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ABSTRACT 

In an engineering note published in the Journal of Aircraft in the year 2000, Thomas A. Zeiler made 
generally known that some of the early works on aeroelastic flutter by Theodore Theodorsen and I.E. 
Garrick (NACA Report Nos. 496, 685, and 741) contained numerical errors in some of their numerical 
examples.  Some of the plots containing numerical errors were later reproduced in two classic 
aeroelasticity texts (BAH and BA).  Because these foundational papers and texts are often used in 
graduate courses on aeroelasticity, Zeiler recommended that an effort be undertaken to employ the 
computational resources available today (digital computers) to recompute the example problems in 
these early works and to publish the results to provide a complete and error-free set of numerical 
examples.  This paper presents recomputed theoretical results contained in NACA Report No. 685 (NACA 
685), “Mechanism of Flutter, A Theoretical and Experimental Investigation of the Flutter Problem,” by 
Theodore Theodorsen and I.E. Garrick.  The recomputations were performed employing the solution 
method described in NACA 685, but using modern computational tools.  With some exceptions, the 
magnitudes and trends of the original results were in good-to-excellent agreement with the recomputed 
results, a surprising but gratifying result considering that the NACA 685 results were computed “by 
hand” using pencil, paper, slide rules, and mechanical calculators called comptometers.  Checks on the 
recomputations (about 25% were checked) were performed using the so-called 𝑝𝑝-method of flutter 
solution.  In all cases, including those where the original and recomputed results differed significantly, 
the checks were in excellent agreement with the recomputed results. 
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I.  INTRODUCTION 

In a year 2000 engineering note, Zeiler (ref. 1) pointed out that several of the foundational papers and 
texts in aeroelastic flutter (refs. 2-6) contain numerical errors in some of their example problems.  It is 
not surprising that such errors exist because – especially in the cases of references 2, 3, and 4, written in 
the 1930s and 40s – all calculations were performed “by hand” using pencil, paper, slide rules, and 
mechanical calculators called comptometers.  References 2, 3, and 4 are Theodore Theodorsen’s and I.E. 
Garrick’s groundbreaking “trilogy” of NACA technical reports on aeroelastic flutter.  Years after the 
publication of this trilogy, two classic aeroelasticity texts (refs. 5 and 6) reproduced some of the 
erroneous figures from reference 3.  Because these foundational papers and texts are often used in 
graduate courses on aeroelasticity, Zeiler recommended that an effort be undertaken to employ the 
computing resources available today to recompute the numerical examples and to publish the results so 
as to provide a complete and error-free set of results. 

The present paper is the second of three planned papers by the present author that follows Zeiler’s 
recommendation.  It contains recomputations of all the numerical examples predicting flutter in 
reference 3 – NACA Report No. 685, “Mechanism of Flutter, A Theoretical and Experimental 
Investigation of the Flutter Problem,” by Theodorsen and Garrick (referred to hereinafter simply as 
“NACA 685”).  The first paper (ref. 7) performed recomputations of all the numerical examples in 
reference 2; the third paper will do the same for reference 4. 

Zeiler stated in his engineering note:  “One does not set about lightly to correct the masters …”  
Embracing this notion, the recomputations contained herein have been carefully checked and rechecked 
and then checked again using an independent flutter solution method (the 𝑝𝑝-method, ref. 8).  In all 
cases, including those where the original and present recomputed results differed significantly, the 
independent results were in excellent agreement with the recomputed results, giving confidence in the 
recomputed results. 

The remainder of this paper is arranged in major sections (many of which contain subsections and sub-
subsections) as follows:     
     Section II presents nomenclature;     
     Section III presents an overview of NACA 685; 
     Section IV describes the implementation of the NACA 685 solution method; 
     Section V describes the numerical checks of the recomputed results; 
     Section VI describes the manner of comparing the original and recomputed results; 
     Section VII contains the recomputations and comparisons of results for the figures in NACA 685; 
     Section VIII contains the recomputations and comparisons of results for the graphs in NACA 685; 
     Section IX describes a recurring difference between the original and recomputed results; 
     Section X contains concluding remarks; 
     Appendix A presents brief descriptions of Theodorsen’s and Garrick’s trilogy of papers on flutter; 
     Appendix B presents comparisons of Zeiler’s recomputations with present recomputations. 

 



 

 5 

II.  NOMENCLATURE 

The symbols in this list are either identical to or consistent with the symbols used in NACA 685. 

𝐴𝐴𝑖𝑖𝑖𝑖  ij-th coefficient in the equations of motion, complex 
𝑎𝑎 nondimensional distance from midchord to e.a., positive aft 
𝑏𝑏 semichord, ft 
𝐶𝐶ℎ stiffness in wing deflection, per unit length 
𝐶𝐶𝛼𝛼 torsional stiffness of wing about e.a., per unit length 
𝐶𝐶𝛽𝛽 torsional stiffness of aileron about hinge, per unit length 
𝑐𝑐 nondimensional distance from midchord to aileron hinge, positive aft 
𝑒𝑒 base of natural logarithms 
𝑔𝑔ℎ structural damping coefficient for deflection mode 
𝑔𝑔𝛼𝛼 structural damping coefficient for torsion mode 
𝑔𝑔𝛽𝛽 structural damping coefficient for aileron deflection mode 
ℎ vertical deflection degree of freedom, positive down 
ℎ0 infinitesimal amplitude of ℎ, positive down 
𝑖𝑖 square root of −1 
𝐼𝐼𝑖𝑖𝑖𝑖 imaginary part of 𝐴𝐴𝑖𝑖𝑖𝑖  
𝑘𝑘 reduced frequency, 𝜔𝜔𝑏𝑏/𝑣𝑣 
𝑘𝑘𝑓𝑓 flutter reduced frequency, 𝜔𝜔𝑓𝑓𝑏𝑏/𝑣𝑣𝑓𝑓 
𝑀𝑀 mass of wing per unit length, slugs per foot 
𝑅𝑅𝑖𝑖𝑖𝑖  real part of 𝐴𝐴𝑖𝑖𝑖𝑖  
𝑟𝑟𝑟𝑟 nondimensional reference length  
𝑟𝑟𝛼𝛼 nondimensional radius of gyration of wing-aileron about e.a. 
𝑟𝑟𝛽𝛽 nondimensional radius of gyration of aileron about aileron hinge 
𝑇𝑇𝑖𝑖 constants from integration of velocity potentials 
𝑣𝑣 velocity, fps 
𝑣𝑣𝑓𝑓 flutter velocity, fps 

𝑋𝑋 nondimensional quantity resulting from normalizing equations of motion, 1
𝜅𝜅
�𝑏𝑏𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟

𝑣𝑣𝑣𝑣
�
2

 

𝑥𝑥𝛼𝛼 nondimensional distance from e.a. to c.g. of wing-aileron, positive aft 
𝑥𝑥𝛽𝛽 nondimensional distance from aileron hinge to c.g. of aileron, positive aft 
𝛼𝛼 torsion degree of freedom, positive leading edge up 
𝛼𝛼0 infinitesimal amplitude of 𝛼𝛼, positive leading edge up 
𝛽𝛽 aileron deflection degree of freedom, positive trailing edge down with respect to wing 
𝛽𝛽0 infinitesimal amplitude of 𝛽𝛽, positive trailing edge down with respect to wing 

𝜅𝜅 mass ratio, 𝜋𝜋𝜋𝜋𝑏𝑏
2

𝑀𝑀
 

𝜌𝜌 mass of air per unit volume, slugs per cubic foot 
𝜉𝜉 modal-coupling factor 
𝜑𝜑0 phase angle of 𝛼𝛼 with respect to an unspecified reference, radians 
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𝜑𝜑1 phase angle of 𝛽𝛽 with respect to an unspecified reference, radians 
𝜑𝜑2 phase angle of ℎ with respect to an unspecified reference, radians 
𝜔𝜔 circular frequency, rps 
𝜔𝜔𝑓𝑓 flutter frequency, rps 
𝜔𝜔ℎ natural frequency of wing-deflection mode, rps 
𝜔𝜔𝑟𝑟 reference frequency, rps 
𝜔𝜔𝛼𝛼 natural frequency of wing-torsion mode, rps 
𝜔𝜔𝛽𝛽 natural frequency of aileron-deflection mode, rps 

𝛺𝛺ℎ square of nondimensional frequency ratio, � 𝜔𝜔ℎ
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 

𝛺𝛺𝛼𝛼 square of nondimensional frequency ratio, �𝜔𝜔𝛼𝛼𝑟𝑟𝛼𝛼
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 

𝛺𝛺𝛽𝛽 square of nondimensional frequency ratio, �𝜔𝜔𝛽𝛽𝑟𝑟𝛽𝛽
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 

Abbreviations: 
c.g. center of gravity 
e.a. elastic axis 
fps feet per second 
NACA National Advisory Committee for Aeronautics 
rps radians per second 
2DOF two degrees of freedom 
3DOF three degrees of freedom 

Dots over symbols denote derivatives with respect to time. 

Some of the quantities in the nomenclature list and their positive senses are illustrated in the following 
sketch, taken from NACA 685: 
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III.  OVERVIEW OF NACA REPORT NO. 685 

The first sentence of the Summary in NACA 685 states “The results of the basic flutter theory originally 
devised in 1934 and published as NACA Technical Report No. 496 are presented in a simpler and more 
complete form for further studies.”  “Simpler” is addressed in the Solution Method subsection of this 
section of the paper.  “More complete” includes:  (1) the addition of structural damping and a modal 
coupling factor to the equations of motion, thereby incorporating additional physics into the equations 
that more realistically represents a three dimensional wing; (2) an extensive set of parameter variations 
in its example problems for flutter involving two degrees of freedom; (3) example problems for flutter 
involving three degrees of freedom; (4) the inclusion of many more experimental results, including 
flutter and ground tests; and (5) discussions on airplane flutter and air damping of forced vibrations. 

The five subsections that follow address the theoretical development, the solution method, comments 
by the present author on the solution method, the tables contained in NACA 685, and the figures and 
graphs contained in NACA 685.  Because the theoretical development in NACA 685 is so similar to that in 
reference 2, portions of the subsection immediately below are very similar to a comparable section in 
reference 7. 

 

NACA 685 Theoretical Development 

The equations of motion used in NACA 685 are those from reference 2 for a typical section with degrees 
of freedom in torsion (α), aileron deflection (β), and vertical deflection (sometimes referred to as 
flexure) (ℎ).  These equations are three second-order differential equations in the three unknowns α, β, 
and ℎ, and their first and second time derivatives.  They are comprised of aerodynamic, inertia, and 
restraining terms.   

 

Equations (A), (B), and (C) are reproduced from reference 2.  Equation (A) defines the sum of the 
moments about the elastic axis; equation (B), the sum of the moments about the aileron hinge; and 
equation (C), the sum of the forces on the entire “wing” in the vertical direction.  Unsteady circulatory 
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aerodynamics are present in the equations in the form of Theodorsen’s circulation function, 𝐶𝐶(𝑘𝑘), a 
complex function of reduced frequency, 𝑘𝑘, comprised of Bessel functions of the first and second kind. 

NACA 685 takes these equations and then adds to each structural damping, 𝑔𝑔, and, for the two-degrees-
of-freedom subsets of these equations, adds a modal coupling factor, 𝜉𝜉.  These additions will be 
addressed below. 

Assumed forms of the unknowns α, β, and 𝒉𝒉. – The assumed form of the unknowns in equations (A), 
(B), and (C) is sinusoidal: 

𝛼𝛼 =  𝛼𝛼0𝑒𝑒
𝑖𝑖(𝑣𝑣𝑣𝑣𝑏𝑏𝑡𝑡+𝜑𝜑0) 

𝛽𝛽 =  𝛽𝛽0𝑒𝑒
𝑖𝑖(𝑣𝑣𝑣𝑣𝑏𝑏𝑡𝑡+𝜑𝜑1) 

ℎ =  ℎ0𝑒𝑒
𝑖𝑖(𝑣𝑣𝑣𝑣𝑏𝑏𝑡𝑡+𝜑𝜑2) 

where α0, β0, and h0 are the (infinitesimal) amplitudes of α, β, and ℎ, and 𝜑𝜑0,𝜑𝜑1 and 𝜑𝜑2 are phase 
angles with respect to an unspecified reference.  The first and second time derivatives of α, β, and ℎ are: 

�̇�𝛼 = 𝑖𝑖𝑘𝑘 𝑣𝑣
𝑏𝑏
𝛼𝛼  and  �̈�𝛼 =  −�𝑘𝑘 𝑣𝑣

𝑏𝑏
�
2
𝛼𝛼 

�̇�𝛽 = 𝑖𝑖𝑘𝑘 𝑣𝑣
𝑏𝑏
𝛽𝛽  and  �̈�𝛽 =  −�𝑘𝑘 𝑣𝑣

𝑏𝑏
�
2
𝛽𝛽 

ℎ̇ = 𝑖𝑖𝑘𝑘 𝑣𝑣
𝑏𝑏
ℎ  and  ℎ̈ =  −�𝑘𝑘 𝑣𝑣

𝑏𝑏
�
2
ℎ. 

Substitution of assumed forms into, and normalization of, equations. – Making the substitutions of 
equations (1a) through (1c) and their time derivatives into equations (A) through (C) transforms the 
latter equations from three simultaneous differential equations into three simultaneous algebraic 
equations with complex coefficients.  The algebraic equations are then normalized by the quantity 

𝜅𝜅 �𝑣𝑣
𝑏𝑏
𝑘𝑘�

2
, resulting in the equations taking the form 

  
(𝐴𝐴𝑎𝑎𝛼𝛼 + Ω𝛼𝛼𝑋𝑋)𝛼𝛼 + 𝐴𝐴𝑎𝑎𝛽𝛽𝛽𝛽 + 𝐴𝐴𝑎𝑎ℎℎ  =   0 

𝐴𝐴𝑏𝑏𝛼𝛼𝛼𝛼 +  (𝐴𝐴𝑏𝑏𝛽𝛽 +  Ω𝛽𝛽𝑋𝑋)𝛽𝛽 + 𝐴𝐴𝑏𝑏ℎℎ  =   0 

𝐴𝐴𝑐𝑐𝛼𝛼𝛼𝛼 +  𝐴𝐴𝑐𝑐𝛽𝛽𝛽𝛽 +  (𝐴𝐴𝑐𝑐ℎ +  Ωℎ𝑋𝑋)ℎ  =   0. 

The quantity 𝐴𝐴aα and all other similar quantities contain both aerodynamic and structural contributions.  
They are complex functions of reduced frequency, with real parts 𝑅𝑅aα (and all similar real parts) and 
imaginary parts 𝐼𝐼aα (and all similar imaginary parts).   

The physical parameters of the problem (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝜅𝜅, 𝑥𝑥𝛼𝛼, 𝑟𝑟𝛼𝛼, 𝑥𝑥𝛽𝛽, 𝑟𝑟𝛽𝛽 , 𝜔𝜔𝛼𝛼, 𝜔𝜔𝛽𝛽, and 𝜔𝜔ℎ) reside in the 𝐴𝐴𝑖𝑖𝑖𝑖  and 
Ω𝑖𝑖𝑋𝑋 terms.   

(1a) 

(1b) 

(1c) 

(2a) 

(2b) 

(2c) 
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Products 𝛀𝛀𝜶𝜶𝑿𝑿,  𝛀𝛀𝜷𝜷𝑿𝑿, and 𝛀𝛀𝒉𝒉𝑿𝑿. – In equations (2a), (2b), and (2c) the products Ω𝛼𝛼𝑋𝑋,  Ω𝛽𝛽𝑋𝑋, and Ωℎ𝑋𝑋 are 

real.  They are derived from quantities  𝐶𝐶𝛼𝛼
𝑀𝑀𝑏𝑏2

 (from eqn. (A)),  
𝐶𝐶𝛽𝛽
𝑀𝑀𝑏𝑏2

 (from eqn. (B)), and  𝐶𝐶ℎ
𝑀𝑀𝑏𝑏

 (from eqn. (C)), 

respectively.  Via the substitution and rearrangement of terms and the use of cancelling expressions in 
the numerator and denominator, from reference 2, these products are 

𝛺𝛺𝛼𝛼𝑋𝑋 =  
𝐶𝐶𝛼𝛼

𝑘𝑘2𝑀𝑀𝑣𝑣2𝜅𝜅
=  �

𝜔𝜔𝛼𝛼𝑟𝑟𝛼𝛼
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2 1
𝜅𝜅
�
𝑏𝑏𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟
𝑣𝑣𝑘𝑘

�
2

 

Ω𝛽𝛽𝑋𝑋 =  
𝐶𝐶𝛽𝛽

𝑘𝑘2𝑀𝑀𝑣𝑣2𝜅𝜅
=  �

𝜔𝜔𝛽𝛽𝑟𝑟𝛽𝛽
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2 1
𝜅𝜅
�
𝑏𝑏𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟
𝑣𝑣𝑘𝑘

�
2

 

Ωℎ𝑋𝑋 =  
𝐶𝐶ℎ𝑏𝑏2

𝑘𝑘2𝑀𝑀𝑣𝑣2𝜅𝜅
=  �

𝜔𝜔ℎ

𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟
�
2 1
𝜅𝜅
�
𝑏𝑏𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟
𝑣𝑣𝑘𝑘

�
2

 

 where, to the right of the second equal sign in each equation, 𝑋𝑋 comprises the two right-most terms 

𝑋𝑋 =  
1
𝜅𝜅
�
𝑏𝑏𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟
𝑣𝑣𝑘𝑘

�
2

. 

