Illumination and Temperature on Rough Terrain: Fast Methods for Solving the Radiosity Equation

Thermal modeling on rough surfaces

- Airless bodies have strong horizontal Lunar cold traps exist because
Thermal models must incorporate shadows, but also long- and Thermal models must incorporate shadows, but also ong
short-wavelength radiation between surface elements $[3]$ Element-to-element radiation dominates runtime

Contribution

We develop a fast algorithm for solving the equations governi scattering of long- and short-wavelength radiation
Solve two discretized radiosity equations to compute temp. - Offline, we precompute a compressed low-rank version of the docks using sparse SVDs
dine matrix
Online, multiplication requires nearly $O(N)$ time, where N
is the number of triangular elements
The matrix only depends on the geometry of the planet so can be
used for simulataions spanning a long time
Physical model [5]
Energy balance on the surface:
where:

$$
\rho:=\text { albedo }
$$

$E:=$ incoming solar radiation (insolation) $\left[\mathrm{W} \mathrm{m}^{-2}\right]$
$Q:=$ reflected sunlight $\left[\mathrm{W} \mathrm{m}^{-2}\right]$
$Q_{\text {IR }}:=$ thermal emission
$\epsilon:=$ emissivity
$\sigma:=$ Stefan-Boltzmann constant $\left[\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}\right]$
Governing equations for scattering:
$Q(\vec{x})=\frac{1}{\pi} \int_{S} \rho(\vec{y})(E(\vec{y})+Q(\vec{y})) F(\vec{x}, \vec{y}) d A(\vec{y}) \quad$ (2) $Q_{\mathrm{IR}}(\vec{x})=\frac{1}{\pi} \int_{S}\left(\epsilon \sigma T(\vec{y})^{4}+(1-\epsilon) Q_{\mathrm{IR}}(\vec{y})\right) F(\vec{x}, \vec{y}) d A(\vec{y})$ where:
$S:=$ surface of the planet or crater
$d A:=$ surface area element $\left[\mathrm{m}^{2}\right]$ $F(\vec{x}, \vec{y}):=\frac{[\vec{n}(\vec{x}) \cdot(\vec{y}-\vec{x})]+[\vec{n}(\vec{y}) \cdot(\vec{x}-\vec{y})]_{+}}{\pi\|\vec{x}-\vec{y}\|^{4}} V(\vec{x}, \vec{y})$
$\vec{n}:=$ surface normal on S
$[x]_{+}:=\max (0, x)=$ positive part
$V(\vec{x}, \vec{y}):= \begin{cases}1 & \text { if } \vec{y} \text { is visible from } \vec{x} \\ 0 & \text { otherwise }\end{cases}$

The radiosity method
Equations (2) and (3) are radiosity integral equations:
$B(\vec{x})=E(\vec{x})+\rho(\vec{x}) \int_{S} G(\vec{x}, \vec{y}) B(\vec{y}) d A(\vec{y})$

where:

$B:=\operatorname{radiosity~}\left[\mathrm{W} \mathrm{m}^{-2}\right]$
$E:=$ self-emitted radiosity $\left[\mathrm{W} \mathrm{m}^{-2}\right]$
$F:=$ geometric kernel
Midpoint collocation discretization of (4) gives the system

$$
K B=(I-\rho F) B=E
$$

$\boldsymbol{F}_{i j}=\frac{\left[\boldsymbol{n}_{i}^{\top}\left(\boldsymbol{p}_{j}-\boldsymbol{p}_{\boldsymbol{i}}\right)\right]_{+}\left[\boldsymbol{n}_{j}^{\top}\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right)\right]_{+}}{\pi\left\|\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right\|^{4} A_{j}}$
where F is the view factor matrix and:
$p_{i}:=$ centroid of $i^{\text {th }}$ triangle
$p_{i}:=$ centroic of $i^{n \prime 2}$ tria
$A_{i}:=$ area of i th triangle
$V_{i j}:=$ visibility between p_{i} and p_{j}

Solving the discrete radiosity system:

The system (5) can be solved in a small number of Neumann or Jacobi iterations (typically 2 to 5)
Nearly perfectly conditioned since it's a discretized BIE Main challenge: fast multiplication by F

The Ingersoll crater test problem [2]
A crater formed from a spherical cap:

The steady state temperature for the Ingersoll crater has an xact solution for Lambertian reflectance inside the shadowed portion of the crater:
$T_{\text {Ingersoll }}=\frac{F_{0} \sin \left(e_{0}\right)}{\sigma} \frac{1-A}{1-A f}\left(1+\frac{A(1-f)}{\epsilon}\right)$

where σ, A, and ϵ are as before, and:

$f:=S_{c} /\left(4 \pi r^{2}\right)$
$S_{c}:=$ crater surface area $\left[\mathrm{m}^{2}\right]$
$F_{0}:=$ solar constant $\left[\mathrm{W} \mathrm{m}^{-2}\right.$
$e_{0}:=$ solar elevation relative to horizon

Samuel F. Potter (sfp@umiacs .umd .edu) ${ }^{\dagger,,}$, Norbert Schörghofer ${ }^{\circledR}$, and Erwan Mazarico* University of Maryland Department of Computer Science, $\$$: Planetary Science Institute, *: NASA Goddard Space Flight Center

Low rank compression of form fac Spatial partitioning: use quadtree or octree to recursively par tition triangular elements

- Low-rank interactions: blocks of F that correspond to interactions between nonoverlapping cells in quadtree or octree are
typically sparse with a dense low-rank subblock

SVD compression: compute SVD to find dense subblock and compress it within a given tolerance ϵ

- Best low-rank approximation by SVD
$\min _{\operatorname{rank}(\boldsymbol{F}) \leq k}\left\|\boldsymbol{F}-\boldsymbol{F}_{k}\right\|_{2}=\sigma_{k+1}$
where k is a fixed rank, $\boldsymbol{F}_{k}=U_{k} \Sigma_{k} V_{k}^{\top}$ is computed from the
rank k truncated SVD of F, and σ_{i} is the ith singular value of F - This approach is similar to the \mathcal{H}-matrix format [1]

Examples of compressed \boldsymbol{F} matrices

世, 世*: SVD block, ■: sparse block, ■: dense block, ■: zero block

Haworth crater (Lunar south pole)

67P/Churyumov-Gerasimenko (built using octree)

Ingersoll test problem: numerical resu
 Only part of the crater is illuminated (top-left)

The steady state temperature in the shadow is constant (top-right) Pointwise error after one bounce is below the $\epsilon=10^{-4}$ tolerance bottom-left)
Error between T and exact Ingersoll temperature is uniform (bottom-right)
Errors are sensitive to the triangulation (bottom-leftright)

Ingersoll test problem: performance resui - We build the compressed F matrix with a tolerance of $\epsilon=10^{-4}$ and a maxmium SVD rank of $k=60$
We compare the exact steady state temperature in the shadow region given by (7) with the
problem size (bottom-right)

Lunar south pole: Haworth crater test problein
Lunar south pole terrain from DEM obtained by LOLA $[6]$ High-quality t
di stmesh [4]
Example here is physically unrealistic because of steady stat assumption, but solving the steady state system is the necessay step for soving the time-dependent problem efficientiy matrix
The temperature plotted below approximates the temperature us ing the exact,
fast method

References
11] Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis,
volume 49. Springer, 2015.
Andrew P Ingersoll, Tomas Svitek, and Bruce C Murray. Stability of polar frosts in spherical bowl-shap
Mars. Icarus, $100(1): 40-47.1992$.
[3] David A Paige, Matthew A Siegler, Jo Ann Zhang, Paul O Hayne, David A Paige, Mathew A Siegler, Jo Ann Zhang, Paul O Hayne,
Emily J Foote, Kristen A Bennet, , shwwin R Vasavada, Beniamin T
 adiometer observations of cold traps
cience, 330 (6003):49-482, 2010.
[4] Per-Olof Persson and Gilbert Strang. A simple mesh generator
(4] Per-Olof Persson and Gilbert Strang. A simple
MATLAB. SIAM review, $46(2): 329-345,2004$
[5] Norbert Schörghofer. Planetary Code Collection. htpp://github.com/nschorgh/Planetary-Code-Collection, 2018 .
[6] David E Smith, Maria T Zuber, Gregory A Neumann, Erwan Mazarico, Frank G Lemoine, James W Head III, Paul G Lucey, deded fhat the nuar orbiter laser altimeter atter seven years in lunar orbbit.t Icarus,

