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Abstract 20 

In a globalizing and rapidly-developing world, reliable, sustainable access to water and food are 21 
inextricably linked to each other and basic human rights. Achieving security and sustainability in 22 
both requires recognition of these linkages, as well as continued innovations in both science and 23 
policy. We present case studies of how Earth observations are being used in applications at the nexus 24 
of water and food security: crop monitoring in support of G20 global market assessments, water 25 
stress early warning for USAID, soil moisture monitoring for USDA’s Foreign Agricultural Service, 26 
and identifying food security vulnerabilities for climate change assessments for the UN and the UK 27 
international development agency. These case studies demonstrate that Earth observations are 28 
essential for providing the data and scalability to monitor relevant indicators across space and time, 29 
as well as understanding agriculture, the hydrological cycle, and the water-food nexus. The described 30 
projects follow the guidelines for co-developing useable knowledge for sustainable development 31 
policy. We show how working closely with stakeholders is essential for transforming NASA Earth 32 
observations into accurate, timely, and relevant information for water-food nexus decision support. 33 
We conclude with recommendations for continued efforts in using Earth observations for addressing 34 
the water-food nexus and the need to incorporate the role of energy for improved food and water 35 
security assessments.36 

https://ntrs.nasa.gov/search.jsp?R=20190001698 2020-05-24T04:16:43+00:00Z
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1. Introduction 1 

In a globalizing and rapidly-developing world, reliable and sustainable access to water, food, 2 

and energy are inextricably linked to each other and basic human rights. With world population 3 

estimated to reach between 9 and 10 billion by mid-century (UN DESA, 2015), demand for water 4 

and food is estimated to increase by 40% and 35% respectively by 2030 (US National Intelligence 5 

Council, 2013). Globally, the agricultural sector consumes on average two-thirds of accessible 6 

freshwater on the planet (Clay, 2004; World Bank, 2014). Agriculture further impacts water 7 

resources through land degradation, changes in runoff, and unsustainable use of ground water 8 

(Alauddin and Quiggin, 2008). Given the magnitude of the challenge of providing safe and reliable 9 

access to water and food a system-wise approach is required to protect against current and future 10 

risks of insecurity.  11 

The linkages between water, food, and energy make sustainability and security difficult to 12 

disentangle. A “nexus” approach is required that recognizes the interdependencies across sectors for 13 

optimizing resources sustainably (Rasul and Sharma, 2016). The United Nations (UN) now states 14 

“The water-food-energy nexus is central to sustainable development...The inextricable linkages 15 

between these critical domains require a suitably integrated approach to ensuring water and food 16 

security, and sustainable agriculture and energy production worldwide” 17 

(http://www.unwater.org/water-facts/water-food-and-energy/).  18 

The idea for a nexus approach was introduced at the Bonn 2011 Nexus Conference (Endo et 19 

al., 2017), a meeting organized by the German government in preparation for the UN Conference on 20 

Sustainable Development, known as Rio+20. The objective of the Bonn 2011 Nexus Conference was 21 

to brainstorm solutions to complex, sustainable development problems and to develop 22 

recommendations for improving upon the previous UN Earth Summit, Rio1992, which fell short of 23 

delivering on its sustainable development goals. As a result of Bonn 2011, the nexus emerged to 24 

challenge existing international, national, and sub-national policies, and transition from a sectoral 25 

approach to solutions that embrace a cross-sectoral, coherent, and integrated perspective. Moreover, 26 

an integrated approach helps decision-makers address externalities and trade-offs between food, 27 

water, and energy sectors such as: the degradation of ecosystem services; rapidly increasing demand 28 

for resources through population growth; an expanding middle class, with changes in diets; 29 

urbanization; globalization; and climate change (Hoff, 2011). 30 

 31 
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 32 

Water security 

The United Nations University (2013) defined water security as “…the capacity of a population to 

safeguard sustainable access to adequate quantities of acceptable quality water for sustaining 

livelihoods, human well-being, and socio-economic development, for ensuring protection against 

water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of 

peace and political stability.” 

Food security 

The UN Food and Agriculture Organization (FAO) defined food security as “…when all people, at 

all times, have physical, social and economic access to sufficient, safe and nutritious food which 

meets their dietary needs and food preferences for an active and healthy life.” (World Food 

Summit, 1996). 

 33 

Given the global and cross-scale nature of the water-food-energy nexus, Earth observations 34 

(EO) from satellites and models have made important contributions to both scientific research and 35 

decision-making. Agriculture is inherently a nexus issue, and EO have a history in addressing 36 

agriculture and the water-food nexus. Since the launch of the National Aeronautics and Space 37 

Administration’s (NASA) first Landsat mission (originally named Earth Resources Technology 38 

Satellite [ERTS]) in 1972, global agricultural monitoring has been one of the longest operational 39 

applications for satellite imagery (Leslie et al., 2017). By 1979, the National Oceanic and 40 

Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) 41 

multispectral instrument allowed for monitoring vegetation greenness from space, with global 42 

coverage on a daily basis. AVHRR allowed scientists to create vegetation indices such as the 43 

Normalized Difference Vegetation Index (NDVI) for monitoring seasonal changes in vegetation 44 

condition (phenology), as well as drought stress derived from NDVI anomalies (Anyamba and 45 

Tucker, 2012). Along with the rise in EO have come rapid increases in high-performance 46 

computational resources, which favor the open development and execution of Earth system models 47 

customized for agricultural and water resources modeling (e.g. NASA Goddard Earth Observing 48 

System Model (GEOS-5; Rienecker et al., 2008), NASA Goddard Institute for Space Studies Model-49 

E (Schmidt et al., 2014), and NASA Land Information System (LIS; Kumar et al., 2006)). In the 50 

context of crop yields, Figure 1 is a schematic of how retrospective datasets and their near-real time 51 
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production can provide water-food nexus decision support. Meanwhile, forecasts require a 52 

probabilistic perspective as uncertainties interact across climate and crop response models, providing 53 

alternative scenarios for decision support. 54 

 55 

Figure 1. Retrospective, real-time, forecast, and projection modes for agricultural applications. 56 

