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Integrated photonics for NASA applications
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NASA Integrated Photonics

NASA Applications:

> Sensors - Specirometers - Chemical/biological sensors:
Lab-on-a-chip systems for landers
Astronaut health monitoring

Front-end and back-end for remote sensing instruments
including trace gas lidars

Large telescope specirometers for exoplanets.

> Microwave, Sub-millimeter and Long-Wave Infra-Red
photonics:

Opens new methods due to Size, Weight and Power improvements,
radio astronomy and THz spectroscopy

> Telecom: inter and intra satellite communications.
Can obtain large leverage from industrial efforts.



NASA Space Technology Mission Directorate (STMD)
Early Stage Innovation (ESI)
Integrated Photonics for Space Communication

* Keren Bergman & Michal Lipson, Columbia University

Ultra-Low Power CMOS-Compatible Integrated-Photonic Platform for Terabit-Scale
Communications

* Seng-Tiong Ho, Northwestern University

Compact Robust Integrated PPM Laser Transceiver Chip Set with High Sensitivity, Efficiency,
and Reconfigurability

* Jonathan Klamkin, University of California-Santa Barbaraq,

PICULS: Photonic Integrated Circuits for Ultra-Low size, Weight, and Power
*  Paul Leisher, Rose-Hulman Institute of Technology

Integrated Tapered Active Modulators for High-Efficiency Gbps PPM Laser Transmitter PICs
*  Shayan Mookherjea, University of California-San Diego

Integrated Photonics for Adaptive Discrete Multi-Carrier Space-Based Optical Communication
and Ranging



Program: Early Stage Innovation

Pl: Jonathan Klamkin — UCSB
PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

Program Summary

In addition to overall transceiver architecture, guided by our collaborators, we are
developing a silicon photonic interposer platform for space optical communications.
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Program: Early Stage Innovation
Pl: Jonathan Klamkin — UCSB

PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

3D Hybrid Integration High Power Indium Phosphide PICs
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Program: Early Stage Innovation
Pl: Shayan Mookherjea, UC San Diego
Integrated Photonics for Adaptive Multi-Carrier Space-Based Optical Communication & Ranging
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Flatness (deviation from mean power for
tones 1-7 in spectral region where the filter
has flat transmission):

EDFA:
Min: -1.51 dBm
Max: 1.52 dBm
Mean: 0.92 dBm

SOA: Penalty
Min: -1.76 dBm <0.1dB
Max: 1.88 abm
Mean: 0.98 dBm

X. Wang and S. Mookherjea, "Performance Comparisons between Semiconductor and Fiber Amplifier Gain Assistance in
Recirculating-Frequency-Shifter" Optics Letters Vol. 43 No. 5, 1011-1014 (2018).

X. Wang and S. Mookherjea, "Optimizing Recirculating-Frequency-Shifter performance with Semiconductor Optical Amplifier gain
assistance" CLEO 2018 Proceedings of the Conference on Lasers and Electro-optics, paper JW2A.63 (2018).



Program: Early Stage Innovation
'R\ Pl: Shayan Mookherjea, UC San Diego
SA Integrated Photonics for Adaptive Multi-Carrier Space-Based Communication & Ranging

. Directly achieve 100 Gbit/s NRZ, PPM etc.
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=  Electro-optic BW: 1.5 dBe BW ~ 106 GHz, measured. 3 dBe BW estimated >> 200 GHz.

= Eye SNR> 10 dB beyond 60 GHz.
=  Half-wave Voltage ~ 10 V versus 4.4 Volts for Harvard-Bell Labs etched LN. We have re-design (LN thickness)

underway to achieve ~5 V, without etching, achieving comparable performance eventually.

« Measured - Calculated

EO Response (dBe
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P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. Pomerene, A. Starbuck, C.
DeRose, A. Lentine, G. Rebeiz and S. Mookherjea "Bonded Thin Film Lithium Niobate Modulator on a Silicon Photonics
Platform Exceeding 100 GHz 3-dB Electrical Bandwidth" Optics Express Vol. 26, No. 18, 23728-23739 (2018) [URL]



Program: Early Stage Innovation
Pl: Keren Bergman & Michal Lipson

Ultra-Low Power CMOS-Compatible Integrated Photonic Platform for
Terabit-Scale Communications

Photonic Integration Platform for 2D Material Monolayers
* CMOS fabrication is mature and low cost, but suffers in optical loss and power consumption .