The respective Ω𝑖𝑖, the remaining terms, are 

Ω𝛼𝛼 =  �
𝜔𝜔𝛼𝛼𝑟𝑟𝛼𝛼
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 

Ω𝛽𝛽 =  �
𝜔𝜔𝛽𝛽𝑟𝑟𝛽𝛽
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 

Ωℎ =  � 𝜔𝜔ℎ
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

�
2

. 

The quantities 𝜔𝜔𝑟𝑟 and 𝑟𝑟𝑟𝑟 are a reference frequency and a reference length, which may be conveniently 
chosen.   

Referring back to the normalization that produced equations (2a) through (2c), a critically important 
result is that the quantity 𝑋𝑋 has been conveniently isolated from the other terms in these equations and 
it is the only quantity in these equations that contains the velocity.  Therefore, solving these equations 
for 𝑋𝑋 determines the flutter velocity, 𝑣𝑣𝑓𝑓.  As will be seen later, 𝑋𝑋 is a clever artifice created by 
Theodorsen.  At times, 𝑋𝑋 is treated not as the known quantity defined in equation (4), but rather as a 
parameter; at other times, 𝑋𝑋 is treated as a known quantity. 

Addition of structural damping, 𝒈𝒈, to the equations of motion. – NACA 685 employs structural damping 
as “… a force in phase with the velocity but of a magnitude proportional to the restoring force.”  It 
identifies the restoring forces as the stiffness terms multiplied by their respective displacements (𝐶𝐶𝛼𝛼𝛼𝛼, 
𝐶𝐶𝛽𝛽𝛽𝛽, and 𝐶𝐶ℎℎ) in equations (A), (B), and (C).   
 

(3a) 

(4) 

(5a) 

(5b) 

(5c) 

(3c) 

(3b) 
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The stiffness terms 𝐶𝐶𝛼𝛼, 𝐶𝐶𝛽𝛽, and 𝐶𝐶ℎ are also seen to reside in equations 3(a), 3(b), and 3(c).  Thus, to 
incorporate the structural damping forces into the equations of motion merely requires that factors 
(1 + 𝑖𝑖𝑔𝑔𝛼𝛼), (1 + 𝑖𝑖𝑔𝑔𝛽𝛽), and (1 + 𝑖𝑖𝑔𝑔ℎ) multiply terms 𝐶𝐶𝛼𝛼, 𝐶𝐶𝛽𝛽, and 𝐶𝐶ℎ, respectively.  Within the 
parentheses, the “1” denotes the stiffness terms already present in the equations and the “+𝑖𝑖𝑔𝑔” 
denotes the added structural damping terms.  When these factors are included, the following modified 
form of the equations of motion results 
 

(𝐴𝐴𝑎𝑎𝛼𝛼 +  Ω𝛼𝛼(1 + 𝑖𝑖𝑔𝑔𝛼𝛼)𝑋𝑋)𝛼𝛼 +  𝐴𝐴𝑎𝑎𝛽𝛽𝛽𝛽 + 𝐴𝐴𝑎𝑎ℎℎ  =   0 

𝐴𝐴𝑏𝑏𝛼𝛼𝛼𝛼 +  (𝐴𝐴𝑏𝑏𝛽𝛽 +  Ω𝛽𝛽(1 + 𝑖𝑖𝑔𝑔𝛽𝛽)𝑋𝑋)𝛽𝛽 +  𝐴𝐴𝑏𝑏ℎℎ  =   0 

𝐴𝐴𝑐𝑐𝛼𝛼𝛼𝛼 +  𝐴𝐴𝑐𝑐𝛽𝛽𝛽𝛽 +  (𝐴𝐴𝑐𝑐ℎ +  Ωℎ (1 + 𝑖𝑖𝑔𝑔ℎ)𝑋𝑋)ℎ  =   0. 

Modal coupling factor, 𝝃𝝃, added to the two-degrees-of-freedom form of the equations of motion. – 
NACA 685 devotes much of its content to examining flutter solutions for the three two-degrees-of-
freedom (2DOF) subsets available from the three-degrees-of-freedom (3DOF) equations of motion:  
flexure-torsion, involving ℎ and 𝛼𝛼 (referred to in NACA 685 as Case 1); aileron-flexure, involving 𝛽𝛽 and ℎ 
(Case 2); and torsion-aileron, involving 𝛼𝛼 and 𝛽𝛽 (Case 3).   

To the 2DOF subsets, NACA 685 introduces what it calls a “coupling factor,” 𝜉𝜉.  (To more accurately 
describe its function the present author prefers the term “modal coupling factor.”)   The modal coupling 
factor is intended to approximate, for a typical section (a two-dimensional entity), the effects of three-
dimensional geometries present on real wings.  The modal coupling factor represents the condition  
“… in which only a part of the total length of the (infinitely long) wing is given the second degree of 
freedom.”  An obvious application of the modal coupling factor is an aileron that is not full span.  (In 
fact, in ref. 4, the third paper of the trilogy, Theodorsen and Garrick change terminology and refer to 𝜉𝜉 
as the “aileron coefficient.”)   

In NACA 685, the modal coupling factor appears as a multiplier on the upper-right off-diagonal term of 
the 2DOF equations of motion, as shown in the following example using the torsion-aileron equations 

(𝐴𝐴𝑎𝑎𝛼𝛼 +  Ω𝛼𝛼(1 + 𝑖𝑖𝑔𝑔𝛼𝛼) 𝑋𝑋)𝛼𝛼 + 𝜉𝜉𝐴𝐴𝑎𝑎𝛽𝛽𝛽𝛽  =   0 

𝐴𝐴𝑏𝑏𝛼𝛼𝛼𝛼 +  (𝐴𝐴𝑏𝑏𝛽𝛽 + Ω𝛽𝛽 (1 + 𝑖𝑖𝑔𝑔𝛽𝛽)𝑋𝑋)𝛽𝛽  =   0 

where equations (7a) and (7b) correspond to equations (6a) and (6c), respectively, but without degree 
of freedom ℎ and its associated coefficients.  Equivalently, the modal coupling factor could have 
appeared instead as a multiplier on the lower-left off-diagonal term.  The modal coupling factor takes on 
values from zero (no coupling) to one (full coupling). 

It should be emphasized that, through their respective off-diagonal terms, modal coupling is naturally 
present in equations (2a), (2b), and (2c), equations (6a), (6b), and (6c), and equations (7a) and (7b).  The 
modal coupling factor is a “manufactured” empirical quantity whose function is to attenuate the modal 

(6c) 

(6b) 

(6a) 

(7b) 

(7a) 
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coupling naturally present.  In NACA 685, the authors employ the modal coupling factor in the 2DOF 
equations only, but there is nothing to preclude its use in the 3DOF equations. 

 

NACA 685 Solution Method 

In reference 2, two solution methods are presented:  one for solving the three-degrees-of-freedom 
(3DOF) flutter equations (never actually implemented in ref. 2); and another for solving the two-
degrees-of-freedom (2DOF) flutter equations.  The former is more straightforward, but requires the 
solution of a cubic equation; the latter is more clever and ingenious, but is complicated and 
cumbersome to implement.   

NACA 685 employs the 3DOF solution method of reference 2 for solving both the 3DOF and 2DOF flutter 
equations.  It is this solution method that the authors of NACA 685 refer to in the Summary of NACA 685 
when they say “… the basic flutter theory [is] … simpler …” than the one implemented in reference 2.  
Indeed it is. 

For the 3DOF flutter equations, the solution of equations (6a), (6b), and (6c) is obtained when their 
determinant is zero 

�
𝐴𝐴𝑎𝑎𝛼𝛼 +  Ω𝛼𝛼(1 + 𝑖𝑖𝑔𝑔𝛼𝛼) 𝑋𝑋 𝐴𝐴𝑎𝑎𝛽𝛽 𝐴𝐴𝑎𝑎ℎ

𝐴𝐴𝑏𝑏𝛼𝛼 𝐴𝐴𝑏𝑏𝛽𝛽 +  Ω𝛽𝛽(1 + 𝑖𝑖𝑔𝑔𝛽𝛽) 𝑋𝑋 𝐴𝐴𝑏𝑏ℎ
𝐴𝐴𝑐𝑐𝛼𝛼 𝐴𝐴𝑐𝑐𝛽𝛽 𝐴𝐴𝑐𝑐ℎ +  Ωℎ (1 + 𝑖𝑖𝑔𝑔ℎ)𝑋𝑋

� = 0. 

Expanding the determinant in equation (8) yields a complex cubic equation in 𝑋𝑋. 

Rather than solving this complex cubic equation directly, NACA 685 offers the computational shortcut of 
creating two equations, each equal to zero and each with real coefficients, by separating the real and 
imaginary parts of the original equation.  The “real” equation is comprised of the real parts of the 
expansion of equation (8); the “imaginary” equation is comprised of the imaginary parts.  Because of the 
presence of structural damping, both the real and imaginary equations are cubic in 𝑋𝑋.  If structural 
damping is not present, the real equation is still cubic but the imaginary equation becomes quadratic. 

For the 2DOF flutter equations, using equations (7a) and (7b) (without 𝜉𝜉) as the example, the solution is 
obtained when their determinant is zero 

�
𝐴𝐴𝑎𝑎𝛼𝛼 +  Ω𝛼𝛼(1 + 𝑖𝑖𝑔𝑔𝛼𝛼) 𝑋𝑋 𝐴𝐴𝑎𝑎𝛽𝛽

𝐴𝐴𝑏𝑏𝛼𝛼 𝐴𝐴𝑏𝑏𝛽𝛽 +  Ω𝛽𝛽 (1 + 𝑖𝑖𝑔𝑔𝛽𝛽)𝑋𝑋� = 0. 

Expanding the determinant in equation (9) yields a complex quadratic equation in 𝑋𝑋. 

At this point, as with the 3DOF equations, a similar separation of the real and imaginary parts occurs 
resulting in real and imaginary equations that are quadratic in 𝑋𝑋.  If structural damping is not present, 
the real equation is still quadratic but the imaginary equation becomes linear. 

(8) 

(9) 
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The NACA 685 solution method is a straightforward four-step process aimed at finding the flutter 
velocity, 𝑣𝑣𝑓𝑓, and the flutter reduced frequency, 𝑘𝑘𝑓𝑓, that simultaneously solve both the real and 
imaginary equations, and therefore, also solves the original equation with complex coefficients: 

Step 1:  Solve real and imaginary equations for 𝑿𝑿. – The artifice of treating 𝑋𝑋 as a parameter, rather 
than as a known quantity, is employed.  The real and imaginary equations are each solved for 𝑋𝑋 for 
many values of the inverse of reduced frequency, 1/𝑘𝑘.  The roots of each equation are plotted on the 
same set of axes as functions of 1/𝑘𝑘, with each equation producing the same number of loci as the order 
of the respective equation.  (These loci are not what are commonly referred to as classical root loci.)   
Each point of each real locus is a solution of the real equation; each point of each imaginary locus is a 
solution of the imaginary equation.  (Later, in the present paper, plots of this form are referred to as 
“raw form” illustrations of the NACA 685 solution method.) 

Step 2:  Identify intersections of real and imaginary loci. – Intersections of any of the real loci with any 
of the imaginary loci are simultaneous solutions of both equations, and therefore, are also solutions of 
the original equation with complex coefficients, thus supplying pairs of values, 𝑋𝑋 and 1/𝑘𝑘, that satisfy 
the original equation.  However, these pairs of 𝑋𝑋 and 1/𝑘𝑘 are not necessarily flutter solutions.  Because, 
𝑋𝑋 is proportional to the inverse square of velocity (eqn. (4)), only those intersections of the loci involving 
real positive values of 𝑋𝑋 (and therefore real – not complex or imaginary – velocities) are flutter 
solutions.  These intersections will be termed “proper intersections” and the corresponding pairs of 𝑋𝑋 
and 1/𝑘𝑘 will be termed “proper pairs.”  After proper intersections and pairs have been determined, the 
artifice of treating 𝑋𝑋 as a parameter is abandoned.  (The term “proper” in this context is an invention of 
the present author and is not found in NACA 685.) 

Step 3:  Identify flutter reduced frequency. – From each proper pair, its flutter reduced frequency, 𝑘𝑘𝑓𝑓, is 
determined from the inverse of 1/𝑘𝑘. 

Step 4:  Identify flutter velocity. – From each proper pair, its flutter velocity is determined by 
rearranging equation (4) and solving for velocity  

𝑣𝑣𝑓𝑓 = 1
√𝜅𝜅

𝑏𝑏𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟
𝑣𝑣𝑓𝑓

1
√𝑋𝑋

 . 

The value of 𝑘𝑘𝑓𝑓 from Step 3, its corresponding value of 𝑋𝑋, and the problem-specific quantities 𝜅𝜅, 𝑏𝑏, 𝑟𝑟𝑟𝑟, 
and 𝜔𝜔𝑟𝑟 are substituted into equation (10), yielding the flutter velocity.  Multiple proper intersections 
and pairs produce multiple flutter solutions. 

 

Comments on NACA 685 Solution Method 

This subsection of the paper offers some comments by the present author on the solution method of 
NACA 685.  

(10) 
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Use of the inverse of the reduced frequency. – As stated in Step 1, above, the solution method sweeps 
on the inverse of the reduced frequency, 1/𝑘𝑘, rather than on the reduced frequency itself.  One can 
imagine a modification of this solution method that would sweep not on the inverse of the reduced 
frequency, but on the reduced frequency.  This modified solution method would produce the same 
results.  But, at proper intersections, it would have the benefit of indicating directly the flutter reduced 
frequency by avoiding the necessity of inverting the inverse of the reduced frequency, as is currently 
done in Step 3.  Theodorsen and Garrick offered no explanation in reference 3 regarding why they chose 
the inverse of the reduced frequency as their independent variable.  In addition, their solution methods 
in references 2 and 4 also sweep on 1/𝑘𝑘, also without explanation; and in figure 4 of reference 2, 𝐹𝐹 and 
𝐺𝐺, the real and imaginary parts of the Theodorsen circulation function, are plotted as functions of 1/𝑘𝑘.  
So, clearly, they preferred the inverse of the reduced frequency over the reduced frequency. 

No knowledge of subcritical damping. – Modern flutter solution methods predict the subcritical 
damping of the flutter mode (and all other modes) as the flutter velocity is approached.  The 𝑝𝑝-method 
produces a velocity root locus plot from which damping ratios at subcritical velocities are easily found.  
The 𝑘𝑘 and 𝑝𝑝-𝑘𝑘 methods produce directly plots of structural damping as functions of velocity.  However, 
the NACA 685 solution method predicts only the flutter condition with no knowledge of subcritical 
damping as the flutter velocity is approached. 

Repeated roots in the solution of real and imaginary equations. – Recall that, depending on the 
number of degrees of freedom and the presence or absence of structural damping, the real equation 
may be either cubic or quadratic in 𝑋𝑋 and the imaginary equation may be cubic, quadratic, or linear in 𝑋𝑋.  
For cubic or quadratic equations (either real or imaginary), repeated roots are possible, which means 
that in the plotting of the loci (either real or imaginary) as a function of 1/𝑘𝑘, two of the real loci or two 
of the imaginary loci may approach each other and meet at a point representing the repeated root.  This 
condition will be seen to occur in some of the original and recomputed results. 

In a particular numerical example, if a repeated root does exist, to numerically “capture” it requires that 
the equations be solved at the exact value of 1/𝑘𝑘 that produces the repeated root.   In the present 
implementation of the NACA 685 solution method (discussed below), values of 1/𝑘𝑘 are chosen in an 
automated manner, making it extremely unlikely that such an exact value of 1/𝑘𝑘 would be found.  In 
sweeping through 1/𝑘𝑘, it would therefore be extremely likely that that exact value of 1/𝑘𝑘 would be 
skipped over, meaning that, when plotted, the two loci that would approach each other and otherwise 
meet at the repeated root, would instead approach each other but then stop short of actually meeting.  
This will be seen to be the case for some of the recomputed results. 

 

Tables in NACA 685  

NACA 685 contains several tables at the back of the report, some identified with Arabic numerals, others 
with Roman numerals.   