Resources include weather observations, satellites, and crop model projections. The focus is on 57 

understanding historical anomalies, providing detail on current state, providing probabilistic 58 

forecasts, and projecting alternate scenarios affected by factors within and beyond the farming 59 

system. 60 

In addition to state-of-the-art technology, NASA uses an applications approach to missions, 61 

fostering innovative uses of NASA EO in organizations' policy decisions for societal benefit (Brown 62 

et al., 2013; Brown and Escobar, 2014). This is accomplished by following guidelines for the co-63 

production of useable knowledge in sustainable development (Clark et al., 2016). Commitment to 64 

this approach is demonstrated by the Group on Earth Observations, a voluntary organization 65 
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comprised of intergovernmental, international, and regional organizations (Group on Earth 66 

Observations [GEO]; 2005), which promotes the use of EO in sustainable development policy. GEO 67 

has a Water-Energy-Food (W-E-F) Community Activity, which uses EO, analytics, and new 68 

governance approaches to integrate across the water, energy, and food sectors. Objectives are to 69 

develop new datasets and applications and to enable their integration for the W-E-F nexus to benefit 70 

the water, energy, and food Sustainable Development Goals (SDGs; GEO, 2016). Data sharing 71 

among these initiatives is promoted through The Global Earth Observation System of Systems 72 

(GEOSS), which aims to build a Community of Practice around enhancing stakeholder engagement, 73 

and improving in situ measurements, data assimilation, and modeling capabilities (Lawford et al., 74 

2013). The GEO W-E-F activity builds upon the success of the GEO Global Agricultural Monitoring 75 

(GEOGLAM) Initiative (detailed in section 2.1.1) as well as the GEO Global Water Sustainability 76 

(GEOGLOWS) water activities that use EO to mitigate hydrologic extremes and degraded water 77 

quality.  78 

Given the global and cross-scale nature of agriculture and the water-food nexus, EO from 79 

satellites are essential for providing the data and scalability to monitor relevant indicators across 80 

space and time. This improved understanding of agriculture and the hydrological cycle can provide 81 

water-food nexus decision support. The case studies presented below provide insight into how these 82 

initiatives promote the transformation of EO into usable knowledge for sustainable development 83 

policy. 84 

2. Application Case Studies: 85 

The following case studies provide real-world examples of scientists and end-users following 86 

the guidelines for co-developing useable knowledge for sustainable development (Clark et al., 2016), 87 

in the context of food and water security. The sustained partnerships with decision makers allow us, 88 

as EO researchers, to continuously provide state-of-the-art products that stakeholders deem accurate, 89 

credible, and legitimate, and thus support decision-making and policy. The extent to which end-users 90 

adopt a water-food nexus approach will guide their information requests and, in turn, the products 91 

that EO scientists provide. Beyond the direct stakeholders these data are made publicly available 92 

which enhances transparency, and potential for innovations from the broader water-food nexus 93 

community of researchers and policy makers. The case studies largely ignore the energy component 94 

of food and water security. In the paper’s conclusions we discuss how greater consideration of energy 95 

could strengthen EO’s role in food and water decision-making.  96 
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2.1.1 Crop Monitors for AMIS and Early Warning 97 

When food prices spiked in 2011, the G20 decided to act against food price volatility, 98 

promote market transparency, and to improve early warnings of crop shortages and failures. Given 99 

the long history of EO and agriculture, they requested a proposal from the GEO Agricultural 100 

Monitoring Community of Practice (Becker-Reshef et al., 2010) to use satellite-based EO to enhance 101 

crop production projections. From this, the GEO Global Agricultural Monitoring Initiative 102 

(GEOGLAM) and Agricultural Market Information System (AMIS), were born, and endorsed by the 103 

G20 through its 2011 Action Plan on Food Price Volatility and Markets. Together these programs 104 

provide timely and transparent information on agricultural markets (Parihar et al., 2012; Whitcraft et 105 

al., 2015a). In 2012, the world again witnessed simultaneous declines in crop conditions across 106 

multiple important grain producing areas: the United States, Kazakhstan, and Russia. GEOGLAM’s 107 

use of NASA’s MODIS NDVI anomaly via the Global Agricultural Monitoring (GLAM) system 108 

enabled one of the earliest detections of this major food production issue (Becker-Reshef et al., 109 

2010).  110 

The synoptic, early warnings provided by EO positively impacted both food security and 111 

market stability by empowering policy makers and farmers to formulate food security action plans 112 

before crisis hit. Given this success, GEOGLAM launched the monthly, global Crop Monitor for 113 

AMIS (CM4AMIS). Operational since September 2013, the CM4AMIS leverages existing 114 

monitoring systems to build international consensus around the conditions of wheat, maize, soybean, 115 

and rice in the countries responsible for >80% of production. The Crop Monitor consensus building 116 

process, informed by EO, has the capacity to account for water and energy constraints on agricultural 117 

production. National and regional assessments are based on expert opinion and field 118 

campaigns/surveys (if available) combined with baseline datasets (crop type mask and crop 119 

calendars). To assess spatially varying crop and water conditions experts rely on EO datasets 120 

including NASA MODIS-based NDVI and NDVI anomaly (Bréon and Vermote, 2012), NOAA 121 

NCEP Reanalysis 2 Temperature Anomaly and Precipitation Anomaly (Kanamitsu et al., 2002; 122 

Kistler et al., 2001), European Centre for Medium-Range Weather Forecasts (ECMWF) Cumulative 123 

Temperature Anomaly and Precipitation Anomaly (Berrisford et al., 2011; Dee et al., 2011; 124 

Matricardi et al., 2004), Soil Moisture Anomaly from the European Space Agency (ESA) Soil 125 

