects. 4.2 and 4.3). This implies that the dynamical
performs, slightly, better than the statistical model. Although
both models have the same patterns of skills, that is, the same
zones and indices have generally significant skills, especially,
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for dry spell length and rainfall. Also, for dry spell frequency
and for longer lead time dry spell length, the statistical model
tends to perform better. Skills found for longer lead times are,
particularly, useful for operational purposes. The similarity in
the level of skill between the response-to-SST and System 4
seasonal forecasting is probably justified, since the System 4
is also driven/initialized by SST. The difference between the
dynamical and statistical models suggests that the joined use
of both models can help generate more qualitative seasonal
climate information.

5.3 Importance of using local station observations
and cautious interpretation of findings

The use of local stations’ observations for bias correction and
skill assessment of the seasonal forecasts in this paper is a
relatively new approach with strengths and challenges. The
approach offers the opportunity to explore differences in fore-
casts skills between local stations and agro-ecological zones.
By using large-scale gridded data (e.g. satellite and
reanalyses), we may miss some information on local varia-
tions due to micro-scale processes (Wetterhall et al. 2015;
Gbangou et al. 2019). This is the case of most previous studies
that used large-scale dataset (Ogutu et al. 2017; Nyadzi et al.
2019). It is also important to consider some limitations related
to the stations datasets and the methodology (Gbangou et al.
2019). The neighbour-weighted interpolation technique used
to interpolate the forecast at each point station is still a form of
averaging approximation that can have an effect on the results.

For dry spell and seasonal rainfall information, derived
from operational dynamical forecasts, to be valuable to local
farmers and water managers, the release timing restriction of
the forecasts needs to be taken into account. This is because
the operational forecasts from the new System (i.e. System 5)
has a release date on the 5th of each month. In addition, one
should consider the processing and communication time be-
tween ECMWF, the localMet agency and end-users (e.g. local
farmers in Ghana). Operational statistical and dynamical fore-
casts with skills at long lead times offer less time restriction for
the processing and communication. It is equally important to
explore the predictability with more shorter term forecasts,
including sub-seasonal to seasonal forecasts (1–2 months)
and also weather forecasts (1–14 days) to fully meet the need
of local end-users, especially in Costal delta area of Ghana.

5.4 Implication of the findings for local farming
climate services development

With regard to farming, due to the high variability in dry spell
length and frequency, and seasonal rainfall, risks of rainfed
crop systems during MAM and AMJ critical growing seasons
are large. One of the problems is the risk associated with crop
failure during plant growing stages due to insufficient soil

moisture. This can lead to a decrease in yield or generate
additional costs for replanting. So far, farmers mostly relied
on traditional predictions (Yaro 2013; Ingram et al. 2002;
Naab et al. 2019; Antwi-Agyei et al. 2012) to appreciate the
likelihood of the wet and dry seasons. Introducing modern
scientific forecasts of the agro-meteorological indices can help
local farmers adapt agricultural practices and hence reduce
crop failure and losses, particularly in coastal and northern
Ghana where Waterapps project is actively involved.

Our results show promise for the provision of some degree
of skilful dry spell and seasonal rainfall forecast for local
farmers in Ghana, especially during critical growing seasons.
Information derived from the forecasts starting from January,
February and March (coastal and southern zones) and from
February, March and April (transitional and northern zones)
can potentially help end-users such as local water manager
and farmers with making decisions. The below and above
normal information being better discriminated over the costal
savannah can help to reduce the risks and costs related to crop
failure through an early crop types and varieties selection. For
instance, during below normal dry spell and above normal
rainfall year, farmers may expect a good year. They can thus
plan for early farming activities and worry less about crop
failure related to water scarcity. During above normal dry spell
and below normal rainfall year, there is a risk for drought.
Skilful predictions could also be complemented with local
traditional predictions to some extent to facilitate its accept-
ability and uptake (Ingram et al. 2002; Gbangou et al. 2018).
However, farmers need to be well informed on the limitations
of the forecasts to avoid damages related to false alarms.

6 Conclusions

This study has shown that there are differences in variability
and skills of the agro-meteorological indices across different
zones and stations that might not be noticed when using large-
scale datasets for forecast verification. Variations in skills be-
tween stations are higher than those between the agro-
ecological zones which is a new insight on forecast perfor-
mance at local scale. Also, similarity in skills of the agro-
meteorological indices over the same zones and stations are
found both for the dynamical and statically models although
System 4 slightly performs better, especially, for dry spell
length and seasonal rainfall. For dry spell frequency and lon-
ger lead time dry spell length, the statistical model tends to
perform better. The closeness in the level of skill between the
response-to-SST and System 4 seasonal forecasting is proba-
bly justified, since the System is driven/initialized by SST.

Important skills in the dry spell length and seasonal rainfall
forecasts with reasonable lead time are present in the coastal
savannah zone. These skills are, specifically, higher for the
below and above normal categories. This proves that the
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operational seasonal forecast from the updated System (e.g.
System 5) and the response-to-SST can be used to provide
useful information to end-users including local farmers and
water managers. This finding is particularly of interest for
the districts located in the coastal savannah around the delta
area, namely, Ada districts, where the Waterapps project is
experimenting with co-production of water information ser-
vice. The provision of operational forecasts at appropriate lead
times and categories in combination with the response-to-
SST’s information can help mitigate the effect of high vari-
ability in dry spell and seasonal rainfall during critical grow-
ing stages of crops.

This new approach and understanding of the predictability
could help to verify and improve agro-meteorological infor-
mation in other regions affected by climate variability. Future
research and application in climate services development are
encouraged to explore both models (dynamical and statistical
models) to improve the predictability of dry spell occurrence
and seasonal rainfall information during MAM and AMJ
growing seasons in Ghana.
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