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Overview
• Goals

– Understand system behavior through dynamic models
– Develop model-based algorithms for state es9ma9on, end of 

discharge (EOD) predic9on, and end of life (EOL) predic9on
– Validate algorithms in the lab and fielded applica9ons

• Algorithms
– Dynamic state and parameter es9ma9on
– Uncertainty Representa9on
– Prognos9cs

• Models
– Electric circuit equivalent (for EOD predic9on)
– Electrochemistry-based model (for EOD and EOL predic9on)

• Laboratory capabiliEes and fielded systems
– MACCOR baHery tester, environmental test chamber
– Planetary rover testbed
– Subscale electric aircraJ (Edge 540)
– UAVs vehicles and testbed
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Prognos'cs Architecture

• System gets input and produces output
• Estimation module estimates the states and parameters, given system inputs and 

outputs
– Must handle sensor noise
– Must handle process noise

• For some event E, e.g., end-of-discharge or end-of-life, prediction module predicts kE
– Must handle state-parameter uncertainty at kP
– Must handle future process noise trajectories
– Must handle future input trajectories
– A diagnosis module can inform the prognostics what model to use

• In model-based approaches, require a dynamic model of the battery
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State Es'ma'on
• What is the current system state and its 

associated uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Most of the models are nonlinear e.g ba8ery, so 
require nonlinear state es;mator (e.g., extended 
Kalman filter, par;cle filter, unscented Kalman
filter)

• Use unscented Kalman filter (UKF)
– Straigh6orward to implement and tune performance
– Computa<onally efficient (number of samples linear in 

size of state space)
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Unscented Kalman Filter
• The UKF is an approximate nonlinear filter, and assumes additive, 

Gaussian process and sensor noise
• Handles nonlinearity by using the concept of sigma points

– Transform mean and covariance of state into set of samples, called 
sigma points, selected deterministically to preserve mean and 
covariance

– Sigma points are transformed through the nonlinear function and 
recover mean and covariance of transformed sigma points

• Number of sigma points is linear in the size of the state dimension

Unscented 
transform
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Predic'on
• What is kE and what is its uncertainty?
– Input: p(x(k),θ(k)|y(k0:k))
– Output: p(kE)

• Most algorithms operate by simula8ng 
samples forward in 8me un8l E

• Algorithms must account for several sources 
of uncertainty besides that in the ini8al state
– A representa.on of that uncertainty is required 

for the selected predic.on algorithm
– A specific descrip.on of that uncertainty is 

required (e.g., mean, variance)
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Uncertainty Quan'fica'on
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Uncertainty Representa'on
• To predict kE, need to account for following 

sources of uncertainty:
– Ini<al state at kP:
– Parameter values for kP to kE:
– Inputs for kP to kE:
– Process noise for kP to kE:

• Trajectories represented indirectly through 
parameterized equa;ons describing the 
trajectories, where probability distribu;ons for 
the parameters are specified
– Sample these parameter variables to sample a 

trajectory
– For example, constant power trajectory represented 

through u(k) = c, for all k>kP, where c is random
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Prediction Algorithm
• The P funcEon takes an iniEal state, 

and a parameter, an input, and a 
process noise trajectory
– Simulates state forward using f un:l E is 

reached to computes kE for a single 
sample

• Top-level predicEon algorithm calls P
– These algorithms differ by how they 

compute samples upon which to call P
• Monte Carlo algorithm (MC) takes as 

input
– Ini:al state-parameter es:mate
– Probability distribu:ons for the 

surrogate variables for the parameter, 
input, and process noise trajectories

– Number of samples, N
• MC samples from its input 

distribuEons, and computes kE
• The “construct” funcEons describe 

how to construct a trajectory given 
trajectory parameters
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Ba)ery Prognos1cs
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Electrochemistry Ba?ery Modeling
• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources
– Equilibrium potential àNernst equation with Redlich-

Kister expansion
– Concentration overpotential à split electrodes into 

surface and bulk control volumes
– Surface overpotential à

Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances
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Ba?ery Model Valida'on

Nominal 2A Discharge Curve“Open-Circuit” Discharge Curve

Rover Ba=ery Discharge Curve

Model matches well for open-circuit, 
nominal discharge, and variable-load 
discharges on the rover.
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Ba?ery Aging
• Contribu9ons from both decrease in mobile 

Li ions (lost due to side reac9ons related to 
aging) and increase in internal resistance
– Modeled with decrease in “qmax” parameter, 

used to compute mole fracEon
– Modeled with increase in “Ro” parameter 

capturing lumped resistances

Simulated
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Edge 540-T
• Subscale electric 

aircra; operated 
at NASA Langley 
Research Center

• Powered by four 
sets of Li-
polymer 
baBeries

• EsDmate SOC 
online and 
provide EOD and 
remaining flight 
Dme predicDons 
for ground-based 
pilots
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Results: Edge
• Use UKF for state es,ma,on with electrochemistry model
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Example plot of measured and predicted
battery current (top) and voltage
(bottom) shown at three sample times
over a trial battery discharge run

Predicted remaining flying time 
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Results: Edge
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Two-minute alarms for additional runs done a 
year later using revised battery capacity 
parameters. 

SOC estimation error from 10 additional 
verification runs in 2015 (36 runs that 
each use 4 batteries) 



12/07/2012 18

NDE Analysis and Prognos1cs
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NDE/SHM of Composites
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(a) Coupon specimen, SMART Layers loca=on, and diagnos=c path from 
actuator 5 to sensor 8. (b) Development of matrix cracks and 
delamina=on leading to fa=gue failure. (c) Growth in delamina=on area 
in X-ray images.

*Data extracted from Stanford SACL's fa5gue tests on dog-bone CFRP 
specimens.
Thanks to Prof. Fu-Kuo Chang, Dr. Cecilia Larrosa.

*Data extracted from Michigan State University NDE 
Lab's fa5gue tests on notched GFRP specimens.
Thanks to Prof. Yiming Deng, Prof. Mahmoodul Haq and 
Prof. Lalita Udpa.

Optical Transmission Imaging

Guided Wave SensingGuided Wave Sensing

X-ray Imaging

a) Isola=ng the first S0 mode by windowing the sensed signal. (b) Change in 
Power Spectral Density curves with increasing matrix crack density

Change in TOF 
with increasing 
delamina=on.
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Damage growth prediction in composites
• Inves9gate simple (yet robust) damage accumula9on models for fiber-

reinforced polymers that can be adopted in model-based prognos9cs.

• Applica9on of Bayesian filtering to fa9gue damage progression
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Zhang's model for a parIally-
delaminated cross-ply laminate

SERR and growth rates

State-space formulaIon

Posterior esImaIon of the damage growth against load cycles; matrix 
crack density (a), delaminaIon (b) and normalized sIffness (c)

RUL PredicIon
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Conclusions
• Focus on model-based approaches for 

system state es8ma8on and predic8on
• Hybrid approaches
• Validate models and algorithms with data 

from lab experiments and fielded systems
• Future work involves
– Thermal models
– Higher fidelity models
– More efficient algorithms
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