Moisture Ocean Salinity (SMOS) retrievals processed by NOAA NESDIS (Bolten et al., 2010a; Kerr 126 

et al., 2012; Reichle et al., 2008), EUMETSAT Soil Water Index Anomaly from ASCAT 127 

scatterometer onboard the Metop-A satellite (Bartalis et al., 2006; Naeimi et al., 2009; Wagner et al., 128 
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1999), USDA-NOAA Evaporative Stress Index based on modeled output and geostationary 129 

observations (Anderson et al., 2010, 2007), and USGS Actual Evapotranspiration Anomaly (Senay et 130 

al., 2013). In the future, products from the Harmonized Landsat and Sentinel dataset (Claverie et al., 131 

2018) will be used, which can resolve phenomenon like irrigation. We acknowledge that remotely 132 

estimates are limited by their different characteristics (e.g. optical sensor temperature retrievals 133 

require cloud free conditions, which may be rare during the rainy season). Because of this, 134 

convergence of evidence and expert opinion are required to synthesize the best possible information.  135 

 

 

Figure 2. (A) July 2018 CM4AMIS contains maps of conditions and their associated drivers (wet, 136 

dry, hot, cold, extreme event). (B) Pie charts show conditions of specific crops, e.g. July 2018 wheat, 137 

by share of global production and global exports. 138 
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 The outcome of the Crop Monitor process are maps of conditions and their associated drivers 139 

(wet, dry, hot, cold, extreme event), textual summaries of conditions (excellent, favorable, watch, 140 

poor), and pie charts that show conditions of crops by share of global production and global exports 141 

(Figure 2A & B). These monthly reports, released the first Thursday of each month for conditions as 142 

of the 28th of the previous month, provide qualitative assessments of conditions, which provide 143 

intuitive, readily comprehensible snapshots of global crop conditions to a non-EO community. As of 144 

June 2018, the CM4AMIS has nearly 40 partners from around the world reporting on their countries 145 

and regions of expertise, and has become a trusted source of information for AMIS, National 146 

Ministries of Agriculture, and those interested in grain markets.  147 
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Figure 3. (A) CM4EW synthesis map for Southern Africa, May 2016. CM4EW reports contain the 148 

same information as CM4AMIS, and additionally include a “failure” condition when production is 149 

expected to be >25% below average, as well as additional drivers: delayed onset of rainy season, 150 

pests and disease, and socio-political factors. (B) Pie charts show conditions of crops, e.g. June 2016 151 

maize, by share of national production. 152 

 In 2016, building on the utility and impact of the CM4AMIS, GEOGLAM launched the Crop 153 

Monitor for Early Warning (CM4EW) with the early warning community, including Famine Early 154 

Warning Systems Network (FEWS NET), European Commission Joint Research Centre (EC JRC), 155 

and World Food Program (WFP). The CM4EW focuses on countries at risk of food insecurity, water 156 

insecurity and their relevant crops and drivers. The CM4EW utilizes the same input data, and 157 

consideration of expert opinion and consensus as the CM4AMIS (Figures 3A & B). While expert 158 

opinion may implicitly include water and energy considerations, contributors to the CM4EW 159 

explicitly include additional drivers in their regional assessments: delayed onset of rainy season, 160 

pests and disease, and socio-political factors (see legend in Figure 3B), all of which may be 161 

influenced by water and energy availability. The CM4EW has directly resulted in several examples 162 

of policy and action to strengthen food security. The unique convening power of the GEOGLAM 163 

Crop Monitor system enabled the UN FAO, the EC JRC, the WFP, and the FEWS NET to, in 164 

February 2016, release a joint statement on the dire outlooks for food supply in southern Africa as a 165 

result of the strong 2015-2016 El Niño (UN FAO, 2016). By April 2016, USAID’s Office of Food 166 

for Peace provided USD 47.2 million in emergency food assistance and the Government of Lesotho 167 

provided an additional USD 10 million to address food, water, health and sanitation needs (USAID, 168 

2016). 169 
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Most recently, the Crop Monitor has been implemented operationally at the national level in 170 

Tanzania and Uganda, as well as Kenya and Vietnam (in development, as of June 2018). In May 171 

2017, the CM4EW revealed Uganda was vulnerable to widespread crop failure due to drought 172 

(Uganda Department of Relief, Disaster Preparedness, and Management, 2017). This information 173 

was used to trigger USD 4 million from the Disaster Risk Financing fund to create temporary 174 

employment and offset agricultural losses by supporting 31,386 households (~150,000 people) in 175 

Karamoja region. Early season satellite data, provided by the Crop Monitor, provided clear evidence 176 

of impending crop failure allowing policy makers to act proactively rather than reactively, as has 177 

been the case in the past (Martin Owor, Commissioner in the Office of the Prime Minister Uganda 178 

personal communication; 17 April, 2018). This end-user feedback demonstrates the value added to 179 

international food security by the EO and international consensus work that characterizes the 180 

GEOGLAM Crop Monitor.  181 

Moving forward, the Crop Monitor will continue regional and national implementation and 182 

develop international “system of systems.” Additional efforts will investigate the use of quantitative 183 

indicators of crop conditions that consider the interlinkages between food, water, and energy systems 184 

for improved production outlooks.  185 

 186 

2.1.2 Water Availability Monitoring for Food and Water Security 187 
 188 

Remotely sensed rainfall, vegetation, soil moisture, and temperature data are critical for 189 

organizations that monitor agricultural conditions and food security (see also sections 2.1.1, 2.1.3). 190 

Until recently, however, less attention has been given to the water security dimension of food 191 

security. To address this gap in monitoring and forecasting, FEWS NET and NASA are co-192 

developing the FEWS NET Land Data Assimilation System (FLDAS; McNally et al., 2017). FLDAS 193 

uses remotely sensed and reanalysis inputs to drive land surface (hydrologic) models, to produce a 194 

global archive of historic hydroclimate conditions as well as routine updates for monitoring current 195 

events (1982-present). These data are publicly available from NASA Goddard Earth Science Data 196 

and Information Services Center. 197 

In addition to routine modeling, the FEWS NET team at NASA Goddard Space Flight 198 