NACA 685 Tables identified with Arabic numerals. – NACA 685 Tables 1, 2, 3, and 4 contain a variety of 
precomputed quantities intended to aid the reader of NACA 685 in solving numerical examples.   
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NACA 685 Table 1 lists the real and the negative of the imaginary parts of the Theodorsen circulation 
function, 𝐹𝐹 and −𝐺𝐺, and quantities −2𝐺𝐺/𝑘𝑘 and 2𝐹𝐹/𝑘𝑘2 for 30 values of 1/𝑘𝑘 between zero and infinity. 

NACA 685 Table 2 contains values of the various 𝑇𝑇𝑖𝑖, the constants obtained from the integration of 
velocity potentials, for 13 values of 𝑐𝑐, the nondimensional distance from midchord to aileron hinge.   

NACA 685 Table 3 contains values of the real and imaginary parts of 𝐴𝐴𝑎𝑎𝛼𝛼 for seven values of 𝑎𝑎, the 
nondimensional distance from midchord to the elastic axis, and for 26 values of 1/𝑘𝑘 between zero and 
20.   

NACA 685 Table 4 contains values of the real and imaginary parts of 𝐴𝐴𝑏𝑏𝛽𝛽 for 11 of the 13 values of 𝑐𝑐 
contained in Table 2 and for 23 values of 1/𝑘𝑘 between zero and 10.   

The following table shows the values of 1/𝑘𝑘 contained in Tables 1, 3, and 4 of NACA 685:   

Table 1 Table 3 Table 4 
0 0 0 
0.1 0.1 0.1 
0.16667 0.16667 0.16667 
0.25 0.25 0.25 
0.33333 0.33333 0.33333 
0.5 0.5 0.5 
0.66667 0.66667 0.66667 
0.83333 0.83333 0.83333 
1 1 1 
1.25 1.25 1.25 
1.51516 1.51516 1.51516 
1.66667 1.66667 1.66667 
1.78572 1.78572 1.78572 
2 2 2 
2.27273 2.27273 2.27273 
2.5 2.5 2.5 
2.94118 2.94118 2.94118 
3.33333 3.33333 3.33333 
4.16667 4.16667 4.16667 
5 5 5 
6.25 6.25 6.25 
8.33333 8.33333 8.33333 
10 10 10 
12.5 12.5  

16.66667 16.66667  

20 20  

25   

40   

100   

∞   

 

These values of 1/𝑘𝑘 will be referred to as Theodorsen’s and Garrick’s tabular values of 1/𝑘𝑘.  No 
explanation is given in NACA 685 regarding why its Tables 1, 3, and 4 contain different numbers of 
reduced frequencies.  
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NACA 685 Tables identified with Roman numerals. – NACA 685 Tables I and IA contain information 
pertinent to the experimental flutter investigations reported in NACA 685.  Each table contains wind-
tunnel model physical dimensions, including structural frequencies, wind-tunnel test conditions, flutter 
velocities and frequencies, and remarks. 

 

Figures and Graphs in NACA 685  

NACA 685 contains “figures” and “graphs.”  Eleven of the 39 figures in NACA 685 illustrate flutter 
solutions and are of interest herein; the remainder of the figures address other things.  These eleven 
figures may contain either 2DOF or 3DOF examples.  There are three graphs in NACA 685, all of which 
illustrate 2DOF flutter solutions.  All graphs contain multiple parts, with each part containing at least one 
parametric variation. 

As stated elsewhere in the present paper, the calculations required to produce the original figures and 
graphs were performed “by hand” with pencil, paper, slide rules, and comptometers.  By their nature, 
these calculations were intricate, multistepped, and very time consuming.  To produce a single flutter 
prediction would have taken hours of careful calculating and precise hand plotting.  The figures and 
graphs in NACA 685 contain hundreds of flutter predictions produced in this way. 

With one exception (part (a) of Graph I-B), the original results in NACA 685 are presented as continuous 
curves, not discrete points.  To produce these continuous curves, first, discrete points were obtained 
and plotted, and second, the curves were constructed by fairing through the points.  The authors of 
NACA 685 never say how many discrete points they employed in their curves, and, after almost eight 
decades since the publication of NACA 685, it is unlikely that that particular detail will ever be known. 

 

IV.  IMPLEMENTATION OF NACA 685 SOLUTION METHOD 

The implementation of the four-step NACA 685 solution method was accomplished by the present 
author via the writing and execution of m-files in Matlab®.  Recomputations were performed using these 
m-files.  The real and imaginary equations were solved for 𝑋𝑋 using the Matlab® “roots” function over a 
range of the inverse of reduced frequency.  Proper intersections were identified using a linear 
interpolation scheme.  Typically, the lower value of 1/𝑘𝑘 was 0.01, the upper value was 100, and the 
distribution was logarithmic.  The total number of values varied depending on the nature of the real and 
imaginary loci, but, for the case of 1000 values of 1/𝑘𝑘 over a range of four orders of magnitude, 
successive values of 1/𝑘𝑘 were 1.0093 times larger than the previous value and each decade within the 
distribution contained 250 values of 1/𝑘𝑘. 

 

Advantage of the Present Implementation over the Original Implementation 

The original implementation of the NACA 685 solution method was performed “by hand,” while the 
present implementation was performed on a desktop computer.  At the “cost” of a few seconds of 
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computation time, the present implementation can produce hundreds of solutions at very fine 
increments in the inverse of reduced frequency, assuring accurate identifications of 1/𝑘𝑘 and √𝑋𝑋 at 
proper intersections.  Because it was performed by hand, the original implementation was restricted to 
as few reduced frequencies as the authors of NACA 685 determined to be practical to identify 1/𝑘𝑘 and 
√𝑋𝑋.  As will be seen in Section VII of the present paper, below, this restriction, dictated by practicality, 
sometimes resulted in small absolute differences between the original and recomputed values of 1/𝑘𝑘 at 
proper intersections, which could produce large percentage differences in values of 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓. 

 

Complication in the Present Implementation 

All original figures and graphs in NACA 685 contain at least one result for which either all structural 
damping coefficients (𝑔𝑔𝛼𝛼, 𝑔𝑔𝛽𝛽, and 𝑔𝑔ℎ) are zero and/or a natural frequency ratio (meaning, necessarily, 
that one of 𝛺𝛺𝛼𝛼, 𝛺𝛺𝛽𝛽, or 𝛺𝛺ℎ) is zero.  In the present implementation of the NACA 685 solution method, 
either of these conditions caused the “roots” function to crash and, as a consequence, the solution 
method failed to produce a solution.  This difficulty was easily circumvented by employing an 
approximation:  substituting small non-zero values in place of the offending quantities (zeros).   

The difficulty and circumvention are best understood by taking as an example the 3DOF flutter problem, 
where the real and imaginary equations are cubic.  In these equations, the coefficients of 𝑋𝑋3 are –  

– for the real equation:  𝛺𝛺𝛼𝛼𝛺𝛺𝛽𝛽𝛺𝛺ℎ�1 − 𝑔𝑔𝛼𝛼𝑔𝑔𝛽𝛽 − 𝑔𝑔𝛽𝛽𝑔𝑔ℎ − 𝑔𝑔ℎ𝑔𝑔𝛼𝛼� 

– for the imaginary equation:  𝛺𝛺𝛼𝛼𝛺𝛺𝛽𝛽𝛺𝛺ℎ�𝑔𝑔𝛼𝛼 + 𝑔𝑔𝛽𝛽 + 𝑔𝑔ℎ − 𝑔𝑔𝛼𝛼𝑔𝑔𝛽𝛽𝑔𝑔ℎ�. 

For the condition of zero structural damping coefficients, the 𝑋𝑋3 coefficient in the imaginary equation is 
zero; for the condition of a zero frequency ratio, the 𝑋𝑋3 coefficient in both equations is zero.  If the 
coefficient of the highest-order term is zero, the “roots” function crashes.   

So that the solution method would yield a solution, structural damping coefficients of zero were 
approximated by the value 1x10−8; and a natural frequency ratio of zero was approximated by the 
value 0.001.  Both of these approximations produced nonzero values of the coefficients of 𝑋𝑋3 in the real 
and imaginary equations and prevented the “roots” function from crashing. 

 

V.  NUMERICAL CHECKS OF RECOMPUTED RESULTS 

Recomputed numerical results (flutter velocities and flutter reduced frequencies) were spot-checked 
using an independent flutter solution method – the 𝑝𝑝-method of flutter solution (ref. 8).  The 𝑝𝑝-method 
was written and coded in Matlab® by the present author following the formulation outlined in Appendix 
B of reference 9.   

The present implementation of the 𝑝𝑝-method employs the following fourth-order-over-fourth-order 
approximation of Theodorsen’s circulation function  
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𝐶𝐶(𝑘𝑘) ≈
0.5(𝑖𝑖𝑘𝑘)4 + 0.703(𝑖𝑖𝑘𝑘)3 + 0.2393(𝑖𝑖𝑘𝑘)2 + 0.01894(𝑖𝑖𝑘𝑘) + 0.0002318

(𝑖𝑖𝑘𝑘)4 + 1.158(𝑖𝑖𝑘𝑘)3 + 0.3052(𝑖𝑖𝑘𝑘)2 + 0.02028(𝑖𝑖𝑘𝑘) + 0.0002325
 

identified in reference 10 as the “balanced truncation” approximation.  This approximation is excellent.  
Over the range of reduced frequency 0.001 < 𝑘𝑘 < 10, it approximates the complex modulus of 𝐶𝐶(𝑘𝑘) to 
within 0.3 percent and approximates the phase angle of 𝐶𝐶(𝑘𝑘) to within 0.25 degrees. 

[A brief aside regarding the approximation expressed in equation (11):  One would reasonably expect 
the ratio of the coefficients of the (𝑖𝑖𝑘𝑘)4 terms in the numerator and denominator to be one-half so that 
the value of the approximation as 𝑘𝑘 → ∞ would exactly match the value of Theodorsen’s circulation 
function as 𝑘𝑘 → ∞.  This is the case.  One would also reasonably expect the ratio of the constant terms 
in the numerator and denominator to be unity so that the value of the approximation at 𝑘𝑘 = 0 would 
exactly match the value of Theodorsen’s circulation function at 𝑘𝑘 = 0.  This is not the case; the ratio of 
the coefficients in the approximation is 0.997.  There is no reason offered in reference 10 regarding why 
this ratio is not unity.] 

An advantage of the 𝑝𝑝-method is that it produces a classical root locus in the Laplace domain.  In 
circumstances where the NACA 685 solution method produced multiple flutter conditions (i.e., multiple 
proper intersections) the 𝑝𝑝-method was ideal for determining the nature of those flutter conditions – 
for example, whether there were two separate flutter modes, each of which went unstable and 
remained unstable with increasing velocity, or whether the intersections corresponded to a “hump 
mode” that went unstable at one velocity but then restabilized at a higher velocity.  (As will be seen 
later in this paper, the solution method of NACA 685 does correctly identify both conditions – 
destabilizing and restabilizing – that define a hump mode.)  

Generally, one out of every three or four recomputed results was checked using the 𝑝𝑝-method.  In 
almost all instances, the spot-checked answers (flutter velocity and flutter reduced frequency) were 
within 0.5 percent of the corresponding answers recomputed by the NACA 685 solution method (no 
difference exceeded 2 percent), giving confidence that the recomputed results presented herein are 
correct. 

 

VI.  MANNER OF COMPARISON OF ORIGINAL AND RECOMPUTED RESULTS 

This section of the paper addresses the manner in which the original and recomputed results are 
compared with each other. 

 

Presentation of Original and Recomputed Results 

The eleven figures and three graphs of interest have been electronically scanned and are included in the 
present paper, retaining their original figure and graph numbers from NACA 685.  Recomputed results 
have been superimposed on these originals.  Keys have been added to each figure and graph. 

(11) 
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To distinguish between the original and recomputed results –   

– for figures 1 through 7, the original results are black curves and the recomputed results are 
blue and red curves; 

– for figures 8, 17, 19, and 26, the original results are black curves and the recomputed results 
are colored symbols; 

– for the graphs, the original results are black curves overlaid with color bands specific to a 
particular value of a physical constant and the recomputed results are symbols in 
corresponding colors. 
 

Assessment of Agreement Between Original and Recomputed Results 

Although precise numerical values of the recomputed results (1/𝑘𝑘 and √𝑋𝑋 at proper intersections and 
the resulting 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓) were available, those of the original results generally were not available.  The 
original results were generally available in plot form only.  Therefore, a quantitative assessment of the 
agreement between the original and recomputed results in the form of percentage differences was 
generally not possible.  In the absence of a quantitative assessment of agreement, criteria were devised 
for a qualitative assessment of agreement.  Table 1 contains these criteria.   

Table 1 is applied in the following ways – 

– for figures 1 through 7, because the recomputed results are presented as curves, the center 
column in Table 1 is not employed; 

– for the remaining figures and the graphs, the entirety of Table 1 is employed. 

However, some amount of discretion and awareness is required in using Table 1.  The figures and graphs 
that contain symbols representing the recomputed results have many different scales on their 
respective axes.  Therefore, the diameter of a symbol in one figure or graph generally represents a 
different fraction of the maximum value on the ordinate of that graph than that of another symbol in 
another figure or graph.  For this reason, the qualifiers (excellent, good, fair, poor) are generally not 
consistent from one figure or graph to another.  However, it is felt that within a given figure or graph the 
criteria in Table 1 provide a convenient and appropriate means of discussing that particular comparison. 

 

VII.  RECOMPUTATION AND COMPARISON OF RESULTS CONTAINED IN FIGURES OF NACA 685 

NACA 685 states that the physical constants pertaining to the examples presented in the figures 
correspond to “a large modern airplane.”  With a few exceptions, the figures share the following set of 
physical constants: 

𝑎𝑎 = −0.4; 𝑏𝑏 = 6; 𝑐𝑐 = 0.6; 𝜅𝜅 = 0.25; 𝑥𝑥𝛼𝛼 = 0.2; 𝑟𝑟𝛼𝛼2 = 0.25; 𝑥𝑥𝛽𝛽 = 0; 𝑟𝑟𝛽𝛽2 = 0.0012; 

𝜔𝜔𝛼𝛼 = 90; �𝜔𝜔ℎ
𝜔𝜔𝛼𝛼
�
2

= 1
16

 (from which 𝜔𝜔ℎ = 22.5); �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

= 3
2
 (from which 𝜔𝜔𝛽𝛽 = 27.557); 

𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔𝛽𝛽 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1. 
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Table 2 contains a complete listing of all physical constants for all figures.  Blank entrees in a row 
correspond to a particular physical constant not being required for that particular Case. 

 

Raw Form Illustrations of the NACA 685 Solution Method 

Figures 1 through 7 illustrate the NACA 685 solution method in its raw form, that is, with the loci of the 
solutions of the real and imaginary equations.  In these figures, the ordinate is the square root of 𝑋𝑋 and 
the abscissa is the inverse of reduced frequency, 1/𝑘𝑘.  Only positive values of √𝑋𝑋 are shown, meaning 
that all intersections in these figures are proper intersections, and therefore, represent flutter solutions.  
Figures 1, 4, 5, 6, and 7 contain proper intersections. 

For the NACA 685 original results, the real loci are identified with the letter R and the imaginary loci are 
identified with the letter I.  For recomputed results, these loci are presented as blue and red curves, 
respectively.   

Because there is no structural damping present for any of the examples in these figures, for the 2DOF 
flutter problems (that is, for Cases 1, 2, and 3), the real and imaginary equations are quadratic and 
linear, respectively, resulting in two loci and one locus, respectively.  For the 3DOF flutter problems, the 
equations are cubic and quadratic, respectively, resulting in three and two loci, respectively. 

Original figures 1 through 7 contain small open circles on some of the loci.  In figures 1 through 4, these 
circles have two meanings: (1) indicating the (positive) values of √𝑋𝑋 for the real and imaginary loci at the 
value of 1/𝑘𝑘 of unity; and (2) indicating the proper intersection of a real locus with an imaginary locus.  
In figures 5, 6, and 7, they indicate proper intersections only. 

In the following discussions of figures 1 through 7, it is important and revealing to compare the overall 
shapes of the original and recomputed real and imaginary loci.  However, because they determine the 
flutter velocity, 𝑣𝑣𝑓𝑓, and flutter reduced frequency, 𝑘𝑘𝑓𝑓, it is even more important to compare the original 
and recomputed proper intersections.   

For those figures that contain proper intersections (figs. 1, 4, 5, 6, and 7), Table 3 contains comparisons 
of the original and recomputed quantities 1/𝑘𝑘, √𝑋𝑋, 𝑣𝑣𝑓𝑓, and 𝑘𝑘𝑓𝑓, as well as calculations of percentage 
differences for each quantity. 

