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Overview

Ames Research Center

* Goals
— Understand system behavior through dynamic models

— Develop model-based algorithms for state estimation, end of
discharge (EOD) prediction, and end of life (EOL) prediction

— Validate algorithms in the lab and fielded applications
e Algorithms

— Dynamic state and parameter estimation

— Uncertainty Representation

— Prognostics
 Models

— Electric circuit equivalent (for EOD prediction)

— Electrochemistry-based model (for EOD and EOL prediction)
e Laboratory capabilities and fielded systems

— MACCOR battery tester, environmental test chamber

— Planetary rover testbed

— Subscale electric aircraft (Edge 540)

— UAVs vehicles and testbed



Prognostics Architecture
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System gets input and produces output
Estimation module estimates the states and parameters, given system inputs and
outputs
— Must handle sensor noise
— Must handle process noise
For some event £, e.g., end-of-discharge or end-of-life, prediction module predicts &z
— Must handle state-parameter uncertainty at kp
— Must handle future process noise trajectories
— Must handle future input trajectories
— A diagnosis module can inform the prognostics what model to use

In model-based approaches, require a dynamic model of the battery



State Estimation @

 What is the current system state and its e
associated uncertainty?
— Input: system outputs y from k, to &, y(k,:k)
— Output: p(x(k),0(k)|y(ko:k))

 Most of the models are nonlinear e.g battery, so

require nonlinear state estimator (e.g., extended
Kalman filter, particle filter, unscented Kalman

filter)
* Use unscented Kalman filter (UKF)
— Straightforward to implement and tune performance

— Computationally efficient (number of samples linear in
size of state space)



Unscented Kalman Filter
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* The UKF is an approximate nonlinear filter, and assumes additive,
Gaussian process and sensor noise
 Handles nonlinearity by using the concept of sigma points
— Transform mean and covariance of state into set of samples, called
sigma points, selected deterministically to preserve mean and
covariance
— Sigma points are transformed through the nonlinear function and
recover mean and covariance of transformed sigma points

A B A B _ : 1 =0
X X w' = (na 71L K)
P, Unscented P, et r) i=1,..., 2n,
transform 1
l X, = 0
Y T X = 5<+< (71.,‘+H)P,,,,.) da=1,.... Ny
X ” N g \i—( (71_1.+H)PA,.A,.) d=n.+1,..., 2N,

Symmetric Unscented Transform

*  Number of sigma points is linear in the size of the state dimension



Prediction @

* Whatis k; and what is its uncertainty?
— Input: p(x(k), 0(k)|y(ky:k))
— Output: p(kg)

* Most algorithms operate by simulating
samples forward in time until £

e Algorithms must account for several sources
of uncertainty besides that in the initial state

— A representation of that uncertainty is required
for the selected prediction algorithm

— A specific description of that uncertainty is
required (e.g., mean, variance)

Ames Research Center



Uncertainty Quantification
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Uncertainty Representation @
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* To predict k, need to account for following
sources of uncertainty:

— Initial state at kp: x(k,)

— Parameter values for kp to kz: @4,
— Inputs for kp to kz: Uy,

— Process noise for kp to k;: Vi,

* Trajectories represented indirectly through
parameterized equations describing the
trajectories, where probability distributions for
the parameters are specified

— Sample these parameter variables to sample a
trajectory

— For example, constant power trajectory represented
through u(k) = ¢, for all k&>kp, where c is random




Prediction Algorithm
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The P function takes.an initial state, Algorithm 1 iz (kp) < P(x(kp). ©rp. Urp. Vin)
and a parameter, an input, and a -

process noise trajectory - x(k) « x(kp
— Simulates state forward using f until £ is while Tz (x(k), Ok, (k). Uk (k) = 0 do
reached to computes k. for a single X(k+1) < f(k,x(k), Okp (k), Ukp (F), Viep (k)

AR o > s

k+—Fk+1
sample _ x(k) — x(k +1)
Top-level prediction algorithm calls P end while
keg(kp) «+ k