Center’s Hydrological Sciences Laboratory maps water availability for the African continent at a 199 

monthly scale, both in terms of monthly streamflow anomaly and annual water stress, i.e. streamflow 200 

per capita (Figure 4a). A novel aspect of the water stress product is that it tracks water availability in 201 

terms of volumetric water requirements for human (domestic) demands. Meanwhile, the streamflow 202 
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anomaly maps contextualize current conditions in terms of the historic mean (1982-2016), which is a 203 

more traditional approach to drought monitoring. 204 

To generate these maps, FLDAS total runoff drives the HYMAP2 routing scheme (Getirana 205 

et al., 2017) to produce streamflow (m3/s). The average of the routed streamflow is calculated for 206 

each Pfafstetter basin level 6 from the USGS Hydrologic Derivatives for Modeling Applications 207 

database (Verdin, 2017) and this average is converted to a volume of water per month (m3). The 208 

given month’s anomalies are computed, as a percent of that month’s historic mean, and shown in the 209 

“Runoff Anomaly” map (Figure 4a). Next, streamflow per capita is computed using WorldPop Africa 210 

2015 population estimates (Linard et al., 2012), aggregated to the Pfafstetter basin level 6. Basin 211 

level monthly streamflow is then divided by basin level population estimates to derive streamflow 212 

per capita. Using the current and 11-months previous accumulation, streamflow per capita is 213 

classified per Falkenmark (1989) water supply thresholds. Finally, the difference from average class 214 

is computed for a given month and mapped (Figure 4b), highlighting locations where current and 215 

previous 11-months streamflow conditions depart from a basin’s average water stress classification. 216 

Together these maps provide shorter and longer-term perspectives on water availability.  217 

In general, these products are best used for bi-monthly monitoring and situational awareness, 218 

examples of which are in FEWS NET special reports (FEWS NET, 2017, 2016, 2015) to illustrate 219 

the severity and extent of recent droughts in sub-Saharan Africa. FLDAS outputs are well correlated 220 

with remotely sensed ET and soil moisture (R > 0.7) (McNally et al., 2017, 2016) and accurately 221 

represented the water balance in the Blue Nile Basin, Ethiopia (Jung et al., 2017) in terms of 222 

remotely sensed ET (R=0.9), total water storage (R=0.86), and streamflow (R=0.9). Given that these 223 

data are publicly available a growing body of literature is utilizing and evaluating the data (e.g. Philip 224 

et al., 2017). It should be noted that in evaluations and applications, a basin’s water availability 225 

estimates may be limited by constraints related to the remotely sensed inputs and the hydrologic 226 

models. Currently, abstractions (e.g. irrigation) are not modeled which would influence the accuracy 227 

of soil moisture, ET, and streamflow estimates. The quality of the meteorological inputs is also a 228 

factor. CHIRPS precipitation, input to FLDAS, has been shown to perform well in Africa (Funk et 229 

al., 2015), but some locations that lack rain gauges may have large errors. Moreover, the operational 230 

FLDAS models (Noah36 and VIC412) represent naturalized streamflow and do not represent 231 

impoundments (e.g. dams), or groundwater, which may be important water sources for some 232 

communities. That said, adjusting the time scale of analysis does compensate for some of these 233 

shortcomings. For example, water stress based on a 12-month accumulation can capture deficits to 234 

groundwater and reservoirs. 235 
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The water stress and streamflow anomaly maps provide an example application that 236 

highlights the relationship between food and water in Southern Africa. The 1-month streamflow 237 

anomaly (Figure 4a) shows “short term” positive anomalies across much of the domain. The 12-238 

month Stress Anomaly maps (Figure 4b) shows that these positive anomalies have increased water 239 

availability in Zimbabwe, Tanzania, and Kenya. However, this short term wetness was not enough to 240 

positively impact longer-term water availability across much of the region, particularly Southern 241 

Madagascar, the Western Cape, and Namibia, that were 1-3 classes more stressed than normal.   242 

Well before 2018 below-average cumulative rainfall during the 2014-15 rainy season in 243 

Southern Africa set the stage for water deficits with below average monthly rainfall and streamflow. 244 

The following year, the 2015-16 El Niño and associated drought had a severe negative impact on 245 

agricultural outcomes across much of Southern Africa (FEWS NET, 2016), including Botswana, 246 

Swaziland, Southern Madagascar, Southern Mozambique, and the maize-triangle region of South 247 

Africa (see Section 2.1.1). While more localized, the 2016-17 rainy season registered below average 248 

rainfall for the Western Cape region (see Section 2.1.3), and Southern Madagascar. The 2017-18 249 

season also registered below average rainfall across the region (see Section 2.1.1). By June 2018, 250 

FEWS NET reported that consecutive years of below average rainfall had reduced agricultural 251 

production and incomes in several Southern Africa countries, and a Water Aid report (2018) warned 252 

that water scarcity in Southern Madagascar and Southern Mozambique could reach Cape Town’s 253 

feared, “Day Zero” proportions (i.e. taps run dry and people are required to queue for water). 254 

 255 
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 256 
Figure 4. (A) Streamflow anomalies show surplus for much of the region, and 0-75% basin average 257 

streamflow deficits for April 2018 in Southern Madagascar. (B) Water Stress Change, based on 258 

annual Falkenmark classifications show that Southern Madagascar (and Western Cape) is 1-3 classes 259 

more stressed than a typical April. Maps updated twice a month at 260 

https://lis.gsfc.nasa.gov/projects/fewsnet-southern-africa. 261 

 262 
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 263 

Figure 5. 12-month precipitation and runoff spatially averaged over the Tsihombe basin, Southern 264 

Madagascar. 2016 was the second-worst year in the 35-year record. FEWS NET reports consecutive 265 

years of below average rainfall, and water availability deficits have reduced agricultural production 266 

and incomes. 267 

 268 

A time series from the FLDAS archive (Figure 5) confirms that 2015-16 was Southern 269 

