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Abstract

An automated procedure for the classification of transient contamination of stationary acoustic data is pro-

posed and analyzed. The procedure requires the assumption that the stationary acoustic data of interest

can be modeled as a band-limited, Gaussian random process. It also requires that the transient contam-

ination be of higher variance than the acoustic data of interest. When these assumptions are satisfied, it

is a blind separation procedure, aside from the initial input specifying how to subdivide the time series of

interest. No a priori threshold criterion is required. Simulation results show that for a sufficient number

of blocks, the method performs well, as long as the occasional false positive or false negative is acceptable.

The effectiveness of the procedure is demonstrated with an application to experimental wind tunnel acoustic

test data which are contaminated by hydrodynamic gusts.
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Nomenclature

B = normalized signal bandwidth

K = Kullback-Leibler divergence

M = Mach number

N = number of samples in a block of data

n = sample index

P = probability distribution function

p = probability density function

Q = probability distribution function, estimate of P

q = probability density function, estimate of p

yn = individual sample in a block of data

α = gamma distribution shape parameter
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β = gamma distribution scale parameter

Γ = gamma function

γ = incomplete gamma function

ν = effective degrees of freedom of a signal of block size N

σ2 = variance of a block of data

χ2
N = sum of the squares of the samples in a block of data

1. Introduction1

IN aeroacoustic wind tunnel testing, experimentalists often seek to measure acoustic signals which can be2

modeled as band-limited, stationary random processes. The unfortunate reality for some experimental3

setups is that the acoustic signal of interest will be measured along with some form of contamination.4

For example, in an open-jet and acoustically-treated wind tunnel facility, the contamination observed by a5

microphone may manifest as either stationary pressure fluctuations generated by facility acoustic sources, or6

transient pressure fluctuations generated by flow over the microphone.1 Stationary contamination may be7

mitigated through various forms of frequency domain background subtraction.2,3 However, such techniques8

are not appropriate for transient events.9

Alternative analysis methods are required to classify and separate time domain contamination. While10

manual inspection of data is an option, this is usually impractical due to the large volume of data involved.11

This work presents an automated method which requires minimal input aside from the parameters to12

subdivide a given time series of interest. The identification and separation methodology has a well-defined13

parameter for classifying transient data, which should be valid as long as the underlying assumptions are14

approximately obeyed. It is assumed that the underlying acoustic signal of interest is a stationary, zero15

mean, Gaussian random process; and that the acoustic data of interest are of lower variance than transient16

contaminating data. These assumptions are addressed in more detail in the theoretical development of the17

classification technique in the following section. Subsequent sections evaluate the classification performance18

with both simulated and experimental data. These are followed by recommendations developed from the19

results.20

2. Theoretical Development21

The first assumption required for this transient classification procedure is that the underlying acoustic22

signal is a stationary, zero mean, Gaussian random process. If the samples from the acoustic signal of23

interest, y, are truly Gaussian-distributed random variables with zero mean and unit variance, then the sum24
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of the squares of a set of N samples,25

χ2
N =

N∑
n=1

y2n, (1)

is a random variable which follows a chi-square distribution with N degrees of freedom.4 Dividing this26

relation by N − 1 expresses it in terms of the block variance with a known mean,27

σ2 =
χ2
N

N − 1
=

1

N − 1

N∑
n=1

y2n, (2)

which also follows a chi-square distribution.28

It is relatively easy to enforce the zero mean condition on acoustic data, either through high-pass filtering29

during data acquisition or mean subtraction in post-processing. However the variance of the distribution for30

y is unknown, so a more general distribution is necessary to model the distribution of the block variance, σ2.31

As a generalization of the chi-square distribution, the gamma distribution can be used.5 The probability32

density function for a gamma distribution of the block variance (with a zero location parameter) is given by33

p
(
σ2
)

=
1

βΓ (α)

(
σ2

β

)α−1
e

−σ2
β , (3)

where α = ν/2 is the shape parameter, β is the scale parameter and Γ is the gamma function34

Γ (α) =

∫ ∞
0

tα−1e−t dt. (4)