For the original results in figures 1 and 4, values of 1/𝑘𝑘 and √𝑋𝑋 at proper intersections and the 
corresponding value of 𝑣𝑣𝑓𝑓 are given in the NACA 685 text; the corresponding value of 𝑘𝑘𝑓𝑓 is available 
from the inverse of 1/𝑘𝑘 at the proper intersection.  For the original results in figures 5, 6, and 7, values 
of 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓 were obtained by the present author by reading the values of 1/𝑘𝑘 and √𝑋𝑋 at proper 
intersections in the original figures and then employing equation (10).  For all recomputed results, 
values of 1/𝑘𝑘, √𝑋𝑋, 𝑣𝑣𝑓𝑓, and 𝑘𝑘𝑓𝑓 are directly available as outputs of the solution method. 

Figure 1. – Figure 1 contains raw form results for Case 1, and thus, has two real loci and one imaginary 
locus.  Figure 1 has a single proper intersection, producing a single flutter mode.  The two original real 
loci approach each other and meet at a point, indicating a repeated root.  The recomputed real loci 
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approach each other but do not actually meet at a point for the reason stated in the “Comments on 
Solution Method” subsection of Section III.  Except for the real loci at values of 1/𝑘𝑘 higher than about 
3.3, the agreement between all original and recomputed loci is excellent, including the agreement of the 
respective proper intersections. 

The proper intersection from the recomputed results corresponds to a flutter velocity 𝑣𝑣𝑓𝑓 = 834.2 feet 
per second and a flutter reduced frequency 𝑘𝑘𝑓𝑓 = 0.407.  The original flutter velocity and flutter reduced 

frequency, obtained by employing equation (10) with the values of √𝑋𝑋 and 1/𝑘𝑘 at the proper 
intersection given in the NACA 685 text, are nearly identical, as seen in the row of Table 3 corresponding 
to figure 1. 

Figure 2. – Figure 2 contains raw form results for Case 2 and also has two real loci and one imaginary 
locus.  In this case, there is no proper intersection, so there is no flutter indicated over this range of 1/𝑘𝑘.  
The agreement between all original and recomputed loci is excellent.  It can be seen that the authors of 
NACA 685 stopped performing calculations at values of 1/𝑘𝑘 higher than about 2.25, a reasonable step 
considering that all calculations were performed by hand and that, with increasing values of 1/𝑘𝑘, the 
real and imaginary loci were seen to be diverging from each other.  

Figure 3. – Figure 3 contains raw form results for Case 3 and again has two real loci and one imaginary 
locus.  Again, there is no proper intersection, so there is no flutter indicated over this range of 1/𝑘𝑘.  The 
agreement between the original and recomputed real loci is excellent.  However, for values of 1/𝑘𝑘 
above about 0.5, there is a growing difference between the original and recomputed imaginary loci, 
until, at the highest value of 1/𝑘𝑘 for which original calculations were made, the difference is about 25 
percent.  This pattern of excellent agreement for the real loci and poor agreement for the imaginary 
locus will be seen again later in this paper for other Case 3 examples. 

Figure 4. – Figure 4 contains raw form results for the 3 DOF flutter problem, and thus, has three real loci 
and two imaginary loci, clearly seen.  Figure 4 has a single proper intersection at a value of 1/𝑘𝑘 near 0.8, 
producing a single flutter mode.  (In the lower-left corner of the figure, at values of 1/𝑘𝑘 near zero and 
values of √𝑋𝑋 near one, although the scale and resolution of the plot are not fine enough to distinguish it, 
the real and imaginary loci in that vicinity, both original and recomputed, do not intersect; each 
imaginary locus begins above its respective real locus and remains above with increasing values of 1/𝑘𝑘.)  
The original calculations extend to values of 1/𝑘𝑘 of two; recomputed calculations extend to values of 
1/𝑘𝑘 of four, with corresponding extensions (in faint gray) of the original grid.  The extension of the 
recomputed results to higher values of 1/𝑘𝑘 shows that the top two real loci are approaching each other 
and that one of the imaginary loci has “reappeared” at a value of 1/𝑘𝑘 of about 2.9.  

Over the range of 1/𝑘𝑘 from zero to two, the agreement between the original and recomputed loci 
appears to be excellent.  At a cursory inspection, the agreement between the original and recomputed 
proper intersections also appears to be excellent, which would necessarily mean that the agreement 
between corresponding flutter velocities and flutter reduced frequencies would also be excellent.  
However, at closer inspection, this is not the case.  As seen in the row of Table 3 corresponding to figure 
4, at the proper intersection, although the original and recomputed values of √𝑋𝑋 are almost identical, 
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the corresponding values of 1/𝑘𝑘 differ by more than 17 percent, not apparent due to the scale and 
resolution of the plot.  

Equation (10) reveals that flutter velocity is inversely proportional to the product of 𝑘𝑘𝑓𝑓 and √𝑋𝑋 at the 

proper intersection, which explains why, for a very small percentage difference in √𝑋𝑋, the percentage 
difference between the original and recomputed values of 𝑣𝑣𝑓𝑓 is on the same order as the percentage 
difference for 1/𝑘𝑘.  (The percentage difference for 𝑘𝑘𝑓𝑓 is identical to the percentage difference for 1/𝑘𝑘.)  

Figure 5. – Figure 5 contains four examples for Case 2:  one example for each combination of the two 

parameters, �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

and 𝑥𝑥𝛽𝛽, with two values each.  Figure 5(b) corresponds to figure 2, but with a 

different vertical scale.  All parts of the figure appear to show excellent agreement between the original 
and recomputed results for the real loci.  Figure 5(b) also shows excellent agreement between the 
original and recomputed results for the imaginary locus.  The original and recomputed results for the 
imaginary locus for parts (a), (c), and (d) show the same trends with increasing values of 1/𝑘𝑘, but with 
varying amounts of difference between the two.   

Parts (a), (b), and (d) contain no intersections of loci, so there is no flutter indicated over their respective 
ranges of 1/𝑘𝑘.  Part (c) contains two intersections, indicating two flutter conditions, in this instance, a 
hump mode.  Knowledge that these two intersections together form a hump mode was gained from the 
check performed using the 𝑝𝑝-method.   

As was the case for figure 4, cursory inspection of the overall good agreement between the original and 
recomputed real and imaginary loci in figure 5(c) suggests that there would also be good agreement 
between the respective proper intersections.  This is the case for the second proper intersection (the 
one at the higher value of 1/𝑘𝑘, corresponding to the hump-mode restabilizing condition), but it is far 
from the case for the first proper intersection (at the lower value of 1/𝑘𝑘, the destabilizing condition).   

Table 3 reveals that, at the first proper intersection, the values of √𝑋𝑋 are identical, but that the values of 
1/𝑘𝑘 differ by over 150 percent, which results in comparably large percentage differences in 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓.  
(It is a coincidence that the recomputed value of  𝑣𝑣𝑓𝑓 is close to Theodorsen’s and Garrick’s value of 𝑘𝑘𝑓𝑓, 
and vice versa.)  This large percentage difference between values of 1/𝑘𝑘 is not apparent because of the 
scale of the horizontal axis in figure 5(c) and the resolution of the loci.  At the second proper 
intersection, the values of √𝑋𝑋 are again identical, but the values of 1/𝑘𝑘 differ by less than two and a half 
percent, resulting in comparable percentage differences in 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓.  

Figure 6. – Figure 6 contains four examples for Case 3:  one example for each combination of the two 

parameters, �𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
�
2

and 𝑥𝑥𝛽𝛽, with two values each.  (In figure 6, the value 3
32

 for �𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
�
2

 produces the same 

value of 𝜔𝜔𝛽𝛽 as does the value 3
2
 for �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

 in figure 5.)  Figure 6(b) corresponds to figure 3, but with a 

different vertical scale.   



 

 22 

All parts of the figure show excellent agreement between the original and recomputed real loci.  With 
increasing values of 1/𝑘𝑘, all parts of the figure show increasing differences between the original and 
recomputed imaginary loci.  Because of the amount of checking and rechecking of the equations and the 
Matlab® code for Case 3 (all successful), the present author believes that these differences are due to 
errors made by the authors of NACA 685.  Additional evidence supporting this belief appears in the 
discussion of Graph III-B, later in this paper. 

Parts (a) and (b) contain no intersections of loci, so there is no flutter indicated over their ranges of 1/𝑘𝑘.  
Parts (c) and (d) each contain a pair of intersections, indicating hump-mode flutter for each part (again, 
confirmed by the 𝑝𝑝-method).  In parts (c) and (d), the first intersection (at lower 1/𝑘𝑘) corresponds to the 
velocity and reduced frequency of instability; the second intersection (at higher 1/𝑘𝑘) corresponds to the 
velocity and reduced frequency of regained stability. 

In examining the rows of Table 3 corresponding to figures 6(c) and 6(d), one sees that, for each of the 
four proper intersections, the percentage differences between the original and recomputed values of 
1/𝑘𝑘 are all significantly larger than the corresponding percentage differences between the original and 
recomputed values of √𝑋𝑋.  In addition, the percentage differences between the original and 
recomputed values of 1/𝑘𝑘 at the two destabilizing conditions (at lower 1/𝑘𝑘) are each larger than their 
corresponding differences at the two restabilizing conditions (at higher 1/𝑘𝑘).  And finally, the 
percentage differences between the original and recomputed values of √𝑋𝑋 at the restabilizing 
conditions are larger than the corresponding differences at the destabilizing conditions because of the 
increasing differences between the original and recomputed imaginary loci with increasing values of 
1/𝑘𝑘. 

In terms of a physical interpretation of the results in figure 6, for parts (a) and (b), the quantity 𝑥𝑥𝛽𝛽 is 
zero, corresponding to the aileron center of gravity colocated with the aileron hinge; for parts (c) and 
(d), quantity 𝑥𝑥𝛽𝛽 is 0.0066, corresponding to the aileron center of gravity located aft of the hinge.  
Because parts (a) and (b) are flutter free and parts (c) and (d) are characterized by hump-mode flutter, 
for this particular “large modern airplane” aileron, mass balancing is required to avoid flutter. 

Figure 7. – Figure 7 contains four examples for the 3DOF flutter problem:  one example for each 

combination of the two parameters, �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

and 𝑥𝑥𝛽𝛽, with two values each.  (The four pairs of parameters 

in figure 7 correspond to the same values of 𝜔𝜔𝛽𝛽 and 𝑥𝑥𝛽𝛽 as those in figures 5 and 6.)  Figure 7(b) 
corresponds to figure 4, but with a different vertical scale.   

All parts of the figure contain intersections of real and imaginary loci:  parts (a), (b), and (d) contain a 
single intersection each, corresponding to a single flutter mode; part (c) contains three intersections, 
corresponding to a single flutter mode and a hump mode.   

With an exception, addressed in the following paragraph, all parts of the figure show good-to-excellent 
agreement between the original and recomputed real loci and the original and recomputed imaginary 
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loci.  There are areas of the plots where small differences are apparent, but overall, the shapes of the 
original and recomputed loci match very well. 

The exception is the imaginary locus visible in the lower right corners of parts (a), (b), and (c).  The 
recomputed results show fragments of an imaginary locus in all three parts.  The original results show a 
fragment for part (c) only.  For parts (a) and (b), the explanation for the missing original imaginary loci 
could simply be the fact that calculations for the original results were terminated at a value of 1/𝑘𝑘 
before these loci would have appeared.  If the original results had continued to higher values of 1/𝑘𝑘, the 
missing loci may have appeared.  For part (c), there is a significant difference between the original and 
recomputed imaginary loci, but it is unknown why. 

As was observed in figures 4, 5 and 6, a cursory inspection of the original and recomputed loci that 
initially suggests good agreement, does not guarantee good agreement of the original and recomputed 
proper intersections.  Closer inspection is required.  This is also the case for parts (a), (b), and (d) of 
figure 7, each of which contains a single proper intersection.  The corresponding rows in Table 3 indicate 
larger percentage differences between the original and recomputed values, for both 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓, than 
might initially be assumed by cursory inspection.  At these proper intersections, the percentage 
difference between the original and recomputed values of 1/𝑘𝑘 is always larger (in one case more than 
an order of magnitude larger) than the corresponding percentage difference between the original and 
recomputed values of √𝑋𝑋. 

Figure 7(c) contains three proper intersections.  The two proper intersections in the upper left portion of 
the figure correspond to a hump mode.  The proper intersection at the lower value of the inverse of 
reduced frequency corresponds to the destabilizing condition; the one at the higher value, the 
restabilizing condition.  The appropriate rows in Table 3 reveal that, as has been seen previously, there is 
a significantly larger percentage difference between the values of 1/𝑘𝑘 at the destabilizing condition than 
there is at the restabilizing condition, causing large percentage differences in both 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓. 

The proper intersection at the bottom of the figure corresponds to a single flutter mode.  Percentage 
differences in 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓 for this single flutter mode are consistent with the percentage differences for 
the single flutter modes in parts (a), (b), and (d). 

Comparing original figure 4 and original figure 7(b). – It was stated above that figure 7(b) corresponds 
to figure 4, meaning that the same physical constants were used to produce each figure.  That tabular 
results have been given for each presents an opportunity to determine if the results in NACA 685 are 
self-consistent.  The following table collects the original results from Table 3 and compares the proper 
intersections and flutter results: 
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  Proper Intersection Flutter Condition 
  1/𝑘𝑘 √𝑋𝑋 𝑣𝑣𝑓𝑓, fps 𝑘𝑘𝑓𝑓  

Original Fig. 4 0.875 1.060 445.8 1.143 

Original Fig. 7(b) 0.852 1.121 410.7 1.173 

% Difference 2.7 5.6 8.3 2.7 

 

These results should be identical, but there are nontrivial differences.  If one assumes that the same 
original computations were used to produce the original real and imaginary loci in each figure, then the 
percentage differences in 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓 revealed in this table can be attributed to one of two causes: 

(1) inconsistencies in hand-plotting from figure to figure resulting in differences in the proper 
intersections in the two figures; 

(2) human error in reading the values of 1/𝑘𝑘 and √𝑋𝑋 in figure 4 (by the authors of NACA 685), 
human error in reading the values of 1/𝑘𝑘 and √𝑋𝑋 in figure 7(b) (by the present author), or both.   

Regardless of the reason for the differences in 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑓𝑓, that these differences exist emphasizes that 
the potential for error was always present at a time when humans performed tasks that are now 
performed routinely by computers.  These differences also offer their own justification, independent of 
Zeiler’s (ref. 1) justification, for recomputing all the example problems in NACA 685:  If the flutter 
velocities predicted by two raw-form renditions of the same problem differ by 8.3 percent, can there be 
confidence in any prediction of flutter velocity in NACA 685? 

Observations. – Table 3 summarizes the 14 flutter conditions obtained from the proper intersections in 
the raw form illustrations of the NACA 685 solution method contained in figures 1, 4, 5, 6, and 7.  This 
table reveals two related results regarding the value of 1/𝑘𝑘 at proper intersections:   

(1) In the four instances of hump modes, for both original and recomputed results, the 
value of 1/𝑘𝑘 at the destabilizing condition is always less than that at the restabilizing 
condition.  In addition, the percentage difference between the original and 
recomputed values of 1/𝑘𝑘 at the destabilizing condition is always larger than that at 
the restabilizing condition. 

(2) For both single flutter modes and hump modes, there are six instances (including 
the destabilizing condition for all hump modes) in which the value of 1/𝑘𝑘 (original 
and recomputed) is below 0.5; for these six, the average percentage difference 
between the original and recomputed values of 1/𝑘𝑘 is 61.3.  There are eight 
instances (including the destabilizing condition for all hump modes) in which the 
value of 1/𝑘𝑘 (original and recomputed) is above 0.5; for these eight, the average 
percentage difference between the original and recomputed values of 1/𝑘𝑘 is 11.4.   

For these flutter conditions, there is an approximate inverse relationship between the original 
value of 1/𝑘𝑘 at the proper intersection and the corresponding percentage difference between 
the original and recomputed values of 1/𝑘𝑘 at the proper intersection:  when one is low, the 
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other is high.  The reason for this is unknown, but perhaps Theodorsen and Garrick could have 
achieved more accurate results (and thereby lowered the percentage differences in 1/𝑘𝑘) had 
they solved their equations at more values of 1/𝑘𝑘 between zero and 0.5. 

 

Flutter Solutions for Variations in Frequency Ratio 

Figures 8, 17, 19, and 26 each contain plots representing multiple flutter solutions:  figures 8, 17, and 26 
contain plots of flutter velocity (in normalized form in fig. 8) as a function of the ratio of modal 
frequencies; figure 19 contains normalized flutter frequency as a function of the ratio of modal 
frequencies and is a companion to figure 17.  Figure 8 is for the 3DOF flutter problem; figures 17 and 19 
are for Case 1; figure 26 is for Case 2.  Figures 17, 19, and 26 also contain experimental results. 