Madagascar’s second-worst season in the 35-year record in terms of rainfall and that annual runoff 270 

has been trending downward since 2010-11. It is useful to look at both rainfall and runoff, given their 271 

non-linear relationship, when assessing water availability. The FEWS NET Southern Africa Food 272 

Security Outlook (2018a) reports “stressed” and “crisis” conditions in Southern Madagascar for the 273 

June-September 2018 and October-January 2019 period, highlighting lack of water availability for 274 

people and livestock (FEWS NET, 2018b). Contributing to this dire outlook was that as early as July 275 

2018, El Niño conditions were forecasted for late 2018 and early 2019, increasing the likelihood for a 276 

delayed start of the rainy season (delaying crop planting), and below average rainfall totals 277 

(exacerbating water availability deficits). Working with the FEWS NET Southern Africa field 278 

scientist, these data will be used to monitor the situation and communicate in the Food Security 279 

Outlooks how local water availability relates to regional food security.  280 

 281 

2.1.3 Improving the USDA-FAS soil water information 282 
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The main objective of US Department of Agriculture Foreign Agricultural Service (USDA-283 

FAS) is to provide timely information on current and expected agricultural supply and demand 284 

estimates. The water-food nexus approach is inherent, as they utilize and publicly provide 285 

information on the environmental conditions that influence agricultural supply, and combine this 286 

with other economic and policy information to produce estimates, that ultimately feedback into 287 

policy making. The USDA World Agricultural Outlook Board (WAOB) produces monthly forecasts 288 

of the global monthly crop condition assessments carefully compiled by USDA-FAS and posts to the 289 

public-facing Crop Explorer website (https://ipad.fas.usda.gov/cropexplorer/). The agency’s regional 290 

and global crop yield forecasts are based on a large variety of agro-meteorological parameters and 291 

physically-based models compiled in the Crop Condition Data Retrieval and Evaluation (CADRE) 292 

Data Base Management System (DBMS). CADRE is a comprehensive geospatial database that 293 

utilizes remote sensing imagery, meteorological data, and in situ observations to produce preliminary 294 

crop condition and yield production estimates. Proper crop growth and development is largely 295 

dependent on the amount of water present in the root-zone. Therefore, a critical concern for the 296 

USDA-FAS analysts is to capture the impact of agricultural drought on crop development and health, 297 

and the resulting yield production. Since soil moisture is known to be a leading indicator of future 298 

crop conditions, the value of a robust soil moisture-based assessment within the historical climate 299 

context has proven to be critically important for the CADRE database (Bolten and Crow, 2012; 300 

Mladenova et al., 2017). The baseline soil moisture estimates in CADRE are developed using the 301 

modified two-layer Palmer model (PM), which is a water balance-based hydrologic model driven by 302 

daily precipitation data and minimum and maximum temperature observations (Palmer, 1965). PM 303 

produces global daily soil moisture estimates, whose accuracy is primarily driven by the quality of 304 

the precipitation data. This has been problematic over areas with limited gauge or poor-quality 305 

precipitation data that may not detect weather extremes. Agricultural drought, associated with the 306 

lack of water or soil saturation and floods (i.e. abundance of water), can have detrimental impact on 307 

crop growth and yield production.  308 

 To improve CADRE root-zone soil moisture estimates where there are precipitation-related 309 

errors, NASA has been working with USDA-FAS on the integration of surface soil moisture 310 

retrievals obtained using satellite-based remote sensing. The approach has been applied to the 311 

USDA-FAS Palmer model and the CADRE root-zone soil moisture information has been enhanced 312 

by the integration of soil moisture retrievals derived using observations acquired by NASA’s Soil 313 

Moisture Active Passive (SMAP) mission (Chan et al., 2016; Crow et al., 2012; Entekhabi et al., 314 

2010). SMAP’s passive only retrievals are ingested into the PM using the Enhanced Kalman Filter 315 
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(EnKF) technique, where the satellite-based surface soil moisture information is transferred into the 316 

models’ sub-surface (i.e. root-zone) layer through a sampled error covariance matrix that reflects the 317 

error characteristics of both the model estimates and the satellite observations (Bolten et al., 2010b; 318 

Han et al., 2014). The USDA-FAS crop analysts extract timely and essential information on changes 319 

in soil moisture conditions from root-zone soil moisture anomaly maps. It should be noted that in 320 

evaluations and applications, soil moisture estimates might be limited by constraints related to the 321 

remotely sensed inputs and the hydrologic model. In addition to the shortcomings in satellite 322 

precipitation mentioned earlier, microwave soil moisture retrievals have larger errors when dense 323 

vegetation is present. Meanwhile, the Palmer model is a simple water balance model that may not 324 

represent local hydrologic complexity. Despite these limitations this system has been demonstrating 325 

its utility in an operational setting. 326 

 327 

Figure 6. Monthly root-zone soil moisture anomaly conditions over South Africa during the 2016 and 328 

2017 growing seasons (May-October). Each value shows the deviation of the current conditions 329 

relative to the long-term average standardized by the climatological standard deviation. Negative 330 

values indicate that the current conditions are below average, while positive indicate surplus of water. 331 

An example of root-zone soil moisture maps developed by the SMAP-enhanced PM over 332 

South Africa are shown in Figure 6. The Western Cape, a province located in the southern part of 333 

South Africa is the country’s largest wheat-growing region. Winter cereals in the area are typically 334 

planted in May and harvested in October. The Western Cape has suffered a critical drought that 335 

impacted the 2017 growing season, which has been associated with record low rainfall, high 336 

temperatures, and high evaporation rates. The decline in moisture conditions during 2017 (Figure 6) 337 
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would cause 29% reduction in wheat yield relative to the previous year based on the USDA-FAS 338 

reported estimates published in February 2018 (US Department of Agriculture - Foreign Agricultural 339 