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Principle of Device Operation

Evanescent tail of confined optical mode interacts with embedded monolayer

- Embed monolayers of 2D malerials (graphene, WS,, MOS, ) in CMOS-compatible photonic waveguides
+ 2D materials enable large changes in the refractive index with minimal power consumption
and provide pure dielectric response without any associated absorption

Fabrication Flow
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|. Datta et &, “Composite photonic platform based on 20 semiconducior monolayers,” CLEQ (2019)
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|. Datta et &, “Giant electro-refractive modulation of monolayer WS, embedded in photonic structures,” CLEO (2018)




Program: Early Stage Innovation
Pl: Keren Bergman & Michal Lipson

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Ultra-Low Power CMOS-Compatible Integrated Photonic Platform for
Terabit-Scale Communications

Advantages of 2D Monolayers for Modulation and Switching Mach Zehnder Switch Element with WS, Monolayer Phase Shifter

+ Low electrical power consumption and low optical loss +Experimentally demonstrated Theory
- Carrier injection/extraction based modulation introduces excess loss due to free carrier absorption MZI switching element with RN e e e
+ Pure phase modulation (negligible absorption modulation) WS, monolayer embedded in for [ =
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Y. Liet o, "Measurement of the optical dislectric function of mondlayer transion-metal dchalcogendes,” Phys. Rev B 90, 205422 (2014




A Program: Early Stage Innovation
SA Pl: Seng Ho — Northwestern University

Compact Integrated PPM Laser Transceiver Chip Set with High Robustness and Re-Configurability
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The basic processes are based on Diffraction Grating laser on Si (SOI) substrate.



Program: Early Stage Innovation
Pl: Seng Ho — Northwestern University

Compact Integrated PPM Laser Transceiver Chip Set with High Robustness and Re-Configurability
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' NASA Space Technology Mission Directorate (STMD)
la?-z\ Early Career Faculty(ECF)

~ 1

Topic: Space Communication — M. Krainak (2014 - 3 year award)
* Jonathan Klamkin, University of California-Santa Barbaraq,

HELIOS: Heterogrneous Laser Transmitter Integration for Low SWaP

Topic: Integrated Photonic Sensors and Science Instrument Subsystems - M. Stephen
(2018 - 3 year award)

* Tingyi Gu, University of Delaware

Hybrid integration of nonlinear crystals on silicon photonics for space communication and sensing
*  Xingjie Ni, The Pennsylvania State University

Ultra-compact On-chip Integrated Spectrometers based on Metasurfaces
* Songbin Gong, University of lllinois at Urbana-Champaign

Lithium Niobate Based Photonic Integrated Circuits for Reconfigurable Sensing and Signal Processing



Program: Early Career Faculty
Pl: Dr. Tingyi Gu, University of Delaware

Hybrid integration of nonlinear crystals on silicon photonics for space communication and sensing
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Pl: Dr. Tingyi Gu, University of Delaware

Program: Early Career Faculty
8.

Hybrid integration of nonlinear crystals on silicon photonics for space communication and sensing
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Program: ECF

&,

Engineered nanostructures directly change the light properties: phase, ampltude, and polarizations, efc.

Anomalous light bendmg metasurface 3D invisbilty coak
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Negative refractive index  Amorphous metamaterials Ultrathin meta-holograms
By ”~ v
' Nat Nanotech. 3:1002, 2014
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20 excitonic laser

Nanophotonics & Optoelectronics Lab at Penn State - http://nanolight.psu.edu

¢ Low foot print, compact,

Nanophotonics and

PennState ., Xingjie Ni, The Pennsylvania State University Optoelectronics Lab (Ni Group)
Ultra-compact On-chip Integrated Spectrometers based on Metasurfaces

Metasurface — a 2D nanostructure directly manipulates
light behaviors: 2D works better than 3D!

Nano-antennas -

Antennas for light lw‘ ’

cost efficient, easy
integration, low loss, etc.

X. Ni, Science, 2012

Xingjie Ni (xingjie@psu.edu)



Program: ECF Nanophotonics and
PennState ., Xingjie Ni, The Pennsylvania State University Optoelectronics Lab (Ni Group)
Ultra-compact On-chip Integrated Spectrometers based on Metasurfaces

&,

Phase control of guided wave —

integrated spectrometers Nanofabrication and characterization
of the integrated spectrometers
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Nanophotonics & Optoelectronics Lab at Penn State - http://nanolight.psu.edu Xingjie Ni (xingjie@psu.edu)
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+ The nanoantennas on top of a waveguide can provide
phase shift to the transmitted guided wave as well.