The original results are shown as continuous curves, created by the authors of NACA 685 by fairing 
through a discrete number of points, each discrete point representing a single execution of the NACA 
685 solution method.  It is not known how many individual executions of the solution method were 
performed by the authors to produce the original continuous curves.   

Each colored symbol in these figures (that is, each recomputed result) represents a single execution of 
the solution method, with flutter velocities and flutter reduced frequencies determined from proper 
intersections.   

Figure 8. – Figure 8 corresponds to the 3DOF flutter problem.  The ordinate in figure 8 is normalized 
flutter velocity (referred to in NACA 685 as “flutter-speed coefficient”) and the abscissa is the ratio of 

frequencies, 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
.  The black curve and colored circle symbols correspond to the original and recomputed 

results, respectively.  Each colored circle symbol represents a single solution of the 3DOF flutter 
problem.  There are three points to be made about this figure. 

First, for the original and recomputed results, the overall behaviors of the normalized flutter velocity 
with increasing modal-frequency ratio are very similar, but there are noticeable differences, the largest 

occurring at 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
= 0.4, where the difference between the two results is on the order of 20%.   

Second, the asymptotic value of normalized flutter velocity, 1.54, indicated top right in the figure, 

corresponds to the frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
, becoming infinitely large.  At an infinitely large value of 

𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
, the 

3DOF flutter problem approaches the 2DOF flutter problem of Case 1 (involving ℎ and 𝛼𝛼).  Recomputed 

calculations for the 3DOF flutter problem for 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
= 1x105 (for this example, a value sufficiently large to 

be considered “infinitely large”) produced a value of normalized flutter velocity of 1.545, confirming the 
result shown in figure 8.  The corresponding recomputed value of normalized flutter velocity for the 
2DOF flutter problem is also 1.545. 

Third, the solution at 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
= 0 in figure 8 corresponds to the solution depicted in figure 7(a).  This fact 

offers another opportunity to check the self-consistency of results in NACA 685.  In figure 8, at 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
= 0, 
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the present author determined the value of 𝑣𝑣
𝑏𝑏𝜔𝜔𝛼𝛼

 to be 0.698.  Knowing, from Table 2, that the product 

𝑏𝑏𝜔𝜔𝛼𝛼  is 540, this value of 𝑣𝑣
𝑏𝑏𝜔𝜔𝛼𝛼

 corresponds to a flutter velocity of 376.9 feet per second.  As determined 

from reading the values of 1/𝑘𝑘 and √𝑋𝑋  at the proper intersection in figure 7(a), Table 3 lists the 
“original” flutter velocity as 387.5 feet per second.  Thus, there is a 2.8% difference between these two 
original values of flutter velocity. 

Figures 17 and 19. – Figures 17 and 19 are companion figures, the former presenting flutter velocity in 
miles per hour as a function of the frequency ratio 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
, the latter presenting flutter frequency normalized 

by the torsion frequency, also as a function of the frequency ratio 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

.  These figures correspond to Case 

1 (involving ℎ and 𝛼𝛼).  (Experimental data for wings 2A, 2B, 3 and 4, whose characteristics are identified 
in NACA 685, is also included in both figures.)  The agreement between the original and the recomputed 
results in both figures is excellent (as is the agreement between the original and the experimental 
results).    

Figure 26. – Figure 26 contains two examples for Case 2 (involving 𝛽𝛽 and ℎ) and illustrates the effect of 
structural damping on the flutter velocity.  The ordinate is flutter velocity in miles per hour and the 

abscissa is the modal-frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
.  The key in the center of the figure identifies which set of 

recomputed theoretical results corresponds to which set of original theoretical results:  the solid 
theoretical line and the blue circles correspond to structural damping absent from both modes (𝑔𝑔ℎ=𝑔𝑔𝛽𝛽= 
0); the dashed theoretical line and the red circles correspond to structural damping absent from the 
aileron mode (𝑔𝑔𝛽𝛽= 0), but present in the flexure mode (𝑔𝑔ℎ= 0.0125).  Also present in the figure are 
experimental results corresponding to wing 5 with aileron AII.  Experimental data are indicated by the 
cross-hatched area and open black circles. 

All flutter results in figure 26 are hump modes, characterized in this figure by two flutter velocities at the 

same value of 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
.  The lower velocity is the destabilizing velocity; the upper velocity is the restabilizing 

velocity.  Between these velocities the configuration is unstable; below and above these velocities the 
configuration is stable.   

The original and the recomputed results show fair-to-good agreement in some areas of the figure and 

excellent agreement in other areas.  In both sets of results, an increase in the value of 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
 to a large 

enough value causes the hump mode to disappear completely, and the disappearance happens more 

quickly (i.e., at lower values of 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
) for the case with structural damping than for the case without. 

The original results for both combinations of structural damping conditions miss the pronounced dips (at 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
=0.4 for the blue dots, at 

𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
= 0.8 for the red dots) that characterize recomputed results for the 

destabilizing velocities.  These misses could be attributed to the authors of NACA 685 performing 
relatively few calculations (at least fewer than the recomputed calculations), thus fairing their curves 
through the sparser number of points, and thereby missing this key variation in the quantity of interest. 
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Both the original results and the recomputed results show that the inclusion of structural damping 
reduces the respective regions of instability.  For both sets of results with structural damping present, 
across the entire range of frequency ratio, flutter onset occurs at higher velocities and regaining 
stability occurs at lower velocities. 

Observations. – In figures 8, 17, 19, and 26, with increasing values of frequency ratio, the original and 
recomputed results show the same trends and the agreement between them ranged from good to 
excellent.  The original results in figures 8 and 26 did not include knowledge of flutter reduced frequency 
and, for this reason, it was impossible to discern whether differences between original and recomputed 
flutter velocities were due to differences in 1/𝑘𝑘 at proper intersections, differences in √𝑋𝑋 at proper 
intersections, or both. 

 

VIII.  RECOMPUTATION AND COMPARISON OF RESULTS CONTAINED IN GRAPHS OF NACA 685 

The graphs contain the vast majority of the theoretical results in NACA 685 in the form of dozens of 
parametric variations.  Many graphs have multiple parts.  The recomputations for the graphs required 
on the order of 2000 individual executions of the NACA 685 solution method. 

 

Preliminaries 

The following information is intended as an aid in understanding the results (original and recomputed) 
contained in the graphs of NACA 685. 

Arrangement. – There are 16 graphs, each identified by a Roman numeral and a capital letter, 
hyphenated.  All graphs are for 2DOF flutter problems:  graphs I-A through I-G contain results solely for 
Case 1; graphs II-A through II-F, Case 2; and graphs III-A through III-C, Case 3.   

Ordinates and abscissas in graphs. – In the graphs, the authors of NACA 685 introduce Case-specific 
flutter-speed coefficients (identified as 𝑣𝑣

𝑏𝑏𝜔𝜔𝛼𝛼
 for Cases 1 and 3, and as 𝑣𝑣

𝑏𝑏𝜔𝜔ℎ
 for Case 2) that are used as the 

ordinates of all graphs except one.  The exception is graph I-F, which has as its ordinate normalized 

flutter frequency, 
𝜔𝜔𝑓𝑓

𝜔𝜔𝛼𝛼
.  The authors of NACA 685 use the ratio of natural frequencies (𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
, 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
, and 

𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
 for 

Cases 1, 2, and 3, respectively) as the abscissa for many of the graphs. 

For the remainder of this paper, the term “normalized flutter velocity” will be used instead of “flutter-
speed coefficient.”  In addition, in order not to lose sight of the fact that 𝑣𝑣

𝑏𝑏𝜔𝜔𝛼𝛼
 and 𝑣𝑣

𝑏𝑏𝜔𝜔ℎ
 refer to flutter 

conditions, in the present paper, subscript 𝑓𝑓 will be added to the velocity in these expressions, 

becoming 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

 and 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, respectively. 
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Parametric variations. – Of the physical constants required to uniquely define a given configuration  
(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝜅𝜅, 𝑥𝑥𝛼𝛼, 𝑟𝑟𝛼𝛼2, 𝑥𝑥𝛽𝛽, 𝑟𝑟𝛽𝛽2, 𝜔𝜔𝛼𝛼, 𝜔𝜔𝛽𝛽, 𝜔𝜔ℎ, 𝑔𝑔𝛼𝛼, 𝑔𝑔𝛽𝛽, 𝑔𝑔ℎ, and 𝜉𝜉), all except 𝑏𝑏 and 𝜔𝜔𝛼𝛼 are used as parameters in 
the graphs and more than half of the physical constants are used as parameters in two or more graphs.   

Elimination of some values of parameters in recomputations. – A single part of a single graph may 
contain up to six original curves, with each curve representing one value of a parameter.  Because of the 
sheer number of recomputations that would have been required to duplicate each original curve in each 
part of each graph, in some instances, not all values of the parameter were chosen for the 
recomputations.  In those instances, a representative subset of values was chosen. 

Interpretation of symbols in graphs. – Recomputed results are shown as colored symbols.  If a symbol is 
present, flutter is present.  There are some instances when, at the next increment of the independent 
variable, flutter is no longer present.  In these instances, the last symbol for which flutter is present is 
given a bold black outline to alert the reader that there is no flutter beyond that value.   

 

Graphs for Case 1 

Graphs I-A through I-G contain 2DOF examples for Case 1 (involving ℎ and 𝛼𝛼). 

Graph I-A. – Graph I-A shows the effect of increasing values of frequency ratio, 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, on normalized flutter 

velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, with 𝑥𝑥𝛼𝛼, the distance between the elastic axis and the center of gravity of the entire wing, 

as the parameter.  Recomputations were performed for a subset of values of the parameter.   

Graph I-A uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑟𝑟𝛼𝛼2 = 1
4

; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: 𝜅𝜅 = 1
20

, 1
10

, 1
5

, 1
4

, 1
3

, 1
2

;  𝑎𝑎 = −0.2,−0.3,−0.4,−0.45. 

Because of the many possible combinations of 𝜅𝜅 and 𝑎𝑎 graph I-A contains 26 parts, (a) through (u).  
Table 4 shows the arrangement of these combinations within graph I-A.  

The agreement between the original and recomputed results in graph I-A ranges from excellent in some 
places to poor in others.   

In all parts of the graph (that is, over the entire ranges of 𝜅𝜅 and 𝑎𝑎 and for all values of 𝑥𝑥𝛼𝛼), up to values 
of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 of about 0.8, there is good-to-excellent agreement between the original and recomputed results, 

including the mutual crossings of the red, blue, and green curves in parts (k) and (m) through (u).   

Above values of 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

 of about 0.8, some of the curves continue to display good-to-excellent agreement, 

but in many instances the original and recomputed results differ significantly.  One common difference 
between the original and recomputed results is illustrated by the blue results (𝑥𝑥𝛼𝛼 = 0.2) in part (l) and 
the red results (𝑥𝑥𝛼𝛼 = 0.1) in part (n):  with increasing values of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 both sets of results reach a minimum 
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and then increase, but in the vicinity of their respective minima the recomputed results display much 
steeper slopes (negative and positive) than do the original results.  Another common difference 
between the original and recomputed results is illustrated by the blue results (𝑥𝑥𝛼𝛼 = 0.2) in part (j) and 
the red results (𝑥𝑥𝛼𝛼 = 0.1) in part (l):  with increasing values of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 the original results reach a minimum 

and then increase, but (at least over the range of 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

 shown) the recomputed results continue to 

decrease.   

It should be acknowledged that in reference 1 Zeiler chose part (q) of Graph I-A (as reproduced from ref. 
6) to illustrate the differences between the original results and his results.  Appendix B of the present 
paper contains comparisons of Zeiler’s results and present recomputed results.   

Graph I-B. – Graph I-B shows the effect of increasing the distance from the midchord to the center of 

gravity of the entire wing, the sum (𝑎𝑎 + 𝑥𝑥𝛼𝛼), on normalized flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

.  Quantity 𝑎𝑎 is the 

distance from the midchord to the elastic axis and quantity 𝑥𝑥𝛼𝛼 is the distance from the elastic axis to the 
center of gravity, both measured positive aft.  Quantity 𝑎𝑎 is the parameter.  In part (b), recomputations 
were performed for a subset of values of the parameter. 

Graph I-B uses the following physical constants as –  

– discrete values: 𝜅𝜅 = 1
10

; 𝑏𝑏 = 6; 𝑟𝑟𝛼𝛼2 = 1
4

; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: �𝜔𝜔ℎ
𝜔𝜔𝛼𝛼
�
2

= 0, 1
2
 . 

The agreement between the original and recomputed results in graph I-B is good-to-excellent.  The 

square of the frequency ratio for part (a) is zero and for part (b) is 1
2
; otherwise all physical constants in 

both parts are identical.  In part (a), the results collapse approximately to a single curve, which NACA 
685 points out, “… shows clearly that the value of 𝑎𝑎 actually has no influence on the flutter speed.”  In 
part (b), it is seen that the parametric curves are spread horizontally over the extent of the plot, 
indicating the effect of 𝑎𝑎 on flutter speed.   

Graph I-C. – Graph I-C shows the effect of increasing the inverse of the mass ratio, 1
𝜅𝜅

, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, with 𝑥𝑥𝛼𝛼, the distance between the elastic axis and the center of gravity of the entire 

wing, as the parameter.  Recomputations were performed for a subset of values of the parameter.  No 
recomputations were performed for part (j). 

Graph I-C uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑟𝑟𝛼𝛼2 = 1
4

; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: �𝜔𝜔ℎ
𝜔𝜔𝛼𝛼
�
2

= 0, 1
10

, 1
2

;  𝑎𝑎 = −0.2,−0.3,−0.4. 
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The authors of NACA 685 chose as the abscissa the inverse of mass ratio, 1
𝜅𝜅

, which, according to the 

definition of 𝜅𝜅 in the Section II, is equal to 𝑀𝑀
𝜋𝜋𝜋𝜋𝑏𝑏2

.  Therefore, for a given configuration at a given air 

density, moving to the right along the abscissa corresponds to increasing wing mass, while moving to the 
left corresponds to decreasing wing mass.  So, one way to understand the results in this graph is to 
proceed along the abscissa from right to left, interpreting the various curves to reveal the effect of 
decreasing wing mass on the flutter velocity.  The discussion below interprets the curves in this way. 

In reviewing all parts of the graph, the original and recomputed results are seen to have the same trend:  
reductions in nondimensional flutter velocity (some more shallow or more steep than others), some 
with and some without an up-tick at the lowest values of mass (depending on the particular values of 

�𝜔𝜔ℎ
𝜔𝜔𝛼𝛼
�
2

and 𝑎𝑎). 

For all parts of this graph except part (g), agreement between the original and recomputed results is 
good-to-excellent.  However, in part (g), there is significant discrepancy between the original and 
recomputed results for 𝑥𝑥𝛼𝛼 = 0.   

There are five instances in the graph (𝑥𝑥𝛼𝛼 = 0 in parts (d), (e), (g), (h) and 𝑥𝑥𝛼𝛼 = 0.05 in part (g)) in which 
the recomputed results predict flutter ceasing at a higher mass than the original results do, as indicated 
by the symbols with the bold outlines. 

It should be acknowledged that, in reference 1, Zeiler chose part (h) of this graph (also reproduced from 
ref. 6, where the abscissa has been extended to a value of 100) to illustrate the differences between the 
original results and his results.  Appendix B of the present paper also contains comparisons of Zeiler’s 
results and present recomputed for this part of Graph I-C. 

Graph I-D. – Graph I-D shows the effect of increasing values of frequency ratio, 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, on normalized flutter 

velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, for various combinations of structural damping coefficients, 𝑔𝑔𝛼𝛼 and 𝑔𝑔ℎ. 

Graph I-D uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.2; 𝑏𝑏 = 6;  𝜅𝜅 = 1
10

; 𝑥𝑥𝛼𝛼 = 0.1; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝜔𝜔𝛼𝛼 = 90; 𝜉𝜉 = 1. 

Of note in the graph are the following: 

(1) The condition 𝑔𝑔ℎ = 𝑔𝑔𝛼𝛼 = 0 is present in part (a) and is repeated in parts (b) and (c).  The gray 
curves and gray solid circles represent this condition in all three parts of the graph; 

(2) The condition 𝑔𝑔ℎ = 𝑔𝑔𝛼𝛼 = 0.1 is present in part (a) and is repeated in part (b).  The blue curves 
and blue solid circles represent this condition in parts (a) and (b); 

(3) The condition 𝑔𝑔ℎ = 𝑔𝑔𝛼𝛼 = 0.2 is present in part (a) and is repeated in part (c).  The green curves 
and green solid circles represent this condition in parts (a) and (c). 
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All parts of the graph show good-to-excellent agreement between the original and recomputed results 
up to a point.  A notable difference is that in several instances the recomputed results show flutter 
terminating at various values of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 (indicated by bold outlines around various symbols) while the 

original results show flutter continuing past these values of 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, and in some instances well past.  In part 

(a), in which 𝑔𝑔𝛼𝛼 and 𝑔𝑔ℎ are assigned identical values in each parametric variation, it can be seen that at 
each value of frequency ratio increasing the value of structural damping increases the flutter velocity.  
From parts (b) and (c), it can be seen that at lower values of frequency ratio, 𝑔𝑔𝛼𝛼 alone is more effective 
than 𝑔𝑔ℎ alone in increasing the flutter velocity, but at higher values of frequency ratio the opposite is 
true. 