Service, 2018) This would consequently have a large impact on food security, social well-being, and 340 

loss of income in the area, the management of which would require financial investments and socio-341 

economic support.  342 

 Throughout the process, USDA-FAS has worked with NASA to identify the problem (rainfall 343 

errors), and develop a solution to meet analyst needs. The careful integration of near real-time satellite-344 

based soil moisture observations into the USDA decision support system allows USDA-FAS analysts 345 

to compare current soil moisture and crop conditions and develop a more comprehensive assessment 346 

of expected agricultural yield in many areas of the world that currently lack adequate ground-based 347 

observations. The continued partnership allows NASA remotely sensed soil moisture to be transformed 348 

into useable knowledge while USDA-FAS will continue to benefit from ongoing improvements related 349 

to NASA EO. 350 

 351 
2.1.4 Modeling agricultural impacts across time horizons 352 

In addition to providing estimates of water availability and soil moisture, EO can be linked 353 

with biophysical and socioeconomic agricultural modeling frameworks that elucidate historical, 354 

current, and future challenges in the water-food nexus. To accomplish this, NASA scientists launched 355 

the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010 to provide 356 

enhanced community organization around systematic intercomparison and stakeholder-driven 357 

applications of agricultural models to address food security (Rosenzweig et al., 2013). AgMIP’s 358 

global community utilizes climate, crop, livestock, economics, and nutrition models to understand 359 

interactions between biophysical and socioeconomic systems, dependencies across local and global 360 

markets, and the shifting nature of impacts and risk across time horizons. The result is a series of 361 

models and tools that may be applied individually or as part of AgMIP’s Coordinated Global and 362 

Regional Assessments (CGRA), a multi-discipline, multi-scale, multi-model, and multi-institution 363 

framework to address major challenges in adaptation, mitigation, food security, and food policy. 364 

 365 
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 366 

Figure 7: Example of process-based crop model response map that motivates global and regional 367 

interventions. Rainfed maize yield response to a 20% reduction in precipitation, as simulated by the 368 

pDSSAT crop model as part of AgMIP’s Global Gridded Crop Model Intercomparison. Note that 369 

only grid cells are shown where current rainfed maize production is at least 10 hectares according to 370 

the Spatial Production Allocation Model (SPAM2005) database (You et al., 2014). 371 

NASA observational products provide a critical foundation for modeling agricultural systems, 372 

as these assessments are rooted in the distillation of historical climate information and the creation of 373 

future climate change projections. The need for a consistent historical climate record led to the 374 

development of an agricultural modeling-oriented version of the NASA Modern Era Retrospective-375 

analysis for Research and Applications (AgMERRA; Ruane et al., 2015). And to assess future 376 

conditions AgMIP models utilizes climate scenarios derived from the ensemble of Earth system 377 

models (ESMs) contributed to the Coupled Model Intercomparison Project with CMIP (Eyring et al., 378 

2015; Taylor et al., 2011) and the NASA Goddard Institute for Space Studies Model-E (Schmidt et 379 

al., 2014). The application of global process-based crop models sheds light on strong differences in 380 

crop production and vulnerability across regions and farming systems. For example, the parallel 381 

Decision Support System for Agrotechnology Transfer (pDSSAT) model (Elliott et al., 2014) was 382 

used to simulate global, spatially distributed yield response to a 20% reduction in precipitation 383 
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(Figure 7).  A majority of pixels, with at least 10 hectares of rainfall maize, experience 0-30% loss in 384 

yields with 20% reduction in precipitation (brown colors, Figure 7). There are however, some areas 385 

with positive response to rainfall reduction, particularly in the wettest portions of the humid tropics 386 

(portions of the Brazilian interior, Bangladesh, and parts of the Congo Basin).  These locations have 387 

plentiful water and therefore have sufficient amounts even with a substantial (20%) reduction, and 388 

the lower precipitation levels also have reduced runoff, fertilizer leaching, and soil erosion, which 389 

can have a slight benefit for yields. This type of information, generated as part of AgMIP’s Global 390 

Gridded Crop Model Intercomparison (GGCMI phase 2; Elliott et al., 2015), motivates stakeholder 391 

interventions to increase resilience and reduce food security risks. Similar to previous case studies, 392 

we acknowledge there are sources of uncertainty from remotely sensed inputs or hydrologic 393 

parameters. Additional uncertainty is introduced in the modeling of crop yields, which requires 394 

information on crop parameters and farm management practices. Over time, and with partner 395 

cooperation, accuracy of these inputs will improve, but some error will remain. That said, water-food 396 

nexus stakeholders can still benefit from the exploration of future scenarios. 397 

 The process-based crop modeling community fostered by AgMIP provides an important 398 

perspective to stakeholder-oriented applications for food security and the water-food nexus. 399 

Stakeholders need information and understanding of agricultural systems across a continuum of time 400 

horizons (Table 1). Agricultural sector stakeholders are under high pressure to maintain high 401 

awareness of present field conditions and seek an improved understanding of past years’ crops (e.g., 402 

farmers, disaster risk reduction community, commodities traders). Near term outlooks are important 403 

for an early indication of seasonal production and water consumption and the long-term outlooks 404 

help to manage complex risks, anticipate emerging opportunities, and ensure the viability of current 405 

resources and long-term investments.  406 

 407 

Table 1: Observational and physical model sources of information to drive crop models across a 408 

continuum of stakeholder-relevant time horizons. 409 

Time Horizon 

Category 

Weather / 

Climate Data 

Remote Sensing 

Data 

(~ 1970s-present) 

Crop Model 

Simulation Modes 

Stakeholder Needs 
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Past years 

  

Historical 

observations 

and processed 

products 

Vegetation and 

field environment 

observations and 

processed 

products 

Historical 

simulations, 

retrospective 

analyses, and 

counterfactual / 

attribution studies 

Attribution of anomalous 

yields and water use, 

identification of more 

resilient farming strategies 

Present Current 

observations 

and available 

products 

Vegetation and 

field environment 

observations and 

available products 

In-season 

simulations based on 

observations and 

available products 

Early-warning systems and 

intervention triggers. 