For β = 2, and substituting χ2
N for σ2, this collapses to the chi-square distribution. This scale parameter35

allows a distribution fit to handle nonunity variance of y.36

In practice, the acoustic signal is not truly random white noise, but has a finite bandwidth and correlation37

timescale. This normalized bandwidth, B, alters the effective degrees of freedom, ν, of the signal.6 For38

example, a block of 8192 samples of a signal which is truly random has a spectrum of white noise and a39

bandwidth of 100%, so ν = N = 8192. If the signal passes through an ideal lowpass filter set to 50% of the40

Nyquist frequency for the sampling rate, then B = 0.5 and the effective number of degrees of freedom is41

ν = B × N = 4096. This fractional, normalized bandwidth can be estimated through a simple procedure.42

First, the one-sided power spectral density of the signal must be computed. This function of frequency,43

Gyy (f), must then be normalized such that its peak is unity,44

Gyy,norm (f) =
Gyy (f)

max [Gyy (f)]
. (5)

The average of this normalized spectral density is then computed by integrating across the measurement45

bandwidth and normalizing by the integration range,46

B =
1

fmax

∫ fmax

0

Gyy,norm (f) df. (6)
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With the effective degrees of freedom and, thus, the shape parameter of a distribution fit derived from47

the signal bandwidth, the scale parameter must now be determined. An easy, if biased,7 estimate of β can48

be obtained from its maximum likelihood estimator49

β =
σ2

α
, (7)

where σ2 is an estimate of the mean of the block variances. However, the mean of the variances is sensitive to50

extreme variance values, which may occur when a transient event is superimposed on the baseline Gaussian51

process. A statistical parameter that is less sensitive to extreme values is necessary for computing β. One52

such parameter is the median of the block variances. The median occurs where the probability distribution53

function is 0.5. The probability distribution function for the gamma distribution is given by54

P
(
σ2
)

=
γ
(
α, σ

2

β

)
Γ (α)

, (8)

where γ is the (non-normalized) incomplete gamma function5
55

γ

(
α,
σ2

β

)
=

∫ σ2

β

0

tα−1e−t dt. (9)

The equation for the median variance is thus56

1

2
=
γ
(
α,

σ2
med

β

)
Γ (α)

. (10)

Software libraries exist for efficiently inverting γ for a given α, thus yielding an estimate of the median57

variance normalized by β. The experimental median variance can then be divided by this estimate, yielding58

an estimate of β. Thus for a given shape factor α, two scale factors can be readily computed from the data.59

One, βmean, is based on the mean of the block variances and may be significantly influenced by extreme60

values of block variance in the data such as may be present with transient events. The other, βmedian, is61

based on the median of the block variances.62

Having two scale factors allows for the construction of two gamma distributions. These can be compared63

to gain some sense of the relative influence of extreme block variances on the data set. Numerically this can64

be done by evaluating the Kullback-Leibler divergence, which is one metric for comparing distributions.865

The divergence K is a measure of the information lost when probability distribution Q (or density q) is used66

to estimate distribution P (or density p). This is expressed as67

K (p‖q) =

∫
ln

[
p
(
σ2
)

q (σ2)

]
p
(
σ2
)

d
(
σ2
)
. (11)

While, in general, this can be difficult to compute, it is greatly simplified in the case of two gamma distri-68

butions with a common α. In this case, some manipulation yields69

K (p‖q)αp=αq=α = α

(
lnβq − lnβp +

βp − βq
βq

)
, (12)
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or, as used in this application,70

K (pmedian‖pmean)αmedian=αmean=α = α

(
lnβmean − lnβmedian +

βmedian − βmean
βmean

)
. (13)

The two distributions match when K is zero.71

To summarize, two data distributions can be estimated. The distribution based on the block variance72

mean is more sensitive to blocks with high variance, such as those containing transient contamination, than73

the distribution based on block variance median. A metric is constructed for comparing the two distributions.74