\ =676nm
\ —531nm
\ \ =476 nm

o
-

o
—

+ An off-axis lens can be formed in a dielectric slab
waveguide by generating a corresponding phase profile
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NASA STIR
Photonic Integrated Circuits
2016 awards (Completed)

Title

Company

University

Integrated Optical Transmitter for
Space Based Applications

Freedom Photonics,
LLC

University of
California, Santa
Barbara

Photonic IC Spectrometer for
Spacecraft

Nanohmics, Inc.

Catholic University
of America

Integrated InAs QD Laser Based Si
Photonic Optical Transceiver

Zenith Optronics LLC

University of
Massachusetts
Lowell

Thin Film Lithium Niobate Microring
Modulators for Analog Photonics

Partow Technologies
LLC

University of Central
Florida




NASA STTR
Photonic Integrated Circuits
2017 awards — Phase 1

Title

Company

University

Heterogeneous Silicon Photonics
OFDR Sensing System

Luna Innovations,
Inc.

University of
California, Santa
Barbara

High Performance 3D Photonic
Integration for Space Applications

Freedom Photonics,
LLC

University of
California, Santa
Barbara

Tunable Opto-electronic Oscillator
Based on Photonic Integration of
Ultra-High Q Resonators on a SiN
Chip

OEwaves, Inc.

University of
California-Davis

Multifunctional Integrated
Photonic Lab-on-a-Chip for
Astronaut Health Monitoring

Intelligent Fiber
Optic Systems
Corporation

Stanford University




Program: STTR
Pl: Dr. Andrey Matsko, Oewaves Partner: ProfS. J. B. Yoo, University of California-Davis
Tunable OEO based on photonic integration of ultra-high Q resonators on a SiN chip

The team comprising OEwaves Inc. and UC Davis offers to develop and demonstrate a SiN-platform integrated photonic circuit suitable
for a spectrally pure chip-scale tunable Kerr opto-electronic RF oscillator (KOEO) that can operate as a flywheel in high precision optical
clock modules, as well as radio astronomy, spectroscopy, and local oscillator in radar and communications systems. The effort
comprises integration of an ultra-high quality (Q) crystalline whispering gallery mode (WGM) microresonator with multiple

lithographically defined photonic and electronic components and devices (including a laser, a detector and waveguides) on a single
platform with nanometer-scale feature sizes.

Metric Phase I Phase II (tentative)
Planar waveguide insertion loss 5 dB 1 dB
Planar waveguide-WGM resonator 30% 70%
coupling efficiency
O-factor of the integrated monolithic 10° 1010
resonator
RF frequency* 30 GHz 30 GHz
RF frequency tuning range 100 kHz 1 MHz
RF frequency tuning bandwidth 10 kHz 100 kHz
Output power 1 mW 10 mW
Volume (physics package) 3 cc 1 cc
Weight 10 g 5¢
DC power consumption 25 W 0.25W
Phase Noise Offset (Hz) L (dBc/Hz) Offset (Hz) L (dBc/Hz)
1 -30 1 -30
10 -60 10 -60
100 -90 100 -90
1,000 -120 1,000 -120
10,000 -140 10,000 -140
>1,000,000 -160 >1,000,000 -160

*Different RF frequency (~8-120 GHz) can be generated if desired

19



Program: STTR
Pl: Dr. Andrey Matsko, Oewaves Partner: ProfS. J. B. Yoo, University of California-Davis

Tunable OEO based on photonic integration of ultra-high Q resonators on a SiN chip
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NASA STTR
Photonic Integrated Circuits
2017 awards — Phase 2

Title

Company

University

Integrated Optical Transmitter for

Space Based Applications LLC

Freedom Photonics,

University of
California, Santa
Barbara

Multifunctional Integrated Photonic
Lab-on-a-Chip for Astronaut Health

Monitoring

Intelligent Fiber
Optic Systems
Corporation

Stanford University

Heterogeneous Silicon Photonics

OFDR Sensing System Inc.