Graph I-E. – Graph I-E shows the effect of increasing values of frequency ratio, 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, on normalized flutter 

velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, with 𝑟𝑟𝛼𝛼2, the square of the nondimensional radius of gyration about the elastic axis, as the 

parameter. 

Graph I-E uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.2; 𝑏𝑏 = 6; 𝑥𝑥𝛼𝛼 = 0.1; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: 𝜅𝜅 = 1
20

, 1
10

, 1
5
 . 

Portions of all parts of the graph show good-to-excellent agreement between the original and 
recomputed results.  But in each portion, for frequency ratios greater than about unity, the original and 
recomputed results sometimes deviate substantially from each other.  One notable difference is that in 
part (a), for all curves except 𝑟𝑟𝛼𝛼2 = 1, the recomputed results show flutter terminating at various values 
of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 while the original results show flutter velocity increasing and continuing past these values of 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
. 

 
Graph I-F. – Graph I-F shows the effect of increasing values of frequency ratio,  𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
, on nondimensional 

flutter frequency, 
𝜔𝜔𝑓𝑓

𝜔𝜔𝛼𝛼
 , with 𝑥𝑥𝛼𝛼, the distance between the elastic axis and the center of gravity of the 

entire wing, as the parameter.  Parts (a), (b), (c), and (d) in this graph contain companion information to 
parts (j), (l), (m), and (o), respectively, of graph I-A.  Recomputations were performed for a subset of 
values of the parameter. 

Graph I-F uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: 𝜅𝜅 = 1
10

, 1
5

;  𝑎𝑎 = −0.2,−0.4. 

In all parts of the graph, the original and recomputed results follow the same trends with increasing 
values of frequency ratio, 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
, including, for the red and gray curves and symbols in part (d), displaying 

the identical inflections.  In all parts of the figure, there are areas of excellent agreement between the 
original and recomputed results:  this is true for all blue and red curves and symbols and for most gray 
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curves and symbols at  𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

= 0; this is also true for all blue and red curves and symbols for values of  𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

  

at and above 0.7; and this is again true for gray curves and symbols in parts (a), (c), and (d) for the same 
range in  𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
.  However, in all parts of the figure over the range of  𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
  between 0.1 and 0.6, the 

agreement between the original and recomputed results is only good to fair, with the most prominent 
disagreements at 𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
= 0.3. 

Graph I-G. – Graph I-G shows the effect of increasing values of frequency ratio, 𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, on normalized flutter 

velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, with the modal coupling factor, 𝜉𝜉, as the parameter. 

Graph I-G uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.2; 𝑏𝑏 = 6; 𝜅𝜅 = 1
10

; 𝑥𝑥𝛼𝛼 = 0.2; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝜔𝜔𝛼𝛼 = 90; 𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔ℎ = 0. 

For a modal coupling factor of unity, the character of the original and recomputed results is the same, 
with excellent agreement up to a value of frequency ratio of about 1.0, but with increasing 
disagreement as frequency ratio increased beyond 1.0.  At the highest frequency ratio, the difference is 
about 30%.  

For modal coupling factors less than unity, the characters of the original and recomputed results agree 
very well in some areas but differ significantly in other areas.  The recomputed results show hump 
modes over their entire respective ranges of frequency ratio.  The original results show hump modes for 
only the higher portions of their respective ranges of frequency ratio.   

For modal coupling factors less than unity, the portions of the original and recomputed results 
corresponding to the destabilizing velocities of the recomputed hump modes show excellent agreement 
up to frequency ratios of 0.7 (for 𝜉𝜉 = ⅜), 0.8 (for 𝜉𝜉 = ½), and 1.1 (for 𝜉𝜉 = ¾).  Beyond those values of 
frequency ratio, the agreement between the original and recomputed results breaks down.  It is not 
known why the original results miss the full extents of their hump modes.   

Observations. – The graphs for Case 1 contain multiple parametric variations.  The original and 
recomputed results generally show the same trends with increases or decreases in the value of the 
parameter.  The single exception to this is in Graph I-G where the characteristics of the original and 
recomputed hump modes are drastically different.  In those graphs whose abscissa is the frequency ratio 
𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

, the agreement between the original and recomputed results is generally better at the lower values 

of  𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

  than it is at the higher values. 

 

Graphs for Case 2 

Graphs II-A through II-F contain 2DOF examples for Case 2 (involving 𝛽𝛽 and ℎ). 
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Graph II-A. – Graph II-A shows the effect of increasing values of frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, for three different parameter variations:  parts (a) and (b) have 𝑥𝑥𝛽𝛽 as the 

parameter; part (c) has 𝑔𝑔𝛽𝛽 and 𝑔𝑔ℎ as parameters; and part (d) has 𝑟𝑟𝛽𝛽2 as the parameter.  For all parts of 

the graph, 𝑏𝑏 = 6, 𝑐𝑐 = 1
2
, 𝜔𝜔ℎ = 22.5, and 𝜉𝜉 = 1.  Discrete values and ranges of values of the other 

physical constants are indicated in the legend for each part of the graph.   

In all parts of the graph, the original results and the recomputed results indicate hump modes over the 
ranges of the independent variables.  And, except for part (b), the original and recomputed results show 
good-to-excellent agreement.  Part (b) shows significant disagreement between the magnitudes of 

normalized flutter velocities, especially for 𝑥𝑥𝛽𝛽 = 1
30

.  The disagreements for part (b) are addressed in the 

next paragraph. 

Part (b) presents results for parametric variations in 𝑥𝑥𝛽𝛽 for a constant value of 𝑟𝑟𝛽𝛽2; part (d) presents 

results for parametric variations in 𝑟𝑟𝛽𝛽2 for a constant value of 𝑥𝑥𝛽𝛽.  All other physical constants are 

identical for parts (b) and (d) (𝑏𝑏 = 6, 𝑐𝑐 = 1
2
, 𝜅𝜅 = 1

10
, 𝜔𝜔ℎ = 22.5, 𝑔𝑔𝛽𝛽 = 0, 𝑔𝑔ℎ = 0, and 𝜉𝜉 = 1).   

One set of results in part (b) shares identical physical constants with a set of results in part (d) (𝑥𝑥𝛽𝛽 = 1
60

 

and 𝑟𝑟𝛽𝛽2 = 1
120

, ) and coincidentally, both sets are represented in their respective parts by red curves and 

symbols.  Therefore, one would expect that the original results in parts (b) and (d) would be identical to 
each other as would the corresponding recomputed results.  This is the case for the recomputed results 
(the red symbols in each part have identical values at corresponding values of frequency ratio), but this 
is not the case for the original results (the red curves display noticeably different values).  This difference 
in original values between parts (b) and (d), coupled with the good-to-excellent agreement between the 
original and recomputed in all other parts of the graph and successful checks of the recomputed results 
using the 𝑝𝑝-method of flutter solution, suggests that all original results in part (b) are in error.   

Graph II-B. – Graph II-B shows the effect of increasing values of 𝑥𝑥𝛽𝛽, the distance between the aileron 

hinge and the center of gravity of the aileron, on normalized flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, with the square of the 

ratio of natural frequencies, �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

, as the parameter. 

Graph II-B uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝜔𝜔ℎ = 22.5; 𝑔𝑔𝛽𝛽 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1 

– ranges of values: 𝑐𝑐 = 1
2

, 2
3

;  𝜅𝜅 = 1
10

, 1
5

;  𝑟𝑟𝛽𝛽2 = 1
500

, 1
120

, 1
60

 . 

The shapes of the curves in this graph describe hump modes whose restabilizing velocities become 
increasingly larger as the value of 𝑥𝑥𝛽𝛽 increases.  All parts of the graph show good-to-excellent 
agreement between the original and recomputed results for the destabilizing velocity.  Parts (c) and (d) 
also show good-to-excellent agreement between the original and recomputed results for the 
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restabilizing velocity.  However, for each value of  �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

 in parts (a) and (b), there are significant 

differences between the restabilizing velocities for original and recomputed results:  in part (a) the 
recomputed results indicate no restabilizing beyond 𝑥𝑥𝛽𝛽 = 0.04 and in part (b) the recomputed results 
indicate no restabilizing beyond 𝑥𝑥𝛽𝛽 = 0.035; the original results indicate restabilizing beyond. 

Graph II-C. – Graph II-C shows the effect of increasing values of 𝑟𝑟𝛽𝛽2, the square of the nondimensional 

radius of gyration of the aileron about the aileron hinge, on normalized flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, for four 

values of �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

.   

Graph II-C uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑐𝑐 = 1
2

; 𝜅𝜅 = 1
10

; 𝑥𝑥𝛽𝛽 = 1
60

; 𝜔𝜔ℎ = 22.5; 𝑔𝑔𝛽𝛽 = 0; 𝑔𝑔ℎ = 0; 𝜉𝜉 = 1. 

The original and recomputed results show fair-to-excellent agreement.  The recomputed results and 

some of the original results indicate hump modes for each value of �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

, but the original results omit 

from the graph the destabilizing flutter velocities for �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

= 0 and �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

= 1
2
.  Progressing to the right 

in the graph, the lower curves all originate from the same value of 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

 , as the upper curves all originate 

from a different value of 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

.  No indication is given in NACA 685 as to why the two lower curves were 

omitted. 

Graph II-D. – Graph II-D shows the effect of increasing values of frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, with 𝑥𝑥𝛽𝛽 ,  𝑔𝑔𝛽𝛽 , and 𝑔𝑔ℎ as parameters. 

 Graph II-D uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑐𝑐 = 0; 𝑟𝑟𝛽𝛽2 = 1
20

;  𝜔𝜔ℎ = 22.5; 𝜉𝜉 = 1 

– ranges of values: 𝜅𝜅 = 1
5

, 1
2

;  𝑥𝑥𝛽𝛽 = 1
20

, 1
10

 . 

In all parts of the graph (except part (d)), the original results and the recomputed results indicate hump 
modes over the ranges of the independent variable.  Parts (a) and (b) show good-to-excellent agreement 
between the original and recomputed results.  In part (c), the comparisons for  𝑔𝑔𝛽𝛽 = 𝑔𝑔ℎ = 0 are good-
to-excellent, but comparisons for  𝑔𝑔𝛽𝛽 = 𝑔𝑔ℎ = 0.2  show differences over 30 percent.  In part (d), the 
comparisons for  𝑔𝑔𝛽𝛽 = 𝑔𝑔ℎ = 0 are good-to-excellent, but the original results for  𝑔𝑔𝛽𝛽 = 𝑔𝑔ℎ = 0.018 

indicate only a single instability at 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
= 0, completely missing the hump-mode nature of the instability 

indicated by the recomputed results. 
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Graph II-E. – Graph II-E shows the effect of increasing values of 𝑥𝑥𝛽𝛽, the distance between the aileron 

hinge and the center of gravity of the aileron, on normalized flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, with �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

,  𝑔𝑔𝛽𝛽 , and 

𝑔𝑔ℎ as parameters. 

Graph II-E uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑐𝑐 = 0;  𝜔𝜔ℎ = 22.5; 𝜉𝜉 = 1 

– ranges of values: 𝜅𝜅 = 1
10

, 1
5

;  𝑟𝑟𝛽𝛽2 = 1
20

, 1
10

; 𝑔𝑔𝛽𝛽 = 0, 0.2; 𝑔𝑔ℎ = 0, 0.2. 

This graph is very similar to graph II-B.  The only differences are due to the values chosen for some the 
physical constants.  The shapes of the curves in this graph also describe hump modes whose restabilizing 
velocities become increasingly larger as the value of 𝑥𝑥𝛽𝛽 increases.  As with graph II-B, all parts of this 
graph show good-to-excellent agreement between the original and recomputed results for the 
destabilizing velocity.  Parts (b) and (d) generally show good-to-excellent agreement between the 
original and recomputed results for the restabilizing velocity (the exception being the green curves and 

symbols in part (b)).  However, as with graph II-B, for each value of  �𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
�
2

 in parts (a) and (c), there are 

significant differences between the restabilizing velocities for original and recomputed results:  in part 
(a) the recomputed results indicate no restabilizing beyond 𝑥𝑥𝛽𝛽 = 0.12 and in part (c) the recomputed 
results indicate no restabilizing beyond 𝑥𝑥𝛽𝛽 = 0.1; the original results indicate restabilizing beyond. 

There are two instances in this graph of the same result appearing in part (a) and in part (b):  the gray 
curves and symbols in each part correspond to each other, as do the blue curves and symbols.  The gray 
symbols in each part are identical to each other; the blue symbols in each part are identical to each 
other.  However, if one looks closely at the gray curve in part (a) and the gray curve in part (b) one can 
discern differences; the same can be said of the blue curve in part (a) and the blue curve in part (b).  
These differences are speculated to be due to human error in plotting and faring the points that make 
up the gray and blue curves.   

Graph II-F. – Graph II-F shows the effect of increasing values of frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔ℎ
, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔ℎ

, with the modal coupling factor, 𝜉𝜉, as the parameter. 

Graph II-F uses the following physical constants as –  

– discrete values: 𝑏𝑏 = 6; 𝑐𝑐 = 0; 𝜅𝜅 = 1
5
; 𝑟𝑟𝛽𝛽2 = 1

6
; 𝑥𝑥𝛽𝛽 = 1

4
; 𝜔𝜔ℎ = 22.5; 𝑔𝑔𝛽𝛽 = 0; 𝑔𝑔ℎ = 0. 

Graph II-F is similar to graph I-G, but unlike graph I-G, in which the original and recomputed results 
differed in character, in graph II-F the character of the curves agrees for each value of modal coupling 
factor.  The agreement between the original and recomputed results is good-to-excellent in all areas of 
the plot. 

Observations. – The graphs for Case 2 also contain multiple parametric variations, but far fewer than 
those for Case 1.  Except for two curves in Graph II-F, the original and recomputed results are all hump 
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modes and always show the same trends with increases or decreases in the value of the parameter.  
With a few exceptions (part (b) of Graph II-A and parts (c) and (d) of Graph II-D), the magnitudes of the 
original and recomputed results are in good-to-excellent agreement with each other. 

 

Graphs for Case 3 

Graphs III-A through III-C contain 2DOF examples for Case 3 (involving 𝛼𝛼 and 𝛽𝛽). 

Graph III-A. – Graph III-A shows the effect of increasing values of frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, for structural damping absent and structural damping present.   

Graph III-A uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.4; 𝑏𝑏 = 6; 𝑐𝑐 = 0.5; 𝜅𝜅 = 1
10

; 𝑥𝑥𝛽𝛽 = 1
80

; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝑟𝑟𝛽𝛽2 = 1

160
  𝜔𝜔𝛼𝛼 = 90; 𝜉𝜉 = 1. 

The original results and the recomputed results indicate hump modes over the ranges of the 
independent variable, and except for one region of the zero-structural-damping results, the agreement 
between the original and recomputed results is good-to-excellent.  For all values of frequency ratio, the 
effect of increasing structural damping from zero (gray curve and symbols) to 0.2 (red curve and 
symbols) is to minimize the velocity range of the hump mode by increasing the lower flutter velocity and 
decreasing the restabilizing velocity.   

Graph III-B. – Graph III-B shows the effect of increasing values of frequency ratio, 
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
, on normalized 

flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, for two values of 𝑥𝑥𝛽𝛽, the distance from the aileron hinge to the aileron center of 

gravity.   

Graph III-B uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.4; 𝑏𝑏 = 6; 𝑐𝑐 = 0.6; 𝜅𝜅 = 1
4

; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝑟𝑟𝛽𝛽2 = 0.0012;  𝜔𝜔𝛼𝛼 = 90;   

                                    𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔𝛽𝛽 = 0; 𝜉𝜉 = 1. 

For both values of 𝑥𝑥𝛽𝛽, the original results indicate a hump mode, with the lower value of 𝑥𝑥𝛽𝛽 predicting a 
much smaller region of instability than the higher value predicted.  For the recomputed results, a hump 
mode was predicted for the higher value of 𝑥𝑥𝛽𝛽, but no instability was predicted for the lower value.  For 
the higher value of 𝑥𝑥𝛽𝛽, the original and recomputed results show good-to-excellent agreement.   