Forecast Weather and 

climate model 

forecasts 

None Crop yield forecasts 

from current state to 

end-of-season 

Anticipate production shocks 

and their socioeconomic 

ramifications from local to 

global markets. 

Projection Climate model 

projections 

None Crop yield impacts 

according to future / 

alternative farming 

systems, land use, 

and/or 

environmental 

conditions 

Understand the shifting 

nature of impacts and risk, 

evaluate interventions to 

maximize economic and food 

security utility of land and 

water resources, identify and 

prioritize adaptation and 

mitigation policies and 

technologies. 

  410 

Two cases exemplify the utility of AgMIP approaches for stakeholders. First, AgMIP 411 

partnered with the UK Department for International Development to assess the intertwining 412 

influences of socioeconomic development, climate change, and technological adaptation for 413 

vulnerable farming systems across 15 countries in sub-Saharan Africa and South Asia (Rosenzweig 414 

and Hillel, 2015). AgMIP partners worked closely with local stakeholders (regional and national 415 

ministries, development agencies, non-governmental organizations, farmers groups, and farm supply 416 

companies) to co-develop representative agricultural pathways (RAPs; Valdivia et al., 2015) 417 

indicating likely socioeconomic conditions that would shape future farming systems. While RAPs 418 

varied by location common themes included decreasing water availability, degradation of soils, and 419 

increasing use of fertilizers. Next, RAPs were evaluated for how global price changes and local 420 



EO for Water-Food Nexus 

 20 

climate shifts would create divergent impacts on regional households. In the case of Bethlehem, 421 

South Africa (Beletse et al., 2014) climate change scenarios predicted yield losses and associated 422 

revenue losses of 3-27% per farm. However, adaptation scenarios that included advancements in 423 

agricultural technology (e.g. improved seeds and fertilizers) increased yields 13-22% and decreased 424 

poverty 12-22%. 425 

These results elucidate the potential for different adaptation and policy decisions to increase 426 

resilience and the likelihood of positive outcomes. The identification of agricultural technology 427 

advancement may lead to prioritization for further investment (often as elements of ongoing 428 

development investment or national adaptation and mitigation planning).  429 

 Second, AgMIP applied its CGRA process in response to the UN Framework Convention on 430 

Climate Change’s request for information on the adaptation and mitigation costs related to global 431 

warming of 1.5 or 2.0 ºC above pre-industrial conditions (Rosenzweig et al., 2018). Results from 31 432 

CMIP5 climate models, 5 additional GCMs that performed new 1.5 and 2.0 ºC stabilization 433 

simulations, 3 global crop models, 2 economic models, and regional case studies utilizing local crop 434 

and regional economics models elucidated the biophysical and socioeconomic impacts across 435 

farming systems and global markets (Ruane et al., 2018b, 2018a). While results varied by region, in 436 

general, tropical maize yields declined and prices increased while soy yields increased, and prices 437 

decreased. Both maize and wheat cropping areas expanded while soy area planted decreased.  438 

Results also quantified potential opportunities for farmers from mitigation-oriented subsidies (Antle 439 

et al., 2018). In one scenario, US Pacific Northwest wheat farmers could receive compensation for 440 

greenhouse gas mitigation via reducing soil emissions of greenhouse gasses and increasing 441 

production of biofuel crops. This policy strategy would offset the loss of income related to climate 442 

change and contribute to reduction in greenhouse gases. Consistently-linked simulations and 443 

scenarios also allowed for an unprecedented examination of uncertainty in projected impacts on local 444 

and global food systems (Ruane et al., 2018b), the shifting nature of extreme events (Schleussner et 445 

al., 2018), and effects on small-holder systems in West Africa (Faye et al., 2018). 446 

 447 

3. Summary and Conclusions 448 

These case studies demonstrate how EO are being used to assess water and food security 449 

outcomes, and designed to meet needs of analysts who work within larger decision-making contexts 450 

related to the water-food nexus. These projects work closely with stakeholders to ensure that current 451 

and future products support relevant decision-making. To summarize:  452 
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(1) GEOGLAM formed in response to a demand from G20 to provide agricultural relevant 453 

information from EO. Within this broader context, national and regional experts convene to 454 

reach consensus regarding the interpretation of EO and agricultural outcomes. Evaluations of 455 

requirements and EO’s capability to meet them is an ongoing process undertaken in the 456 

broader GEOGLAM context (Whitcraft et al., 2015b). From initial success and lessons 457 

learned, this framework has been adapted to meet new demands from new partners including 458 

the Crop Monitor for Early Warning and National Level monitors. For example, new efforts 459 

will incorporate new EO that better represent irrigation, which is a requirement for addressing 460 

the food-water-energy nexus. 461 

(2) The FEWS NET Land Data Assimilation System (FLDAS) and associated water stress 462 

products were developed in response to demand from USAID and FEWS NET to address the 463 

linkage between food security and water availability. These data are used within the broader 464 

context of food access, utilization, and stability. There is ongoing feedback and learning from 465 

partner scientists regarding how to best communicate the relationship between water 466 

availability, food security, and the water-food nexus.  467 

(3) USDA-FAS soil water modeling was developed in response to demand from USDA-FAS to 468 

address errors in near real-time satellite derived precipitation products. These data are used in 469 

the broader context improving US agriculture export opportunities and global food security. 470 

Success can be attributed to, and lesson’s learned from NASA scientist's willingness to work 471 

within the USDA system to easily meet FAS analysts’ needs, as well as providing support as 472 

technology advances (e.g. SMOS to SMAP, and SMAP improvements in spatial resolution 473 

and latency). This partnership allows for the co-production of state-of-the-art, usable soil 474 

moisture information. 475 

(4) AgMIP developed an assessment of vulnerable farming systems to meet the needs of the UK 476 

