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Appendix E Individual Test Reports by Specimen (Sections 21-40) 

★☆☆ Not Suitable for this Specimen 

★★☆ Marginally suitable for this Specimen, or only provides qualitative information 

★★★ Highly successful for this Specimen, including quantifiable information 

E.21 Specimen #21 – Not Manufactured 

E.22 Specimen #22: NASA-RP-01MP 

Structure Material Details Dimensions (inches) Partner Methods 

Uni-ply 

(0/90/45) 
IM7/8552 

0.1-inch radial inside curve. 

Radius Panel 0.1-inch Curve 

Rad with medium porosity 

4.5 × 2.5 × 4 
NASA 

E.22.1 SSIR 

E.22.2 TTIR 

TWI E.22.3 SSFT 

 

Figure E.22-1. Photographs of Specimen #22: NASA-RP-01MP. 

E.22.1 Method: Single-Sided Infrared (IR) Thermography (SSIR) 

 Partner: NASA 

 Technique Applicability: ★☆☆ 

Single-sided thermography is capable of detecting few defects that may be due to porosities. 

 Laboratory Setup 

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An IR camera 

was mounted at the back of the hood viewing through a circular hole between the flash tubes and 

were positioned to view the hood opening. In this configuration, the flash lamps heated an area 

equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25-mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.22-2. SSIR setup. 
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 Equipment List and Specifications: 

 Thermal Wave Imaging System (TWI) 

 TWI flash heat source using Speedotron power supplies. 

 SC6000 FLIR IR camera, 640 × 512 Indium Antimonide (InSb) array, Noise Equivalent 

Differential Temperature (NEDT) < 20 mK 

 50 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate  

 Flash on frame #10 

 Total number of Frames 3000 

 Total data acquisition time of 50 sec 

 The camera/hood was positioned to view the entire sample 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3000 frames of data (50 sec) were processed using iterations of different time windows. The 

processing of frames 100 to 1000 corresponding to a time window of 1.6716.67 sec yielded the 

best results. Sections A to D, shown in Figure E.22-4, were the most visible compared the 

surrounding area. A time delay of 1.67 sec allowed enough time after the flash for the heat to flow 

into the sample and 16.67 sec was sufficient to provide good contrast of the defects. No apparent 

defects were noticed in the specimen’s apex. The second eigenvector was used to produce the final 

inspection images shown in Figure E.22-3. 
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Figure E.22-3. NASA-RP-01MP sample. 

 
 

 

   
Left Center Right 

Figure E.22-4. SSIR inspection of NASA-RP-01MP sample’s left, center, and right section processed 

with PCA from frame 100 (1.66s) to 1000 (16.66s). 
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E.22.2 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NASA 

 Technique Applicability: ★★☆  

TTIR Thermography is capable of detecting defects that may be due to porosities. 

 Laboratory Setup  

The TT thermal inspection system setup is shown in Figure E.22-5. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3- to 5-m IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), and then the thermal response of the specimen at a user defined sampling 

rate and for a user defined duration is acquired.  

 

Figure E.22-5. TTIR setup. 

 Equipment List and Specifications:  

 TWI 

 TWI flash heat source using Balcar power supply externally triggered by TWI system. 

 SC6000 FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 
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 50 mm Germanium Optics 

 Settings: 

 60Hz Frame Rate 

 Flash on frame #10  

 Total number of frames: 3500 

 Total data acquisition time of 58.33 sec 

 Infrared camera was positioned to view the entire sample 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3500 frames of data (58.33 sec) were processed using iterations of different time windows. 

The processing of frames 100 to 1500 corresponding to a time window of 1.6725 sec yielded the 

best results, shown in Figure E.22-7. Possible porosities, labeled A through G were detected. The 

different point of views (left, center, right) from which data were taken allow for different 

perspectives on the possible defects. Notably, C, D, and E, show linear indications of possible 

defects that have clear contrast with the surrounding areas. 
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Figure E.22-6. NASA-RP-01MP sample. 

 
  

   

Left Center Right 

Figure E.22-7. TTIR inspection of NASA-RP-01MP sample’s left, center, and right section processed 

with PCA from frame 100 (1.66s) to 1500 (25s). 
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E.22.3 Method: Single-Side Flash Thermography (SSFT-TSR) 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the ACC but reviewed specimens.  

 Technique Applicability: ★★★ 

Single-Side Flash Thermography (SSFT) ThermographicSignal Reconstruction (TSR) is capable 

of detecting subsurface anomalies in this specimen that could be the result of delamination, voids 

or porosity. All indications appear in the head-on image, but more accurate sizing is achieved by 

inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with 2 linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the 10 × 14-inch 

exit aperture. Each lamp is powered by a 6 kJ power supply that allows truncation of the flash to 

a rectangular pulse with duration <1 msec d. A cryogenically cooled IR camera is mounted to view 

the plane of the hood exit aperture, with the camera lens positioned at the plane of the flashlamps. 

Excitation, data capture and processing and analysis using Thermographic Signal Reconstruction 

(TSR) are controlled at the system console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6751sc FLIR IR camera, 640x512 InSb array, NEDT < 20 mK 

 25 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 15 Hz Frame Rate 

 10 Preflash Frames 

 2700 total frames 

 7 Polynomial order 

 180 sec data acquisition time 
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 Field of View (FOV): 10 × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~90 sec) due to the back wall 

for typical points in the log time history. The acquisition period was then set to 180 sec (3 × t*), 

per ASTM E2582-14. 

 

Figure E.22-8. SSFT system with TSR. 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Five clusters of subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. All indications appear in the head-on (center) 

image; however, the full spatial extent of the indications is displayed in the left and right images, 

where the optical axis is normal to the sample surface. No apparent defects were noticed in the 

specimen’s apex. The 2nd derivative at 4.87 sec was used to produce the final inspection images 

shown in Figure E.22-9. 
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Left Center Right 

Figure E.22-9. TSR 2nd derivative at 4.87sec of NASA-RP-01MP. 
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E.23 Specimen #23 - Not Manufactured 

E.24 Specimen #24 - Not Manufactured 

E.25 Specimen #25 - Not Manufactured 

E.26 Specimen #26: NASA-RP-10MP 

Structure Material Details Dimensions (inches) Partner Methods 

Uni-ply 

(0/90/45) 
IM7/8552 

1.0-inch radial inside curve. Radius 

Panel 1.0-inch Curve Rad with 

medium porosity. 

4.5 × 2.5 × 4 
NASA 

E.26.1 SSIR 

E.26.2 TTIR  

TWI E.26.3 SSFT 

 

Figure E.26-1. Photographs of Specimen #26: NASA-RP-10MP. 
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E.26.1 Method: SSIR 

 Partner: NASA 

 Technique Applicability: ★☆☆ 

SSIR is capable of detecting few defects that may be due to porosities. 

 Laboratory Setup 

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An IR camera 

was mounted at the back of the hood viewing through a circular hole between the flash tubes and 

were positioned to view the hood opening. In this configuration, the flash lamps heated an area 

equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25 mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.26-2. SSFT setup. 

 Equipment List and Specifications:  

 TWI 

 TWI flash heat source using Speedotron power supplies 

 SC6000 FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 50 mm Germanium Optics 

 Settings: 

 60Hz Frame Rate  

 Flash on frame #10 

 Total number of Frames 3000 

 Total data acquisition time of 50 sec 

 The camera/hood was positioned to view the entire sample 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 
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of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3000 frames of data (50 sec) were processed using iterations of different time windows. The 

processing of frames 100 to 500 corresponding to a time window of 1.678.33 sec yielded the best 

results. Sections A, B, C, D and E shown in Figure E.26-4 were detected. A time delay of 1.67 sec 

allowed enough time after the flash for the heat to flow into the sample and 8.33 sec was sufficient 

to provide good contrast of the defects. All different time windows detected the five defects. 

However, when including later frames (e.g. frame 100 to 1000) section A was more perceptible. 

Excluding later frames, as it is the case here, made section D more apparent. No apparent defects 

were noticed in the specimen’s apex. The second eigenvector was used to produce the final 

inspection images shown in Figure E.26-3.  

   

Figure E.26-3. NASA-RP-10MP sample. 
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Left Center Right 

Figure E.26-4. SSFT inspection of NASA-RP-10MP sample’s left, center, and right section processed 

with PCA from frame 100 (1.66s) to 500 (8.33s). 
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E.26.2 Method: TTIR 

 Partner: NASA 

 Technique Applicability: ★★☆ 

TTIR is capable of detecting defects that may be due to porosities. 
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 Laboratory Setup 

The TT thermal inspection system setup is shown in Figure E.26-5. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3- to 5-m IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), and then the thermal response of the specimen at a user defined sampling 

rate and for a user defined duration is acquired.  

 

Figure E.26-5. TTIR setup. 

 Equipment List and Specifications:  

 TWI 

 TWI flash heat source using Balcar power supply externally triggered by TWI system 

 SC6000 FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 50 mm Germanium Optics 

 Settings: 

 60Hz Frame Rate 

 Flash on frame #10  

 Total number of frames: 3500 

 Total data acquisition time of 58.33 sec 

 Infrared camera was positioned to view the entire sample 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 
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The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3500 frames of data (58.33 sec) were processed using iterations of different time windows. 

The processing of frames 100 to 1500 corresponding to a time window of 1.6725 sec yielded the 

best results, shown in Figure E.26-7. Possible porosities, labeled A through I were detected. The 

different point of views (left, center, right) from which data were taken allow for different 

perspectives on the possible defects. Notably, C, D, and E, show linear indications of possible 

defects that have clear contrast with the surrounding areas. 

   

Figure E.26-6. NASA-RP-10MP sample. 
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Left Center Right 

Figure E.26-7. TTIR inspection of NASA-RP-10MP sample’s left, center, and right section processed 

with PCA from frame 100 (1.66s) to 1500 (25s). 
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E.26.3 Method: SSFT-TSR 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the ACC but reviewed specimens.  
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 Technique Applicability: ★★★ 

SSFT-TSR is capable of detecting subsurface anomalies in this specimen that could be the result 

of delamination, voids or porosity. All indications appear in the head-on image, but more accurate 

sizing is achieved by inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with 2 linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the 10 × 14-inch 

exit aperture. Each lamp is powered by a 6 kJ power supply that allows truncation of the flash to 

a rectangular pulse with duration <1 msec d. A cryogenically cooled IR camera is mounted to view 

the plane of the hood exit aperture, with the camera lens positioned at the plane of the flashlamps. 

Excitation, data capture and processing and analysis using TSR are controlled at the system 

console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6751sc FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 15 Hz Frame Rate 

 10 Preflash Frames 

 2700 total frames 

 7 Polynomial order 

 180 sec data acquisition time 

 FOV: 10 × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~90 sec) due to the back wall 

for typical points in the log time history. The acquisition period was then set to 180 sec (3 × t*), 

per ASTM E2582-14. 
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Figure E.26-8. SSFT system with TSR. 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Four clusters of subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. All indications appear in the head-on (center) 

image; however, the full spatial extent of the indications is displayed in the left and right images, 

where the optical axis is normal to the sample surface. No apparent defects were noticed in the 

specimen’s apex. The 2nd derivative at 3.53 sec was used to produce the final inspection images 

shown in Figure E.26-9.  
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Left Center Right 

Figure E.26-9. TSR 2nd derivative at 3.53 sec of NASA-RP-10MP. 
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E.27 Specimen #27 - Not Manufactured 

E.28 Specimen #28: NASA-RP-20MP 

Structure Material Details Dimensions (inches) Partner Methods 

Uni-ply 

(0/90/45) 
IM78552 

2.0-inch radial inside curve. 

Radius Panel 2.0 in Curve 

Rad with medium porosity.  

4.5 × 2.5 × 4 
NASA 

E.28.1 SSIR 

E.28.2 TTIR 

TWI E.28.3 SSFT 

 

Figure E.28-1. Photographs of Specimen #26: NASA-RP-2. 
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E.28.1 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NASA 

 Technique Applicability: ★☆☆  

SSIR Thermography is capable of detecting few defects that may be due to porosities. 

 Laboratory Setup  

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An IR camera 

was mounted at the back of the hood viewing through a circular hole between the flash tubes and 

were positioned to view the hood opening. In this configuration, the flash lamps heated an area 

equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25-mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.28-2. SSIR setup. 

 Equipment List and Specifications:  

 TWI 

 TWI flash heat source using Speedotron power supplies 

 SC6000 FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 50 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate  

 Flash on frame #10 

 Total number of frames: 3000 

 Total data acquisition time of 50 sec 

 The camera/hood was positioned to view the entire sample 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 
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of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3000 frames of data (50 sec) were processed using iterations of different time windows. The 

processing of frames 150 to 1000 corresponding to a time window of 2.516.67 sec yielded the 

best results. Ten possible defects shown in Figure E.28-4 were detected. A time delay of 2.5 sec 

allowed enough time after the flash for the heat to flow into the sample and 16.67 sec was sufficient 

to provide good contrast of the defects. All iterations of different time windows would detect the 

five defects. No apparent defects were noticed in the specimen’s apex. The second eigenvector 

was used to produce the final inspection images shown in Figure E.28-3. 

   

Figure E.28-3. SSFT inspection of NASA-RP-20MP sample. 
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Left Center Right 

Figure E.28-4. SSFT inspection of NASA-RP-20MP sample’s left, center, and right section processed 

with PCA from frame 150 (2.5s) to 1000 16.67s). 
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E.28.2 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NASA 

 Technique Applicability: ★☆☆ 

TTIR is capable of imaging few defects that may be due to porosities. 

 Laboratory Setup  

The TT thermal inspection system setup is shown in Figure E.28-5. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3–5-micron IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), and then the thermal response of the specimen at a user defined sampling 

rate and for a user defined duration is acquired.  

 

Figure E.28-5. TTIR setup. 

 Equipment List and Specifications:  

 TWI 

 TWI flash heat source using Balcar power supply externally triggered by TWI system 

 SC6000 FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 50 mm Germanium Optics 

 Settings: 

 60Hz Frame Rate 

 Flash on frame #10  

 Total number of frames: 3500 

 Total data acquisition time of 58.33 sec 

 Infrared camera was positioned to view the entire sample 
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 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 3500 frames of data (58.33 sec) were processed using iterations of different time windows. 

The processing of frames 100 to 1500 corresponding to a time window of 1.6725 sec yielded the 

best results, shown in Figure E.28-7. Possible porosities, labeled A through O were detected. The 

different point of views (left, center, right) from which data were taken allow for different 

perspectives on the possible defects. Notably, F, H, and I, show linear indications of possible 

defects that have clear contrast with the surrounding areas. Due to the discrepancies between the 

curved specimen and the 2D representation of the thermography data, it can be hard to correlate 

the possible defects from the different point of views. Hence, A, B, and E are possibly the same 

feature being displayed differently. The same with C and F. 

   

Figure E.28-6. SSFT inspection of NASA-RP-20MP sample. 
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Figure E.28-7. TTIR inspection of NASA-RP-20MP sample’s left, center, and right section processed 

with PCA from frame 100 (1.67s) to 1500 (25s). 
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E.28.3 Method: Single-Side Flash Thermography (SSFT-TSR) 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the ACC but reviewed specimens.  

 Technique Applicability: ★★★ 

SSFT-TSR is capable of detecting subsurface anomalies in this specimen that could be the result 

of delamination, voids or porosity. All indications appear in the head-on image, but more accurate 

sizing is achieved by inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with 2 linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the 10 × 14-inch 

exit aperture. Each lamp is powered by a 6 kJ power supply that allows truncation of the flash to 

a rectangular pulse with duration <1 msec d. A cryogenically cooled IR camera is mounted to view 

the plane of the hood exit aperture, with the camera lens positioned at the plane of the flashlamps. 

Excitation, data capture and processing and analysis using TSR are controlled at the system 

console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6751sc FLIR IR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 15 Hz Frame Rate 

 10 Preflash Frames 

 2700 total frames 

 7 Polynomial order 

 180 sec data acquisition time 

 FOV: 10 × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~90 sec) due to the back wall 

for typical points in the log time history. The acquisition period was then set to 180 sec (3 × t*), 

per ASTM E2582-14. 
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Figure E.28-8. SSFT system with TSR. 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Four clusters of subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. All indications appear in the head-on (center) 

image; however, the full spatial extent of the indications is displayed in the left and right images, 

where the optical axis is normal to the sample surface. The 2nd derivative at 6.13 sec was used to 

produce the final inspection images shown in Figure E.28-9. 
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Figure E.28-9. TSR 2nd derivative at 6.13 sec of NASA-RP-20MP. 
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E.29 Specimen #29 - Not Manufactured 

E.30 Specimen #30: NASA-RP-40MP 4.0-inch radial curve medium porosity  

Structure Material Details Dimensions (inches) Partners Methods 

Uni-ply 

(0/90/45) 
8552/IM7 

4.0-inch radial inside 

curve, medium porosity 
4.5 × 1.25 × 6 

NASA E.30.1 PEUT 

USC E.30.2 GWUT 

     

Figure E.30-1. Photographs of specimen #30: NASA-RP-40MP. 
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E.30.1 Method: Pulse-Echo Ultrasonic Testing (PEUT) 

 Partner: NASA  

 Technique Applicability: ☆☆☆  

PEUT cannot characterize porosity in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA Langley Research Center (LaRC) uses a custom designed 

single probe ultrasonic scanning system. The system has an 8-axis motion controller, a multi-axis 

gantry robot mounted above a medium-size water tank, a dual-channel, 16-bit, high-speed 

digitizer, and an off-the-shelf ultrasonic pulser receiver. The system can perform TTUT and PEUT 

inspections. TT inspection employs two aligned ultrasonic probes, one transmitter and one 

receiver, placed on either side of a test specimen. Pulse-echo inspection is a single-sided method 

where a single ultrasonic probe is both transmitter and receiver. In each method, data are acquired 

while raster scanning the ultrasonic probe(s) in relation to a part. Figure E.30-2 shows a simplified 

block diagram of a scanning Pulse-echo inspection. 

   

Figure E.30-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E-30-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.01 

Resolution (vertical) [in/pixel] 0.02 

Probe frequency [MHz] 510 

Focal Length [in] 2 

Array Dimensions [pixels] 311 × 301 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 
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sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.30-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

A back-wall echo could not be resolved with either 5 or 10 MHz transducers. Therefore, it was not 

possible to characterize the porosity with PEUT at 5 or 10 MHz. Sample curvature presented 

further complications. A contact method at lower frequencies or a TTUT method may provide 

better results. 

E.30.2 Method: Guided Wave Ultrasonic Testing (GWUT) 

 Partner: USC 

 Technique Applicability: ☆☆ 

GWUT employs ultrasonic waves that propagate along waveguides by its boundaries, e.g. pipes, 

rods and plate-like structures, which allows waves propagate a long distance with little energy loss. 

GWUT shows advantage in many types of defect inspection, e.g. crack in metallic structures [1], 

and delamination in composite structures [2].  

The Specimen, NASA-RP-40MP (herein referred to as 40MP), is inspected using hybrid PZT- 

SLDV GWUT method in this report. General information of 40MP is illustrated in the paragraph 

below. The relative inspection, results and system rating are illustrated in the inspection results. 