Luna Innovations,

University of
California, Santa
Barbara




\/ Program: STTR
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Stanford
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NS — : i : i i iversi : :
ke Rl o o PI: Dr. Behzad Moslehi, IFOS Partner: Prof. Jim Harris, Stanford University University
Multifunctional Integrated Photonic Lab-on-a-Chip for
Astronaut Health Monitoring
Photonic Integrated Circuit (PIC) Approach Benefits to NASA & Non-NASA Applications
* |FOS Bio*Sense™ is miniaturized, low-SWaP-C photonic integrated lab-on-chip biosensor
* Capable of real-time, multi-analyte detection using minimal sample * Liver and kidney conditions
Serum total protein ¥ |, Infections and bone marrow diseases
* From discrete components to platform integration )
* Microfluidic channels enable continuous flow, future multiplexed detection | o Proteinuria
| * Kidney Damage
_ * Hypertension
’ Urine total protein = e Heart Disease
‘ Microfhadic layer e Pregnancy Preeclampsia
. | * Diabetes
Ught sowce/ detection aye * Bio*Sense™ provides real-time, sensitive, accurate, and inexpensive portable testing
Photonics: VCSELs, PDs, filters . . . L "
Electronics: LIA, sign. generator, DAQ *  IFOS-Stanford team envisions providing multi-analyte sensing in different body fluids

(e.g. urine, saliva, sweat, tears) that will be even less invasive

S
CECR N FER




Program: STTR

W, g?—i.—g‘ Pl: Dr. Behzad Moslehi, IFOS Partner: Prof. Jim Harris, Stanford University Stanford
l’{}‘TEUGENT mlﬁ Multifunctional Integrated Photonic Lab-on-a-Chip for Astronaut Health University

Monitoring

IFOS Bio*Sense™ Product Concept

Bio*Sense™ offers portability with design for space reliability

PD

Filter
Filter




i Program: STTR Pl Dr. John Ohanian - Luna
l l NA Partner: Prof. John Bowers—Y. of California, Santa Barbara UC S B

Heterogeneous Silicon Photonics OFDR Sensing System-,f

) L AL L1
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Complex receiver for laser monitor and sensing interferometers _ _ L
Sensing receiver must also be polarization diverse: polarization ~ @) Image of fabricated laser b) lresnoia = 34 MA, with P= 15 mW
manipulation components required @ 150 mA c) Stepped tuning range of 55 nm in 3.2 nm steps d)
52.5 kHz linewidth e) 50-60 dB SMSR



 Program: STTR Pl Dr. John Ohanian - Luna
l l NA Partner: Prof. John Bowers—Y. of California, Santa Barbara UC S B

Heterogeneous Silicon Photonics OFDR Sensing System”

Delay Line Challenges

A delay line is necessary in the laser monitor interferometer, which
is used to correct for laser tuning nonlinearities

Example: 1m spiral Si;N, waveguide on SiO, Luna has partnered with UCSB to implement an OFDR sensing system

using heterogeneous Si photonics.

+ We demonstrated an OFDR sensor interferometer network with coherent
receiver fabricated in Si waveguide on SiO, with external laser
+ Demonstrated a hybrid silicon laser suitable for integration with above
Actual size of spiral OFDR PIC:
delay line on PIC - 1 _ o
cm? « 15 mW, 55 nm tuning range, 52.5 kHz best linewidth, > 50 dB SMSR
U Future work:

Delay line optical path length should ideally be appreciable fraction
of max sensor length |
Si waveguides generally have higher loss than SiO, or Si;N,but ~ *  Improve delay line loss

superior to InP + Integrate laser with OFDR network
Several designs in Si waveguides were prototyped; further trials
needed to improve loss

Implement polarization diverse coherent receiver on PIC

Explore manufacturing and packaging issues via American Institute for
Manufacturing Integrated Photonics (AIM Photonics)



Program: STTR
Pl: Dr. Hamed Dalir — Omega Optics Inc.,

A Partner Dr. Volker J. Sorger - George Washmgton University , .
= MTlEC:lSE; am Partner: Dr. Ray T. Chen- The University of Texas at Austin llnnovation
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(a) Multiplexed 1*4 multimode interference (MMI) power splitter that splits an input light into 16 optical
paths, each with 4 photonic crystal microcavity sensors for 64 sensors in total. Light from the TCC VCSEL
will be input in this research, integrated on chip at the input to the MMI shown here. (b) Microscope image
of foundry fabricated silicon photonic crystal sensor devices. (c¢) Highly confined electric field in a photonic
crystal microcavity for enhanced analyte sensitivity. Multiplexed simultaneous specific detection of ZEBI in
lung cancer cell lysates with four arms of the MMI derivatized with (d) bovine serum albumin (e) isotype
matched control mouse IgG1 (f) anti-ZEBI antibody and (g) anti-MYC 9E10 antibody.