Now a procedure is proposed for determining which blocks of a given time series to retain and which to75

reject. The process is illustrated in Fig. 1. It should be noted here that for the number of blocks traditionally76

used in aeroacoustic wind tunnel testing, converged data distributions are not expected. The intent of the77

following procedure is to provide an automated engineering tool to locate and thus exclude blocks in the78

time series associated with transient events, not to accurately estimate the probability distribution of the79

acoustic data block variance.80

First, a given microphone time record is broken into blocks of a desired number of samples, N . This81

value is usually dictated by the desired spectral estimation parameters. The variance of each of these blocks82

is computed, and the blocks are sorted by their variance, from low to high. A minimum number of blocks is83

selected to automatically accept as stationary. This number of blocks is taken as the lowest-variance subset84

of blocks from the sorted set, and should be large enough to reduce the noise in the estimate but small85

enough to avoid any extreme values, or contaminated blocks. Experience with simulations suggests 20% of86

the total block count to be a safe selection, though a lower value was successfully used with experimental87

data. This subset of blocks is used to compute an autospectral density, which can be used to calculate α.88

This can be used to compute βmean and βmedian, followed by K. The next block, in order of ascending89

variance, is added to the active subset of blocks and the process is repeated. This continues until all of90

the blocks of data have been included, producing |K| as a function of the number of blocks included in the91

data set in order of ascending variance. The block set yielding the minimum |K| is classified as stationary.92

Blocks excluded from this set are classified as containing significant transient contamination. They may be93

subsequently excluded from processing of the stationary data of interest.94

3. Simulated Analysis95

A simulation study is performed to measure the performance of the transient classification procedure96

with data representative of experimental situations and parameter choices. The goal is to understand the97

performance of the procedure for a variety of situations and to gain an understanding of how the algorithm98

should perform for experimental data. Simulations are used as opposed to training data sets to better cover99

a complete range of possible situations.100
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Figure 1. Algorithm flow chart for classifying transient events.

3.1. Performance metrics101

Identification of a data block contaminated with noise is a binary classification problem where the data102

block is either a transient, contaminated block or a stationary, uncontaminated block. Thus, performance103

metrics used to evaluate binary classifiers can be used here.9 Note that for this study, classification of a104

data block as a transient, along with its subsequent rejection by the method and removal of the data block105

from the set of interest is considered as a positive result. The associated negative result is the classification106

of a data block as stationary. This study considers three performance metrics: accuracy, false positive rate,107

and false negative rate. The accuracy is the fraction of test cases that are correctly classified as either a108

transient data block or a stationary data block. The false positive rate is the fraction of the total number109

of stationary data blocks that are incorrectly classified as transient data blocks. It provides a measure of110

reduction in useful, stationary data blocks due to the classification process. The false negative rate is the111

fraction of the total number of transient blocks that are misclassified as stationary data blocks and provides112

a measure of the contaminated data blocks that are allowed through the algorithm.113

An intermediate step for computing the accuracy, false positive rate, and false negative rate is the114
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calculation of the confusion matrix. For a binary classification problem, the confusion matrix is a two by115

two table containing the counts of the classifier output for true positives and true negatives on the diagonal116

elements and false positives and false negatives on the off-diagonal elements. Thus, the accuracy is the117

sum of the diagonal elements divided by the total number of data blocks, while the false positive rate and118

false negative rate are the off-diagonal elements divided by the total number of true or known positives or119

negatives, respectively.120

3.2. Simulation cases121

The desired measured signal and the contamination signal are modeled as independent Gaussian noise122

signals with different variances, with the variance of the contamination larger than the variance of the desired123

signal. Five parameters are studied in simulations. These are the ratio of the variance of the contamination124

to the variance of the signal, the total number of data blocks, the number of points N in each data block,125

the percentage of the data blocks contaminated, and the percentage of the points in each data block that126

are contaminated. For all simulation cases, the total number of data blocks is swept through values of 100,127