Department for International Development and UN Framework Convention on Climate 477 

Change’s request for information on the adaptation and mitigation costs related to global 478 

warming. These cases fit within AgMIP’s broader context of providing enhanced community 479 

organization around systematic intercomparison and stakeholder-driven applications of 480 

agricultural models to address food security. Moreover, AgMIP’s global network of 481 

agricultural specialists that inform modeling efforts improve the quality and legitimacy of 482 

project results. 483 
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A commonality across these case studies is that they are all constrained by EO capabilities and 484 

uncertainties. With these constraints, EO data producers are transparent about what the models 485 

represent (e.g. natural streamflow vs. streamflow subject to impoundments and abstractions), model 486 

uncertainties (from model physics, parameters, and quality of inputs) and accuracy of remotely 487 

sensed products. For example, the accuracy of rainfall estimates may be contingent upon the extent to 488 

which satellite products have been calibrated to ground-based observations and the spatial 489 

distribution of these observations. Additional uncertainty is introduced when future climate scenarios 490 

are coupled with hydrologic and crop models.  491 

 Even with continuous improvements in EO to reduce these uncertainties, decision support is 492 

constrained by end-users’ ability to recognize shortcomings in the data products and apply the 493 

information appropriately. What is an analyst’s capacity for understanding of EO uncertainty, rather 494 

than accepting outputs from a “black-box”? And how well can analysts incorporate additional 495 

sources of information to answer lingering questions? For example, the USDA and FEWS NET 496 

hydrologic models do not include dynamic representation of cropping systems that would both 497 

depend on and determine water supplies, which are important considerations in the water-food nexus. 498 

Nor do these models represent irrigation or inter-basin water transfers, which can be energy intensive 499 

water supply mechanisms. GEOGLAM and FEWS NET analysts address some these limitations by 500 

incorporating additional sources of information via a convergence of evidence approach that 501 

considers information from remotely sensed soil moisture, evapotranspiration, and vegetation 502 

products that have been shown to detect the presence of irrigated agriculture (Lawston et al., 2017; 503 

Senay et al., 2007). In all instances, strong relationships and trust between EO data producers and 504 

end-users, described in this paper, are essential to compensate for uncertainties in EO and devise 505 

strategies to provide the best possible decision support.  506 

3.1 Actionable Recommendations 507 

These case studies demonstrate the value of NASA Earth science data through applications 508 

activities and are key examples of translating satellite data into actionable information and 509 

knowledge used to inform policy and enhance decision-making. One of the key lessons learned from 510 

these case studies is that given the complexity of problems that span the water-food nexus the 511 

partnerships between EO producers and end-users is critical for ensuring that EO data is applied 512 

appropriately to maximize its utility for decision support. Given these experiences we make the 513 

following actionable recommendations for other researchers (or applied science managers) interested 514 

in producing information for addressing the water-food nexus, and sustainable development policy 515 

guided by the literature on the co-development of useable knowledge for sustainability. We frame 516 
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these recommendations in the context of NASA applied science programs; however, they are relevant 517 

to any organization and program that provides strategic guidance on food-water-energy projects.  518 

First, during the “proof-of-concept” phase, specific applications need to be matched with 519 

methods and models that are appropriate given data availability, application time scale, delivery 520 

schedule, and requirement for precision (i.e., different approaches used to monitor global market 521 

impacts vs. identify field adaptation vs. assess long-term agricultural outlooks). NASA coordination 522 

can help more rapidly match science and decision context. Also during this phase, facilitated 523 

collaboration across NASA models, missions, and methods will build more robust applications, more 524 

rapidly characterize uncertainties, and ensure consistency in the downstream use of NASA products. 525 

For example, AgMIP is on the cutting edge of mechanistic modeling of both the biophysical and 526 

socioeconomic system that is a fertile ground of innovation for the case studies mentioned here, as 527 

well as other agricultural applications. NASA applied sciences could facilitate the integration of these 528 

systems to demonstrate proof-of-concept to existing and new end-users. 529 

Second, stakeholder demand and engagement is key. Repeated interaction and iterative co-530 

development of tools and information products build trust, understanding, and utility in application. 531 

If you have successfully moved from the “proof-of-concept” stage to engaging an end-user, listening 532 

and responding to their needs is critical: answer their specific questions, accept input from their 533 

experts, use their models/indices, provide products that analysts are familiar with, or can easily 534 

interpret, and provide trainings on new, potentially less intuitive products. This will ensure that you 535 

are producing “usable knowledge”.  536 

Finally, products (data, images, reports) need to be publicly available and follow guidelines 537 

for data sharing. Interactive user interfaces and web-pages that provide both graphics and data (e.g. 538 

PNG and GeoTIFF) can primarily support project needs as well provided content for the broader 539 

water-food nexus community. Following these guidelines has resulted in collaboration between 540 

FEWS NET, USDA-FAS, GEOGLAM, and AgMIP. Moreover, publicly available FLDAS estimates 541 

of the full water and energy balance (1982-present), being used by academic researchers (e.g. Philip 542 

et al., 2017) can provide important, useable insights to climate change, trends, and extremes. In 543 

addition to data and maps these projects provide a variety of reports online that can help others 544 

examine different facets of historic droughts. The strength of the data and products comes from close 545 

collaboration with specific end-users, while sharing the results in a useable way meets the important 546 
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task of producing information for addressing the water-food nexus, and sustainable development 547 

policy. 548 

These recommendations are directly applicable to better incorporate the role of energy availability 549 

and sustainability into water and food security applications, and better address the food-water-energy 550 

nexus. Additional research and “proof of concept” development that is led by or includes water-food 551 

applications scientists will need to devote effort to presenting new products and communicating 552 

research to potential end-users. Communicating these new efforts in a way that resonates with end-553 

users may be an iterative process. Ultimately, moving “proof-of-concept” products into active 554 

decision support will require demand from end-users, and their commitment to a nexus approach to 555 

food-water-energy security and sustainability. 556 
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