The front view and side view Specimen 40MP are shown in Figure E.30-3a and Figure E.30-3b 

respectively. The height of the specimen is 101 mm, and the thickness is around 9.54 mm. The 

length between the specimen edges is 148 mm for outer surface and 143 mm for inner surface. The 

arc length of outer surface is 160 mm as shown in Figure E.30-3c. The actuator is attached at O1, 

O2, and O3 in order to inspect the specimen from different views. No other information about 

40 MP is available to the inspectors. 

 

 

a) Overall view. 

 
b) Side view. c) Specimen setup. 

Figure E.30-3. Picture of specimen NASA-RP-40MP. 
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 Laboratory Set up  

The same hybrid PZT-SLDV system is employed for 40MP inspection, where contact type PZT is 

used as actuator and SLDV as sensor to excite and receive guided waves in the testing plate (Lamb 

waves) [1]. The overall setup also remains the same as reported previously shown in Figure  

E.30-4 and Figure E.30-5 [3]. 

 

Figure E.30-4. Schematic design of the PZT-SLDV system. 

 

Figure E.30-5. Experimental setup of the PZT-SLDV system. 

 Equipment List and Specifications 

The detailed specifications of the equipment and devices used for the hybrid PZT-SLDV system 

at USC Visualized Structural Health Monitoring (VSHM) laboratory are given inTable E.30-2. 

Data acquisition settings are shown in Table E.30-3. 

Table E.30-2. Equipment/device specifications. 

Equipment/device Specifications 

Polytec PSV-400-M2 2D scanning laser Doppler vibrometer with a frequency range up to 

1 MHz with specific velocity decoders  

PZT Steminc 7-mm circular 0.5-mm thick piezoelectric transducers 

Tektronix AFG3022C 2-channel arbitrary function generator with 1µHz to 25MHz  
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HSA 4014 High speed bipolar amplifier up to 1 MHz and 200 VA 

Target Simply BalancedTM 

organic honey 

Natural and organic honey blend performed as couplant  

Albedo 100 Reflective Spray a non-permanent, clear spray with light-reflective properties 

Table E.30-3. Data collection settings. 

Sampling frequency (MHz) 12.56 MHz 

Spatial sampling interval (mm) 1 mm 

Average  100 

Velocity decoder VD-07 10mm/s/V 

Spray coating  20 layers 

 Settings 

A 3-count toneburst at 240 kHz amplified to 50 Vpp is used as excitation for each test. 2D area 

inspection is performed for each part with spatial resolution 1 mm. The inspection is performed 

with the setup shown in Figure E.30-6. Since the specimen is curved, the inspection is not the same 

as traditional SLDV scanning. The SLDV head is placed normal to the center of the specimen (O2), 

and the scanning angle effect is not considered. 2D area inspection is performed with each 

actuation locations on both sides. For each inspection, the scanning area covers the accessible 

surface of the inspected wing: around 120 mm × 90 mm for both sides. For each side, the inspection 

area differs a little due to the curvature. Note that the scanning area is not identical to the real arc 

surface, and the measured wavefield is the shrink version of original wavefield in x-z plane due to 

the curvature. 

  
a) Scanning schematic of outside surface. b) Scanning schematic design of inside surface. 

Figure E.30-6. Experimental setup. 

 Inspection Results and Conclusions 

Outside surface 

2D area inspection is performed on the outside surface first. The 2D time-space wavefields are 

obtained with O1, O2, and O3 as excitation point, and the relative wavefield imaging are generated 

and plotted in Figure E.30-7. When the excitation is at O1, areas with intensified energy is observed 

while no obvious defects are observed, which means there might be small defects existing in the 

plate and scattered the energy towards all direction resulting in energy distribution as shown in 

Figure E.30-8a. When the excitation at O2, two areas of possible defects are observed (Figure  

E.30-7b), while one possible defect is observed with excitation at O3. 
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a) b) c) 

Figure E.30-7. Wavefield imaging on the outside surface with excitation location at: a) O1,  

b) O2, and c) O3. 

Inside surface 

On the inside surface, same 2D area inspection is performed. The relative wavefield imaging are 

generated and plotted in Figure E.30-8. When the excitation is at O1, areas with intensified energy 

are observed while no obvious defects are observed, which matches the results on outside surface. 

While with the excitation at O2 and O3, no obvious defect is observed (Figure E.30-8b and Figure 

E.30-8c). 

 
a) b) c) 

Figure E.30-8. Wavefield imaging on the inside surface with excitation location at: a) O1,  

b) O2, and c) O3. 

In conclusion, defects (porosity) on specimen 40D using the hybrid PZT-SLDV system is detected 

even without material properties. The detailed rating of the system is shown in Table E.30-4. The 

defects are successfully detected since areas with intensified energy were observed in the 

wavefield imaging. However, the locations of the defects cannot be confirmed since the results 

from the three inspection schemes are not consistent. Thus, three stars are rated for this part. For 

defect visualization, no obvious defect size and shape is identified, so that part gets two of five 

stars. For inspection time, the inspection time for one 2D scanning is around 50 minutes for areas 

illustrated in this test, which is fast. Thus, the inspection time gets four stars overall. Last, the 

actuator PZT is $3.60 per piece, which is cost effective. However, the SLDV is an expensive 

equipment, which costs $300,000 when purchasing. Thus, this part gets two stars. In the future, 

expensive SLDV can be replaced by customized fixed LDV and gantry system to reduce the 

system cost. Overall, this hybrid PZT-SLDV guided wave inspection is very robust in general with 

two out of five stars. 
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Table E.30-4. Hybrid PZT-SLDV guided wave inspection rating. 

Hybrid PZT-SLDV guided wave inspection 

NASA-RP-40MP 

Defect: porosity 

Rating  

Detection: ☆☆ 

Defect visualization ☆☆☆ 

Inspection time: ☆ 

Equipment cost: ☆☆☆ 

Overall Performance: ☆☆☆ 

 References 

[1] Yu, L.; Leckey, C. A.; and Tian, Z.: “Study on crack scattering in aluminum plates with 

Lamb wave frequency–wavenumber analysis,” Smart Materials and Structures, Vol. 22, 

No. 6, pp065019, 2013. 

[2] Tian, Z.; Yu, L.; and Leckey, C.: “Delamination detection and quantification on laminated 

composite structures with Lamb waves and wavenumber analysis,” Journal of Intelligent 

Material Systems and Structures, Vol.26, No. 13, 2015, pp. 1723-1738, 2015. 

[3] Guided wave inspection on specimen A1 (A1 report, submitted). 

E.31 Specimen #31: Wrinkle A1 
Structure Material Details Dimensions (inches) Partner Methods 

Thin 

laminates 

IM7/8552-1 slit 

tape 

flat wrinkling in flat 

panels 
15 × 12 × 0.15 

NASA 
E.31.1 PEUT 

E.31.2 XCT 

Boeing E.31.3 SSIR 

 

Figure E.31-1. Photograph of specimen #31: Boeing Wrinkle A1. 

E.31.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT is able to detect the flat wrinkles in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom designed single probe ultrasonic 

scanning system. The setup has a 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel 16-bit high speed digitizer, and an off-the-shelf 
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ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.31-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.31-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E-31-1. Data collection settings. 

Resolution horizontal [in/pixel] .01 

Resolution vertical [in/pixel] .01 

Probe frequency [mHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 451 × 351 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.31-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material.  
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 Inspection Results 

Specimen #31 is fabricated from IM7/8552-1 slit tape with the objective of achieving flat wrinkles 

within the material. PEUT was performed on this specimen in NASA’s immersion tank specified 

above. 

The UT image in Figure E.31-3a is signal amplitude just below the sample top surface. It indicates 

fiber wrinkling near the surface of the material. The white dots in the image corners are reflections 

from the metallic standoffs under the sample. The fiber wrinkles cause severe perturbations in the 

acoustic waves that are easily seen throughout the sample as shown in C-scan image, Figure  

E.31-3b. 

  
a) b) 

Figure E.31-3. UT image showing near surface indications of fiber waviness. 

 

Figure E.31-4. UT image showing indications of fiber waviness within the material bulk. 
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E.31.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA 

 Technique Applicability: ☆☆☆  

XCT is does not detect the flat wrinkles in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source. The imaging controls are housed in a separate control console. The detector is a Perkin-

Elmer, 16-bit, amorphous-silicon digital detector with a 2000 × 2000-pixel array. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.31-6. Slices normal to the X-, Y-, and Z-directions are shown in Figures 31-6a, b, and c, 

respectively. 

 

Figure E.31-5. XCT system components. 
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a) b) c) 

Figure E.31-6. Slice direction nomenclature. 

 

Figure E.31-7. Microfocus XCT system showing orientation of Specimen #31: Boeing-Wrinkles A1. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5-µm focal spot size 

 15 or 30kg Capacity, 5-axis, fully programmable manipulator 

 Detector: Perkin Elmer XRD 1621 – 2000 × 2000 pixels with 200 m pitch 

 10 m spatial resolution for specimens 1.5 cm wide 

 Thin panels 10 × 10 inches – full volume 200 m spatial resolution 
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 Settings 

Table E.31-2. Data collection settings. 

Source Energy 120 kV 

Current 90 µA 

Magnification 1.65 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (m) 114.894 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data observed 

along any plane in the volume. The closer the sample placement to the X-ray source, the higher 

the spatial resolution obtained.  

 Inspection Results 

Section A 

Specimen #31 is a panel with flat wrinkles induced within the material. XCT was performed on 

this specimen in NASA LaRC’s large CT system with the settings defined in Section E.31.2.5. 

The scan was done using a large viewing window encompassing the whole specimen (Figure  

E.31-8) and a small window covering a smaller area to increase the resolution of the scan (Figure 

E.31-9). This cannot always been done on larger specimens. 
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Figure E.31-8. 3D X-ray generated view of specimen #31: Boeing-Wrinkles using a small viewing 

window showing the y-normal direction (center), z-normal direction (top)  

and x-normal direction (right).  

Wrinkles are highlighted in the y-normal view with red arrows 

The wrinkles cannot be seen from any viewing directions shown in Figure E.31-8. The y direction 

shows some dark streaks that are damage as result of the method the fiber wrinkles were 

introduced; however, they do not represent the wrinkles themselves. Both the x- and z-direction 

views give little evidence of any fiber waviness. When viewing the higher resolution data the fiber 

waviness still is not apparent (Figure E.31-9). 

 

Figure E.31-9. 3D X-ray generated view of specimen #31: Boeing-Wrinkles from the z-normal 

direction. 
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E.31.3 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability:   

SSIR Thermography is capable of detecting wrinkles in the composite material. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.31-10). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. This test 

was repeated for the front and backsides of each panel. The wrinkles on the panel cause alternating 

areas of high and low resin content in the troughs and crest, respectively. Because the resin has a 

lower thermal conductivity than the carbon fiber, the high content regions (troughs) will retain 

heat more than the low content regions (crests). As a result, the crests will show as cold spots over 

time while the troughs show as hot spots. 

 

Figure E.31-10. SSIR system components. 
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Figure E.31-11. IR inspection system. 

 Equipment List and Specifications:  

 Thermal Wave VoyageIR system 

 SC6000 Series FLIR IR camera 

 4 6400 Watt-sec flash lamps 

 Flash Hood 

 X-Y gantry system 

 Settings 

Data collection settings (i.e., resolution, frame rate, data acquisition time) were not provided by 

inspector. 

 Inspection Results 

Figure E.31-12 shows the IR image of the panel at 1.6 sec. As anticipated, hot and cold spots can 

be observed (circled in red), corresponding with the manufactured wrinkle locations. Because the 

panel was uniformly heated on the side that the camera observed, the strongest thermal gradient 

will come from the wrinkles on that side. Because of this, one can observe fainter, mirrored 

indications of the wrinkles when observed from the opposite side, such as the left side grouping of 

wrinkles in Figure E.31-12a appearing fainter on the right side in Figure E.31-12b. From these 

data, it is possible to measure the wavelength of the wrinkles, though the amplitudes cannot be 

determined from these data. 
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a) b) 

Figure E.31-12. Greyscale 1.6 sec IR image of Composite Wrinkle Standard A1 side 1 (a)  

and side 2 (b). 

E.32 Specimen #32: Wrinkle A2 

Structure Material Details Dimensions (inches) Partner Methods 

Thin 

laminates 

IM7/8552-1 slit 

tape 

flat wrinkling in 

flat panels 
15 × 12 × 0.15 

NASA 
E.32.1 PEUT  

E.32.2 XCT 

USC E.32.3 GWUT 

Boeing E.32.4 SSIR 

 

Figure E.32-1. Photographs of Specimen #33: Boeing Wrinkle A3. 

E.32.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT is capable of detecting the fiber wrinkling within this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom designed single probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 
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ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.32-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.32-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.32-1. Data collection settings. 

Resolution horizontal [in/pixel] 0.02 

Resolution vertical [in/pixel] 0.05 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 201 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.32-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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 Inspection Results 

Specimen #32 is a panel fabricated from IM7/8552-1 slit tape with the objective of achieving flat 

wrinkles within the material. PEUT was performed on this specimen in NASA’s immersion tank 

specified above. 

In Figure E.32-3, UT images taken at an early time step show the indications of fiber wrinkling 

near the surface of the material. The wrinkles cause severe perturbations in the acoustic waves that 

are easily seen throughout the sample as shown in Figure E.32-4.  

 

Figure E.32-3. UT image showing near surface indications of fiber waviness. 
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Figure E.32-4. UT image showing indications of fiber waviness within the material bulk. 

 

E.32.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability: ★☆☆   

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source, specimen manipulator, and an amorphous silica detector, as shown in Figure E.32-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer, 16-bit, 

amorphous-silicon digital detector with a 2000 × 2000-pixel array. 
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Figure E.32-5. XCT system components 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.32-6 and Figure E.32-7. Slices normal to the X-, Y-, and Z-directions are shown in Figures  

E.32-6a, b, and c, respectively. 

 
a) b) c) 

Figure E.32-6. Slice direction nomenclature. 

 

 



47 

 

Figure E.32-7. Microfocus XCT system showing orientation of Specimen #32: Boeing-Wrinkles A2. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30 kg Capacity, 5-axis, fully programmable manipulator 

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10 × 10 inches – full volume 200 µm spatial resolution 

 Settings 

Table E.32-2. Data collection settings. 

Source Energy 120 kV 

Current 90 µA 

Magnification 1.65 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (m) 114.894 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample placement to the X-ray source, 

the higher the spatial resolution that obtained.  

 Inspection Results 

Specimen #32 is a panel with medium wrinkles induced within the material. XCT was performed 

on this specimen in NASA LaRC’s large CT system with the settings defined in Section E.32.1.5.  
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The wrinkles are unseen from all viewing directions shown in Figure E.32-6. Both the x- and z-

direction views give little evidence of any fiber waviness. In the y direction, the fiber wrinkles are 

somewhat visible in the form of dark regions that track slowly up and down as they move across 

the specimen. 

 

Figure E.32-8. 3D X-ray generated view of specimen #32: Boeing-Wrinkles using a small viewing 

window showing the y direction (center), z direction (top) and x direction (right). 

E.32.3 Method: Guided Wave Ultrasonic Testing (GWUT) 

 Partner: USC 

 Technique Applicability:  

GWUT employs ultrasonic waves that propagate along waveguides by its boundaries, e.g. pipes, 

rods and plate-like structures, which allows waves propagate a long distance with little energy loss. 

GWUT shows advantage in many types of defect inspection, e.g. crack in metallic structures [1], 

and delamination in composite structures [2].  

The Specimen, Boeing-wrinkle-A2 (herein referred to as A2), is inspected using hybrid PZT-

SLDV GWUT method in this report. General information of A2 and its wrinkle layout are 

illustrated in the paragraph below. The relative inspection, results and system rating are illustrated 

in the inspection results. 
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Specimen A2 is shown in Figure E.32-9 with its front, back and side view. The measured 

dimension of A2 is 306 × 260 × 3.83 mm. Significant wrinkles are observed from both sides as 

shown in Figure E.32-9 (pointed by arrows). The wrinkles within areas marked as 2B and 2C while 

much less or likely no wrinkles within areas marked as 2D. No other information about A2 is 

available to the inspectors. 

  
a) b) 

 
c) 

Figure E.32-9. Picture of Specimen A2. (a) front side (side 1), (b) back side (side 2);  

(c) side view. 

 Laboratory Set Up 

The same hybrid PZT-SLDV system is implemented to inspect A2, using contact type PZT as 

actuator and SLDV as sensor to excite and receive guided waves in the testing plate (Lamb waves) 

[1]. The overall setup also remains the same as reported previously and shown in Figure E.32-10 

and Figure E.32-11 [3]. 

 

Figure E.32-10. Schematic Design of the PZT-SLDV System. 
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Figure E.32-11. Experimental Setup of the PZT-SLDV System. 

 Equipment List and Specifications 

The detailed specifications of the equipment and devices used for the hybrid PZT-SLDV system 

at USC VSHM laboratory are given in Table E.32-3. Data acquisition settings are shown in Table 

E.32-4. 

Table E.32-3. Equipment/device specifications. 

Equipment/device Specifications 

Polytec PSV-400-M2 2D scanning laser Doppler vibrometer with a frequency range up 

to 1 MHz with specific velocity decoders  

PZT Steminc 7-mm circular 0.5-mm thick piezoelectric transducers 

Tektronix AFG3022C 2-channel arbitrary function generator with 1µHz to 25MHz  

HSA 4014 High speed bipolar amplifier up to 1 MHz and 200 VA 

Target Simply Balanced
TM

 

organic honey 

Natural and organic honey blend performed as couplant  

Albedo 100 Reflective Spray a non-permanent, clear spray with light-reflective properties 

 Settings 

Table E.32-4. Data collection settings. 

Sampling frequency (MHz) 12.56 MHz 

Spatial sampling interval (mm) 1 mm 

Average  200 

Velocity decoder VD-07 10mm/s/V 

Spray coating  20 layers 

Similar to A1, two regions are predefined for inspection as shown in Figure E.32-12: reference 

(marked as red) and wrinkle (marked as green) region. Before wrinkle inspection, the dispersion 

curves of A2 are acquired experimentally by line scanning using chirp excitation along R in the 

reference region as illustrated in Figure E.32-12a. Since no obvious wrinkle defects are detected 

along 90°/270° direction (parallel to wrinkle pattern by visual inspection) w.r.t actuation based on 

the A1 inspection results, the inspection on A2 is only performed along 0°/180° direction (normal 

to wrinkle pattern by visual inspection).  
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a) b) 

Figure E.32-12. Experimental setup for Specimen A2 along 0°/180° direction w.r.t actuation on side 

1: (a) 1D line inspection, and (b) 2D area inspection. 

The A2 side 1 was inspected using 3-count toneburst excitation at selected excitation frequencies 

180 kHz. 1D inspection is performed at reference region (along R) and wrinkle region (along W) 

with local excitation origins O (160, 115). The scanning lines are in the range x = 10100 mm with 

0.5-mm spatial resolution. With the same excitation point, 2D area inspection is performed in the 

area 50 mm × 100 mm Figure E.32-12b with 1-mm spatial resolution. Also performed is actuation 

at other locations in order to create different inspection perspectives. The detailed illustration is 

shown in the 2D inspection section. 