NACA 685 makes no mention of this in its discussion of Graph III-B, but the values of the physical 
constants used to produce the curve labeled “𝑥𝑥𝛽𝛽 = 0.0066” in Graph III-B are identical to those used to 

produce parts (c) and (d) of figure 6.  The values of  
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
  in parts (c) and (d) (zero and 0.3062, 

respectively) are within the range of values of  
𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
  on the horizontal axis in Graph III-B, making it 
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possible for the flutter velocities from parts (c) and (d) (indicated in Table 3) to be normalized and 
plotted on Graph III-B, thereby offering a final self-consistency check on the original results of NACA-
685.  If the original computations in figure 6 and Graph III-B are each correct, the results from parts (c) 
and (d) of figure 6 should fall exactly on the curve labeled “𝑥𝑥𝛽𝛽 = 0.0066” in Graph III-B.   

These normalized flutter velocities from parts (c) and (d) of figure 6 appear as the “x” and “+” symbols in 
Graph III-B and are seen to be nowhere near falling on the curve labeled “𝑥𝑥𝛽𝛽 = 0.0066.”  In fact, 
employing the criteria for qualitative assessment of agreement (defined in Table 1 for the agreement 
between the original and recomputed results, but applying these criteria now to the agreement 
between the original results from figure 6 and the original results from Graph III-B) one sees that the 
agreement is only fair at each destabilizing velocity and poor at each restabilizing velocity.  There is a 
mistake somewhere in the original results.  The information just presented, coupled with the good-to-
excellent agreement between the original and recomputed results in Graph III-B, and the large 
percentage differences between the original and recomputed flutter velocities shown in Table 3 for 
figures 6(c) and 6(d), strongly suggests that the mistake is in the original results in figure 6. 

Graph III-C. – Graph III-C shows the effect of increasing values of 𝑥𝑥𝛽𝛽, the distance from the aileron hinge 

to the aileron center of gravity, on the normalized flutter velocity, 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

, with �𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
�
2

as the parameter.   

Graph III-C uses the following physical constants as –  

– discrete values: 𝑎𝑎 = −0.4; 𝑏𝑏 = 6; 𝑐𝑐 = 0.5; 𝜅𝜅 = 1
10

; 𝑟𝑟𝛼𝛼2 = 1
4
; 𝑟𝑟𝛽𝛽2 = 1

160
;  𝜔𝜔𝛼𝛼 = 90; 

                                    𝑔𝑔𝛼𝛼 = 0; 𝑔𝑔𝛽𝛽 = 0; 𝜉𝜉 = 1. 

In terms of their respective axes and parameters, this graph is analogous to Graphs II-B and II-E for Case 
2.  The shapes of the curves and symbols in this graph are similar to those in the left-most portions of 
graphs II-B and II-E, all indicating hump modes.   

In Graph III-C, except for the blue curve and symbols, the agreement between the original and 
recomputed results ranges from good to excellent.  The blue curve and symbols represents the 
condition of identical torsion and aileron natural frequencies.  For this condition, the original results 
predict no flutter below a value of 𝑥𝑥𝛽𝛽 of 0.01, while the recomputed results predict flutter at less than 
half this value. 

Observations. – The graphs for Case 3 contain three parametric variations.  The original and recomputed 
results are all hump modes and always show the same trends with increases or decreases in the value of 

the parameter.  With some exceptions (for 𝑥𝑥𝛽𝛽 = 0.0020 in Graph III-B and for �𝜔𝜔𝛽𝛽

𝜔𝜔𝛼𝛼
�
2

= 1 in Graph III-C), 

the magnitudes of the original and recomputed results agree with each other very well. 
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IX.  RECURRING DIFFERENCE BETWEEN NACA 685 RESULTS AND RECOMPUTED RESULTS 

A recurring difference was observed between the NACA 685 results and the present recomputed results.  
This difference can be found in figure 26; Graph I-A parts (e), (f), (h), (i), (k) through (q); Graph I-D part 
(b); and Graph I-G.  Hints of this recurring difference can be found in parts of Graphs II and III.  All of 

these examples are plots of flutter velocity, 𝑣𝑣𝑓𝑓, or normalized flutter velocity (
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔

 for this discussion) as a 

function of the appropriate ratio of natural frequencies (𝜔𝜔
𝜔𝜔

  for this discussion).  The difference was 

observed in both single flutter modes and hump modes.  When occurring in hump modes, it manifests in 
the destabilizing-velocity portion of the curve.   

In each instance of this recurring difference, the original curve starts at 𝜔𝜔
𝜔𝜔

= 0 with a very shallow 

negative slope.  With increasing  𝜔𝜔
𝜔𝜔

  , the original curve describes an “elongated-backwards-S” shape:  an 

initial gradual decrease in 𝑣𝑣𝑓𝑓 or 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔

 followed by a more rapid decrease, reaching a minimum and then 

increasing again.  Near the minimum the original curve may be approximated very well by the arc of a 
circle whose diameter is a significant fraction of the length of the horizontal axis.  The blue curves in 
parts (h) and (l) of Graph I-A are excellent examples of this shape.   

In each instance of this recurring difference, the recomputed curve initially follows very closely the 
original curve.  But, with increasing  𝜔𝜔

𝜔𝜔
  , as the minimum of the original curve is approached, the 

recomputed curve departs from the original curve.  Here the recomputed curve is characterized by 
steeper, nearly linear slopes, both before and after the original minimum, reaching its own minimum by 

forming an approximate “V” feature.  The bottom of the V frequently has a lower value of 𝑣𝑣𝑓𝑓 or 
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔

  than 

the original minimum has. 

It is speculated that this recurring difference is due to the original results being computed at fewer 
values of  𝜔𝜔

𝜔𝜔
  than were the recomputed results, causing the original results to skip over and miss the V 

feature. 

 

X.  CONCLUDING REMARKS 

In the year 2000 in an Engineering Note, Zeiler made generally known that three foundational NACA 
reports and two early aeroelasticity texts contained numerical errors in some of their numerical 
examples.  Zeiler recommended that an effort be undertaken to employ the computational resources 
available today (digital computers) to recompute the numerical examples in these early works and to 
publish the results so as to provide a complete and error-free set of numerical examples.  A multiyear 
effort is underway that follows Zeiler’s recommendation by recomputing the numerical examples in 
these three NACA reports.  The present paper summarizes the recomputations for the second of these 
reports, NACA 685. 



 

 39 

The recomputations were performed in Matlab® employing the solution method of NACA 685.  
Comparisons between the original and recomputed results were accomplished by superimposing the 
latter on the former in the NACA 685 original figures and graphs.  The figures contain comparisons of the 
raw form of the NACA 685 solution method for two- and three-degrees-of-freedom (2DOF and 3DOF) 
flutter problems as well as comparisons of multiple flutter solutions for 2DOF flutter problems.  The 
graphs contain comparisons for many parametric variations for all three cases of the 2DOF flutter 
problem.  The important conclusions regarding the comparisons are: 

Raw form results (figs. 1 through 7) –  

(1) The shapes of the original and recomputed real loci agree with each other very well for all three 
2DOF flutter problems and the 3DOF flutter problem; 

(2) The shapes of the original and recomputed imaginary loci agree with each other very well for 
two of the three 2DOF flutter problems and the 3DOF flutter problem;  

(3) For results that contain proper intersections (instances of predicted flutter), there is an 
approximate inverse relationship between the original value of 1/𝑘𝑘 at the proper intersection 
and the corresponding percentage difference between the original and recomputed values of 
1/𝑘𝑘 at the proper intersection – when one is low the other is high, and vice versa. 

Parameter variations (figs. 8, 17, 18, and 26 and graphs) –  

(1) The magnitudes of the original and recomputed results ranged from excellent to poor; 
(2) With some notable exceptions, the shapes of the original and recomputed curves generally 

agreed; 
(3) The original and recomputed results always show the same trends with increases or decreases 

in the value(s) of the parameter(s); 
(4) For the figures and graphs whose abscissas are the ratio of natural frequencies – 

(a) the agreement between the original and recomputed results is generally better at the 
lower values of the ratio of natural frequencies than it is at the higher values; 

(b) a recurring difference between original and recomputed results was observed 
characterized by an “elongated-backwards-S” shape for the original results and by a 
steep “V” feature for the recomputed  results. 

Self-consistency of results within NACA 685 –  

Because of the many parameter variations presented in NACA 685, there are a few instances of 
repetition – a flutter result computed using a certain combination of physical constants that 
appears in one figure or graph also appears in another – providing opportunities to check self-
consistency of results within NACA 685.  Self-consistency of results within NACA 685 were 
mixed.  Flutter velocities that should have been identical from one figure or graph to another 
figure or graph exhibited differences from near zero to over 50 percent. 

There were two opportunities to check the present recomputations, both of them successful: 
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(1) Roughly one out of every three or four of the present recomputations were spot checked using 
the 𝑝𝑝-method of flutter solution (also performed in Matlab®) with excellent agreement between 
recomputations and spot-checks –  
  –  In almost all instances agreeing within 0.5 percent of each other, with no difference 
exceeding two percent.   
–  Single flutter modes predicted by the method of NACA 685 were confirmed as single flutter 
modes by the 𝑝𝑝-method; hump modes were confirmed as hump modes.   

(2) Zeiler’s engineering note contained figures illustrating differences he found between his 
recomputations and Theodorsen’s and Garrick’s original results.  Two of Zeiler’s figures 
corresponded to results in the present paper.  Comparisons of Zeiler’s recomputations and 
present recomputations revealed that, in almost all cases, Zeiler’s and present recomputations 
were either coincident or nearly coincident with each other. 

These opportunities provided confidence that the recomputed results were correct, especially for those 
instances when the original results and recomputed results differed significantly. 

Given that the original results were obtained “by hand” with pencils, paper, slide rules, and 
comptometers, with some notable exceptions, the agreement between the original and recomputed 
results (in terms of magnitudes, shapes of curves, trends with variations in parameters) was surprisingly 
good.  
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APPENDIX A 

BRIEF DESCRIPTIONS OF THEODORSEN’S AND GARRICK’S TRILOGY OF PAPERS ON FLUTTER 

 

This appendix presents brief descriptions of Theodorsen’s and Garrick’s trilogy of papers on flutter: 

NACA 496 Theodorsen, Theodore:  General Theory of Aerodynamic Instability and the 
Mechanism of Flutter.  NACA Report No. 496, from 20th Annual Report of 
the National Advisory Committee for Aeronautics, 1934, pp. 413-433. 

NACA 685 Theodorsen, Theodore; and Garrick, I. E.:  Mechanism of Flutter, a 
Theoretical and Experimental Investigation of the Flutter Problem.  NACA 
Report No. 685, from 26th Annual Report of the National Advisory 
Committee for Aeronautics, 1940, pp. 101-146. 

NACA 741 Theodorsen, Theodore; and Garrick, I. E.:  Flutter Calculations in Three 
Degrees of Freedom.  NACA Report No. 741, from 28th Annual Report of 
the National Advisory Committee for Aeronautics, 1942, pp. 223-240. 

All three papers address the aeroelastic flutter of a typical section with degrees of freedom:  torsion (α), 
aileron deflection (β), and vertical deflection (ℎ).  The equations of motion (shown in equations (A), (B), 
and (C) in the main body of the present paper) are used in all three papers.  These equations are 
comprised of structural and aerodynamic terms and are written as three simultaneous second-order 
differential equations in the three unknowns 𝛼𝛼, 𝛽𝛽, and ℎ.  Equation (A) defines the sum of the moments 
about the elastic axis; equation (B), the sum of the moments about the aileron hinge; and equation (C), 
the sum of the forces on the entire “wing” in the vertical direction.  Unsteady circulatory aerodynamics 
are present in the equations in the form of Theodorsen’s circulation function, 𝐶𝐶(𝑘𝑘).   

In all three papers, the form of the unknowns is chosen to be sinusoidal  

𝑥𝑥 =  𝑥𝑥0𝑒𝑒
𝑖𝑖(𝑣𝑣𝑣𝑣𝑏𝑏𝑡𝑡+𝜃𝜃) 

where 𝑥𝑥0 is the infinitesimal amplitude of unknown 𝑥𝑥 (representing 𝛼𝛼, 𝛽𝛽, or ℎ) and 𝜃𝜃 is the phase angle 
of 𝑥𝑥 with respect to some reference.  When these forms and their time derivatives are substituted into 
the differential equations, the equations are transformed into three simultaneous algebraic equations 
with complex coefficients. 

By sequentially eliminating one of the equations and its corresponding degree of freedom, the three-
degrees-of-freedom (3DOF) flutter equations reduce to three unique cases of two-degrees-of-freedom 
(2DOF) flutter equations:  (ℎ and 𝛼𝛼), (ℎ and 𝛽𝛽), and (𝛼𝛼 and 𝛽𝛽).  These equations are normalized, 
producing within them products Ω𝛼𝛼𝑋𝑋, Ω𝛽𝛽𝑋𝑋, and Ωℎ𝑋𝑋 , which are central to the solution of these 
equations.  

Within the trilogy, the manner of solving the flutter equations differs from paper to paper, ultimately 
producing three different solution methods.  But, the following solution elements are common to the 
three papers: 
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1. Expanding the determinant of the equations, resulting in either a cubic equation in 𝑋𝑋 with 
complex coefficients (for the 3DOF flutter problem) or a quadratic equation in 𝑋𝑋 with complex 
coefficients (2DOF), both with right hand sides equal to zero; 

2. Separating the real and imaginary parts of the cubic or quadratic equation, with the right hand 
side of each part equal to zero; 

3. Temporarily treating quantity 𝑋𝑋 (and, in one paper, another quantity as well) as a parameter 
and later treating it (and the other) as a known quantity; 

4. Solving the real and imaginary equations at many values of the inverse of reduced frequency, 
1/𝑘𝑘; 

5. Creating plots from these many solutions, enabling the graphical determination of the flutter 
velocity, 𝑣𝑣𝑓𝑓, and flutter reduced frequency, 𝑘𝑘𝑓𝑓. 

All three solution methods are capable of predicting single flutter modes and hump modes.  All three 
papers provide numerical examples.  NACA 496 and NACA 685 include among their examples plots 
illustrating their respective raw form solutions (corresponding to solution element 5, above). 

 

NACA 496 

NACA 496 presents and employs one method specifically for the solution of the 2DOF flutter problem 
(referred to in this appendix as Solution Method 1) and outlines, but does not employ, a second method 
for the solution of the 3DOF flutter problem (Solution Method 2, which may also be used to solve the 
2DOF flutter problem).  NACA 496 presents 13 figures that illustrate Solution Method 1.   

The details of Solution Method 1 are contained in reference 7, but a brief outline is offered here.  As 
mentioned in the main body of the present paper, Solution Method 1 is complicated. 

For this outline of Solution Method 1, the 2DOF flutter equations with 𝛼𝛼 and 𝛽𝛽 as unknowns are chosen 
as representative of the three sets of the 2DOF flutter equations.  In the main body of the present 
paper, equations (4), (5a), and (5b), and (with modifications) equations (7a) and (7b) are the applicable 
equations.  Because NACA 496 did not include structural damping in its formulation, imagine equations 
(7a) and (7b) with structural damping terms 𝑔𝑔𝛼𝛼 and 𝑔𝑔𝛽𝛽 set to zero.  Because NACA 496 did not include a 
modal coupling factor, imagine equation (7a) with 𝜉𝜉 set to unity. 

Through judicious choices of quantities 𝜔𝜔𝑟𝑟 and 𝑟𝑟𝑟𝑟, Solution Method 1 sets quantity Ω𝛽𝛽 to unity, thereby 
effectively eliminating it from the problem.  This step leaves in the problem Ω𝛼𝛼 as the only square of a 
nondimensional frequency ratio.  Quantities 𝑋𝑋 and Ω𝛼𝛼 are treated as parameters, not as the known 
quantities expressed in equations (4) and (5a).  The real and imaginary equations are solved for 𝑋𝑋 and 
Ω𝛼𝛼 conventionally by substitution at many values of the inverse of reduced frequency.  A new quantity, 
𝐹𝐹, is introduced that is proportional to the inverse square root of 𝑋𝑋.  From the many solutions, two 
curves are produced, Ω𝛼𝛼 vs. 1/𝑘𝑘 and 𝐹𝐹 vs. Ω𝛼𝛼, that represent a family of flutter solutions; each point on 
the first curve has a corresponding point on the second and each pair of corresponding points 
represents a unique flutter solution.  The notion that 𝑋𝑋 and Ω𝛼𝛼 are parameters is abandoned and a 
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problem-specific value of Ω𝛼𝛼 is chosen.  Flutter reduced frequency is determined from the plot of Ω𝛼𝛼 vs. 
1/𝑘𝑘; flutter velocity is determined from the plot of 𝐹𝐹 vs. Ω𝛼𝛼. 

 

NACA 685 

NACA 685 employs Solution Method 2 to solve both 2DOF and 3DOF flutter problems.  NACA 685 
presents 11 figures and three graphs (each containing parameter variations) that illustrate Solution 
Method 2.   