200, 300, 400, 500, and 1,000. The remaining parameters are given in Table 1. These combinations yield a128

total of 132 individual simulation cases.129

3.3. Simulation procedure130

The simulation procedure is as follows. First, a simulation case is selected, and the case parameters are131

noted. Next, the non-contaminated signal is modeled as a unit variance Gaussian random signal with the132

number of data points per data block and the number of blocks specified for the simulation case. Next,133

the clean signal is divided into the desired number of blocks, with no block overlap. Then, the desired134

number of blocks are contaminated for the desired percentage of points with additive noise specified by the135

variance ratio and added to the first part of the block. The transient classification algorithm is applied136

to the simulated data, and the data blocks classified as transients are logged. For these simulations, the137

transient classification procedure automatically considers the 20% of data blocks with the lowest variance to138

be stationary because lower total block counts approach the minimum necessary for a reasonable autospectral139

estimate. The confusion matrix elements are then calculated and recorded. The process is repeated for a140

total of 50,000 trials of data generation for each simulation case. The individual elements of the confusion141

matrix are examined to ensure the mean and standard deviation have converged to within 0.1% based on142

the values from one iteration to the next. Finally, the mean estimate for the confusion matrix is used to143

compute the estimated mean accuracy, false positive rate, and false negative rate for the simulation case.144

3.4. Results145

Table 2 presents a statistical summary of the three performance metrics over all of the simulation cases.146

The accuracy ranges from 80.1% to 99.3%. However, if the number of blocks is greater than or equal to 300,147
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Table 1. Parameter values for simulation cases. All cases sweep through six values of the total number of data blocks of 100,

200, 300, 400, 500, and 1000.

Variance Points Percentage Percentage of

ratio per data of data blocks points in each data

block contaminated block contaminated

2 8192 75 100

2 8192 50 100

2 8192 25 100

2 8192 25 50

2 8192 25 25

2 8192 75 50

2 8192 75 25

2 2048 75 25

2 2048 75 100

2 2048 25 25

2 2048 25 100

3 8192 25 25

5 2048 25 100

5 2048 75 100

5 2048 25 25

5 2048 75 25

5 8192 75 25

5 8192 75 100

5 8192 25 25

5 8192 25 100

10 8192 25 25

100 8192 25 25
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which is desirable for averaging of the spectral estimate as it approaches a normalized random error of 5%,148

the mean accuracy is greater than 90%. This condition also further constrains the false positive rate bounds149

to range from 0.9% to 12.9%, and the false negative rate bounds to range from 0.0% to 2.0%, improving on150

the results summarized in Table 2.151

Table 2. Statistical summary of performance metrics for all simulation cases.

Accuracy (%) FPR (%) FNR (%)

minimum 80.1 0.9 0.0

mean 94.4 8.8 0.3

median 97.0 6.2 0.01

maximum 99.3 26.4 4.2

3.4.1. Number of data blocks and variance ratio152

The variation in the performance of the algorithm is studied as a function of the total number of data153

blocks and contamination to signal variance ratio. Here, the number of data points per block was held to154

N = 8, 192 points, the percent of contaminated blocks to 25%, and the percent of each contaminated block155

perturbed to 25%. This resulted in 30 simulation scenarios selected from the 132 total cases. The results, as156

plotted in Fig. 2, show that all performance metrics converge as a function of variance ratio when the ratio157

is greater than five. The accuracy and the false positive rate improve as the total number of data blocks158

increases. The false negative rate shows more variation, but the values are below 0.14% for all 30 scenarios.159

These rates correspond to total false negative counts of zero, one, or, at worst, two misclassified blocks.160

3.4.2. Percent of contaminated block perturbed161

In the actual experiments analyzed in a subsequent section, transient gust contamination occurs spo-162

radically and for short durations. Thus, for any data block that is impacted, only a portion of that block163

may be contaminated. Understanding how sensitive the performance metrics are to the percentage of any164

given data block that is perturbed is critical to assessing the robustness of the method. This simulation165

subset held the variance ratio to 2 (the most challenging value in the simulation study), the number of data166

points per block to N = 8, 192 points, and the percentage of contaminated blocks 25%. This resulted in167