— These algorithms differ by how they
compute samples upon which to call P
Monte Carlo algorithm (MC) takes as
input
— Initial state-parameter estimate

— Probability distributions for the
surrogate variables for the parameter,
input, and process noise trajectories

— Number of samples, N
MC samples from its input
distributions, and computes &
The “construct” functions describe

how to construct a trajectory given
trajectory parameters

Algorithm 2 {9 - = MC(p(x(kp).O(kp)|y(ko:kp)).
])(Af))’P(’\U)’p()‘v)’*‘?\T)
fori =1to N do
o (xW(kp),09(kp)) ~ p(x(kp), 8(kp)|y(ko:kp))

I:
2

(3
3 Ay e p(Xo) .
4 G)SI)D < constructC—)()\g), 0% (kp))
5 A ~ P(Aw)
6: UE;F), - constructU()\Sf))
7 AW ~ P(Av)
8 V,(;P)) — constructV()\Sf))
90: ki + p(xP(kp),©) U V)
0:

10: end for




Battery Prognostics




Electrochemistry Battery Modeling @
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* Lumped-parameter, ordinary differential equations

e Capture voltage contributions from different sources

— Equilibrium potential > Nernst equation with Redlich-
Kister expansion

— Concentration overpotential = split electrodes into
surface and bulk control vc

— Surface overpotential 2>
Butler-Volmer equation
applied at surface layers vo}

— Ohmic overpotential =
Constant lumped resistanc
accounting for current
collector resistances,
electrolyte resistance,
solid-phase ohmic resistancc.

-¢s(0,1)
"d)s(L7 t)

Li,CoO, Separator Li,C

+ Current Collector - Current Collector
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Battery Model Validation
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Model matches well for open-circuit,
nominal discharge, and variable-load
discharges on the rover.
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Battery Aging

Contributions from both decrease in mobile
Li ions (lost due to side reactions related to

aging) and increase in internal resistance

— Modeled with decrease in “g"*” parameter,
used to compute mole fraction

— Modeled with increase in “R,” parameter

capturing lumped resistances
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Edge 540-T

Subscale electric
aircraft operated

at NASA Langley
Research Center

Powered by four
sets of Li-
polymer
batteries

Estimate SOC
online and
provide EOD and
remaining flight
time predictions
for ground-based
pilots

Powertrain

Ames Research Center
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Results: Edge

* Use UKF for state estimation with electrochemistry model
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Example plot of measured and predicted
battery current (top) and voltage
(bottom) shown at three sample times
over a trial battery discharge run
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Verification Run Number

Results: Edge
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Two-minute alarms for additional runs done a

year later using revised battery capacity
parameters.

SOC Estimation Error (%)
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NDE Analysis and Prognostics




NDE/SHM of Composites

. Ames Research Center
X-ray Imaging

Fgue Reference specimen Optical Transmission Imaging

Failure = —

# cycles  OTS images of an open-holed GFRP coupon under fatigue loading # cycles
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*Data extracted from Stanford SACL's fatigue tests on dog-bone CFRP *Data extracted from Michigan State University NDE
specimens. Lab's fatigue tests on notched GFRP specimens.

Thanks to Prof. Fu-Kuo Chang, Dr. Cecilia Larrosa. Thanks to Prof. Yiming Deng, Prof. Mahmoodul Haq and

Prof. Lalita Udpa. 19



Damage growth prediction in composite
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* |nvestigate simple (yet robust) damage accumulation models for fiber-
reinforced polymers that can be adopted in model-based prognostics.

SERR and growth rates
dDy dD
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e Application of Bayesian filtering to fatigue damage progression
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Conclusions @
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* Focus on model-based approaches for
system state estimation and prediction

* Hybrid approaches

* Validate models and algorithms with data
from lab experiments and fielded systems

e Future work involves
— Thermal models
— Higher fidelity models
— More efficient algorithms
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