Frontier of Optoelectronics 9, 206-224 (2016).
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Partner: Dr. Ray T. Chen- The University of Texas at Austin
pionolithically Integrated TCC VCSELs with Surface-Normal 2D Slows
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The schematic of the proposed Transverse-Coupled-Cavity (TCC) VCSEL with vertically integrated
slow light photonic crystal waveguide array that is capable of providing the needed phase delay

within few micron thickness. The input surface normal beams are provided through an integrated
photonic circuit with 2D VCSEL arrays that is monolithically integrated to its substrate.
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Program: STTR Pl Dr. Leif Johansson - Freedom Photonics F R E E n 0 m
Partner: Prof. Jonathan Klamkin — University of California, Santa Barbara
Integrated Optical Transmitter for Space Based Applications PHOTONICS

Freedom Photonics has
demonsirated single Photonic
Integrated circuit incorporating:

* Widely tunable SG-DBR laser
- Ns-Burst gating SOA

* PSK encoder

 Pulse carver

Flared Amplifier

Master Oscillsnor
/ (MO)

Power Amplifier
(PA)

DC Electrica VO

Laser Outpet

Single-mode 1.5 ym laser
NRZ-OOK « 2 W at ~40% E/O efficiency
« 1 W at ~45% E/O efficiency

* Results:
- Wafer containing first prototypes}

. ’*vwg‘”"l . i"%"’"%
of the InP RZ-DPSK transmitter &% &
. e T 3 QR i e, 3000 60%

 Transmitter PIC mounted on 25°%C
carrier and wirebonded 2500 Design 1 s
- UCSB-designed driver board & 2000 Design2__ /' 40% &
integrated with Freedom PIC €. 2o &
: RZ-DPSK g b
demonstrating up to 10 Gbps H o
: & 1000 Design 3 20% i
\ 500 10% =

i "4: i - Power
4 0 1277 | | = Efficiency 0%
0 1000 2000 3000 4000 5000 6000

lpa (MA)
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NASA STTR
Photonic Integrated Circuits
2018 awards — Phase 1

Title

Company

University

Si-Based Lab-on-A-Chip Integrated
Photonic Spectrometer

Structured Materials
Industries, Inc.

Arizona State
University-Tempe

Flash Drive Integrated Label Free
Silicon Nano-Photonic Bio-Assays
for Space Station Bio-Diagnostics

Omega Optics, Inc.

The University of
Texas at Austin

Chip-scale THz Spectrometer

Nexus Photonics,
LLC

University of
California-Santa
Barbara

Integrated Photonic Filters for RF
Signal Processing

OEwaves, Inc.

Georgia Institute of
Technology

Femtosecond-Laser Fabrication of
Waveguides in Laser Materials

Aktiwave

Rochester Institute
of Technology




Program: STTR PI Dr. Christophe Dorrer, Aktiwave
AKTIWAV Eﬁ Dr. Jie Qiao Rochester Institute of Technology

Femtosecond-Laser Fabrication of Waveguides in Laser Materials ) I i T

+ Phase I: write waveguides; Phase Il: demonstrate waveguide lasers in YVriting waveguides with a femtosecond laser is a highly
Nd:YAG crystal flexible process

+Waveguide writing with femtosecond laser: An <0 (severe damage): Suitable for Nd: YAG

modification

* Highly localized (sub-micron) and controlled irreversible index T
||

* Large change of optical index, allowing for strong guiding . :
iﬁ . /

* Very flexible compared to other techniques (metal-ion diffusion,
ion/proton exchange, epitaxial layer deposition, chemical vapor
deposition, pulsed laser deposition, and ion-beam irradiation) AT )

* Nd:YAG choice Type |

* One of the most favorable gain media for solid-state lasers

owing to its excellent properties % % /

* Can be used at different wavelengths (946 nm, 1064 nm, 1120

nm, 1320 nm, and 1440 nm) F. Chen, J. R. Vazquez de Aldana, Laser Photonics Rev. 8,




Program: STTR PI Dr. Christophe Dorrer, Aktiwave
Dr. Jie Qiao Rochester Institute of Technology
Femtosecond-Laser Fabrication of Waveguides in Laser Materials

AKTIWAVE

11

Waveguides are being written in Nd:YAG using a
femtosecond fiber laser

The unidirectional Pulse Propagation Equation (UPPE)*,
derived from Maxwell’s equations, is used to determine the
impact of linear and nonlinear effects

Parameter Value
2 2 N | Pulse Width 400 fs to 10 ps
a \/ 36 Ay Wavelength 1030 nm and 515 nm
i 0 g4 E Repetition Rate | 500 kHz - 2 MHz
: 20/\ 32 Average Power | 50 W