 Inspection Results 

Experimental Dispersion Curves 

The experimental dispersion curves are obtained through 2D Fourier transform of the time-space 

wavefield, which is shown in Figure E.32-13. One can see that only one mode is observed under 

low excitation frequency, while multiple and complex modes are observed in higher frequencies. 

In A2 inspection, excitation frequencies able to excite two Lamb wave modes in the target plate 

result in better wrinkle detection and visualization. As shown in Figure E.32-13, two Lamb wave 

modes are excited at 180 kHz. Thus, it is first selected as the excitation frequency while other 

frequencies are also tested for further evaluation since Lamb waves are frequency dependent. 
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Figure E.32-13. Experimentally Acquired Dispersion Curves 

Inspection of A2 Specimen on Side 1 

First conducted is the inspection on side 1 at excitation frequency 180 kHz. 1D inspection and 2D 

inspection are both conducted (area scan given in Figures E.32-12a and b). Time-space wavefields 

and frequency-wavenumber (f-k) spectra are studied and analyzed to detect wrinkles and evaluate 

its significance. In addition, we compared the wavefields, spectra, and spatial wavenumber 

distribution between reference and wrinkle regions in the plate. Generation of energy maps based 

on 2D inspection show the energy change through the inspection area in wrinkle and reference 

regions, and frequency dependence of the inspection results were explored.  

1D Inspection 

First performed was the 1D inspection along W (in wrinkle region) and R (in reference region). 

Results in terms of time-space wavefields and (f-k spectra are plotted in Figure E.32-14. One can 

see that, in both W and R wavefields (Figure E.32-14a and b), strong mode conversion and 

reflections are observed when the Lamb waves interact with wrinkles. Compared to the R 

wavefield (Figure E.32-14b) in the reference region, mode conversion appears in a longer 

propagating distance and reflections are stronger in the W wavefield (Figure E.32-14a). This 

indicates that in the wrinkle region, larger range of wrinkle exist than that in the reference region. 

In addition, strong reflections are observed in the W f-k spectrum (Figure E.32-14c) in the wrinkle 

region than R (Figure E.32-14d) in the reference region. One can also notice that reflections appear 

at different wavenumber locations between W and R f-k spectrum. Different wrinkle sizes in the 

two regions may cause this change.  
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a) Time-space wavefield along W. b) Time-space wavefield along R. 

  
c) f-k spectrum of W wavefield. d) f-k spectrum of R wavefield. 

  
e) x-k spectrum of W wavefield. f) x-k spectrum of R wavefield. 

Figure E.32-14. Comparison between 1D inspection results along W and R.  
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In the space-wavenumber (x-k) spectra, shown in Figure E.32-14e for W and f for R, two incident 

wave modes, positive mode-1 (M1+) and mode-2 (M2+) are observed. Strong reflections (negative 

wave mode-1, refer as M1-) appears in the range 10100 mm in the wrinkle region, while weak 

reflections (M1-) appear in the range 1050 mm in the reference region. 

2D Inspection – Wrinkle Region 

The 2D area inspection is performed next under 180 kHz in the wrinkle region. The scanning grid 

is 50×100 mm as shown in Figure E.32-15b with 1-mm spatial resolution. The corresponding 

energy map is generated by using the maximum amplitude of the signal in the recording time 

range, which is shown in Figure E.32-15b. Obvious wrinkle patterns in the range 80140 mm are 

observed in the energy map. 

Since Lamb waves are frequency dependent, excitation frequency is studied in order to obtain 

better imaging results. Three frequencies: 120, 240, and 300 kHz are selected for Lamb wave 

excitation. The corresponding energy maps are plotted in Figure E.32-15a, Figure E.32-15c and 

Figure E.32-15d respectively. Comparing the four energy maps in Figure E.32-15, vague wrinkle 

patterns (in the range 100140 mm) are observed under 120 kHz (Figure E.32-15a) while clear 

wrinkle patterns (in the range 80140 mm) are observed with frequency increase to 180 kHz 

(Figure E.32-15b). The wrinkle patterns become clearer at 240 kHz (Figure E.32-15c) than that at 

180 kHz. However, when excitation frequency increase to 300 kHz (Figure E.32-15d), the wrinkle 

patterns are not as clear as 240 kHz. Thus, 240 kHz is selected as the optimal excitation frequency 

to achieve better imaging result. 

As shown in Figure E.32-15c at 240 kHz, the right edge of the wrinkle range in the wrinkle region 

is identified as around x = 140 mm when inspection from right view, which matches the visual 

inspection as shown in Figure E.32-9c.  

  
a) 120 kHz. b) 180 kHz. 

  
c) 240 kHz. d) 300 kHz. 

Figure E.32-15. Energy map of wrinkle region at excitation frequency. 
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The 2D inspection is then performed from different location (location O1 for a left view) as shown 

in Figure E.32-16. The PZT actuator is attached on the left edge of the specimen at O1 (5, 115 mm). 

The scanning grid is 50 mm × 140 mm with the same 1-mm spatial resolution. The obtained energy 

map is plotted in Figure E.32-17. Clear wrinkle patterns are observed along the range 45120 mm. 

The left edge of the wrinkle range is at round x = 45 mm, which matches the visual inspection in 

Figure E.32-9c.  

 

Figure E.32-16. Experimental setup of 2D inspection from different actuation  

(location O1 for a left view). 

 

Figure E.32-17. Energy map of wrinkle region with actuation at location O1 for left view. 

With scanning actuation setup (here two actuation location for left and right view respectively), 

the wrinkle range are approximately quantified as in the range 45140 mm in the wrinkle region. 

2D Inspection - Reference Region 

With identified optimal excitation frequency, the reference region is inspected through 2D area 

scanning with different actuation locations: O (160, 115) for a left view (Figure E.32-12b), and O2 

(240, 115) and O3 (300, 115) for right views (Figure E.32-18).  
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Figure E.32-18. Reference region 2D inspection scanning setup with actuation at different locations: 

inspection with excitation at O for a left view, at O2 for a right view, and at O3 for another right view 

The relative energy maps are plotted in Figure E.32-19. In the energy map for a left view (Figure 

E.32-19a), clear wrinkle patterns are observed along the range 190220 mm. The left edge of the 

wrinkle range is at round x = 190 mm, which matches the visual inspection in Figure E.32-9c. The 

same wrinkle range is observed in the energy map for a right view at excitation point O2 (Figure 

E.32-19b). When excitation is at O3, the inspection result shows that wrinkle pattern appear at 

ranges 190220 mm and 230260 mm, which matches the visual inspection. With the scanning 

actuation setup (actuation at O, O2, and O3 in this scenario), the wrinkle range is approximately 

quantified for the reference region. 

  
a) At O for a left view. b) At O2 for a right view. 

 
c) At O3 for another right view. 

Figure E.32-19. Energy map of the reference region with different actuations. 
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Inspection of A2 on side 2 

Based on the optimized experimental setup and inspection results on side one, only 2D inspection 

is performed on side two for wrinkle detection. The experimental setup for wrinkle region is the 

same as A1 in Figure E.32-12b (actuator location 1) and Figure E.32-16 (actuator location 2), 

while for reference region is the same as A1 in Figure E.32-18 (3 actuator locations).  

2D Inspection - Wrinkle Region 

The 2D inspection is performed from different locations (location O1 for a left view and O for a 

right view) as shown in Figure E.32-12b and Figure E.32-16 respectively. The obtained energy 

map is plotted in Figure E.32-20. Clear wrinkle patterns are observed along the range 70140 mm 

in Figure E.32-20a and 45120 mm in Figure E.32-20b respectively. The left edge of the wrinkle 

range is at around x = 45 mm, and the right edge is around 140 mm, which matches the visual 

inspection in Figure E.32-9c.  

With scanning actuation setup (here two actuation location for left and right view respectively), 

the wrinkle range are approximately quantified as in the range 45140 mm in the wrinkle region. 

The inspection results on side two match the results on side one. 

2D Inspection - Reference Region 

The reference region is inspected through 2D area scanning with three actuation locations: O (160, 

115) for a left view (Figure E.32-12b), and O2 (240, 115) and O3 (300, 115) for right views (Figure 

E.32-18).  

 
a) With actuation at location O for right view. 

 
b) With actuation at location O1 for left view. 

Figure E.32-20. Energy map of wrinkle region. 

The relative energy maps are plotted in Figure E.32-21. In the energy map for a left view (Figure 

E.32-21a), clear wrinkle patterns are observed along the range 190220 mm. The left edge of the 

wrinkle range is at round x = 190 mm, which matches the visual inspection in Figure E.32-9c. The 

same wrinkle range is observed in the energy map for a right view at excitation point O2 (Figure 

E.32-21b). When excitation is at O3, the inspection result shows that wrinkle pattern appear at 

ranges 190220 mm, which also matches the visual inspection. With the scanning actuation setup 



58 

(actuation at O, O2, and O3 in this scenario), the wrinkle range is approximately quantified for the 

reference region. The inspection results are similar to the results on side one except that they are 

not as clear as on side one. This might be caused that the wrinkle in this area is closer to side one 

according to visual inspection. 

  
a) At O for a left view. b) At O2 for a right view. 

 
c) At O3 for another right view. 

Figure E.32-21. Energy map of the reference region with different actuations. 

 Inspection Results and Conclusions 

In conclusion, wrinkle existence on A2 specimen using the hybrid PZT-SLDV system is successful 

detected and quantified even without material properties. The detailed rating of the system is 

shown in Table E.32-5. For defect visualization, five out of five stars is rated compared to the four 

out of five in the A1 report [3]. The reason for this improvement is that the wrinkle pattern is 

clearly observed, and its range is approximately quantified with different actuation locations. For 

inspection time, the inspection time for 1D inspection is around one minute, which is very rapid, 

while the inspection time for 2D inspection is around one hour for areas illustrated in this test, 

which is still relatively fast. Thus, the inspection time gets four stars overall. Last, the actuator 

PZT is $3.60 per piece, which is cost effective. However, the SLDV is an expensive equipment, 

which costs $300,000 when purchasing. Thus, this part gets two stars. In the future, expensive 

SLDV can be replaced by customized fixed LDV and gantry system to reduce the system cost. 

Overall, this hybrid PZT-SLDV guided wave inspection is very robust in general with four out of 

five stars. 
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Table E.32-5. Hybrid PZT-SLDV guided wave inspection rating. 

Hybrid PZT-SLDV guided wave inspection 

Sample A2 

Defect: wrinkles 

Rating  

Detection:  

Defect visualization  

Inspection time: ☆ 

Equipment cost: ☆☆☆ 

Overall Performance: ☆ 

 References 

[1] Yu, L.; Leckey, C. A.; and Tian, Z.: “Study on crack scattering in aluminum plates with 

Lamb wave frequency–wavenumber analysis,” Smart Materials and Structures, Vol. 22, 

No. 6, pp065019, 2013. 

[2] Tian, Z.; Yu, L.; and Leckey, C.: “Delamination detection and quantification on laminated 

composite structures with Lamb waves and wavenumber analysis,” Journal of Intelligent 

Material Systems and Structures, Vol.26, No. 13, 2015, pp. 1723-1738, 2015. 

[3] Guided wave inspection on specimen A1 (A1 report, submitted). 

E.32.4 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability:  

SSIR thermography is capable of detecting wrinkles in the composite material. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.32-22). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. This test 

was repeated for the front and backsides of each panel. The wrinkles on the panel cause alternating 

areas of high and low resin content in the troughs and crest, respectively. Because the resin has a 

lower thermal conductivity than the carbon fiber, the high content regions (troughs) will retain 

heat more than the low content regions (crests). As a result, the crests will show as cold spots over 

time while the troughs show as hot spots. 
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Figure E.32-22. Flash IRT system components. 

 

Figure E.32-23. IR inspection system. 

 Equipment List and Specifications:  

 Thermal Wave VoyageIR system 

 SC6000 Series FLIR IR camera 

 4 6400 Watt-sec flash lamps 

 Flash Hood 

 X-Y gantry system 

 Settings 

Data collection settings (i.e., resolution, frame rate, data acquisition time) were not provided by 

inspector. 
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 Inspection Results 

Figure E.32-24 shows the IR image of the panel at 1.6 sec. As anticipated, hot and cold spots can 

be observed (circled in red), corresponding with the manufactured wrinkle locations. Because the 

panel was uniformly heated on the side that the camera observed, the strongest thermal gradient 

will come from the wrinkles on that side. Because of this, one can observe fainter, mirrored 

indications of the wrinkles when observed from the opposite side, such as the left side grouping of 

wrinkles in Figure E.32-24a appearing fainter on the right side in Figure E.32-24b. From these 

data, it is possible to measure the wavelength of the wrinkles, though the amplitudes cannot be 

determined from these data. 

  
a) b) 

Figure E.32-24. Greyscale 1.6 sec IR image of Composite Wrinkle Standard A2 side 1 (a)  

and side 2 (b) 

E.33 Specimen #33: Wrinkle A3 
Structure Material Details Dimensions (inches) Partner Methods 

Thin laminates 
IM7/8552-1 

slit tape 

Significant wrinkling in 

flat panels 
1.5 × 12 × 0.15 

NASA 
E.33.1 PEUT  

E.33.2 XCT 

USC E.33.3 GWUT 

Boeing E.33.4 SSIR 

 

Figure E.33-1. Photograph of Specimen #33: Boeing-Wrinkle-A3. 
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E.33.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT is able to detect the significant fiber wrinkles within the specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom designed single probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.33-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.33-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.33-1. Data collection settings 

Resolution horizontal [in/pixel] 0.02 

Resolution vertical [in/pixel] 0.05 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 201 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 
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sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.33-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #31 is a panel fabricated from IM7/8552-1 slit tape with the objective of achieving flat 

wrinkles within the material. PEUT was performed on this specimen in NASA’s immersion tank 

specified above. 

Figure E.33-3 shows indications of fiber wrinkling near the surface of the material. The wrinkles 

cause severe perturbations in the acoustic waves that are easily seen throughout the sample as 

shown in Figure E.33-4 and Figure E.33-5.  

 

Figure E.33-3. UT image showing near surface indications of fiber waviness. 
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Figure E.33-4. UT image showing indications of fiber waviness within the material bulk. 
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Figure E.33-5. UT image showing indications of fiber waviness within the material bulk. 

E.33.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability: ★☆☆  

XCT is somewhat capable of imaging the fiber wrinkles induced in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source, specimen manipulator, and an amorphous silica detector, as shown in Figure E.33-6. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer, 16-bit, 

amorphous-silicon digital detector with a 2000 × 2000-pixel array. 
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Figure E.33-6. XCT System Components 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.33-7 and Figure E.33-8. Slices normal to the X-, Y-, and Z-directions are shown in Figures  

E.33-7a, b, and c, respectively. 

 
a) b) c) 

Figure E.33-7. Slice Direction Nomenclature. 
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Figure E.33-8. Microfocus XCT system showing orientation of Specimen #33: Boeing-Wrinkles A3. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30 kg Capacity, 5-axis, fully programmable manipulator 

 Detector: Perkin Elmer XRD 1621 – 2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10 × 10 inches – full volume 200 µm spatial resolution 

 Settings 

Table E.33-2. Data collection settings. 

Source Energy 120 kV 

Current 90 µA 

Magnification 1.65 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (µm) 114.894 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that is then 

viewed along any plane in the volume. The closer the sample placement to the X-ray source, the 

higher the spatial resolution obtained.  

 Inspection Results 

Section A 

Specimen #33 is a panel with wrinkles induced within the material. XCT was performed on this 

specimen in NASA LaRC’s large CT system with the settings defined in Section E.33.1.5. The 

scan was done using a large viewing window encompassing the whole specimen (Figure E.33-9) 
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and a small window covering a smaller area to increase the resolution of the scan (Figure  

E.33-10). This cannot always been done on larger specimens. 

 

Figure E.33-9. 3D X-ray generated view of Specimen #33: Boeing-Wrinkles using a small viewing 

window showing the y direction (center), z direction (top) and x direction (right). 

 

Figure E.33-10. 3D X-ray generated view of Specimen #33: Boeing-Wrinkles from the z direction. 

The wrinkles are unseen from all viewing directions shown in Figure E.33-9. Both the x- and z-

direction views give little evidence of any fiber waviness. In the y direction there are darker streaks 

and tear drop formations that are a result of the method used to induce wrinkling in the sample. 

These marks do show damage; however, they do not serve as an indicator for any fiber wrinkling. 
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The higher resolution image in Figure E.33-10 shows the beginning indications of fiber wrinkling 

though it is still not entirely clear. When viewing the full specimen the fiber waviness is even less 

apparent (Figure E.33-9). 

E.33.3 Method: Guided Wave Ultrasonic Testing (GWUT) 

 Partner: USC 

 Technique Applicability:  

GWUT employs ultrasonic waves that propagate along waveguides by its boundaries, e.g. pipes, 

rods and plate-like structures, which allows waves propagate a long distance with little energy loss. 

GWUT shows advantage in many types of defect inspection, e.g. crack in metallic structures [1], 

and delamination in composite structures [2].  

The Specimen, Boeing-Wrinkle-A3 (herein referred to as A3), is inspected using hybrid PZT-

SLDV GWUT method in this report. General information of A3 and its wrinkle layout are 

illustrated in the paragraph below. The relative inspection, results and system rating are illustrated 

in the inspection results. 

Specimen A3 is shown in Figure E.33-11 with its front and back view. The measured dimensions 

of A3 is 306 × 260 × 3.8 mm. Significant wrinkles are observed on side one as shown in Figure 

E.33-11a (pointed by arrows), while no obvious wrinkles are observed on side two. No other 

information about A3 is available to the inspectors. 

  
a) Front side (side 1). b) Back side (side 2). 

Figure E.33-11. Picture of specimen A3.  

 Laboratory Set Up 

The same hybrid PZT-SLDV system is implemented to inspect A3, using contact type PZT as 

actuator and SLDV as sensor to excite and receive guided waves in the testing plate (Lamb waves) 

[1]. The overall setup also remains the same as reported previously and shown in Figure E.33-12 

and Figure E.33-13 [3]. 
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Figure E.33-12. Schematic design of the PZT-SLDV system. 

 

Figure E.33-13. Experimental setup of the PZT-SLDV system. 

 Equipment List and Specifications 

The detailed specifications of the equipment and devices used for the hybrid PZT-SLDV system 

at USC VSHM laboratory are given in Table E.33-3. Data acquisition settings are shown in Table 

E.33-4. 

Table E.33-3. Equipment/device specifications. 

Equipment/device Specifications 

Polytec PSV-400-M2 2D scanning laser Doppler vibrometer with a frequency range up 

to 1 MHz with specific velocity decoders  

PZT Steminc 7-mm circular 0.5-mm thick piezoelectric transducers 

Tektronix AFG3022C 2-channel arbitrary function generator with 1µHz to 25MHz  

HSA 4014 High speed bipolar amplifier up to 1 MHz and 200 VA 

Target Simply Balanced
TM

 

organic honey 

Natural and organic honey blend performed as couplant  

Albedo 100 Reflective Spray a non-permanent, clear spray with light-reflective properties 

 Settings 

Table E.33-4. Data collection settings. 