The details of Solution Method 2 are contained in section III of the present paper, but for the sake of the 
completeness of this appendix, a brief outline is offered here.  As the authors of NACA 685 state, 
Solution Method 2 is “simpler” than Solution Method 1. 

For this outline of Solution Method 2, the 2DOF flutter equations with 𝛼𝛼 and 𝛽𝛽 as unknowns are again 
chosen as representative of the three sets of the 2DOF flutter equations.  Again, equations (4), (5a), (5b), 
(7a) and (7b) are the applicable equations.  Solution Method 2 allows structural damping terms 𝑔𝑔𝛼𝛼 and 
𝑔𝑔𝛽𝛽 and modal coupling factor, 𝜉𝜉. 

In Solution Method, 2 quantity 𝑋𝑋 is treated as a parameter, while Ω𝛼𝛼 and Ω𝛽𝛽 are treated as constants.  
The real and imaginary equations are solved for 𝑋𝑋 for many values of the inverse of the reduced 
frequency.  For the 2DOF flutter problem with nonzero values of 𝑔𝑔𝛼𝛼 and 𝑔𝑔𝛽𝛽, the real and imaginary 
equations are both quadratic in 𝑋𝑋.  Thus, each equation produces two roots at each value of 1/𝑘𝑘.  
Because, from equation (4), 𝑋𝑋 is proportional to the square of velocity, only the nonnegative values of 𝑋𝑋 
have physical meaning.  The square roots of the nonnegative roots from the real and imaginary 
equations are plotted as functions of 1/𝑘𝑘 on the same set of axes, forming “real” loci and “imaginary” 
loci.  Intersections of any real locus with any imaginary locus are simultaneous solutions of the real and 
imaginary equations and define a flutter condition.  At these intersections, flutter reduced frequency is 
determined from the value of the abscissa and flutter velocity is determined from the value of the 
ordinate. 

 

NACA 741 

NACA 741 employs Solution Method 3 to solve only 3DOF flutter problems.  NACA 741 presents 40 
figures (each containing a parameter variation) that illustrate Solution Method 3.   

Solution Method 3 is similar to Solution Method 2 in that it allows structural damping terms 𝑔𝑔𝛼𝛼 and 𝑔𝑔𝛽𝛽 
and modal coupling factor, 𝜉𝜉, and it produces real and imaginary loci.  But, in Solution Method 3 there is 
only a single real locus and a single imaginary locus.  These single loci are the result of transforming the 
real and imaginary equations from their original orders in 𝑋𝑋 to linear equations in 𝑋𝑋.  The transformation 
is accomplished via a method analogous to Sylvester’s method of elimination (ref. 11). 
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Again, only the nonnegative values of 𝑋𝑋 have physical meaning.  As with Solution Method 2, the square 
roots of the nonnegative roots from the real and imaginary equations are plotted as functions of 1/𝑘𝑘 on 
the same set of axes and intersections of the real locus with the imaginary locus are simultaneous 
solutions of the real and imaginary equations and define a flutter condition.  As with Solution Method 2, 
at these intersections, flutter reduced frequency is determined from the value of the abscissa and flutter 
velocity is determined from the value of the ordinate.  
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APPENDIX B 

COMPARISON OF ZEILER’S RECOMPUTATIONS WITH PRESENT RECOMPUTATIONS 

 

In his Engineering Note (EN) appearing in the September-October 2000 issue of the Journal of Aircraft 
(ref. 1), Zeiler made generally known that errors existed in some of the plots in Theodorsen’s and 
Garrick’s (T&G’s) trilogy of papers on flutter.  Zeiler did this by electronically scanning T&G’s results and 
then superimposing his own results, thereby providing clear comparisons.  As Zeiler states in his EN, his 
recomputations were performed in Matlab® employing the standard V-g method of flutter analysis. 

Zeiler’s EN contained three comparison figures, two of which (Zeiler’s figs. 2 and 3) featured T&G’s 
flutter results that originally appeared in NACA 685, and were later reproduced in references 5 and 6.  
(T&G’s flutter results in Zeiler’s third comparison figure appeared originally in NACA 741.)  For his figures 
2 and 3, Zeiler chose to scan the versions of T&G’s original results that appear in reference 6.   

The following table shows the progression of these particular sets of T&G’s flutter results through the 
various sources: 

Corresponding Figure and Graph Numbers in -  

NACA 685 
(ref. 3) 

Bisplinghoff 
& Ashley 
(ref. 6) 

Zeiler  
(ref. 1) 

Graph I-A, part (q) Figure 6-18 Figure 2 
Graph I-C, part (h) Figure 6-19 Figure 3 

 

From this table, it is seen that Zeiler’s original figures 2 and 3 derive from Graphs I-A and I-C, which are 

2DOF numerical examples for Case 1.  Zeiler’s figure 2 contains plots of normalized flutter velocity, 
𝑈𝑈𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

  

(
𝑣𝑣𝑓𝑓
𝑏𝑏𝜔𝜔𝛼𝛼

 in the notation of the present paper), as a function of frequency ratio  𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

.  Zeiler’s figure 3 contains 

plots of normalized flutter velocity as a function of mass ratio, 𝜇𝜇  (1/𝜅𝜅 in the notation of the present 
paper); the abscissa in Zeiler’s figure 3 extends to 𝜇𝜇 = 100, while that in part (h) of Graph I-C extends 
only to 1/𝜅𝜅 = 30. 

Fortuitously and importantly, Zeiler’s figures 2 and 3 provide an opportunity to compare Zeiler’s 
recomputations with present recomputations.  Figures B1 and B2 of this appendix correspond, 
respectively, to Zeiler’s figures 2 and 3, with present recomputations superimposed. 

Zeiler’s figures 2 and 3 are “busy” in the same way that the Graphs in the present paper are busy:  each 
containing multiple original curves representing T&G’s results and multiple sets of superimposed 
symbols representing Zeiler’s recomputed results.  Comparing Zeiler’s recomputations and present 
recomputations requires the addition of even more sets of superimposed symbols, creating the 
potential to compound the busy-ness in the figures.  To avoid this extra busy-ness and to make the 
comparisons between Zeiler’s recomputations and present recomputations clear and easy to discern, 
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figures B1 and B2 in this appendix each contain four parts – one part for each value of the parameter 𝑥𝑥𝛼𝛼.  
Part (a) of each figure contains Zeiler’s entire original figure and present recomputations for only 𝑥𝑥𝛼𝛼 =
0; part (b) of each figure contains Zeiler’s entire original figure and present recomputations for only 
𝑥𝑥𝛼𝛼 = 0.05; and so forth.  Also in the interest of clarity, in figures B1 and B2, Zeiler’s original keys have 
been removed and are replaced with keys that reflect the addition of the present recomputations:  
Zeiler’s recomputations are depicted by black symbols and present recomputations are depicted by red 
symbols. 

 

Figure B1 

In parts (b), (c), and (d) of figure B1, Zeiler’s recomputations and the present recomputations are seen to 
agree extremely well – coincident or nearly coincident in all cases.  This extremely good agreement is 
also apparent in part (a) of figure B1 for values of  𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
  of 0.5 and higher, but for lower values of  𝜔𝜔ℎ

𝜔𝜔𝛼𝛼
 , 

there are some noticeable differences between Zeiler’s and the present recomputations.  However, at   
𝜔𝜔ℎ
𝜔𝜔𝛼𝛼

= 0.3, this noticeable difference is only on the order of four percent.   

 

Figure B2 

In all parts of figure B2, Zeiler’s recomputations and the present recomputations are seen to agree 
extremely well – coincident or nearly coincident in all cases.   

 

Observations 

Eight different comparisons (four each in figs. B1 and B2) of Zeiler’s recomputations and the present 
recomputations of T&G’s normalized flutter velocities agree with each other very well.  Not available 
were comparisons of the corresponding flutter reduced frequencies.  The consistently good agreement 
between Zeiler’s and the present recomputations gives additional confidence that the present 
recomputations are correct. 
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Criteria for Qualitative Assessment

Agreement in magnitudes 
at a given value of the 
independent variable

Agreement in 
overall trends

Qualitative
Assessment 

of Agreement

Excellent

Good

Fair

Poor

Curve passes
through symbol

Curve is within one
symbol diameter

of symbol

Curve is within three
symbol diameters

of symbol

and

and

and

or

Major features of
the original curve

(max value, min value, 
slope, inflections) agree 
with major features of 

the recomputed results 

Curve is greater than
three symbol diameters

away from symbol

Major features of the 
original curve disagree with 

major features of the
recomputed results

Table 1. – Criteria for Qualitative Assessment of 
Agreement Between Original and Recomputed Results



Figure Case a b c κ x α r α
2 x β r β

2 ω α ω β ω h g α g β g h ξ

1 1 -0.4 6 0.25 0.2 0.25 90 22.5 0 0 1

2 2 6 0.6 0.25 0 0.0012 27.557 22.5 0 0 1

3 3 -0.4 6 0.6 0.25 0.25 0 0.0012 90 27.557 0 0 1

4 3DOF -0.4 6 0.6 0.25 0.2 0.25 0 0.0012 90 27.557 22.5 0 0 0

5a 2 6 0.6 0.25 0 0.0012 0 22.5 0 0 1

5b 2 6 0.6 0.25 0 0.0012 27.557 22.5 0 0 1 (identical to fig. 2)

5c 2 6 0.6 0.25 0.0066 0.0012 0 22.5 0 0 1

5d 2 6 0.6 0.25 0.0066 0.0012 27.557 22.5 0 0 1

6a 3 -0.4 6 0.6 0.25 0.25 0 0.0012 90 0 0 0 1

6b 3 -0.4 6 0.6 0.25 0.25 0 0.0012 90 27.557 0 0 1 (identical to fig. 3)

6c 3 -0.4 6 0.6 0.25 0.25 0.0066 0.0012 90 0 0 0 1

6d 3 -0.4 6 0.6 0.25 0.25 0.0066 0.0012 90 27.557 0 0 1

7a 3DOF -0.4 6 0.6 0.25 0.2 0.25 0 0.0012 90 0 22.5 0 0 0

7b 3DOF -0.4 6 0.6 0.25 0.2 0.25 0 0.0012 90 27.557 22.5 0 0 0 (identical to fig. 4)

7c 3DOF -0.4 6 0.6 0.25 0.2 0.25 0.0066 0.0012 90 0 22.5 0 0 0

7d 3DOF -0.4 6 0.6 0.25 0.2 0.25 0.0066 0.0012 90 27.557 22.5 0 0 0

8 3DOF -0.4 6 0.6 0.25 0.2 0.25 0 0.0012 90 variable 22.5 0 0 0

17 1 -0.4 0.5 1/90 0.25 0.3125 113.8 variable 0 0 1

19 1 -0.4 0.5 1/90 0.25 0.3125 113.8 variable 0 0 1

26-1 2 0.667 0.5 1/105 0.0076 0.0019 variable 67.104 0 0 1

26-2 2 0.667 0.5 1/105 0.0076 0.0019 variable 67.104 0 0.0125 1

Table 2. – Physical Constants by Figure Number and Case



        , fps

2.460 1.594 833.4 0.407
2.460 1.592 834.4 0.407

0.0 0.1 0.1 0.0
0.875 1.060 445.8 1.143
0.736 1.064 373.5 1.359
17.3 0.4 17.6 17.3

0.250 2.156 31.3 4.000
0.034 2.156 4.2 29.499
152.2 0.0 152.2 152.2
0.713 2.073 92.9 1.402
0.696 2.072 90.7 1.436

2.4 0.0 2.3 2.4
0.220 0.951 124.8 4.550
0.143 0.969 79.8 6.988
42.3 1.9 44.1 42.3

0.857 0.945 489.6 1.167
1.070 1.036 557.6 0.935
22.1 9.2 13.0 22.1

0.258 0.967 144.1 3.874
0.203 0.963 113.7 4.933
24.0 0.5 23.6 24.0

0.807 0.956 455.4 1.240
1.004 1.021 531.2 0.996
21.8 6.5 15.4 21.8

0.780 1.087 387.5 1.283
0.705 1.061 358.8 1.418
10.1 2.4 7.7 10.1

0.852 1.121 410.7 1.173
0.736 1.064 373.5 1.359
14.6 5.2 9.5 14.6

0.153 4.340 19.0 6.557
0.038 4.331 4.7 26.579
120.8 0.2 120.7 120.8
0.678 4.162 88.0 1.475
0.698 4.154 90.7 1.433

2.9 0.2 3.1 2.9
0.171 0.905 102.0 5.851
0.182 0.885 111.0 5.499

6.2 2.3 8.5 6.2
0.187 0.888 113.7 5.345
0.234 0.884 143.1 4.270
22.4 0.5 22.9 22.4

5(c)
Original b

Recomputed
% Difference

Hump
(Restabilizing)

Original a

Recomputed
% Difference

Single

6(c)
Original b

Recomputed
% Difference

Hump
(Restabilizing)

6(c)
Original b

Recomputed
% Difference

Hump 
(Destabilizing)

6(d)
Original b

Recomputed
% Difference

Hump
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6(d)
Original b

Recomputed
% Difference

Hump 
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7(b)
Original b

Recomputed
% Difference

Single

7(a)
Original b

Recomputed
% Difference

Single

7(c)
Original b

Recomputed
% Difference

Hump
(Restabilizing)

7(c)
Original b

Recomputed
% Difference

Hump 
(Destabilizing)

7(d)
Original b

Recomputed
% Difference

Single

7(c)
Original b

Recomputed
% Difference

Single

Table 3. – Comparison of Original and Recomputed Flutter Results 
Obtained from Proper Intersections in Figures 1, 4, 5, 6, and 7

Recomputed
% Difference

Type Flutter 
Mode

Calculation

4 Single
Original a

Recomputed
% Difference

5(c)
Hump 

(Destabilizing)

Original b

Proper Intersection Flutter Condition

1

Figure

a  Values of          ,         ,    and          
b  Values of            and

given in text of NACA 685

             read from original figure in NACA 685
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Part of 
graph for 
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a  of -

Table 4. – Arrangement of Parts of Graph I-A

𝑏𝑏 = 6;  𝑟𝑟𝛼𝛼2 = 0.25;  𝜔𝜔𝛼𝛼 = 90;  𝜔𝜔ℎ = variable

𝑔𝑔𝛼𝛼 = 0;  𝑔𝑔ℎ = 0;  𝜉𝜉 = 1
𝑥𝑥𝛼𝛼 = parameter



































Figure B1. – Comparison of present recomputations with Zeiler’s recomputations (from fig. 2 of ref. 1).



Figure B2. – Comparison of present recomputations with Zeiler’s recomputations (from fig. 3 of ref. 1).



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Publication
4. TITLE AND SUBTITLE

Re-Computation of Numerical Results Contained in NACA Report No. 685

5a. CONTRACT NUMBER

6. AUTHOR(S)

Perry, Boyd, III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA  23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-21099

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category  01
Availability:  STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT   In an engineering note published in the Journal of Aircraft in the year 2000, Thomas A. Zeiler made generally known that some of the 
early works on aeroelastic flutter by Theodore Theodorsen and I.E. Garrick (NACA Report Nos. 496, 685, and 741) contained numerical errors in some of 
their numerical examples. Some of the plots containing numerical errors were later reproduced in two classic aeroelasticity texts (BAH and BA). Because 
these foundational papers and texts are often used in graduate courses on aeroelasticity, Zeiler recommended that an effort be undertaken to employ the 
computational resources available today (digital computers) to recompute the example problems in these early works and to publish the results so as to provide 
a complete and error-free set of numerical examples. This paper presents recomputed theoretical results contained in NACA Report No. 685 (NACA 685),
“Mechanism of Flutter, A Theoretical and Experimental Investigation of the Flutter Problem,” by Theodore Theodorsen and I.E. Garrick. The recomputations 
were performed employing the solution method described in NACA 685, but using modern computational tools. With some exceptions, the magnitudes and 
trends of the original results were in good-to-excellent agreement with the recomputed results, a surprising but gratifying result considering that the NACA 685 
results were computed “by hand” using pencil, paper, slide rules, and mechanical calculators called comptometers. Checks on the recomputations (about 25% 
were checked) were performed using the so-called p-method of flutter solution. In all cases, including those where the original and recomputed results differed 
significantly, the checks were in excellent agreement with the recomputed results.
15. SUBJECT TERMS

Aeroelastic stability; Flutter; NACA Report No. 685; Theodore Theodorsen; I.E. Garrick

18. NUMBER
OF
PAGES

73
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

432938.11.01.07.43.40.08 

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TP-2020-220562

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

1- 01-02- 2020


	Perry Final TP Text 3.2.20
	Tables and Figs
	Tables
	Table 1
	Slide Number 1

	Table 2
	Sheet1

	Table 3
	Sheet4

	Table 4
	Table 4


	Figures
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18