18 simulation scenarios selected from the 132 total cases. The results, as plotted in Fig. 3, show that the168

accuracy and the false positive rate are minimally affected by the percentage of the contaminated data block169

that is perturbed, especially when compared to the impact from the total number of data blocks. The mag-170

nitudes of the correlation coefficients between the accuracy and percentage of the data block contaminated,171

and between the false positive rate and the percentage of the data block contaminated are less than 0.1,172
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Figure 2. Performance metrics varying the total number of data blocks and the contamination to signal variance ratio. The

number of data points per block is held to to N = 8, 192 points, the percentage of contaminated blocks to 25%, and the percent

of each contaminated data block perturbed to 25%.
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confirming the lack of a linear relationship as seen in Fig. 3. However, the false negative rate does show a173

functional dependence on the percentage of the data block contaminated. This has a correlation coefficient174

of -0.25 (p-value of 0.004). Thus, as the percentage of the data block that is contaminated increases, the175

method can more easily identify data blocks that have been contaminated. However, the maximum false176

negative rate is still only 0.14%.177

3.4.3. Percent of data blocks that are contaminated178

The variation in the performance of the classification algorithm is studied as a function of the percentage179

of data blocks that are contaminated. This simulation subset held the variance ratio to 2, the number of180

data points per block to N = 8, 192 points, and the percent of each contaminated block perturbed to 25%,181

resulting in 18 simulation scenarios selected from the 132 total cases. The results, as plotted in Fig. 4, show182

that the accuracy and false positive rate improve with an increasing percentage of transient blocks in the183

total data set, whereas the false negative rate worsens. The values of all three performance metrics as a184

function of the percentage of contaminated blocks present in the total data set are also impacted by the185

total number of data blocks. However, when there are a total of 1,000 data blocks, the variation in the186

performance metrics as a function of the percentage of contaminated data present is minimal. With at least187

300 total blocks, as might be recommended, the variation is greatly reduced. Note that a critical value of188

the percentage of contaminated blocks appears to exist between 50% and 75% where the behavior of the189

performance metrics changes.190

4. Experimental Results191

The transient classification procedure is applied to an advanced aircraft noise study conducted at the192

NASA Langley Research Center’s 14- by 22-Foot Subsonic Tunnel.10 A photograph of an example test193

configuration from this study is shown in Fig. 5, where a hybrid wing body model is installed inverted in the194

facility test section. As shown in the photograph, microphones are installed on sideline traversing towers,195

as well as a truss and array panel located above the facility test section.196

NASA Langley’s 14- by 22-Foot Subsonic Wind Tunnel is, by design, an aerodynamic wind tunnel197

which can operate in an open test section configuration. While significant acoustic improvements have been198

applied to the facility, measurement microphones are, under some installation configurations, close enough to199

the open-jet shear layer that hydrodynamic gusts may contaminate the out-of-flow acoustic measurements.200

This was primarily observed when microphones were at the far-downstream end of the test section, although201

occasional gust impingement was seen at other measurement stations.202

An extreme example of gust impingement from the airframe noise component of the test is shown in203

Fig. 6. The plotted data are for an acquisition where one of the speakers embedded in the model body was204

driven with a random noise signal which was bandpass filtered to span a frequency range of 4 kHz to 16205
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Figure 3. Performance metrics varying the percentage of the contaminated block that is perturbed from the contamination

signal while holding the variance ratio to 2, the number of data points per block to N = 8, 192 points, and percentage of

contaminated blocks to 25%.
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Figure 5. Example arrangement of a hybrid wing body model, phased array and tower traverses.

kHz. The hybrid wing body model was pitched to an angle of attack of 14.5◦, and the test section Mach206

number was M = 0.23. The acoustic measurement hardware was traversed to the far-downstream end of207

the test section. As shown by the time series in Fig. 6a, the array center microphone signal appears as208

might be expected for a stationary, band-limited random signal. The south tower microphone, located in209

the upper-right-hand corner of the picture in Fig. 5, clearly experiences extreme transient bursts as shown210

in Fig. 6b. The corresponding autospectra are shown in Figs. 6c and 6d. While the array center microphone211

spectrum shows the low frequency content of the signal at 4 kHz, the south tower microphone spectrum is212

masked by the low frequency content of the burst. Note that at this stage of processing, two clean signals213

would not overlay due to differences in propagation distance between the source and each microphone, along214

with the speaker directivity. Also, this test is a prime example of why an automated classification method215

is desirable. The contamination in the data is clear and could readily be separated manually. However,216