Sampling frequency (MHz) 12.56 MHz 

Spatial sampling interval (mm) 1 mm 

Average  200 

Velocity decoder VD-07 10mm/s/V 

Spray coating  20 layers 
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In order to identify the optimal inspection frequency for wrinkle detection, 1D line inspection is 

performed first using a three-count toneburst excitation at selected frequencies 120, 240, and 

300 kHz. Based on the results of A1 and A2, the scanning line is set perpendicular to the observed 

wrinkle pattern as shown in Figure E.33-14a. The spatial resolution is 1 mm, and the scanning line 

is 10 to 250 mm from the excitation point (O1).  

  
a) 1D line inspection. b) 2D area inspection. 

Figure E.33-14. Experimental setup along 0°/180° direction w.r.t actuation 

on side 1. 

Based on the obtained optimal excitation frequency, 2D area inspection (310 mm× 60 mm) is then 

performed to visualize the wrinkle defects with the same spatial resolution on both sides with two 

excitation locations at O1 and O2 respectively as shown in Figure E.33-14b. 

 Inspection Results 

1D Inspection Results 

The time-space wavefields are obtained and plotted in Figures E.33-15a, b, and c respectively. 

Through Fourier analysis, the corresponding frequency-wavenumber (f-k) spectra are calculated 

and plotted in Figures E.33-15d, e, and f respectively. At 120 kHz (Figure E.33-15a), only incident 

Lamb waves are observed, and no wave interactions with wrinkles is observed in the wavefield. 

In the relative f-k spectrum, only incident wave modes are observed, which matches the wavefield 

observation. When the excitation frequency increases to 240 kHz, wave interactions are more 

distinguishable: reflections are observed from both time-space wavefield (Figure E.33-15b) and  

f-k spectrum (Figure E.33-15e). Similar wave signatures are observed at 300 kHz. Since waves at 

lower frequency have less attenuation along wave propagation than higher frequency, the optimal 

excitation frequency (between 240 and 300 kHz) is identified as 240 kHz. 
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a) b) c) 

   
d) e) f) 

Figure E.33-15. 1D Inspection results wavefield results with excitation at (a) 120 kHz, (b) 240 kHz, 

and (c) 300 kHz; frequency-wavenumber spectra with excitation at (d) 120 kHz, (e) 240 kHz, and (f) 

300 kHz, showing that wave-wrinkle interaction becomes obvious with excitation frequency increase. 

2D Inspection Results on Side 1 

First conducted is the inspection on side 1 with two excitation locations at O1 (right view) and O2 

(left view). The obtained wavefield images [3] are plotted in Figure E.33-16 (refer to previous 

reports for algorithm). As seen from Figure E.33-16a (excitation location at O1), obvious wrinkle 

patterns are observed in the middle range along x direction (130170 mm). The wrinkle patterns 

in this range are dense. In addition, coarser wrinkles are observed at around x = 50 mm.  

When the excitation is at O2, the wrinkle patterns are very clear and easy to observe. Wrinkles 

exist from the beginning to the end along x direction. Denser wrinkles are observed in the middle 

range 100150 mm, while coarser wrinkles are observed at around 250 mm.  

Overall, the wrinkle detection results are consistent between O1 and O2, the image intensity 

difference might be caused by the honey coupling of PZT actuator are not the same and hard to 

control. 
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a) Excitation at O1. 

 
b) Excitation at O2. 

Figure E.33-16. Wavefield images obtained on side-1 with excitation.  

2D Inspection Results on Side-2 

In order to roughly identify the wrinkle locations along thickness, the 2D inspection is performed 

on side-2 with the same setup as side-1. The obtained wavefield images are shown in Figure  

E.33-17. No obvious wrinkle patterns are observed from the images, which are consistent to the 

visual inspection. Comparing the wavefield images obtained from side-1 and side-2, we can 

conclude that the wrinkle defects are closer to side-1 than side-2. 

 
a) Excitation at O1. 

 
b) Excitation at O2. 

Figure E.33-17. Wavefield images obtained on side-2with excitation. 
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In conclusion, wrinkle existence on A3 specimen using the hybrid PZT-SLDV system is 

successfully detected and quantified without material properties. The detailed rating of the system 

is shown in Table E.33-5. For defect visualization, five out of five stars is rated. The reason is that 

the wrinkle pattern is clearly observed, and its range is approximately quantified with different 

actuation locations. The inspection time for 1D inspection is around 1 minute, which is very rapid, 

while the inspection time for 2D inspection is around two hours for areas illustrated in this test, 

which is still relatively fast. Thus, the inspection time gets four stars overall. Last, the actuator 

PZT is $3.60 per piece, which is cost effective. However, the SLDV system costs $300,000 when 

purchasing. Thus, two of five stars are rated regarding the system cost. In the future, expensive 

SLDV can be replaced by customized fixed LDV and gantry system to reduce the system cost. 

Overall, this hybrid PZT-SLDV guided wave inspection is very robust in general with four out of 

five stars. 

Table E.33-5. Hybrid PZT-SLDV guided wave inspection rating. 

Hybrid PZT-SLDV guided wave inspection 

Sample A3 

Defect: wrinkles 

Rating  

Detection:  

Defect visualization  

Inspection time: ☆ 

Equipment cost: ☆☆☆ 

Overall Performance: ☆ 

 References 

[1] Yu, L.; Leckey, C. A.; and Tian, Z.: “Study on crack scattering in aluminum plates with 

Lamb wave frequency–wavenumber analysis,” Smart Materials and Structures, Vol. 22, 

No. 6, pp065019, 2013. 

[2] Tian, Z.; Yu, L.; and Leckey, C.: “Delamination detection and quantification on laminated 

composite structures with Lamb waves and wavenumber analysis,” Journal of Intelligent 

Material Systems and Structures, Vol.26, No. 13, 2015, pp. 1723-1738, 2015. 

[3] Guided wave inspection on specimen A1 (A1 report, submitted). 

E.33.4 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability:  

SSIR is capable of detecting wrinkles in the composite material. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.33-18). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. This test 

was repeated for the front and backsides of each panel. The wrinkles on the panel cause alternating 

areas of high and low resin content in the troughs and crest, respectively. Because the resin has a 

lower thermal conductivity than the carbon fiber, the high content regions (troughs) will retain 

heat more than the low content regions (crests). As a result, the crests will show as cold spots over 

time while the troughs show as hot spots. 
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Figure E.33-18. Flash IRT system components. 

 

Figure E.33-19. IR inspection system. 

 Equipment List and Specifications:  

 Thermal Wave VoyageIR system 

 SC6000 Series FLIR IR camera 

 4 6400 Watt-sec flash lamps 

 Flash Hood 

 X-Y gantry system 

 Settings 

Data collection settings (i.e., resolution, frame rate, data acquisition time) were not provided by 

inspector. 
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 Inspection Results 

Figure E.33-20 shows the IR image of the panel at 1.6 sec. As anticipated, hot and cold spots can 

be observed (circled in red), corresponding with the manufactured wrinkle locations. Because the 

panel was uniformly heated on the side that the camera observed, the strongest thermal gradient 

will come from the wrinkles on that side. Therefore, the indications from side 1 are not clearly 

observable on side 2. From these data, it is possible to measure the wavelength of the wrinkles, 

though the amplitudes cannot be determined from these data. 

 
 

a) b) 

Figure E.33-20. Greyscale 1.6 sec IR image of Composite Wrinkle Standard A3 side 1 (a)  

and side 2 (b). 

E.34 Specimen #34: Wrinkle A4 
Structure Material Details Dimensions (inches) Partner Methods 

Thin 

laminates 

IM7/8552-1 

slit tape 

Significant wrinkling 

in flat panels 
15 × 12 × 0.15 

NASA 
E.34.1 PEUT  

E.34.2 XCT 

USC E.34.3 GWUT 

Boeing E.34.4 SSIR 

 

Figure E.34-1. Photograph of Specimen #34: Boeing-Wrinkle-A4. 
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E.34.1 Method: Pulse-Echo Ultrasonic Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT is capable of detecting the wrinkling in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom designed single probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.34-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.34-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.34-1. Data collection settings. 

Resolution horizontal [in/pixel] 0.02 

Resolution vertical [in/pixel] 0.05 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 201 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 



78 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.34-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #34, is a flat panel fabricated from IM7/8552-1 slit tape with the objective of achieving 

wrinkles within the material. PEUT was performed on this specimen in NASA’s immersion tank 

specified above. 

Figure E.34-3 shows indications of fiber wrinkling near the surface of the material. The wrinkles 

cause severe perterbations in the acoustic waves that are easily seen throughout the sample as 

shown in Figure E.34-4. 

 

Figure E.34-3. UT image showing near surface indications of fiber waviness. 
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Figure E.34-4. UT image showing indications of fiber waviness within the material bulk. 

E.34.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability: ☆☆☆  

XCT is not capable of imaging the fiber wrinkles induced in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source, specimen manipulator, and an amorphous silica detector, as shown in Figure E.34-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer, 16-bit, 

amorphous-silicon digital detector with a 2000 × 2000-pixel array. 



80 

 

Figure E.34-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.34-6. Slices normal to the X-, Y-, and Z-directions are shown in Figures 34-6a, b, and c, 

respectively. 

 
a) b) c) 

Figure E.34-6. Slice direction nomenclature. 
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Figure E.34-7. Microfocus XCT system showing orientation of Specimen #34: Boeing-Wrinkles A4. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity, 5-axis, fully programmable manipulator 

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10 × 10 inches – full volume 200 µm spatial resolution 

 Settings 

Table E.34-2. Data collection settings. 

Source Energy 120 kV 

Current 90 µA 

Magnification 1.65 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (µm) 114.894 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that is viewed 

along any plane in the volume. The closer the sample can be placed to the X-ray source, the higher 

the spatial resolution that can be obtained.  

 Inspection Results 

Specimen #34 is a panel with significant wrinkles induced within the material. XCT was performed 

on this specimen in NASA LaRC’s large CT system with the settings defined in Section E.34.1.6. 

The scan was done using a large viewing window encompassing the whole specimen (Figure  
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E.34-8) and a small window covering a smaller area to increase the resolution of the scan (Figure 

E.34-9). This cannot always been done on larger specimens. 

 

Figure E.34-8. 3D X-ray generated view of specimen #32: Boeing-Wrinkles using a small viewing 

window showing the y direction (center), z direction (top) and x direction (right). 

The wrinkles cannot be seen from all viewing directions shown in Figure E.34-8. Both the x- and 

z-direction views give little evidence of any fiber waviness. In the y direction there are darker 

streaks and that are a result of the method used to induce wrinkling in the sample. These marks do 

show damage; however, they do not serve as an indicator for any fiber wrinkling. The higher 

resolution image in Figure E.34-9 shows possible indications of fiber wrinkling though it is still 

not entirely clear. When viewing the full specimen the fiber waviness is even less apparent (Figure 

E.34-8). 
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Figure E.34-9. 3D X-ray generated view of specimen #34: Boeing-Wrinkles from the z direction. 

E.34.3 Method: Guided Wave Ultrasonic Testing (GWUT) 

 Partner: USC 

 Technique Applicability:  

GWUT employs ultrasonic waves that propagate along waveguides by its boundaries, e.g. pipes, 

rods and plate-like structures, which allows waves propagate a long distance with little energy loss. 

GWUT shows advantage in many types of defect inspection, e.g. crack in metallic structures [1], 

and delamination in composite structures [2].  

The Boeing-wrinkle-A4 (herein referred to as A4) is inspected using hybrid PZT-SLDV GWUT 

method in this report. General information of A4 and its wrinkle layout are illustrated in the 

paragraph below. The relative inspection, results and system rating are illustrated in the inspection 

results. 

Specimen A4 is shown in Figure E.34-10 with its front and back view. The measured dimension 

of A4 is 306 × 260 × 4.4 mm. Significant wrinkles are observed on side one as shown in Figure 

E.34-10a, while no obvious wrinkles are observed on side two. No other information about A4 is 

available to the inspectors. 

  
a) b) 

Figure E.34-10. Picture of specimen A4. (a) front side (side 

1), and (b) back side (side 2). 

 Laboratory Set Up 

The same hybrid PZT-SLDV system is implemented to inspect A4, using contact type PZT as 

actuator and SLDV as sensor to excite and receive guided waves in the testing plate (Lamb waves) 

[1]. The overall setup also remains the same as reported previously and shown in Figure E.34-11 

and Figure E.34-12 [3]. 
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Figure E.34-11. Schematic design of the PZT-SLDV system. 

 

Figure E.34-12. Experimental setup of the PZT-SLDV system. 

 Equipment List and Specifications 

The detailed specifications of the equipment and devices used for the hybrid PZT-SLDV system 

at USC VSHM laboratory are given in Table E.34-3. Data acquisition settings are shown in Table 

E.34-4. 

Table E.34-3. Equipment/device specifications. 

Equipment/device Specifications 

Polytec PSV-400-M2 2D scanning laser Doppler vibrometer with a frequency range up to 

1 MHz with specific velocity decoders  

PZT Steminc 7-mm circular 0.5-mm thick piezoelectric transducers 

Tektronix AFG3022C 2-channel arbitrary function generator with 1µHz to 25MHz  

HSA 4014 High speed bipolar amplifier up to 1 MHz and 200 VA 

Target Simply Balanced
TM

 

organic honey 

Natural and organic honey blend performed as couplant  

Albedo 100 Reflective Spray a non-permanent, clear spray with light-reflective properties 

 Settings 

Table E.34-4. Data collection settings. 

Sampling frequency (MHz) 12.56 MHz 

Spatial sampling interval (mm) 1 mm 

Average  200 

Velocity decoder VD-07 10mm/s/V 

Spray coating  20 layers 
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Since A4 is similar to A3 from visual inspection, the same optimal excitation frequency (240 kHz) 

is adopted based on the results of A3 inspection. 2D area inspection (310 mm× 60 mm) is 

performed in order to visualize the wrinkle defects with 1-mm spatial resolution on both sides with 

excitation location at O as shown in Figure E.34-13. 

 

Figure E.34-13. 2D area inspection setup. 

 Inspection Results 

2D Inspection Results on Side-1 

First conducted is the inspection on side one with excitation location at O. The obtained wavefield 

image is plotted in Figure E.34-14a (refer to previous reports for algorithm). Denser wrinkle 

patterns are observed in the middle range along x direction (100-200 mm), while coarser wrinkles 

are observed at around x = 5070 mm and 210280 mm.  

 
a) 

 
b) 

Figure E.34-14. Wavefield images obtained on: (a) side-1, and (b) side-2. 
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2D Inspection Results on Side-2 

For rough identification of the wrinkle locations through thickness, 2D inspection is performed on 

side-2 with the same setup as side-1. The obtained wavefield image is plotted in Figure E.34-14b. 

Similar to imaging results on side-1, denser wrinkle patterns are observed at x = 100200 mm, and 

coarser wrinkle patterns are observed at x = 250 mm. However, the wrinkle patterns are not as 

strong and clear as side-1. Comparing the wavefield images obtained from side-1 and side-2, we 

can conclude that the wrinkle defects are closer to side-1 than side-2. 

In conclusion, wrinkle existence on A4 specimen using the hybrid PZT-SLDV system is 

successfully detected and quantified without material properties. The detailed rating of the system 

is shown in Table E.34-5. For defect visualization, five out of five stars is rated. The reason is that 

the wrinkle pattern is clearly observed, and its range is approximately quantified. The inspection 

time for the performed 2D inspection is around two hours for areas illustrated in this test, which is 

relatively fast. Thus, the inspection time gets four stars overall. Last, the actuator PZT is $3.60 per 

piece, which is cost effective. However, the SLDV system costs $300,000 when purchasing. 

Overall, two of five stars are rated regarding the system cost. In the future, expensive SLDV can 

be replaced by customized fixed LDV and gantry system to reduce the system cost. Considering 

the above five aspects, this hybrid PZT-SLDV guided wave inspection is very robust and get four 

out of five stars in general. 

Table E.34-5. Hybrid PZT-SLDV guided wave inspection rating. 

Hybrid PZT-SLDV guided wave inspection 

Sample A4 

Defect: wrinkles 

Rating  

Detection:  

Defect visualization  

Inspection time: ☆ 

Equipment cost: ☆☆☆ 

Overall Performance: ☆ 

 References 

[1] Yu, L.; Leckey, C. A.; and Tian, Z.: “Study on crack scattering in aluminum plates with 

Lamb wave frequency–wavenumber analysis,” Smart Materials and Structures, Vol. 22, 

No. 6, pp065019, 2013. 

[2] Tian, Z.; Yu, L.; and Leckey, C.: “Delamination detection and quantification on laminated 

composite structures with Lamb waves and wavenumber analysis,” Journal of Intelligent 

Material Systems and Structures, Vol.26, No. 13, 2015, pp. 1723-1738, 2015. 

[3] Guided wave inspection on specimen A1 (A1 report, submitted). 

E.34.4 Method: Single-Sided Infrared Thermography 

 Partner: Boeing  

 Technique Applicability:   

Flash thermography is capable of detecting wrinkles in the composite material. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.34-15). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 
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signature of the part over time to track the diffusion of heat through the part thickness. This test 

was repeated for the front and backsides of each panel. The wrinkles on the panel cause alternating 

areas of high and low resin content in the troughs and crest, respectively. Because the resin has a 

lower thermal conductivity than the carbon fiber, the high content regions (troughs) will retain 

heat more than the low content regions (crests). As a result, the crests will show as cold spots over 

time while the troughs show as hot spots. 

 

Figure E.34-15. Flash IRT system components. 

 

Figure E.34-16. IR inspection system. 

 Equipment List and Specifications:  

 Thermal Wave VoyageIR system 

 SC6000 Series FLIR IR camera 

 4 6400 Watt-sec flash lamps 

 Flash Hood 

 X-Y gantry system 
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 Settings 

Data collection settings (i.e., resolution, frame rate, data acquisition time) were not provided by 

inspector. 

 Inspection Results 

Figure E.34-17 shows the IR image of the panel at 1.0 sec. As anticipated, hot and cold spots can 

be observed (circled in red), corresponding with the manufactured wrinkle locations. Because the 

panel was uniformly heated on the side that the camera observed, the strongest thermal gradient 

will come from the wrinkles on that side. Because of this, one can observe fainter, mirrored 

indications of the wrinkles when observed from the opposite side, such as the left side grouping of 

wrinkles in Figure E.34-17a appearing fainter on the right side in Figure E.34.17b. From these 

data, it is possible to measure the wavelength of the wrinkles, though the amplitudes cannot be 

determined from these data. 

  
a) b) 

Figure E.34-17. Greyscale 1.0 sec IR image of Composite Wrinkle Standard A4 side 1 (a) and 

side 2 (b). 

E.35 Specimen #35: Boeing 8276-200-58-8A 
Structure Material Details Dimensions (inches) Partner Methods 

8 fabric plies 

2 fiberglass 

plies 

BMS8-276 

BMS8-331 

58° Curve with 0.2-inch 

radius 

Brass, RPF and PT inserts 

at varying depths 

24 × 6.5 Boeing 

E.35.1 XCT 

E.35.2 TTUT 

E.35.3 SSIR 

E.35.4 X-ray DR 

E.35.5 X-ray CR 
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Figure E.35-1. Photographs of Angle Panel Reference Standard 

E.35.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:    

XCT is capable of identifying all inserts, notably brass inserts. 