50 100 150 200
distance (um)

o

0 50 100 150 200
distance (um)

* Propagation of writing femtosecond laser in ND:YAG:
+ Linear effects (diffraction, chromatic dispersion)
* Nonlinear optical effects (self-phase modulation, Raman)
+ Electrons generation (multi-photon ionization, avalanche

ionization) leading to defocusing

+ Optimum laser parameters are being numerically and experimentally
determined (energy, focusing conditions, and scanning rate)

+ Optical manufacturing and metrology tools at RIT's Advanced Materials

*M. Kolesik and J.V. Moloney, Phys. Rev. E 70 036604 (2004) Laboratory will also be used

32



&.. STIR
2 Chip-scale THz Spectrometer

Pl: Tin Komljenovic - Nexus Photonics, LLC and University of California, Santa Barbara

Development of integrated chip-scale frequency-domain THz spectrometer
with improved frequency accuracy, resolution and stability.

Goals of the project:

. > 10x weight reduction

. > 500x size reduction

° > 5x cost reduction

. > 1000x frequency accuracy improvement
. > 10x frequency resolution improvement

. Guaranteed long-term stability with built-in calibration until (EOL)




STTR
Chip-scale THz Spectrometer

Team: Nexus Photonics, LLC and University of California, Santa Barbara

Froguency (MM2)




NASA Earth Science Technology Office (ESTO)
Advanced Component Technology (ACT) Award

Title University Government
IMPRESS Lidar: Integrated Micro- University of NASA-Godard Space
Photonics for Remote Earth Science |California, Santa Flight Center
Sensing Lidar Barbara




NASA Earth Science Technology Office (ESTO) Advance Component Technology (ACT)

IMPRESS Lidar (UCSB and NASA Goddard

IMPRESS Lidar: Integrated Microphotonics for
Remote Earth Science Sensing Lidar

CO, Lidar (NASA GSFQ) Fully integrated Lidar sensor based on optical phase
e locked loop for fast switching/locking
FoTa < K 3 Existing Technology IMPRESS Lida
4‘# a*. S S P e | Uimaner | o
iz - w ¢ * Conlonl slecthoneis * Opdacal argliiers " ML 0:'1:1'&0
©_< Trasarmittance * Conbrod slecironics
* Elecwrosic amphtiers
Dynarske OPLL systiom setsies n g 1) V:"‘ ‘:‘ ‘c‘ .
~J - S | g.. '

Fouipradl * S em e Y h o

K. Numata, et al., Optics Express, 2012 e P
reference col

Integrated OPLL (UCSB)

Heterodyne optical PLL

w5 Switching across 5.6 nm

imtegrated cheut and Iockmg within 200

— TR T IR

Electronic PLL filter

D : A : : Utilize photonic integrated circuit (PIC) technology to
e ocked phese locked  phase lockad construct a low CSWaP, fast, and stable wavelength tunable
S. Arafin, et al., Optics Express, 2017 laser system for remote earth science sensing lidar to

enable frequent deployment on small spacecraft




NASA Established Program fto Stimulate
Competitive Research (EPSCoR) Award

Title

University

Noninvasive diagnostics for the
radiation effects on hybrid
nanomaterials and photonic

devices

University of
Delaware




Program: NASA’s Established Program to Stimulate Competitive Research (EPSCoR)
International Space Station (ISS) Flight Opportunity Cooperative.

PI: Dr. Tingyi Gu, University of Delaware

Evaluation of graphene-silicon photonic integrated circuits for high-speed, light weight and
radiation hard optical communication in space

* 2018 RockSat-C Program launch on June 22, 2018 at RockSat-C launch of

NASA’s Wallops Flight Facility of Chincoteague Island, packaged Si photonic chips
Virginia.

* Devices survive but wire bonding broke after launching..
» Extra capping is needed to protect t



NASA Integrated Photonics

NASA Applications:

> Sensors - Specirometers - Chemical/biological sensors:
Lab-on-a-chip systems for landers
Astronaut health monitoring

Front-end and back-end for remote sensing instruments
including trace gas lidars

Large telescope specirometers for exoplanets.

> Microwave, Sub-millimeter and Long-Wave Infra-Red
photonics:

Opens new methods due to Size, Weight and Power improvements,
radio astronomy and THz spectroscopy

> Telecom: inter and intra satellite communications.
Can obtain large leverage from industrial efforts.