roughly a quarter of a million time series records were generated during the test. Manual inspection of such217

a volume of data is unreasonable.218

For these data, the procedure developed for transient classification is applied by breaking the microphone219

time series into 920 blocks of desired length N = 8192 points. This corresponds to the baseline processing220
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parameters used in the test for spectral analysis.11 The minimum number of accepted blocks is set to 100221

based on observation of the spectral convergence. A histogram of the south tower microphone data block222

variances is shown with respect to the left axis in Fig. 7, with the 16 most energetic blocks removed from the223

plot. Even without these blocks, which would extend the plot abscissa beyond a variance of 500 Pa2, this224

histogram shows a long, thin tail in the direction of large variance values. The corresponding probability225

density functions for the median- and mean-based models are shown with respect to the right axis in the226

figure.227

Of the 920 input blocks, 567 are rejected. The computed |K| as a function of block count used to228

separate the blocks is shown in Fig. 8, showing an obvious minimum. It should be noted that while this is229

a large portion of the data to reject, this microphone acquisition is from a location normally outside of the230

bounds of reasonable acoustic measurement positions in the facility. The histogram of the remaining block231

variances is shown in Fig. 9, along with the median- and mean-based probability density function estimates232

for the retained block set. As expected, the probability density functions overlay for the minimum value of233

|K|. The output of the procedure is shown in Figs. 10a and 10b. Visually, the technique has identified and234

removed the obvious contamination from the time series. In the spectral analysis, the 4 kHz content of the235

signal is now visible, with a reduction of up to 10 dB in the microphone autospectrum at lower frequencies.236

Higher frequencies are unaffected.237

5. Summary & Conclusions238

An automated method for classifying transient data segments which contaminate stationary acoustic239

data is presented. The method requires two assumptions. First, it treats the underlying stationary signal240

of interest as having Gaussian random characteristics. Second, it assumes that contaminated segments of241

data will have higher variance than clean segments of data. Under these assumptions, it is an unsupervised242

method which performs binary classification: either a data block is contaminated by a transient signal or it243

is clean.244

An extensive set of simulations covering a broad range of conditions shows that the technique has a245

high degree of accuracy as long as at least 300 data blocks are used, though 500 may be preferable. The246

FPR may still be greater than 5% under some of the simulated circumstances. However, falsely classifying247

a few blocks of stationary data as transient and discarding them is not problematic. Wind tunnel time248

is expensive, so data records have a practical duration limit based on cost. Regardless, standard spectral249

estimation techniques will still perform well if a few extra blocks are discarded while hundreds are retained.250

Simulations suggest the technique has a very low FNR for the parameter space explored, so misclassifying251

enough transient data as stationary to noticeably contaminate a spectral estimate is unlikely.252

Experimental results from a worst-case scenario in an aeroacoustic wind tunnel test show that, visually,253
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the method succeeds in separating contaminated blocks from the baseline signal of interest. Spectral estima-254

tion of the signal both before and after the application of the technique shows up to a 10 dB improvement255

in signal-to-noise ratio due to the removal of contamination. Features in the acoustic spectrum which are256

masked in the baseline data set are revealed once the transient blocks are removed.257
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Figure 6. Example data contamination by hydrodynamic impingement. The two compared microphones observed a calibration

signal with an output band of 4 kHz to 16 kHz, emitted by one of the model embedded speakers. The hybrid wing body

model was at an angle of attack of 14.5◦, and the test section Mach number was M = 0.23. Acoustic hardware were at the far

downstream traverse location. Spectral binwidths are 30.5 Hz.
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Figure 7. Histogram of block variances from the south tower time series in Fig. 6 excluding the 16 most energetic blocks, and

modeled data probability density functions.
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Figure 8. Kullback-Leibler divergence as a function of included block count for the south tower time series data.
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Figure 9. Post-classification histogram of south tower time series data from Fig. 7, along with post-rejection models (mean

model almost completely overlays the median model).
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Figure 10. Results of transient rejection algorithm when applied to the south tower time series data from Fig. 6b. Data blocks

are plotted as a function of time. The shift in the estimated data autospectrum is shown. Spectral binwidths are 30.5 Hz.
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