 Laboratory Setup 

The Digital Radiography Center (DRC) utilizes an YXLON Modular CT System. This system has 

the capability to utilize various X-ray sources for varying applications, including a 450-kV source, 

a microfocus source, and a nanofocus source. The microfocus source used has a variable focal spot 

size of less than 4 µm and is suitable for magnifications up to 10X, with the nanofocus ranging up 

to 187X. The detector has 3 degrees of freedom (DOF), allowing for increase in the effective 

detector area through combined scans. The manipulator controls the position of the detector, 

object, and source. It has 7 DOF including a rotating stage to rotate the object during the scan. The 

entire system includes the source, detector, manipulator, control and reconstruction computers, 

and user control station. The computers and control station are outside of the radiation enclosure 

(vault) and utilize a safety interlock system to operate. Cameras are located in the vault to allow 

the operator to monitor the part from outside the enclosure. 

 

Figure E.35-2. XCT system components. 
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a) b) c) 

Figure E.35-3. Slice direction nomenclature. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.35-4). The specimen was right-side-up for the Upper scan, and upside-

down for the Lower scan. Plastic markers, which show up in 3D reconstruction, were placed on 

the sections to denote the boundaries between sections. The position of the specimen, source, and 

detector are controlled to produce geometric magnification of the image and increase the spatial 

resolution. The image data are gathered as X-rays penetrate the part and expose the detector for a 

set amount of time. For each scan, these image data are collected at 1080 different angles 

throughout a 360° rotation. These images are then reconstructed to create the 3D volume data set. 

This data set is viewed and analyzed in Volume Graphics, a volume rendering software, to identify 

the relevant components. 
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Figure E.35-4. Microfocus XCT setup for Radii Delamination Standard. 

 Equipment List and Specifications  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 126 µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.35-1. Data collection settings. 

Source Energy 205 kV 

Current 0.47 mA 

Magnification 1.59 X 

Filter Copper 

# Rotational angles 1080 

Exposure time/frame 800 ms 

Spatial Resolution (µm) 125.777 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts, largely 

grouped around the angle in the panel; however, are not exclusive to this area. The standards vary 

in thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half volumes of the standards, 

flipped 180° for the scan.  

After aligning the volume coordinate system to correspond with the panel geometry, the slice view 

can be used to inspect conditions at each lamina. The brightness and contrast settings are also 

adjusted to make defects clear, but retain the visible noise at a reasonable level. The inserts are 
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clearly visible (Figure E.35-5), showing with less density for pressure sensitive tape (PT) and 

release ply fabric (RPF) and higher density for brass. The brass is the most readily observable, 

followed by the PT with the RPF having the lowest detectability. The RPF may show the least 

response due to similar density to base material or due to a strong interface with little voiding or 

delamination to be detected. 

  

 
a) b) c) 

Figure E.35-5. CT slice view showing PT (a), RPF (b), and brass (c) inserts. 

The CT scanning and reconstruction process is subject to artificial and undesirable artifacts. These 

are the result of multiple conditions. The direction of rotation leaves an underlying direction to the 

noise of the data set, aligning with the rotation. This is seen as a light, roughly horizontal streaking 

seen in (Figure E.35-5). The presence of high-density material in an otherwise low-density 

structure often creates even more intense ray artifacts, seen as shadow-like streaks emanating from 

the high-density material (Figure E.35-5c). If defects are present in these dark artifacts, their 

detectability is reduced. Lastly, the part may rotate in and out of the cone-beam of the X-rays 

during the scan, leaving the top and bottom edges of the volume not fully defined. This is seen as 

darker “wedges” of the volume at the top and bottom of the data set (Figure E.35-5).  

The detectability of the inserts relies on viewing the slices at the appropriate angle, which aligns 

with the lamina. This means the inserts within the curve of the panel, while still detectable, are less 

apparent (Figure E.35-6), and operators must be careful to attempt to identify them. The inserts 

are also more visible when they induce delamination with air or if they have a much greater density 

than the composite material. 
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Figure E.35-6. CT slice view showing PT and RPF inserts. 

E.35.2 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: Boeing 

 Technique Applicability:    

All inserts are visually detectable with TTUT data. 

 Laboratory Setup 

The TTUT scanner at the Boeing laboratory consists of an enclosure, part supports, a water pump 

and nozzle system, ultrasonic transducers (transmitter and receiver), robotic manipulator, and 

control computer. After adjusting the water to produce a uniform flow, the pulser and receiver (on 

opposite sides of the specimen) perform a C-scan under the control of the robotic manipulator and 

control computer. The C-scan is produced by taking multiple 1D scans (A-scans) and stitching 

them together to produce the final area result. 
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Figure E.35-7. TTUT Scanning schematic with water pump. 

TTUT works on the principal of the capture and quantification of the transmitted waves. It uses a 

pulsing transducer on one side of the part and has the receiving transducer on the opposite side of 

the part. Scanning is accomplished with contact, water streams, or full immersion method, as long 

as sufficient ultrasonic coupling is used. Although the TTUT works on non-parallel, front-to-back 

surface, the optimized data are produced when the front-to-back surfaces are parallel to each other. 

As the ultrasonic waves travel through a material, they are attenuated. Defects and material 

discontinuities such as delamination, porosity and foreign material interfaces cause increased 

attenuation. UT has an orientation dependency, where certain defect orientations will attenuate the 

signal more if they are oriented for maximum reflection. Delamination tend to be oriented 

favorably for detection, making ultrasound the common method for composite inspection.  

 Equipment List and Specifications:  

 1 MHz ultrasonic transducer and receiver 

 Water pump, nozzles, and circulation system 

 Robotic manipulator 

 Enclosure 

 Control computer 

 Settings  

Table E.35-2. Data collection settings. 

Frequency 1 MHz 

Resolution 0.04 inch × 0.04 inch 

 Inspection Results 

The NASA Radii Delamination Standards are carbon fiber composite panels with foreign material 

inserts in various layers to evaluate the detectability using ultrasonic inspection. These inserts are 

largely grouped around the angle in the panel; however, not exclusive to this area. The standards 

vary in thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of 
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fiberglass. Using TTUT, the all insert types (PT, RPF, and brass) were detectable. However, this 

visual detectability generally reduced as thickness increased. 

The brass inserts were the most resolved and detected (Figure E.35-8c) and the RPF inserts showed 

the lowest detectability (Figure E.35-8b). This is consistent with the theory that the RPF inserts 

bond to the material the best, leading to a small TTUT signal, while the brass has the worst bond 

(likely due to applied coating), leading to the large signals seen. The brass also has a significantly 

different attenuation than the surrounding material, allowing easy detection. The 48 ply standards 

included inserts in locations on and away from the curved radius. The inserts away from the radius 

tended to be better resolved and defined (Figure E.35-8) due to the more uniform background 

signal. While the RPF inserts had small responses and resolving their exact shape is difficult, their 

presence tended to be detectable in the distortion of the surrounding signal and features (Figure 

E.35-8b).  

   

a) b) c) 

Figure E.35-8. TTUT scans showing PT (a), RPF (b), and brass (c) inserts. 

E.35.3 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability:   

SSIR can detect all insert types in the radii standard. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.35-9). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. As the 

diffusion wave moves through the part, the inserts in the standards will cause disturbances in the 

otherwise approximately uniform heat flow. A few factors can influence the nature of the heat 

signature. If the insert has a different thermal conductivity than the part material, it will show as a 

hot spot (lower thermal conductivity) or cold spot (higher thermal conductivity) as it aids or 

hampers the diffusion of heat through the part. The inserts may also cause a significant 

delamination in the part, which has an insulating effect and will show as a hotter indication. With 

either case, the now disturbance in the originally uniform heat flow will be captured with the IR 

camera as a function of time. 
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Figure E.35-9. Flash IRT system components. 

 

Figure E.35-10. IR inspection system. 

 Equipment List and Specifications:  

 SC6000 Series FLIR IR camera 

 Flash lamps 

 Flash hood 

 Settings 

Table E.35-3. Imaging and exposure parameters. 

Frame Rate 120 fps 

Image Size 640 × 512 pixels 

Capture Duration 5 sec 

Camera Frequency 120 Hz 

Flash Duration <0.2 sec 
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 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass.  

Because the flash heat diffuses through the thickness of the part, inserts at different layers should 

appear most clearly at varying times. This is observed in the lower image of Figure E.35-11, where 

only one set of inserts gives a thermal signature, because the thermal diffusion wave has not 

interacted with the deeper inserts yet. Similarly, the uppermost sets of inserts show the most clearly 

in the upper image. As the heat wave progresses through the material, the inserts heat up and cool 

faster than the surrounding material, leading to initially lighter indications followed by darker 

indications as time progresses. This is seen in the upper image where the PT inserts close to the 

surface have begun to cool faster (dark) while the lower inserts are heating up faster (light). 

 

 

Figure E.35-11. Greyscale IR image of Radii Delamination Standard inserts (Top: PT and RPF, 

Bottom: brass) 

E.35.4 Method: X-ray Digital Radiography (DR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray DR is capable of detecting the brass and RPF inserts but is unable to detect the PT inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System with DR capability. This system includes a 

microfocus source and a digital detector array with positions controlled by a manipulator system. 
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The microfocus source used has a variable focal spot size of less than four µm and is suitable for 

magnifications up to 10X. The manipulator has 7 DOF including a rotating stage to rotate the 

object as well as the ability to control its position along with the detector for magnification. The 

entire system includes the source, detector, manipulator, and user control station. The computers 

and control station are outside of the radiation enclosure (vault) and utilize a safety interlock 

system to operate. Cameras are located in the vault to allow the operator to monitor the part from 

outside the enclosure.  

 

Figure E.35-12. X-ray DR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.35-13). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Lead markers were placed on the sections to denote the boundaries 

between and label sections. The position of the specimen, source, and detector are controlled to 

produce geometric magnification of the image and increase the spatial resolution while capturing 

the entire section of the part in the detector area. The image data are gathered as X-rays penetrate 

the part and expose the detector for a set amount of time to produce a frame; multiple frames are 

average to produce the final image. This image, viewed in Image 3500, has much lower noise 

levels than a single frame due to the averaging. The operator adjusts the brightness and contrast 

settings of the image to identify the inserts, seen in the 2D image as rectangular defects.   

 

Figure E.35-13. Laboratory setup of angle plate standard for DR imaging. 
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 Equipment List and Specifications:  

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2 048 pixels with 200 µm pitch, 400 × 400 mm active area 

 Image 3500 visualizing software 

 Settings 

Table E.35-4. Imaging and exposure parameters. 

Source Energy 100 kV 

Current 0.7 mA 

Source-Detector Distance 42 in 

Source-Object Distance 27 in 

Magnification 1.55X 

Integration Time 500 ms 

Integration Frames 50 

Spatial Resolution (µm) 129 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

DR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects affecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Image 3500, the brightness and contrast settings 

vary to make defects visible. In the standards, the inserts show as rectangular areas with darker 

values (positive image). 

The RPF insert is detectable in this laminate thickness (Figures E.35-14, E.35-15b). However, the 

PT inserts are not detectable (Figure E.35-15a). Because the densities of the carbon fiber base 

material and the inserts are similar, a single-ply insert does not create a large density variation, 

thereby limiting the detectability. This detectability also drops as the laminate increases in 

thickness. The brass inserts, however, cause a very large density variation and are readily 

observable in all laminate thicknesses (Figure E.35-15c). Metal FOD in composite structures often 

show this degree of detectability due to the relatively high density of the metal compared to the 

composite. 
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Figure E.35-14. DR Image of RPF inserts with close up. 

   
a) b) c) 

Figure E.35-15. DR images of PT (a), RPF (b), and brass (c) insert locations in 8276-200-58-8 

standard. 

E.35.5 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray CR is capable of detecting the RPF and brass inserts but is unable to detect the PT inserts. 
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 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160 kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

blue light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

The standards were divided into two sections, labeled Upper and Lower, and placed directly on 

the plastic cassette containing the imaging plate with the X-ray source directly overhead (Figure 

E.35.16). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to show section boundaries and label the images, 

showing up in the results as bright white. Because of the large differences in laminate thicknesses 

between the specimens, three separate source energies were used, with the highest energy for the 

thickest specimens. 

 

Figure E.35-16. X-ray CR imaging. 
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a) b) 

Figure E.35-17. Laboratory setup of angle plate standards for CR imaging. 

 Equipment List and Specifications:  

 Philips 160 kV X-ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.35-5. Imaging and Exposure Parameters 

Source Energy 30,40,50 kV 

Current 10 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 10 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

CR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects effecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Rhythm Review, the brightness and contrast 

settings vary to make defects visible. In addition, multiple filters are available to make defect 

identification easier for the operator. In the standards, the inserts show as rectangular areas with 

lighter values (negative image). 
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The RPF insert is detectable in this laminate thickness (Figure E.35-18 and Figure E.35-19b); 

however, the PT inserts are not detectable (Figure E.35-19a). Because the densities of the carbon 

fiber base material and the inserts are similar, a single-ply insert does not create a large density 

variation, thereby limiting the detectability. The brass inserts, however, cause a very large density 

variation and are readily observable in all laminate thicknesses (Figure E.35-19c). Metal FOD in 

composite structures often show this degree of detectability due to the relatively high density of 

the metal compared to the composite. 

 

Figure E.35-18. CR image of RPF inserts with close up (filter applied). 

   

a) b) c) 

Figure E.35-19. CR images of PT (a), RPF (b), and brass (c) insert locations for 8276-200-58-8 

standard (filter applied). 

Structure Material Details Dimensions (inches) Partner Methods 

26 fabric plies 

2 fiberglass 

plies 

BMS8-276 

BMS8-331 

58° Curve with 0.2-

inch radius 

Brass, RPF and PT 

inserts at varying 

depths 

24 × 6.5 Boeing 

E.36.3 XCT 

E.36.4 TTUT 

E.36.5 SSIR 

E.36.6 X-ray DR 

E.36.7 X-ray CR 

E.36.8 Backscatter 
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E.36 Specimen #36: Boeing 8276-200-58-26A 

  

Figure E.36-1. Photographs of Angle Panel Reference Standard. 

E.36.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:    

XCT is capable of identifying all inserts, notably brass inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than four µm 

and is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector 

has 3 DOF, allowing for increase in the effective detector area through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOF including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.36-2. XCT system components. 



105 

 
a) b) c) 

Figure E.36-3. Slice direction nomenclature. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.36-4). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Plastic markers, which show up in 3D reconstruction, were placed on 

the sections to denote the boundaries between sections. The position of the specimen, source, and 

detector are controlled to produce geometric magnification of the image and increase the spatial 

resolution. The image data are gathered as X-rays penetrate the part and expose the detector for a 

set amount of time. For each scan, these image data are collected at 1080 different angles 

throughout a 360° rotation. These images are then reconstructed to create the 3D volume data set. 

This data set is viewed and analyzed in Volume Graphics, a volume rendering software, to identify 

the relevant components. 



106 

 

Figure E.36-4. Microfocus XCT setup for Radii Delamination Standard. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 126 µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.36-1. Data collection settings. 

Source Energy 205 kV 

Current 0.47 mA 

Magnification 1.59 X 

Filter Copper 

# Rotational angles 1080 

Exposure time/frame 800 ms 

Spatial Resolution (µm) 125.777 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half volumes of the standards, 

flipped 180° for the scan. 

After aligning the volume coordinate system to correspond with the panel geometry, the slice view 

is used to inspect conditions at each lamina. The brightness and contrast settings are also adjusted 

to make defects clear, but retain the visible noise at a reasonable level. The inserts are clearly 
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visible (Figure E.36-5), showing with less density for PT and RPF and higher density for brass. 

The brass is the most readily observable, followed by the PT with the RPF having the lowest 

detectability. The RPF may show the least response due to similar density to base material or due 

to a strong interface with little voiding or delamination to be detected. 

   
a) b) c) 

Figure E.36-5. CT slice view showing PT (a), RPF (b), and brass (c) inserts. 

The CT scanning and reconstruction process is subject to artificial and undesirable artifacts. These 

are the result of multiple conditions. The direction of rotation leaves an underlying direction to the 

noise of the data set, aligning with the rotation. This is seen as a light, roughly horizontal streaking 

seen in (Figure E.36-5). The presence of high-density material in an otherwise low-density 

structure often creates even more intense ray artifacts, seen as shadow-like streaks emanating from 

the high-density material (Figure E.36-5c). If defects are present in these dark artifacts, their 

detectability is reduced. Lastly, the part may rotate in and out of the cone-beam of the X-rays 

during the scan, leaving the top and bottom edges of the volume not fully defined. This is seen as 

darker “wedges” of the volume at the top and bottom of the data set (Figure E.36-5).  

The detectability of the inserts relies on viewing the slices at the appropriate angle, which aligns 

with the lamina. This means the inserts within the curve of the panel, while still detectable, are less 

apparent (Figure E.36-6), and operators must be careful to attempt to identify them. The inserts 

are also more visible when they induce delamination with air or if they have a much greater density 

than the composite material. 



108 

 

Figure E.36-6. CT slice view showing PT and RPF inserts. 

E.36.2 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: Boeing 

 Technique Applicability:    

All inserts are visually detectable with TTUT data. 

 Laboratory Setup 

The TTUT scanner at the Boeing laboratory consists of an enclosure, part supports, a water pump 

and nozzle system, ultrasonic transducers (transmitter and receiver), robotic manipulator, and 

control computer. After adjusting the water to produce a uniform flow, the pulser and receiver (on 

opposite sides of the specimen) perform a C-scan under the control of the robotic manipulator and 

control computer. The C-scan is produced by taking multiple 1-dimensional scans (A-scans) and 

stitching them together to produce the final area result. 
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Figure E.36-7. TTU Scanning schematic with water pump. 

TTUT works on the principal of the capture and quantification of the transmitted waves. It uses a 

pulsing transducer on one side of the part and has the receiving transducer on the opposite side of 

the part. Scanning can be accomplished with contact, water streams, or full immersion method, as 

long as sufficient ultrasonic coupling is used. Although the TTUT works on non-parallel, front-to-

back surface the optimized data are produced when the front-to-back surfaces are parallel to each 

other. 

As the ultrasonic waves travel through a material, they are attenuated. Defects and material 

discontinuities such as delamination, porosity and foreign material interfaces cause increased 

attenuation. UT has an orientation dependency, where certain defect orientations will attenuate the 

signal more if they are oriented for maximum reflection. Delamination tend to be oriented 

favorably for detection, making ultrasound the common method for composite inspection.  

 Equipment List and Specifications:  

 1 MHz ultrasonic transducer and receiver 

 Water pump, nozzles, and circulation system 

 Robotic manipulator 

 Enclosure 

 Control computer 

 Settings  

Table E.36-2. Data collection settings. 

Frequency 1 MHz 

Resolution 0.04 inch × 0.04 inch 

 Inspection Results 

The NASA Radii Delamination Standards are carbon fiber composite panels with foreign material 

inserts in various layers to evaluate the detectability using ultrasonic inspection. These inserts are 

largely grouped around the angle in the panel; however, not exclusive to this area. The standards 

vary in thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of 
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fiberglass. Using TTUT, the all insert types (PT, RPF, and brass) were detectable. However, this 

visual detectability generally reduced as thickness increased. 

The brass inserts were the most resolved and detected (Figure E.36-8c) and the RPF inserts showed 

the lowest detectability (Figure E.36-8b). This is consistent with the theory that the RPF inserts 

bond to the material the best, leading to a small TTUT signal, while the brass has the worst bond 

(likely due to applied coating), leading to the large signals seen. The brass also has a significantly 

different attenuation than the surrounding material, allowing easy detection. The 48 ply standards 

included inserts in locations on and away from the curved radius. The inserts away from the radius 

tended to be better resolved and defined (Figure E.36-8) due to the more uniform background 

signal. While the RPF inserts had small responses and resolving their exact shape is difficult, their 

presence tended to be detectable in the distortion of the surrounding signal and features (Figure 

E.36-8b).  

   
a) b) c) 

Figure E.36-8. TTUT scans showing PT (a), RPF (b), and brass (c) inserts. 

E.36.3 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability: ☆  

SSIR can detect all insert types in the radii standard. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.36-9). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. As the 

diffusion wave moves through the part, the inserts in the standards will cause disturbances in the 

otherwise approximately uniform heat flow. A few factors can influence the nature of the heat 

signature. If the insert has a different thermal conductivity than the part material, it will show as a 

hot spot (lower thermal conductivity) or cold spot (higher thermal conductivity) as it aids or 

hampers the diffusion of heat through the part. The inserts may also cause a significant 

delamination in the part, which has an insulating effect and will show as a hotter indication. With 

either case, the now disturbance in the originally uniform heat flow will be captured with the IR 

camera as a function of time. 
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Figure E.36-9. Flash IRT system components. 

 

Figure E.36-10. IR inspection system. 

 Equipment List and Specifications:  

 SC6000 Series FLIR IR camera 

 6400 Watt-sec flash lamps 

 Flash Hood 

 Settings 

Table E.36-3. Imaging and exposure parameters. 

Frame Rate 120 fps 

Image Size 640 × 512 pixels 

Capture Duration 5 sec 

Camera Frequency 120 Hz 

Flash Duration <0.2 sec 
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 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass.  

Because the flash heat diffuses through the thickness of the part, inserts at different layers should 

appear most clearly at varying times. This is observed in the lower image of Figure E.36-11, where 

one set of inserts gives a significant thermal signature while the others are just starting to show, 

because the thermal diffusion wave has not interacted with the deeper inserts yet. Similarly, the 

uppermost sets of inserts show the most clearly in the upper image. As the heat wave progresses 

through the material, the inserts heat up and cool faster than the surrounding material, leading to 

initially lighter indications followed by darker indications as time progresses. This is seen in the 

upper image where the PT inserts close to the surface have begun to cool faster (dark) while the 

lower inserts are heating up faster (light). 

 

 

Figure E.36-11. Greyscale IR image of Radii Delamination Standard inserts (Top: PT and RPF, 

Bottom: brass). 

E.36.4 Method: X-ray Digital Radiography (DR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray DR is capable of detecting the brass inserts but is unable to detect the RPF or PT inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System with Digital Radiography capability. This 

system includes a microfocus source and a digital detector array with positions controlled by a 

manipulator system. The microfocus source used has a variable focal spot size of less than four 
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µm and is suitable for magnifications up to 10X. The manipulator has 7 DOF including a rotating 

stage to rotate the object as well as the ability to control its position along with the detector for 

magnification. The entire system includes the source, detector, manipulator, and user control 

station. The computers and control station are outside of the radiation enclosure (vault) and utilize 

a safety interlock system to operate. Cameras are located in the vault to allow the operator to 

monitor the part from outside the enclosure. 

 

Figure E.36-12. X-ray DR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.36-13). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Lead markers were placed on the sections to denote the boundaries 

between and label sections. The position of the specimen, source, and detector are controlled to 

produce geometric magnification of the image and increase the spatial resolution while capturing 

the entire section of the part in the detector area. The image data are gathered as X-rays penetrate 

the part and expose the detector for a set amount of time to produce a frame; multiple frames are 

average to produce the final image. This image, viewed in Image 3500, has much lower noise 

levels than a single frame due to the averaging. The operator adjusts the brightness and contrast 

settings of the image to identify the inserts, seen in the 2D image as rectangular defects.   

 

Figure E.36-13. Laboratory setup of angle plate standard for DR imaging. 
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 Equipment List and Specifications:  

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 Image 3500 visualizing software 

 Settings 

Table E.36-4. Imaging and exposure parameters. 

Source Energy 100 kV 

Current 0.7 mA 

Source-Detector Distance 42 in 

Source-Object Distance 27 in 

Magnification 1.55X 

Integration Time 500 ms 

Integration Frames 50 

Spatial Resolution (µm) 129 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

DR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects affecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Image 3500, the brightness and contrast settings 

vary to make defects visible. In the standards, the inserts show as rectangular areas with darker 

values (positive image). 

The PT and RPF inserts are undetectable in this laminate thickness (Figure E.36-14a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. This detectability also drops 

as the laminate increases in thickness. The brass inserts, however, cause a very large density 

variation and are readily observable in all laminate thicknesses (Figure E.36-14c). Metal FOD in 

composite structures often show this degree of detectability due to the relatively high density of 

the metal compared to the composite.  
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a) b) c) 

Figure E.36-14. DR images of PT (a), RPF (b), and brass (c) insert locations in 8276-200-58-26 

standard. 

E.36.5 Method: Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray CR is capable of detecting the brass inserts but is unable to detect the PT and RPF inserts. 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

blue light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 
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Figure E.36-15. X-ray CR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed directly on 

the plastic cassette containing the imaging plate with the X-ray source directly overhead (Figure 

E.36-15). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to show section boundaries and label the images, 

showing up in the results as bright white. Because of the large differences in laminate thicknesses 

between the specimens, three separate source energies were used, with the highest energy for the 

thickest specimens. 

 

 
a) b) 

Figure E.36-16. Laboratory setup of angle plate standards for CR imaging. 

 Equipment List and Specifications:  

 Philips 160 kV X-ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 
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 Settings 

Table E.36-5. Imaging and exposure parameters. 

Source Energy 30,40,50 kV 

Current 10 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 10 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

CR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects effecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Rhythm Review, the brightness and contrast 

settings vary to make defects visible. In addition, multiple filters are available to make defect 

identification easier for the operator. In the standards, the inserts show as rectangular areas with 

lighter values (negative image). 

The PT and RPF inserts are undetected for this laminate thickness (Figure E.36-17a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. The brass inserts, however, 

cause a very large density variation and are readily observable in all laminate thicknesses (Figure 

E.36-17c). Metal FOD in composite structures often show this degree of detectability due to the 

relatively high density of the metal compared to the composite. 

   
a) b) c) 

Figure E.36-17. CR images of PT (a), RPF (b), and brass (c) insert locations for 8276-200-58-26 

standard (filter applied). 
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E.36.6 Method: X-ray Backscatter 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray Backscatter is capable of detecting the brass inserts but is unable to detect the PT and RPF 

inserts. 

 Laboratory Setup 

The DRC has a large X-ray enclosure (vault) which is utilized for high-energy CT scanning, large 

2D X-ray imaging, and X-ray backscatter scanning. A custom Nucsafe portable backscatter system 

is set up in this enclosure. Because of the relatively low radiation output, it can be safely operated 

with the operator in the vault, outside of a boundary established by the controlling Radiation Health 

and Safety organization. Figure E.36-18 shows the backscatter unit (left), while the high voltage, 

generator, cooling system, and control computer are housed in a portable cart (right), which can 

also hold the unit for transportation.  

  

Figure E.36-18. Nucsafe portable X-ray backscatter system. 

Unlike most other X-ray methods, which are TT, Backscatter X-ray is a method of 2D imaging 

that only requires one-sided access. When X-rays interact with a material, most pass through with 

some attenuation; however, a small fraction scatters back and can be detected (Compton 

Scattering). Backscatter uses this by exposing a small area of a specimen to a rotating collimated 

X-ray beam (Figure E.36-18). The scattered X-rays are collected with detectors and used along 

with the swept area of the beam to construct a column of an image. By translating the whole source, 

another column is made and sequentially a full 2D image is created as seen from the source side. 

In this test, the part is placed a short distance from the unit with the X-rays initially aligned to one 

side. During scanning, the unit then translated across the part to build the image. 
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Figure E.36-19. X-ray backscatter imaging. 

 Equipment List and Specifications:  

 Nucsafe Portable X-ray Backscatter imaging system 

 Settings 

Table E.36-6. Imaging and exposure parameters. 

Source Energy 80 kV 

Current 21.1 mA 

Scan Velocity 216 mm/min 

Collimator Speed 27 RPM 

Exposure per pixel 0.617 ms 

Image width and height 550 × 400 pixels 

Pixel Size 1 mm × 0.1° 

Imaging Sweep Area 40° 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Backscatter X-ray is particularly sensitive to material differences that cause large variations in 

scatter. Metallic foreign material or water in honeycomb panels are examples of detectable 

phenomena. It is not sensitive in thicker parts however, as the scattered X-rays deeper in the part 

fail to generate a clear image. In this standard, the brass inserts provide a detectable scatter; 

however, this scatter is only resolved in the shallow layers, becoming fainter and undetectable at 

the back layers. This is seen in Figure E.36-20 as the shallow inserts on the left side are clear, but 

the deeper inserts in the middle are faint with the back inserts located to the right not visible at all. 

The indications on the sides of the panel are the grips use to hold the part for scanning. 
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Figure E.36-20. X-ray backscatter image of 8276-200-58-26 standard with brass inserts. 

E.37 Specimen #37: Boeing 8276-200-58-48A 
Structure Material Details Dimensions (inches) Partner Methods 

Thin 

laminates 
8276 slit tape 

S curve ( __/‾ ) 58° slant 

with two 0.2-inch radii 
20x6x2.4 

NASA E.37.1 PE UT  

Boeing 

E.37.2 XCT 

E.37.3 TTUT 

E.37.4 SSIR 

E.37.5 X-ray DR 

E.37.6 X-ray CR 

   

Figure E.37-1. Photograph of Specimen #37: Boeing 8276-200-58-48A. 

E.37.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT is capable of detecting the delaminations simulated within this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom designed single probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform through transmission and pulse-echo ultrasonic 

inspections. TT inspection employs two aligned ultrasonic probes, one transmitter and one 
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receiver, placed on either side of a test specimen. Pulse-echo inspection is a single-sided method 

where a single ultrasonic probe is both transmitter and receiver. In each method, data are acquired 

while raster scanning the ultrasonic probe(s) in relation to a part. Figure E.37-2 shows a simplified 

block diagram of a scanning Pulse-echo inspection. 

 

Figure E.37-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.37-1. Data collection settings. 

Resolution horizontal [in/pixel] 0.025 

Resolution vertical [in/pixel] 0.025 

Probe frequency [MHz] 5 

Focal Length [in] 2 

Array Dimensions [pixels] 821 × 150 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.37-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #37, is an S curve panel with a 58° slant and two 0.2-inch radii fabricated from 8276 slit 

tape with the objective of achieving delaminations via inserts throughout the sample. PEUT was 

performed on this specimen in NASA’s immersion tank specified above. 
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The scan was performed normal to the larger edge region providing the largest amount of surface. 

Figure E.37-3 shows delaminations just below the surface of the material. They appear white due 

to the acoustic waves reflecting off the air pocket generating a strong early response. Figures  

E.37-4 and E.37-5 show delaminations within the bulk of the sample at depths of 0.033 inch and 

0.119 inch respectively. Indications from delaminations in the curved radii are also visible. 

 

Figure E.37-3. UT image showing near surface delaminations on the large flat edge. 

 

Figure E.37-4. UT image showing delaminations within the bulk of the sample. 

 

Figure E.37-5. UT image showing delaminations within the bulk of the sample 

E.37.2 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:    

XCT is capable of identifying all inserts, notably brass inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than 4 µm and 

is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector has 

3 DOF, allowing for increase in the effective detector area through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOF including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 
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operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.37-6. XCT system components. 

 
a) b) c) 

Figure E.37-7. Slice direction nomenclature. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.37-8). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Plastic markers, which show up in 3D reconstruction, were placed on 



124 

the sections to denote the boundaries between sections. The position of the specimen, source, and 

detector are controlled to produce geometric magnification of the image and increase the spatial 

resolution. The image data are gathered as X-rays penetrate the part and expose the detector for a 

set amount of time. For each scan, these image data are collected at 1080 different angles 

throughout a 360° rotation. These images are then reconstructed to create the 3D volume data set. 

This data set is viewed and analyzed in Volume Graphics, a volume rendering software, to identify 

the relevant components. 

 

Figure E.37-8. Microfocus XCT setup for Radii Delamination Standard. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 126 µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.37-2. Data collection settings. 

Source Energy 205 kV 

Current 0.47 mA 

Magnification 1.59 X 

Filter Copper 

# Rotational angles 1080 

Exposure time/frame 800 ms 

Spatial Resolution (µm) 125.777 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 
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around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half volumes of the standards, flipped 

180° for the scan. 

After aligning the volume coordinate system to correspond with the panel geometry, the slice view 

is used to inspect conditions at each lamina. The brightness and contrast settings are also adjusted 

to make defects clear, but retain the visible noise at a reasonable level. The inserts are clearly 

visible (Figure E.37-9), showing with less density for PT and RPF and higher density for brass. 

The brass is the most readily observable, followed by the PT with the RPF having the lowest 

detectability. The RPF may show the least response due to similar density to base material or due 

to a strong interface with little voiding or delamination to be detected. 

   
a) b) c) 

Figure E.37-9. CT Slice view showing PT (a), RPF (b), and brass (c) inserts. 

The CT scanning and reconstruction process is subject to artificial and undesirable artifacts. These 

are the result of multiple conditions. The direction of rotation leaves an underlying direction to the 

noise of the data set, aligning with the rotation. This is seen as a light, roughly horizontal streaking 

seen in (Figure E.37-9). The presence of high-density material in an otherwise low-density 

structure often creates even more intense ray artifacts, seen as shadow-like streaks emanating from 

the high-density material (Figure E.37-9c). If defects are present in these dark artifacts, their 

detectability is reduced. Lastly, the part may rotate in and out of the cone-beam of the X-rays 

during the scan, leaving the top and bottom edges of the volume not fully defined. This is seen as 

darker “wedges” of the volume at the top and bottom of the data set (Figure E.37-9).  

The detectability of the inserts relies on viewing the slices at the appropriate angle, which aligns 

with the lamina. This means the inserts within the curve of the panel, while still detectable, are less 

apparent (Figure E.37-10), and operators must be careful to attempt to identify them. The inserts 

are also more visible when they induce delamination with air or if they have a much greater density 

than the composite material. 
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Figure E.37-10. CT slice view showing PT and RPF inserts. 

E.37.3 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: Boeing 

 Technique Applicability:    

All inserts are visually detectable with TTUT data. 

 Laboratory Setup 

The TTUT scanner at the Boeing laboratory consists of an enclosure, part supports, a water pump 

and nozzle system, ultrasonic transducers (transmitter and receiver), robotic manipulator, and 

control computer. After adjusting the water to produce a uniform flow, the pulser and receiver (on 

opposite sides of the specimen) perform a C-scan under the control of the robotic manipulator and 

control computer. The C-scan is produced by taking multiple 1-dimensional scans (A-scans) and 

stitching them together to produce the final area result. 
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Figure E.37-11. TTUT scanning schematic with water pump. 

TTUT works on the principal of the capture and quantification of the transmitted waves. It uses a 

pulsing transducer on one side of the part and has the receiving transducer on the opposite side of 

the part. Scanning can be accomplished with contact, water streams, or full immersion method, as 

long as sufficient ultrasonic coupling is used. Although the TTUT works on non-parallel, front-to-

back surface, the optimized data are produced when the front-to-back surfaces are parallel to each 

other. 

As the ultrasonic waves travel through a material, they are attenuated. Defects and material 

discontinuities such as delamination, porosity and foreign material interfaces cause increased 

attenuation. UT has an orientation dependency, where certain defect orientations will attenuate the 

signal more if they are oriented for maximum reflection. Delamination tend to be oriented 

favorably for detection, making ultrasound the common method for composite inspection.  

 Equipment List and Specifications:  

 1 MHz ultrasonic transducer and receiver 

 Water pump, nozzles, and circulation system 

 Robotic manipulator 

 Enclosure 

 Control computer 

 Settings  

Table E.37-3. Data collection settings. 

Frequency 1 MHz 

Resolution 0.04 inch × 0.04 inch 

 Inspection Results 

The NASA Radii Delamination Standards are carbon fiber composite panels with foreign material 

inserts in various layers to evaluate the detectability using ultrasonic inspection. These inserts 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 
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Using TTUT, the all insert types (PT, RPF, and brass) were detectable. However, this visual 

detectability was generally reduced as thickness increased. 

The brass inserts were the most resolved and detected (Figure E.37-12c) and the RPF inserts 

showed the lowest detectability (Figure E.37-12b). This is consistent with the theory that the RPF 

inserts bond to the material the best, leading to a small TTUT signal, while the brass has the worst 

bond (likely due to applied coating), leading to the large signals seen. The brass also has a 

significantly different attenuation than the surrounding material, allowing it to easily be detected. 

The 48 ply standards included inserts in locations on and away from the curved radius. The inserts 

away from the radius tended to be better resolved and defined (Figure E.37-12) due to the more 

uniform background signal. While the RPF inserts had small responses and resolving their exact 

shape is difficult, their presence tended to be detectable in the distortion of the surrounding signal 

and features (Figure E.37-12b).  

  
 

a) b) c) 

Figure E.37-12. TTUT scans showing PT (a), RPF (b), and brass (c) inserts. 

E.37.4 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: Boeing  

 Technique Applicability: ☆  

Flash Thermography can detect all insert types in the radii standard. 

 Laboratory Setup 

For each inspection, the part was placed in the IR imaging system (Figure E.37-13). For each test, 

the flash lamp fires, heating the surface of the part uniformly. The IR camera records the heat 

signature of the part over time to track the diffusion of heat through the part thickness. As the 

diffusion wave moves through the part, the inserts in the standards will cause disturbances in the 

otherwise approximately uniform heat flow. A few factors can influence the nature of the heat 

signature. If the insert has a different thermal conductivity than the part material, it will show as a 

hot spot (lower thermal conductivity) or cold spot (higher thermal conductivity) as it aids or 

hampers the diffusion of heat through the part. The inserts may also cause a significant 

delamination in the part, which has an insulating effect and will show as a hotter indication. With 

either case, the now disturbance in the originally uniform heat flow will be captured with the IR 

camera as a function of time. 
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Figure E.37-13. Flash IRT system components. 

 

Figure E.37-14. IR inspection system. 

 Equipment List and Specifications:  

 SC6000 Series FLIR IR camera 

 6400 Watt-sec flash lamps 

 Flash Hood 

 Settings 

Table E.37-4. Data collection settings. 

Frame Rate 120 fps 

Image Size 640 × 512 pixels 

Capture Duration 5 sec 

Camera Frequency 120 Hz 

Flash Duration <0.2 sec 
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 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass.  

Because the flash heat diffuses through the thickness of the part, inserts at different layers should 

appear most clearly at varying times. This can be observed in the lower image of Figure E.37-15, 

where only one set of inserts (left side) gives a thermal signature, because the thermal diffusion 

wave has not interacted with the deeper inserts yet. Similarly, the uppermost sets of inserts show 

the most clearly in the upper image. As the heat wave progresses through the material, the inserts 

heat up and cool faster than the surrounding material, leading to initially lighter indications 

followed by darker indications as time progresses. This is seen in the upper image where the PT 

inserts close to the surface have begun to cool faster (dark) while the lower RPF inserts are heating 

up faster (light). 

 

 

Figure E.37-15. Greyscale IR image of Radii Delamination Standard inserts (Top: PT and RPF, 

Bottom: brass). 

E.37.5 Method: X-ray Digital Radiography (DR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

DR is capable of detecting the brass inserts but is unable to detect the RPF or PT inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System with Digital Radiography capability. This 

system includes a microfocus source and a digital detector array with positions controlled by a 
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manipulator system. The microfocus source used has a variable focal spot size of less than four 

µm and is suitable for magnifications up to 10X. The manipulator has 7 DOF including a rotating 

stage to rotate the object as well as the ability to control its position along with the detector for 

magnification. The entire system includes the source, detector, manipulator, and user control 

station. The computers and control station are outside of the radiation enclosure (vault) and utilize 

a safety interlock system to operate. Cameras are located in the vault to allow the operator to 

monitor the part from outside the enclosure. 

 

Figure E.37-16. X-ray DR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.37-16). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Lead markers were placed on the sections to denote the boundaries 

between and label sections. The position of the specimen, source, and detector are controlled to 

produce geometric magnification of the image and increase the spatial resolution while capturing 

the entire section of the part in the detector area. The image data are gathered as X-rays penetrate 

the part and expose the detector for a set amount of time to produce a frame; multiple frames are 

average to produce the final image. This image, viewed in Image 3500, has much lower noise 

levels than a single frame due to the averaging. The operator adjusts the brightness and contrast 

settings of the image to identify the inserts, seen in the 2D image as rectangular defects.   

 

Figure E.37-17. Laboratory setup of angle plate standard for DR imaging. 
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 Equipment List and Specifications:  

 225 kV microfocus X-ray source with variable focal spot size 

 100kg capacity 7 axis granite based manipulator 

 XRD 1621 Detector  2048x2048 pixels with 200 m pitch, 400x400 mm active area 

 Image 3500 visualizing software 

 Settings 

Table E.37-5. Data collection settings. 

Source Energy 100 kV 

Current 0.7 mA 

Source-Detector Distance 42 in 

Source-Object Distance 27 in 

Magnification 1.55X 

Integration Time 500 ms 

Integration Frames 50 

Spatial Resolution (µm) 129 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half images of the standards. 

DR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects affecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Image 3500, the brightness and contrast settings 

vary to make defects visible. In the standards, the inserts show as rectangular areas with darker 

values (positive image). 

The PT and RPF inserts are undetectable in this laminate thickness (Figure E.37-18a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. This detectability also drops 

as the laminate increases in thickness. The brass inserts, however, cause a very large density 

variation and are readily observable in all laminate thicknesses (Figure E.37-18c). Metal FOD in 

composite structures often show this degree of detectability due to the relatively high density of 

the metal compared to the composite. 
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a) b) c) 

Figure E.37-18. DR images of PT (a), RPF (b), and brass (c) insert locations in 8276-200-58-48 

standard. 

E.37.6 Method: Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray CR is capable of detecting the brass inserts but is unable to detect the PT and RPF inserts. 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

blue light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

The standards were divided into two sections, labeled Upper and Lower, and placed directly on 

the plastic cassette containing the imaging plate with the X-ray source directly overhead (Figure 

E.37-19). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to show section boundaries and label the images, 

showing up in the results as bright white. Because of the large differences in laminate thicknesses 

between the specimens, three separate source energies were used, with the highest energy for the 

thickest specimens. 
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Figure E.37-19. X-ray CR imaging. 

 

 
a) b) 

Figure E.37-20. Laboratory setup of angle plate standards for CR imaging. 

 Equipment List and Specifications:  

 Philips 160 kV X-ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.37-6. Data collection settings. 

Source Energy 30,40,50 kV 

Current 10 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 10 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 
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 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half images of the standards. 

CR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects effecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Rhythm Review, the brightness and contrast 

settings vary to make defects visible. In addition, multiple filters are available to make defect 

identification easier for the operator. In the standards, the inserts show as rectangular areas with 

lighter values (negative image). 

The PT and RPF inserts are undetected for this laminate thickness (Figure E.37-21a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. The brass inserts, however, 

cause a very large density variation and are readily observable in all laminate thicknesses (Figure 

E.37-21c). Metal FOD in composite structures often show this degree of detectability due to the 

relatively high density of the metal compared to the composite. 

   
a) b) c) 

Figure E.37-21. CR images of PT (a), RPF (b), and brass (c) insert locations for 8276-200-58-48 

standard (filter applied). 

E.38 Specimen #38: Boeing 8276-200-56-48A 

Structure Material Details Dimensions (inches) Partner Methods 

48 fabric 

plies 

2 fiberglass 

plies 

BMS8-276 

BMS8-331 

56° Curve with 0.2-inch 

radius 

Brass, RPF and PT inserts 

at varying depths 

24 × 6.5 Boeing 

E.38.1 XCT 

E.38.2 TTUT 

E.38.3 X-ray DR 

E.38.4 X-ray CR 
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Figure E.38-1. Photographs of Angle Panel Reference Standard. 

E.38.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:    

XCT is capable of identifying all inserts, notably brass inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than four µm 

and is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector 

has 3 DOF, allowing for increase in the effective detector area through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOF including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.38-2. XCT system components. 
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a) b) c) 

Figure E.38-3. Slice direction nomenclature. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.38-4). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Plastic markers, which show up in 3D reconstruction, were placed on 

the sections to denote the boundaries between sections. The position of the specimen, source, and 

detector are controlled to produce geometric magnification of the image and increase the spatial 

resolution. The image data are gathered as X-rays penetrate the part and expose the detector for a 

set amount of time. For each scan, these image data are collected at 1080 different angles 

throughout a 360° rotation. These images are then reconstructed to create the 3D volume data set. 

This data set is viewed and analyzed in Volume Graphics, a volume rendering software, to identify 

the relevant components. 
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Figure E.38-4. Microfocus XCT setup for Radii Delamination Standard. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 126 µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.38-1. Data collection settings. 

Source Energy 205 kV 

Current 0.47 mA 

Magnification 1.59 X 

Filter Copper 

# Rotational angles 1080 

Exposure time/frame 800 ms 

Spatial Resolution (µm) 125.777 µm 

Array Dimensions (pixels) 2048 × 2048 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half volumes of the standards, flipped 

180° for the scan.  
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a) b) c) 

Figure E.38-5. CT slice view showing PT (a), RPF (b), and brass (c) inserts. 

After aligning the volume coordinate system to correspond with the panel geometry, the slice view 

can be used to inspect conditions at each lamina. The brightness and contrast settings are also 

adjusted to make defects clear, but retain the visible noise at a reasonable level. The inserts are 

clearly visible (Figure E.38-5), showing with less density for PT and RPF and higher density for 

brass. The brass is the most readily observable, followed by the PT with the RPF having the lowest 

detectability. The RPF may show the least response due to similar density to base material or due 

to a strong interface with little voiding or delamination to be detected. 

The CT scanning and reconstruction process is subject to artificial and undesirable artifacts. These 

are the result of multiple conditions. The direction of rotation leaves an underlying direction to the 

noise of the data set, aligning with the rotation. This is seen as a light, roughly horizontal streaking 

seen in (Figure E.38-5). The presence of high-density material in an otherwise low-density 

structure often creates even more intense ray artifacts, seen as shadow-like streaks emanating from 

the high-density material (Figure E.38-5c). If defects are present in these dark artifacts, their 

detectability is reduced. Lastly, the part may rotate in and out of the cone-beam of the X-rays 

during the scan, leaving the top and bottom edges of the volume not fully defined. This is seen as 

darker “wedges” of the volume at the top and bottom of the data set (Figure E.38-5).  

The detectability of the inserts relies on viewing the slices at the appropriate angle, which aligns 

with the lamina. This means the inserts within the curve of the panel, while still detectable, are less 

apparent (Figure E.38-6), and operators must be careful to attempt to identify them. The inserts 

are also more visible when they induce delamination with air or if they have a much greater density 

than the composite material. 
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Figure E.38-6. CT Slice view showing PT and RPF inserts. 

E.38.2 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: Boeing 

 Technique Applicability:    

All inserts are visually detectable with TTUT data. 

 Laboratory Setup 

 

Figure E.38-7. TTUT scanning schematic with water pump. 

The TTUT scanner at the Boeing laboratory consists of an enclosure, part supports, a water pump 

and nozzle system, ultrasonic transducers (transmitter and receiver), robotic manipulator, and 

control computer. After adjusting the water to produce a uniform flow, the pulser and receiver (on 
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opposite sides of the specimen) perform a C-scan under the control of the robotic manipulator and 

control computer. The C-scan is produced by taking multiple 1-dimensional scans (A-scans) and 

stitching them together to produce the final area result. 

TTUT works on the principal of the capture and quantification of the transmitted waves. It uses a 

pulsing transducer on one side of the part and has the receiving transducer on the opposite side of 

the part. Scanning can be accomplished with contact, water streams, or full immersion method, as 

long as sufficient ultrasonic coupling is used. Although the TTUT works on non-parallel, front-to-

back surface, the optimized data are produced when the front-to-back surfaces are parallel to each 

other. 

As the ultrasonic waves travel through a material, they are attenuated. Defects and material 

discontinuities such as delamination, porosity and foreign material interfaces cause increased 

attenuation. UT has an orientation dependency, where certain defect orientations will attenuate the 

signal more if they are oriented for maximum reflection. Delamination tend to be oriented 

favorably for detection, making ultrasound the common method for composite inspection. 

 Equipment List and Specifications: 

 1 MHz ultrasonic transducer and receiver 

 Water pump, nozzles, and circulation system 

 Robotic manipulator 

 Enclosure 

 Control computer 

 Settings 

Table E.38-2. Data collection settings. 

Frequency 1 MHz 

Resolution 0.04 inch × 0.04 inch 

 Inspection Results 

The NASA Radii Delamination Standards are carbon fiber composite panels with foreign material 

inserts in various layers to evaluate the detectability using ultrasonic inspection. These inserts are 

largely grouped around the angle in the panel; however, not exclusive to this area. The standards 

vary in thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of 

fiberglass. Using TTUT, the all insert types (PT, RPF, and brass) were detectable. However, this 

visual detectability was generally reduced as thickness increased. 

The brass inserts were the most resolved and detected (Figure E.38-8c) and the RPF inserts showed 

the lowest detectability (Figure E.38-83b). This is consistent with the theory that the RPF inserts 

bond to the material the best, leading to a small TTUT signal, while the brass has the worst bond 

(likely due to applied coating), leading to the large signals seen. The brass also has a significantly 

different attenuation than the surrounding material, allowing it to easily be detected. The 48-ply 

standards included inserts in locations on and away from the curved radius. The inserts away from 

the radius tended to be better resolved and defined (Figure E.38-8) due to the more uniform 

background signal. While the RPF inserts had small responses and resolving their exact shape is 

difficult, their presence tended to be detectable in the distortion of the surrounding signal and 

features (Figure E.38-8b). 
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a) b) c) 

Figure E.38-8. TTUT scans showing PT (a), RPF (b), and brass (c) inserts. 

E.38.3 Method: X-ray Digital Radiography (DR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray DR is capable of detecting the brass inserts but is unable to detect the RPF or PT inserts. 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System with DR capability. This system includes a 

microfocus source and a digital detector array with positions controlled by a manipulator system. 

The microfocus source used has a variable focal spot size of less than four µm and is suitable for 

magnifications up to 10X. The manipulator has 7 DOF including a rotating stage to rotate the 

object as well as the ability to control its position along with the detector for magnification. The 

entire system includes the source, detector, manipulator, and user control station. The computers 

and control station are outside of the radiation enclosure (vault) and utilize a safety interlock 

system to operate. Cameras are located in the vault to allow the operator to monitor the part from 

outside the enclosure. 

 

Figure E.38-9. X-ray DR Imaging 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.38-10). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Lead markers were placed on the sections to denote the boundaries 

between and label sections. The position of the specimen, source, and detector are controlled to 

produce geometric magnification of the image and increase the spatial resolution while capturing 

the entire section of the part in the detector area. The image data are gathered as X-rays penetrate 
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the part and expose the detector for a set amount of time to produce a frame; multiple frames are 

average to produce the final image. This image, viewed in Image 3500, has much lower noise 

levels than a single frame due to the averaging. The operator adjusts the brightness and contrast 

settings of the image to identify the inserts, seen in the 2D image as rectangular defects.   

 

Figure E.38-10. Laboratory setup of angle plate standard for DR imaging. 

 Equipment List and Specifications:  

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector × 2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 Image 3500 visualizing software 

 Settings 

Table E.38-3. Imaging and exposure parameters. 

Source Energy 100 kV 

Current 0.7 mA 

Source-Detector Distance 42 in 

Source-Object Distance 27 in 

Magnification 1.55X 

Integration Time 500 ms 

Integration Frames 50 

Spatial Resolution (µm) 129 µm 

Array Dimensions (pixels) 2048x2048 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half images of the standards. 

DR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects affecting the density of material the X-rays pass through. Because this imaging is 2D, the 
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results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Image 3500, the brightness and contrast settings 

vary to make defects visible. In the standards, the inserts show as rectangular areas with darker 

values (positive image). 

The PT and RPF inserts are undetectable in this laminate thickness (Figure E.38-11a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. This detectability also drops 

as the laminate increases in thickness. The brass inserts, however, cause a very large density 

variation and are readily observable in all laminate thicknesses (Figure E.38-11c). Metal FOD in 

composite structures often show this degree of detectability due to the relatively high density of 

the metal compared to the composite. 

   
a) b) c) 

Figure E.38-11. DR images of PT (a), RPF (b), and brass (c) insert locations in 8276-200-56-48 

standard. 

E.38.4 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray CR is capable of detecting the brass inserts but is unable to detect the PT and RPF inserts. 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 
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phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

blue light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

 

Figure E.38-12. X-ray CR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed directly on 

the plastic cassette containing the imaging plate with the X-ray source directly overhead (Figure 

E.38-13). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to show section boundaries and label the images, 

showing up in the results as bright white. Because of the large differences in laminate thicknesses 

between the specimens, three separate source energies were used, with the highest energy for the 

thickest specimens. 

 
 

a) b) 

Figure E.38-13. Laboratory setup of angle plate standards for CR 

imaging. 

 Equipment List and Specifications:  

 Philips 160-kV X-ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 
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 Settings  

Table E.38-4. Imaging and exposure parameters. 

Source Energy 30,40,50 kV 

Current 10 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 10 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts grouped 

around the angle in the panel; however, not exclusive to this area. The standards vary in thickness, 

utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. Because of 

their length, the data set consists of the upper and lower half images of the standards. 

CR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects effecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Rhythm Review, the brightness and contrast 

settings are varied to make defects visible. In addition, multiple filters are available to make defect 

identification easier for the operator. In the standards, the inserts show as rectangular areas with 

lighter values (negative image). 

The PT and RPF inserts are undetected for this laminate thickness (Figure E.38-14a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. The brass inserts, however, 

cause a very large density variation and are readily observable in all laminate thicknesses (Figure 

E.38-14c). Metal FOD in composite structures often show this degree of detectability due to the 

relatively high density of the metal compared to the composite. 

   
a) b) c) 

Figure E.38-14. CR images of PT (a), RPF (b), and brass (c) insert locations for 8276-200-56-48 

standard (filter applied). 
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E.39 Specimen #39: Boeing 8276-200-59-48A 
Structure Material Details Dimensions (inches) Partner Methods 

Laminates 8276 Tape 

S curve (__/‾ ) 59° slant with 

two 0.2-inch radii. Multiple 

types of delamination 

simulators. 

20 × 6 × 2.4 

NASA E.39.1 XCT 

Boeing 

E.39.2 XCT 

E.39.3 TTUT 

E.39.4 X-ray DR 

E.39.5 X-ray CR 

   

Figure E.39-1. Photograph of specimen #39: Boeing-8276-200-59-48A. 

E.39.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:   

XCT is capable of identifying all inserts, notably brass inserts. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity, 7-axis, granite-based manipulator 

 XRD 1621 Detector - 2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 126 µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.39-1. Data collection settings. 

Source Energy 205 kV 

Current 0.47 mA 

Magnification 1.59 X 

Filter Copper 

# Rotational angles 1080 

Exposure time / frame 800 ms 

Spatial Resolution (µm) 125.777 µm 

Array Dimensions (pixels) 2048 × 2048 
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 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than four µm 

and is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector 

has 3 DOF, allowing for increase in the effective detector area through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOF including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.39-2. XCT system components. 
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a) b) c) 

Figure E.39-3. Slice direction nomenclature. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.39-4). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Plastic markers, which show up in 3D reconstruction, were placed on 

the sections to denote the boundaries between sections. The position of the specimen, source, and 

detector are controlled to produce geometric magnification of the image and increase the spatial 

resolution. The image data are gathered as X-rays penetrate the part and expose the detector for a 

set amount of time. For each scan, these image data are collected at 1080 different angles 

throughout a 360° rotation. These images are then reconstructed to create the 3D volume data set. 

This data set is viewed and analyzed in Volume Graphics, a volume rendering software, to identify 

the relevant components. 
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Figure E.39-4. Microfocus XCT setup for Radii Delamination Standard. 

 Inspection Results 

The Radii Delamination Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half volumes of the standards, 

flipped 180° for the scan. 

After aligning the volume coordinate system to correspond with the panel geometry, the slice view 

can be used to inspect conditions at each lamina. The brightness and contrast settings are also 

adjusted to make defects clear, but retain the visible noise at a reasonable level. The inserts are 

clearly visible (Figure E.39-5), showing with less density for PT and RPF and higher density for 

brass. The brass is the most readily observable, followed by the PT with the RPF having the lowest 

detectability. The RPF may show the least response due to similar density to base material or due 

to a strong interface with little voiding or delamination to be detected. 

   
a) b) c) 

Figure E.39-5. CT slice view showing PT (a), RPF (b), and brass (c) inserts. 

The CT scanning and reconstruction process is subject to artificial and undesirable artifacts. These 

are the result of multiple conditions. The direction of rotation leaves an underlying direction to the 

noise of the data set, aligning with the rotation. This is seen as a light, roughly horizontal streaking 

seen in (Figure E.39-5). The presence of high-density material in an otherwise low density 

structure often creates even more intense ray artifacts, seen as shadow-like streaks emanating from 
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the high-density material (Figure E.39-5c). If defects are present in these dark artifacts, their 

detectability is reduced. Lastly, the part may rotate in and out of the cone-beam of the X-rays 

during the scan, leaving the top and bottom edges of the volume not fully defined. This is seen as 

darker “wedges” of the volume at the top and bottom of the data set (Figure E.39-5).  

The detectability of the inserts relies on viewing the slices at the appropriate angle, which aligns 

with the lamina. This means the inserts within the curve of the panel, while still detectable, are less 

apparent (Figure E.39-6), and operators must be careful to attempt to identify them. The inserts 

are also more visible when they induce delamination with air or if they have a much greater density 

than the composite material. 

 

Figure E.39-6. CT slice view showing PT and RPF inserts. 

E.39.2 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: Boeing 

 Technique Applicability:    

All inserts are visually detectable with TTUT data. 

 Equipment List and Specifications:  

 1 MHz ultrasonic transducer and receiver 

 Water pump, nozzles, and circulation system 

 Robotic manipulator 

 Enclosure 

 Control computer 

 Settings  

Table E.39-2. Data collection settings. 

Frequency 1 MHz 

Resolution 0.04 inch × 0.04 inch 
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 Laboratory Setup 

The TTUT scanner at the Boeing laboratory consists of an enclosure, part supports, a water pump 

and nozzle system, ultrasonic transducers (transmitter and receiver), robotic manipulator, and 

control computer. After adjusting the water to produce a uniform flow, the pulser and receiver (on 

opposite sides of the specimen) perform a C-scan under the control of the robotic manipulator and 

control computer. The C-scan is produced by taking multiple 1-dimensional scans (A-scans) and 

stitching them together to produce the final area result. 

 

Figure E.39-7. TTUT scanning schematic with water pump. 

TTUT works on the principal of the capture and quantification of the transmitted waves. It uses a 

pulsing transducer on one side of the part and has the receiving transducer on the opposite side of 

the part. Scanning can be accomplished with contact, water streams, or full immersion method, as 

long as sufficient ultrasonic coupling is used. Although the TTUT works on non-parallel, front-to-

back surface, the optimized data are produced when the front-to-back surfaces are parallel to each 

other. 

As the ultrasonic waves travel through a material, they are attenuated. Defects and material 

discontinuities such as delamination, porosity and foreign material interfaces cause increased 

attenuation. UT has an orientation dependency, where certain defect orientations will attenuate the 

signal more if they are oriented for maximum reflection. Delamination tend to be oriented 

favorably for detection, making ultrasound the common method for composite inspection.  

 Inspection Results 

The NASA Radii Delamination Standards are carbon fiber composite panels with foreign material 

inserts in various layers to evaluate the detectability using ultrasonic inspection. These inserts are 

largely grouped around the angle in the panel; however, not exclusive to this area. The standards 

vary in thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of 

fiberglass. Using TTUT, the all insert types (PT, RPF, and brass) were detectable. However, this 

visual detectability was generally reduced as thickness increased. 

The brass inserts were the most resolved and detected (Figure E.39-8c) and the RPF inserts showed 

the lowest detectability (Figure E.39-8b). This is consistent with the theory that the RPF inserts 
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bond to the material the best, leading to a small TTUT signal, while the brass has the worst bond 

(likely due to applied coating), leading to the large signals seen. The brass also has a significantly 

different attenuation than the surrounding material, allowing it to easily be detected. The 48-ply 

standards included inserts in locations on and away from the curved radius. The inserts away from 

the radius tended to be better resolved and defined (Figure E.39-8) due to the more uniform 

background signal. While the RPF inserts had small responses and resolving their exact shape is 

difficult, their presence tended to be detectable in the distortion of the surrounding signal and 

features (Figure E.39-8b).  

   
a) b) c) 

Figure E.39-8. TTUT scans showing PT (a), RPF (b), and brass (c) inserts. 

E.39.3 Method: X-ray Digital Radiography (DR) 

 Partner: Boeing  

 Technique Applicability: ☆☆  

X-ray DR is capable of detecting the brass inserts but is unable to detect the RPF or PT inserts. 

 Equipment List and Specifications:  

 225 kV microfocus X-ray source with variable focal spot size 

 100kg capacity 7 axis granite based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200 µm pitch, 400 × 400 mm active area 

 Image 3500 visualizing software 

 Settings 

Table E.39-3. Imaging and exposure parameters. 

Source Energy 100 kV 

Current 0.7 mA 

Source-Detector Distance 42 in 

Source-Object Distance 27 in 

Magnification 1.55X 

Integration Time 500 ms 

Integration Frames 50 

Spatial Resolution (µm) 129 µm 

Array Dimensions (pixels) 2048 × 2048 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System with DR capability. This system includes a 

microfocus source and a digital detector array with positions controlled by a manipulator system. 

The microfocus source used has a variable focal spot size of less than four µm and is suitable for 
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magnifications up to 10X. The manipulator has 7 DOF including a rotating stage to rotate the 

object as well as the ability to control its position along with the detector for magnification. The 

entire system includes the source, detector, manipulator, and user control station. The computers 

and control station are outside of the radiation enclosure (vault) and utilize a safety interlock 

system to operate. Cameras are located in the vault to allow the operator to monitor the part from 

outside the enclosure. 

 

Figure E.39-9. X-ray DR imaging. 

The standards were divided into two sections, labeled Upper and Lower, and placed on the rotator 

in a soft clamp (Figure E.39-10). The specimen was right side up for the Upper scan, and upside-

down for the Lower scan. Lead markers were placed on the sections to denote the boundaries 

between and label sections. The position of the specimen, source, and detector are controlled to 

produce geometric magnification of the image and increase the spatial resolution while capturing 

the entire section of the part in the detector area. The image data are gathered as X-rays penetrate 

the part and expose the detector for a set amount of time to produce a frame; multiple frames are 

average to produce the final image. This image, viewed in Image 3500, has much lower noise 

levels than a single frame due to the averaging. The operator adjusts the brightness and contrast 

settings of the image to identify the inserts, seen in the 2D image as rectangular defects.   

 

Figure E.39-10. Laboratory setup of angle plate standard for DR imaging. 
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 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

DR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects affecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Image 3500, the brightness and contrast settings 

are varied to make defects visible. In the standards, the inserts show as rectangular areas with 

darker values (positive image). 

The PT and RPF inserts are undetectable in this laminate thickness (Figure E.39-11a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. This detectability also drops 

as the laminate increases in thickness. The brass inserts, however, cause a very large density 

variation and are readily observable in all laminate thicknesses (Figure E.39-11c). Metal FOD in 

composite structures often show this degree of detectability due to the relatively high density of 

the metal compared to the composite. 

   
a) b) c) 

Figure E.39-11. DR images of PT (a), RPF (b), and brass (c) insert locations in 8276-200-59-48 

standard. 
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E.39.4 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆ 

X-ray CR is capable of detecting the brass inserts but is unable to detect the PT and RPF inserts. 

 Equipment List and Specifications:  

 Philips 160-kV X-ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.39-4. Imaging and exposure parameters. 

Source Energy 30,40,50 kV 

Current 10 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 10 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

blue light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

The standards were divided into two sections, labeled Upper and Lower, and placed directly on 

the plastic cassette containing the imaging plate with the X-ray source directly overhead (Figure 

E.39-12). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to show section boundaries and label the images, 

showing up in the results as bright white. Because of the large differences in laminate thicknesses 

between the specimens, three separate source energies were used, with the highest energy for the 

thickest specimens. 
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Figure E.39-12. X-ray CR imaging. 

 

 
a) b) 

Figure E.39-13. Laboratory setup of angle plate standards for CR 

imaging. 

 Inspection Results 

The NASA Angle Panel Standards are carbon fiber composite panels with foreign material inserts 

in various layers to evaluate the detectability using ultrasonic inspection. These inserts are largely 

grouped around the angle in the panel; however, not exclusive to this area. The standards vary in 

thickness, utilizing 8, 26, and 48 plies of carbon fiber fabric with exterior layers of fiberglass. 

Because of their length, the data set consists of the upper and lower half images of the standards. 

CR X-ray imaging is sensitive to density variations, caused by material differences, voids, or other 

defects effecting the density of material the X-rays pass through. Because this imaging is 2D, the 

results are superimposed internal images of the specimens. The resulting digital images are 16-bit 

greyscale images with the greyscale values representing the material density at each location 

(lighter corresponding to denser regions). Using Rhythm Review, the brightness and contrast 

settings are varied to make defects visible. In addition, multiple filters are available to make defect 

identification easier for the operator. In the standards, the inserts show as rectangular areas with 

lighter values (negative image). 
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The PT and RPF inserts are undetected for this laminate thickness (Figure E.39-14a, b). Because 

the densities of the carbon fiber base material and the inserts are similar, a single-ply insert does 

not create a large density variation, thereby limiting the detectability. The brass inserts, however, 

cause a very large density variation and are readily observable in all laminate thicknesses (Figure 

E.39-14c). Metal FOD in composite structures often show this degree of detectability due to the 

relatively high density of the metal compared to the composite. 

   
a) b) c) 

Figure E.39-14. CR images of PT (a), RPF (b), and brass (c) insert locations for 8276-200-59-48 

standard (filter applied). 

E.40 Specimen #40: Boeing-8276-200-58-8B – Not Tested 

Structure Material Details Dimensions (inches) Partner Methods 

Laminates 8276 Tape 

S curve (__/‾ ) 58° slant with 

two 0.2 inch radii. Multiple 

types of delamination 

simulators. 

20 × 6 × 2.4 Not Tested 
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	E.32.4.5 Settings
	E.32.4.6 Inspection Results


	E.33 Specimen #33: Wrinkle A3
	E.33.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.33.1.1 Partner: NASA
	E.33.1.2 Technique Applicability: (((
	E.33.1.3 Laboratory Setup
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	E.33.1.5 Settings
	E.33.1.6 Inspection Results
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	E.33.2.5 Settings
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	E.33.3.5 Settings
	E.33.3.6 Inspection Results
	E.33.3.7 References

	E.33.4 Method: Single-Sided Infrared Thermography (SSIR)
	E.33.4.1 Partner: Boeing
	E.33.4.2 Technique Applicability: (((
	E.33.4.3 Laboratory Setup
	E.33.4.4 Equipment List and Specifications:
	E.33.4.5 Settings
	E.33.4.6 Inspection Results


	E.34 Specimen #34: Wrinkle A4
	E.34.1 Method: Pulse-Echo Ultrasonic Testing (PEUT)
	E.34.1.1 Partner: NASA
	E.34.1.2 Technique Applicability: (((
	E.34.1.3 Laboratory Setup
	E.34.1.4 Equipment List and Specifications:
	E.34.1.5 Settings
	E.34.1.6 Inspection Results

	E.34.2 Method: X-ray Computed Tomography (XCT)
	E.34.2.1 Partner: NASA
	E.34.2.2 Technique Applicability: ☆☆☆
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	E.34.2.4 Equipment List and Specifications:
	E.34.2.5 Settings
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	E.34.3.5 Settings
	E.34.3.6 Inspection Results
	E.34.3.7 References

	E.34.4 Method: Single-Sided Infrared Thermography
	E.34.4.1 Partner: Boeing
	E.34.4.2 Technique Applicability: (((
	E.34.4.3 Laboratory Setup
	E.34.4.4 Equipment List and Specifications:
	E.34.4.5 Settings
	E.34.4.6 Inspection Results


	E.35 Specimen #35: Boeing 8276-200-58-8A
	E.35.1 Method: X-ray Computed Tomography (XCT)
	E.35.1.1 Partner: Boeing
	E.35.1.2 Technique Applicability: (((
	E.35.1.3 Laboratory Setup
	E.35.1.4 Equipment List and Specifications
	E.35.1.5 Settings
	E.35.1.6 Inspection Results

	E.35.2 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.35.2.1 Partner: Boeing
	E.35.2.2 Technique Applicability: (((
	E.35.2.3 Laboratory Setup
	E.35.2.4 Equipment List and Specifications:
	E.35.2.5 Settings
	E.35.2.6 Inspection Results

	E.35.3 Method: Single-Sided Infrared Thermography (SSIR)
	E.35.3.1 Partner: Boeing
	E.35.3.2 Technique Applicability: (((
	E.35.3.3 Laboratory Setup
	E.35.3.4 Equipment List and Specifications:
	E.35.3.5 Settings
	E.35.3.6 Inspection Results

	E.35.4 Method: X-ray Digital Radiography (DR)
	E.35.4.1 Partner: Boeing
	E.35.4.2 Technique Applicability: (☆☆
	E.35.4.3 Laboratory Setup
	E.35.4.4 Equipment List and Specifications:
	E.35.4.5 Settings
	E.35.4.6 Inspection Results

	E.35.5 Method: X-ray Computed Radiography (CR)
	E.35.5.1 Partner: Boeing
	E.35.5.2 Technique Applicability: (☆☆
	E.35.5.3 Laboratory Setup
	E.35.5.4 Equipment List and Specifications:
	E.35.5.5 Settings
	E.35.5.6 Inspection Results


	E.36 Specimen #36: Boeing 8276-200-58-26A
	E.36.1 Method: X-ray Computed Tomography (XCT)
	E.36.1.1 Partner: Boeing
	E.36.1.2 Technique Applicability: (((
	E.36.1.3 Laboratory Setup
	E.36.1.4 Equipment List and Specifications:
	E.36.1.5 Settings
	E.36.1.6 Inspection Results

	E.36.2 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.36.2.1 Partner: Boeing
	E.36.2.2 Technique Applicability: (((
	E.36.2.3 Laboratory Setup
	E.36.2.4 Equipment List and Specifications:
	E.36.2.5 Settings
	E.36.2.6 Inspection Results

	E.36.3 Method: Single-Sided Infrared Thermography (SSIR)
	E.36.3.1 Partner: Boeing
	E.36.3.2 Technique Applicability: ((☆
	E.36.3.3 Laboratory Setup
	E.36.3.4 Equipment List and Specifications:
	E.36.3.5 Settings
	E.36.3.6 Inspection Results

	E.36.4 Method: X-ray Digital Radiography (DR)
	E.36.4.1 Partner: Boeing
	E.36.4.2 Technique Applicability: (☆☆
	E.36.4.3 Laboratory Setup
	E.36.4.4 Equipment List and Specifications:
	E.36.4.5 Settings
	E.36.4.6 Inspection Results

	E.36.5 Method: Computed Radiography (CR)
	E.36.5.1 Partner: Boeing
	E.36.5.2 Technique Applicability: (☆☆
	E.36.5.3 Laboratory Setup
	E.36.5.4 Equipment List and Specifications:
	E.36.5.5 Settings
	E.36.5.6 Inspection Results

	E.36.6 Method: X-ray Backscatter
	E.36.6.1 Partner: Boeing
	E.36.6.2 Technique Applicability: (☆☆
	E.36.6.3 Laboratory Setup
	E.36.6.4 Equipment List and Specifications:
	E.36.6.5 Settings
	E.36.6.6 Inspection Results


	E.37 Specimen #37: Boeing 8276-200-58-48A
	E.37.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.37.1.1 Partner: NASA
	E.37.1.2 Technique Applicability: (((
	E.37.1.3 Laboratory Setup
	E.37.1.4 Equipment List and Specifications:
	E.37.1.5 Settings
	E.37.1.6 Inspection Results

	E.37.2 Method: X-ray Computed Tomography (XCT)
	E.37.2.1 Partner: Boeing
	E.37.2.2 Technique Applicability: (((
	E.37.2.3 Laboratory Setup
	E.37.2.4 Equipment List and Specifications:
	E.37.2.5 Settings
	E.37.2.6 Inspection Results

	E.37.3 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.37.3.1 Partner: Boeing
	E.37.3.2 Technique Applicability: (((
	E.37.3.3 Laboratory Setup
	E.37.3.4 Equipment List and Specifications:
	E.37.3.5 Settings
	E.37.3.6 Inspection Results

	E.37.4 Method: Single-Sided Infrared Thermography (SSIR)
	E.37.4.1 Partner: Boeing
	E.37.4.2 Technique Applicability: ((☆
	E.37.4.3 Laboratory Setup
	E.37.4.4 Equipment List and Specifications:
	E.37.4.5 Settings
	E.37.4.6 Inspection Results

	E.37.5 Method: X-ray Digital Radiography (DR)
	E.37.5.1 Partner: Boeing
	E.37.5.2 Technique Applicability: (☆☆
	E.37.5.3 Laboratory Setup
	E.37.5.4 Equipment List and Specifications:
	E.37.5.5 Settings
	E.37.5.6 Inspection Results

	E.37.6 Method: Computed Radiography (CR)
	E.37.6.1 Partner: Boeing
	E.37.6.2 Technique Applicability: (☆☆
	E.37.6.3 Laboratory Setup
	E.37.6.4 Equipment List and Specifications:
	E.37.6.5 Settings
	E.37.6.6 Inspection Results


	E.38 Specimen #38: Boeing 8276-200-56-48A
	E.38.1 Method: X-ray Computed Tomography (XCT)
	E.38.1.1 Partner: Boeing
	E.38.1.2 Technique Applicability: (((
	E.38.1.3 Laboratory Setup
	E.38.1.4 Equipment List and Specifications:
	E.38.1.5 Settings
	E.38.1.6 Inspection Results

	E.38.2 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.38.2.1 Partner: Boeing
	E.38.2.2 Technique Applicability: (((
	E.38.2.3 Laboratory Setup
	E.38.2.4 Equipment List and Specifications:
	E.38.2.5 Settings
	E.38.2.6 Inspection Results

	E.38.3 Method: X-ray Digital Radiography (DR)
	E.38.3.1 Partner: Boeing
	E.38.3.2 Technique Applicability: (☆☆
	E.38.3.3 Laboratory Setup
	E.38.3.4 Equipment List and Specifications:
	E.38.3.5 Settings
	E.38.3.6 Inspection Results

	E.38.4 Method: X-ray Computed Radiography (CR)
	E.38.4.1 Partner: Boeing
	E.38.4.2 Technique Applicability: (☆☆
	E.38.4.3 Laboratory Setup
	E.38.4.4 Equipment List and Specifications:
	E.38.4.5 Settings
	E.38.4.6 Inspection Results


	E.39 Specimen #39: Boeing 8276-200-59-48A
	E.39.1 Method: X-ray Computed Tomography (XCT)
	E.39.1.1 Partner: Boeing
	E.39.1.2 Technique Applicability: (((
	E.39.1.3 Equipment List and Specifications:
	E.39.1.4 Settings
	E.39.1.5 Laboratory Setup
	E.39.1.6 Inspection Results

	E.39.2 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.39.2.1 Partner: Boeing
	E.39.2.2 Technique Applicability: (((
	E.39.2.3 Equipment List and Specifications:
	E.39.2.4 Settings
	E.39.2.5 Laboratory Setup
	E.39.2.6 Inspection Results

	E.39.3 Method: X-ray Digital Radiography (DR)
	E.39.3.1 Partner: Boeing
	E.39.3.2 Technique Applicability: (☆☆
	E.39.3.3 Equipment List and Specifications:
	E.39.3.4 Settings
	E.39.3.5 Laboratory Setup
	E.39.3.6 Inspection Results

	E.39.4 Method: X-ray Computed Radiography (CR)
	E.39.4.1 Partner: Boeing
	E.39.4.2 Technique Applicability: (☆☆
	E.39.4.3 Equipment List and Specifications:
	E.39.4.4 Settings
	E.39.4.5 Laboratory Setup
	E.39.4.6 Inspection Results


	E.40 Specimen #40: Boeing-8276-200-58-8B – Not Tested


